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The big picture The big picture

∥G1∥ × · · · × ∥Gn∥ E1 × · · · × En (A1, f1) × · · · × (An, fn)

|G1| × · · · × |Gn| X1 × · · · × Xn

G1 , . . . , Gn
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β1 βn× · · · × β1 βn× · · · ×
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Geometric models Cartesian product

Cartesian product in a category C

The object c is the Cartesian product (in C) of a and b when there exist two morphisms πa : c → a and πb : c → b such
that for all objects x of C the following map is a bijection

C[x , c] // C[x , a]×C[x , b]

h
� // ( πa◦h , πb◦h )

When such an object c exists we write c = a× b
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Geometric models Cartesian product

Cartesian product in the category of graphs (Grph)


A

s

��
t

��
V

×


A′

s′

��
t′

��
V ′

 ∼=


A× A′

s×s′

��
t×t′

��
V × V ′


The Cartesian product in Grph is deduced form the Cartesian product in Set
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Geometric models Cartesian product

Examples of Cartesian products

- The product of (X ,ΩX ) and (Y ,ΩY ) in Top is given by X × Y together with unions of subsets of the form U × V
with U ∈ ΩX and V ∈ ΩY . It is the least topology making the projections continuous.

- The product of (X ,⊑X ) and (Y ,⊑Y ) in Pos is given by X × Y and the partial order ⊑ defined by (x , y) ⊑ (x ′, y ′)
when x ⊑X x ′ and y ⊑Y y ′. It is the greatest partial order such that the projection are poset morphisms.

- The product of (X ,⊑X ) and (Y ,⊑Y ) in PoSp is given by X × Y and the product order ⊑X × ⊑Y .

- The product of (X , [U ]∼) and (Y , [V]∼) in Lpo is given by X × Y together with the collection of ordered charts
U × V with U ∈ U and V ∈ V.

- The product of (X , dX ) and (Y , dY ) in Metemb does not exist.

- The product of (X , dX ) and (Y , dY ) in Metctr is given by X × Y together with
d
(
(x , y), (x ′, y ′)

)
= max{dX (x , x ′), dY (y , y ′)}.

- The product of (X , dX ) and (Y , dY ) in Mettop can also be given by X × Y together with the Euclidean product

d
(
(x , y), (x ′, y ′)

)
=
√

d2
X (x , x

′) + d2
Y (y , y ′)

- Categories of models of algebraic theories.
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Geometric models Cartesian product

Infinite Cartesian product

The product of a family (Ai )i∈I of objects of a category C, when it exists, is an object∏
i

Ai

together with projections

πAj
:
∏
i
Ai

// Aj

such that the next mapping is a bijection.

C(X ,
∏
i
Ai ) // ∏

i
C(X ,Ai )

h
� // ( πAi

◦ h )

Infinite products of directed circle does not exist in Lpo.
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Geometric models Turning discrete models into geometric ones

Canonical partition

G : A
∂+

//
∂-
// V ↿G⇂ = V ⊔ A × ]0, 1[

↿G1⇂ × · · ·× ↿Gn⇂ = ( V1 ⊔ A1×]0, 1[ ) × · · · × ( Vn ⊔ An×]0, 1[ )

↿G1⇂ × · · ·× ↿Gn⇂ =
⊔

points p of
G1, . . . ,Gn

{p}×]0, 1[ dim(p1,...,pn)

where p = (p1, . . . , pn), pi ∈ Vi ⊔ Ai , and dim p = #
{
i ∈ {1, . . . , n} | pi ∈ Ai

}
Bp = {p}×]0, 1[ dim(p1,...,pn) is called a canonical block

The collection of canonical blocks forms the canonical partition of ↿G1⇂ × · · ·× ↿Gn⇂.
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Geometric models Turning discrete models into geometric ones

The geometric model of a conservative program

The forbidden region of a conservative program Π = (G1, . . . ,Gn) is the disjoint union of canonical blocks⊔
forbidden points p
of (G1, . . . , Gn)

Bp

The geometric model of Π is the locally ordered metric space

↿G1⇂ × · · ·× ↿Gn⇂ \{forbidden region}

the distance being given by
d(p, p′) = max

{
d↿Gi⇂(pi , p

′
i ) | i ∈ {1, . . . , n}

}
in accordance with the fact that the execution time of the simultaneous execution of many processes is the longest
execution time among that of the processes considered individually.
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Geometric models Gallery of examples

From discrete to continuous
sem: 1 a sync: 1 b

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)

⊗

××
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Geometric models Gallery of examples

Square

sem 1 a

proc: p = P(a);V(a)

init: 2p
P(a)

P
(
a
)

V(a)

V
(
a
)
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Geometric models Gallery of examples

Swiss Cross

sem 1 a b

proc:

p = P(a);P(b);V(b);V(a)

q = P(b);P(a);V(a);V(b)

init: p q

P(a)

P
(
b
)

P(b)

P
(
a
)

V(b)

V
(
a
)

V(a)

V
(
b
)
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Geometric models Gallery of examples

Binary synchronization

sync 1 a

proc: p = W(a)

init: 2p
W(a)

W
(
a
)

synchronization

unreachable

u
n
re
a
ch

a
b
le
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Geometric models Gallery of examples

Producer/Consumer
nonlooping

sync 1 a

proc:

X p = x:=x+1 ; W(a)

X c = W(a) ; x:=x-1

init: p c

x:=x+1

W
(
a
)

W(a)

x
:
=
x
-
1
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Geometric models Gallery of examples

Producer/Consumer
looping

sync 1 a b

proc:

X p = x:=x+1 ; W(a) ; W(b) ; J(p)

X c = W(a) ; x:=x-1 ; W(b) ; J(c)

init: p c
x:=x+1

W
(
a
)

W(a)

x
:
=
x
-
1

W(b)

W
(
b
)
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Geometric models Gallery of examples

3D Swiss Cross (tetrahemihexacron) and floating cube

x

y

z

P(a) V(a)

P(a)

V(a)

P(a)

V(a) x

y

z

P(a) V(a)

P(a)

V(a)

P(a)

V(a)
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Geometric models Gallery of examples

The Lipski algorithm

p

q

r

sem 1: u v w x y z

proc:

XXp = P(x);P(y);P(z);V(x);P(w);V(z);V(y);V(w)

XXq = P(u);P(v);P(x);V(u);P(z);V(v);V(x);V(z)

XXr = P(y);P(w);V(y);P(u);V(w);P(v);V(u);V(v)

init: p q r
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Geometric models compared to discrete ones

Justifying de definition of discrete directed paths

Let Bp and Bp′ be canonical blocks.

If there exists a directed path starting in Bp , ending in Bp′ , and whose image is contained in Bp ∪ Bp′ then one of the
following facts is satisfied:

- for all i ∈ {1, . . . , n}, pi = p′i or pi is the source of the arrow p′i , or

- for all i ∈ {1, . . . , n}, pi = p′i or p′i is the target of the arrow pi .
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Geometric models compared to discrete ones

Discretization and lifting

- Given a directed path γ on the local pospace ↿G1⇂ × · · ·× ↿Gn⇂ we have a finite partition I0 < · · · < IN of dom(γ)
such that for all k ∈ {0, . . . ,N}, there exists a (necessarily unique) point pk such that γ(Ik ) ⊆ Bpk .

- The sequence p0, . . . , pN is a directed path on (G1, . . . ,Gn), it is called the discretization of γ and denoted by D(γ).

- Given a directed path δ on (G1, . . . ,Gn) there exists a directed path γ on ↿G1⇂ × · · ·× ↿Gn⇂ whose discretization is
δ, such a directed path γ is said to be a lifting of δ.
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Geometric models compared to discrete ones

Example of discretization
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Geometric models compared to discrete ones

Admissible directed paths and execution traces
on ↿G1⇂ × · · ·× ↿Gn⇂

The sequence of multi-instructions of a directed path γ on ↿G1⇂ × · · ·× ↿Gn⇂ is that of its discretization of D(γ).

A directed path on ↿G1⇂ × · · ·× ↿Gn⇂ is admissible (resp. an execution trace) iff so is its discretization.

The action of a directed path γ on ↿G1⇂ × · · ·× ↿Gn⇂ on the right of a state σ is that of its discretization of D(γ).
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Geometric models compared to discrete ones

Example

var x = 0

var y = 0

var z = 0

sync 1 b

sem 1 a

proc p = y:=0 ; W(b) ; P(a) ; x:=z ; V(a)

proc q = z:=1 ; W(b) ; P(a) ; x:=y ; V(a)

init p q
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Geometric models compared to discrete ones

Discretization of an execution trace
sem: 1 a sync: 1 b

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)

⊗

×
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Geometric models compared to discrete ones

Discretization of an execution trace
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Geometric models compared to discrete ones

Potential function on ↿G1⇂ × · · ·× ↿Gn⇂

If the program under consideration is conservative, then we have the potential function

F : ↿G1⇂ × · · ·× ↿Gn⇂ × S → {multisets over {1, . . . , n}}

The function F is constant on each canonical block Bp , its value is given by F̃ (p) where F̃ denotes the “discrete”
potential function.
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Geometric models compared to discrete ones

Geometric models are sound and complete

- Any directed path on a continuous model is admissible.

- Conversely, for each admissible path on a continuous model which meets a forbidden point, there exists a directed
path which avoids them and such that both directed paths induce the same sequence of multi-instructions.
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Geometric models compared to discrete ones

Directed paths on the geometric model are admissible
sem: 1 a sync: 1 b

y
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Geometric models compared to discrete ones

Directed paths on the geometric model are admissible
sem: 1 a sync: 1 b
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Geometric models The motivating theorem

Trade off
More mathematics for more properties?

- Both discrete and geometric models are sound and complete.

- The continuous models satisfy extra properties that are “naturally” expressed in terms of metrics.
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Geometric models The motivating theorem

Uniform distance between directed paths

Given a compact Hausdorff space K and a metric space (X , dX ), the set of continuous maps from K to X can be
equipped with the uniform distance

d(f , g) = max{dX (f (k), g(k)) | k ∈ K} .

We consider the case where K = [0, r ] is the domain of definition of a directed path and (X , dX ) is the geometric model
of a conservative program.
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Geometric models The motivating theorem

The main theorem

Let Bp and Bp′ be canonical blocks of the geometric model X of a conservative program.

Let dX [0,r ](Bp ,Bp′ ) be the set of directed paths on X whose sources and targets lie in Bp and Bp′ respectively.

Let γ be an element of dX [0,r ](Bp ,Bp′ ).

There exists an open ball Ω of dX [0,r ](Bp ,Bp′ ), centred in γ, such that all the elements of Ω induce the same action
on valuations. Moreover, if γ is an execution trace, then so are all the elements of Ω.
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Geometric models The motivating theorem

Illustration

P1

P2

y:=2

x
:
=
1

γ2

γ3 γ1

γ1
P1

P2

x
:
=
1

y
:
=
2

γ3
P1

P2

x
:
=
1

y
:
=
2

γ2
P1

P2

x
:
=
1

y
:
=
2
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Homotopy of paths The undirected case

Homotopy of paths

Let γ and δ be two paths on X defined over the segment [0, r ]

A homotopy from γ to δ is a continuous map h from [0, r ]× [0, q] to X such that

- The mappings h(0,−) : [0, q] → X and h(r ,−) : [0, q] → X are constant

- The mappings h(−, 0) : [0, r ] → X and h(−, q) : [0, r ] → X are γ and δ

As a consequence we have γ(0) = δ(0) and γ(r) = δ(r).
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Homotopy of paths The undirected case

Uniform distance and Curryfication

Suppose that X is a metric space.

For all compact Hausdorff space K , the homset Top(K ,X ) with the (topology induced by the) uniform distance is denoted
by XK

The Curryfication (̂ ) induces a homeomorphism from X [0,r ]×[0,q] to
(
X [0,r ]

)[0,q]
(h : [0, r ]× [0, q] → X ) → (ĥ : [0, q] → X [0,r ])
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Homotopy of paths The undirected case

The two faces of homotopies

h is a continuous map from [0, r ]× [0, q] to X i.e. h ∈ Top
[
[0, r ]× [0, q],X

]
but is also a path from γ to δ in the space X [0,r ] i.e. h ∈ Top

[
[0, q],X [0,r ]

]

[0, r ]

[0, q]
h

x y

γ

δ

h

We introduce the following notation

δ

γ

h x

γ

��

δ

BB yh

��
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Homotopy of paths The undirected case

Concatenation of homotopies
vertical composition

Let g : [0, r ]× [0, q′] → X and h : [0, r ]× [0, q] → X be homotopies
from γ to ξ and from ξ to δ.

The mapping h ∗ g : [0, r ]× [0, q + q′] → X defined by

h ∗ g(t, s) =

{
g(t, s) if 0 ⩽ s ⩽ q
h(t, s − q) if q ⩽ s ⩽ q + q′

is a homotopy from γ to δ.

δ

h

ξ

γ

g

δ

γ

h ∗ g
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Homotopy of paths The directed case

Directed homotopy on a locally ordered space

Let γ, δ ∈ Lpo([0, r ],X ) such that ∂-γ = ∂-δ and ∂+γ = ∂+δ.

- A directed homotopy from γ to δ is a local pospace morphism h : [0, r ]× [0, q] → X whose underlying map U(h) is
a homotopy from U(γ) to U(δ).

- An anti-directed homotopy from γ to δ is a homotopy of paths h : [0, r ]× [0, q] → X such that (t, s) 7→ h(t, q − s)
is a directed homotopy from δ to γ.

- An elementary homotopy between γ to δ is a homotopy of paths h : [0, r ]× [0, q] → X obtained as a finite
concatenation of directed homotopies and anti-directed homotopies.

- A weakly directed homotopy from γ to δ is a homotopy of paths h : [0, r ]× [0, q] → X whose intermediate paths
h( , s), for s ∈ [0, q], are directed.

- Any elementary homotopy is a weakly directed homotopy. The converse is false.

- Each of the preceding class of homotopies is stable under concatenation.
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Homotopy of paths The directed case

Homotopy and dihomotopy relations

Two paths γ and γ′ are said to be homotopic when there exists a homotopy between them.
We have the equivalence relation ∼h between paths on a topological space.

They are said to be dihomotopic when there exists an elementary homotopy between them.
We have the equivalence relation ∼d between directed paths on a locally ordered space.

They are said to be weakly dihomotopic when there exists a weakly directed homotopy between them. We have the
equivalence relation ∼w between directed paths on a locally ordered space.
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Homotopy of paths The directed case

Reparametrization

An increasing and surjective map θ : [0, r ] → [0, r ] is called a reparametrization.
The mapping

h : (t, s) ∈ [0, r ]× [0, 1] 7→ θ(t) + s · (max(t, θ(t))− θ(t)) ∈ [0, r ]

is a directed homotopy from θ to max(id[0,r ], θ).

If γ : [0, r ] → X is a directed path on the local pospace X , then γ ◦ h is a directed homotopy from γ ◦ θ to
γ ◦max(id[0,r ], θ)

Therefore γ and γ ◦ θ are dihomotopic.
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Homotopy of paths The directed case

Images of directed paths on a pospace

Theorem

The image of a nonconstant directed path on a pospace is isomorphic to [0, 1].

Corollary

Two directed paths on a posapce having the same image are dihomotopic.

proof:
Suppose that im(γ) = im(γ′).
ϕ : [0, r ] → im(γ) a pospace isomorphism.
ϕ−1 ◦ γ and ϕ−1 ◦ γ′ are reparametrization.
We have h an elementary homotopy from ϕ−1 ◦ γ to ϕ−1 ◦ γ′.
Hence ϕ ◦ h is an elementary homotopy from γ and γ′.
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Homotopy of paths Relation to geometric models

Main theorem

Two weakly dihomotopic paths on the geometric model of a conservative program induce the same action on valua-
tions. Moreover, if one of them is an execution trace, then so is the other.
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Homotopy of paths Relation to geometric models

Proof

By a standard result from general topology, the Curryfication of h

ĥ : s ∈ [0, q] 7→ (t ∈ [0, r ] 7→ h(t, s) ∈ X )

is a continuous path on dX [0,r ](p, p′).

The image of ĥ is thus compact, so we cover it with open balls given by the main theorem of geometric models.

By the Lebesgue number theorem there exists a real number ε > 0 such that |s − s′| ⩽ ε implies that ĥ(s) and ĥ(s′)
belong to the same open ball from the covering.

The conclusion follows considering the sequence

ĥ(0), ĥ(ε), ĥ(2ε), ĥ(3ε), · · · , ĥ(nε), ĥ(q)

where n is the greatest natural number such that nε ⩽ q.
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Homotopy of paths Relation to geometric models

Programs with mutex only
Directed Homotopy in Non-Positively Curved Spaces, É. Goubault and S. Mimram, LMCS 2020

Let X be the geometric model of a conservative program whose semaphores have arity 1 (mutex), then two directed paths
on X are dihomotopic if and only if they are homotopic.
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Smooth models Blow up

a

b

c

d
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Smooth models Blow up

a
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ac

ad

bc

bd
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Smooth models Blow up

G =

(
G (1) G (0)

tgt

src

)
: graph

∥G∥ =
(
G (1)×]0, 1[

)
∪
{
(a, b) ∈ G (1)×G (1) | ∂+(a) = ∂-(b)

}
: set

For small ε > 0, the ε-neighborhoods of (a, t) and (a, b) are{
{a} × ]t − ε, t + ε[ (for ε ≤ min{t, 1− t})

{a} × ]1− ε, 1[ ∪ {(a, b)} ∪ {b} × ]0, ε[ (for ε ≤ 1
2
)

The standard ordered base EG of G is the collection of ε-neighborhoods

(each of them being equipped with the obvious total order).
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Smooth models Blow up

The blowup of G is the map
βG : ∥G∥ → |G |

(a, b) 7→ ∂+(a)(= ∂-(b))

(a, t) 7→ (a, t)

The blowup βG is locally order-preserving from EG to XG .
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Smooth models Universal property of graph blowups

An ordered base E is said to be euclidean of dimension n ∈ N when every point p of E is contained in some E ∈ E with
E ∼= Rn (as ordered spaces).

A locally order-preserving map f : E → X is a local ∨-embedding when for every point p of E and X ∈ X containing f (p),
there exists E ∈ E containing p such that E ∼= Rn and f : E → X is an ordered space embedding preserving ∨.

Theorem (Universal property of graph blowups)

For every euclidean ordered base E, and every local ∨-embedding f : E → XG1
× · · · × XGn of dimension n, there is a

unique continuous map g : E → EG1
× · · · × EGn such that f = β̄ ◦ g with β̄ = βG1

× · · · × βGn ; moreover g is a local
∨-embedding of dimension n.
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Smooth models Chart

A chart of dimension n ∈ N is a bijection ϕ whose codomain is an open subset of Rn.

U ⊆ dom(ϕ) is said to be open when so is ϕ(U) in Rn; we deduce ϕU : U → ϕ(U).
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Smooth models Compatible charts

The n-charts ϕ and ψ are compatible at p ∈ dom(ϕ) ∩ dom(ψ) when there exists W open in dom(ϕ) and in dom(ψ) such
that ϕW ◦ ψW

−1 and ψW ◦ ϕW
−1 are smooth.

We say that W is a witness of compatibility of ϕ and ψ at p.

p

W

ϕ(W )

ϕW

ψ(W )

ψW

ψW ◦ ϕW
−1

ϕW ◦ ψW
−1

47 / 53



Smooth models Atlas

The n-charts ϕ and ψ are compatible when they are compatible at every p ∈ dom(ϕ) ∩ dom(ψ).

⇕

W = dom(ϕ) ∩ dom(ψ) is open in dom(ϕ) and in dom(ψ) and the maps ϕW ◦ ψW
−1 and ψW ◦ ϕW

−1 are smooth.

An atlas of dimension n ∈ N is a collection A of pairwise compatible n-charts.

Given atlases A, B, map f : A → B is said to be smooth when for all ϕ ∈ A, p ∈ dom(ϕ), ψ ∈ B with f (p) ∈ dom(ψ),
ψ ◦ f ◦ ϕ−1 is smooth (as a map between open subsets of euclidean spaces).
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Smooth models Atlas

The standard charts of G are the following bijections

ϕa : {a} × ]0, 1[ → ]0, 1[ , and

ϕab : {a} × ] 1
2
, 1[ ∪ {(a, b)} ∪ {b} × ]0, 1

2
[ → ]− 1

2
, 1
2
[

with (a, t) 7→ t − 1 , (a, b) 7→ 0 , (b, t) 7→ t

for all arrows a and all 2-tuples of arrows (a, b) such that ∂+(a) = ∂-(b).

The standard atlas AG of G is the collection of its standard charts.

The transition maps are translations:

ϕab ◦ ϕa
−1 : t ∈ ] 1

2
, 1[ 7→ t − 1 ∈ ]− 1

2
, 0[

ϕab ◦ ϕb
−1 : t ∈ ]0, 1

2
[ 7→ t ∈ ] 0, 1

2
[
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Smooth models Tangent bundle

The set of tangent vectors of A is the quotient{
(p, ϕ, u) | ϕ ∈ A; p ∈ dom(ϕ); u ∈ Rn

}
/ ∼

with (p, ϕ, u)∼(q, ψ, v) when p = q and d(ψW ◦ ϕW
−1)

ϕ(p)
(u) = v (with W a witness of compatibility of ϕ and ψ at p).

Denote by Jp, ϕ, uK the ∼-equivalence class of (p, ϕ, u).

We have (p, ϕ, u) ∼ (p, ϕ, v) ⇒ u = v , and the collection TA =
{
Tϕ | ϕ ∈ A

}
with TϕJp, ϕ, uK = (ϕ(p), u) is an atlas.

The tangent bundle of A is the smooth map πA : TA → A sending a tangent vector to its attachment point;
i.e. πA(Jp, ϕ, uK) = p.

The tangent space at p is TpA = πA
−1({p}); it is a vector space with

Jp, ϕ, uK + λJp, ϕ, vK = Jp, ϕ, u + λvK .
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Smooth models Vector fields

A vector field on A is a smooth map f : A → TA such that πA ◦ f = idA,
i.e. f (p) ∈ TpA for every point p of A.

If ϕ and ψ are standard charts of G , then d(ψ ◦ ϕ−1)
ϕ(p)

= idR,
so Jp, ϕ, uK does not depend on ϕ ∈ AG .

TAG
∼= AG × R and TpAG

∼= {p} × R

The standard vector field on the standard atlas is

AG → TAG

p 7→ (p, 1)
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Smooth models Smooth paths

For every smooth map f : A → B we have Tf : TA → TB defined by

Tf Jp, ϕ, uK = Jfp, ψ, d(ψ ◦ f ◦ ϕ−1)ϕ(p)(u)K

with ϕ ∈ A, ψ ∈ B charts around p and f (p).

A curve is a smooth map defined on an open interval of R; a smooth path is the restriction of a curve to a compact
subinterval.

For every smooth path γ on AG , every ϕ ∈ AG we have

Tγ(t, u) = TγJt, idI , uK = Jγ(t), ϕ, d(ϕ ◦ γ ◦ idI
−1)t(u)K = (γ(t), γ′(t) · u) .

The tangent vector to γ at t is of the form (γ(t), γ′(t)); γ is locally order-preserving iff γ′(t) ⩾ 0 for every t.
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Smooth models Standard vector field vs Standard ordered base

Proposition (standard vector field vs standard ordered base)

For every ϕ ∈ AG , for all p, q ∈ dom(ϕ), we have p ⩽ q (with (dom(ϕ),⩽) ∈ AG ) iff there exists a smooth path γ on AG

from p to q with im(γ) ⊆ dom(ϕ) and γ′ ⩾ 0, i.e. ϕ ◦ γ is a smooth map between open intervals of R with nonnegative
derivative, min(ϕ◦γ) = ϕ(p), and max(ϕ ◦ γ) = ϕ(q).

The above result is a special instance of Lawson’s correspondence:

Ordered manifolds, invariant cone fields, and semigroups. Lawson, J. D., Forum Mathematicum, 1989.
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Smooth models Approximation

From every norm | | on Rn one defines the length of a smooth path γ = (γ1, . . . , γn) on A1 × · · · × An by

L(γ) =

∫
t∈I

|γ′(t)|dt

with γ′(t) = (γ′1(t), . . . , γ
′
n(t)) the coordinates of the tangent vector to γ at t in the standard base

((γ1(t), 1), . . . , (γn(t), 1)) of the tangent space at γ(t).

We also define the distance between p, q ∈ |G1| × · · · × |Gn| as d(p, q) = |dG1
(p1, q1), . . . , dGn(pn, qn)| from which we

deduce the length L(γ) of any path γ on |G1| × · · · × |Gn|.

If δ is a smooth path on A1 × · · · × An then L(δ) = L((βG1
× · · · × βGn) ◦ δ).

|x1, . . . , xn|2 =
√∑n

i=1 x
2
i Riemannian

|x1, . . . , xn|1 =
∑n

i=1 |xi | cumulative execution time

|x1, . . . , xn|∞ = max{x1, . . . , xn} parallel execution time
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Smooth models Approximation

A subset X of |G1| × · · · × |Gn| is said to be tile compatible when for all p, q ∈ |G1| × · · · × |Gn| such that
(πG1

, . . . , πGn)(p) = (πG1
, . . . , πGn)(q), we have p ∈ X iff q ∈ X .

The standard cone of AG1
× · · · ×AGn at p = (p1, . . . , pn) is the cone Cp =

{∑n
i=1(pi , λi) | λi ⩾ 0

}
⊆ TpAG1

× · · · ×AGn .

A conal path on a subset Y of ∥G1∥ × · · · × ∥Gn∥ is a smooth path δ on AG1
× · · · × AGn such that δ(t) ∈ Y and

Tδ(t) ∈ Cδ(t) for every t ∈ dom(δ).

Theorem (Approximation)

For every directed path γ = (γ1, . . . , γn) on a tile compatible subset X of |G1| × · · · × |Gn|, and every ε > 0, there exists a
conal path δ = (δ1, . . . , δn) on (βG1

× · · · × βGn)
−1(X ) such that:

– γ and (βG1
× · · · × βGn) ◦ δ start (resp. finish) at the same point,

– max
{
di(γi(t), βi(δi(t))) | t ∈ dom(γ); i ∈ {1, . . . , n}

}
< ε, and

– L∞(δ) < L∞(γ).
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