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-~y ,8~8 and Fy =93¢ = ~qod~~0d

In diagrams we have

5 Y vo8
/X X\ X\
X l y l z = X l z
~—7 ~ ~——~F
6/ "// ’Y/O(s/

Hence the ~-equivalence class of v o § only depends on the ~-equivalence classes of v and § and we have a quotient
category C/ ~ in which the composition is given by

[V]o[s] = [yod]

The quotient map g : v € Mo(C) — [y] € Mo(C)/ ~ induces a functor g : C — C/ ~
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Natural congruences on a functor P : C — Cat

A natural congruence on a functor P : C — (at is a collection of congruences ~x on PX, for X ranging through the
objects of C, such that for all morphisms f : X — Y of C, for all o, 8 € PX,

an~x = P(f)(a) ~y P(f)(B)

Then we can define the functor 7, : C — Cat as follows:
- forall X € C, m(X) = P(X)/ ~x
- forall f: X =Y inC

mX ——mY
—
mif

The collection of quotient functors gx, for X ranging through the objects of C, provides a natural transformation from P
—
to 7.
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Ll G
Object part

Let X be a locally ordered space.
- The objects of PX are the points of X.
- The homset PX(a, b) is
(U {7 € £po([0, 7], X) | ¥(0) = a and ~(r) = b}

r=0
- For §:[0,r] = X and v : [0, r'] — X with &(r) = ~(0), define the concatenation

v-6: [0,r+r] ——m—= X

o(t) ift<r

t {'y(t—r) ift>r
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The (Moore) path category construction gives rise to a functor P from Lpo to Cat since for all f € Lpo(X, Y) and all paths
7 on X, the composite f oy is a path on Y.

P: Lpo ——— Cat
X PX

]

p f(p)
l/'}’ — fc’yl/
q f(a)
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Equivalent directed paths on a local pospace X

An elementary homotopy is a finite concatenation of directed and anti-directed homotopies.

If 6:[0,r] — [0, r] is a reparametrization and v € Lpo([0, r], X), then v and ~ o 6 are dihomotopic.

Two directed paths v : [0,r'] — X and § : [0, r""] — X on a local pospace are said to be equivalent (denoted by ~x)
when there exists two reparametrizations 6 : [0, r] — [0, r’] and 1 : [0, r] — [0, r’] such that there is an elementary
homotopy between v 0 6 and ¢ o 9.

The relation ~x is symmetric because if h(s, t) is an elementary homotopy, then so is the mapping (s, t) — h(—s, t).

The relation ~x is transitive because a concatenation of elementary homotopies is an elementary homotopy.

Given x,y € X and r € R, the relation ~x is an equivalence relation on the set

U {7 € po([0, 1, X) | %(0) = x; 7(r) =y}
rE]RJr
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Juxtaposition of homotopies

horizontal composition

Let h:[0,r] x [0,q] — X and A" : [0, r'] x [0, q] — X be homotopies
from v to § and from ' to &' with 9"y = 9v'.

The mapping b’ = h: [0,r + r'] x [0, q] — X defined by

’ o h(t,s) ifo<t<r
Woxh(ts) = {h’( —rs) ifr<t<r+r

is a homotopy from ~ to 4.
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q

6/52



Fundamental category Natural congruences from directed homotopies

Juxtaposition of homotopies

horizontal composition

Let h:[0,r] x [0,q] — X and A" : [0, r'] x [0, q] — X be homotopies
from v to § and from ' to &' with 9"y = 9v'.

The mapping b’ = h: [0,r + r'] x [0, q] — X defined by

h(t,s ifog<t<r
h xh(t,s) = { h’(( )

—rs) ifr<t<r+r

is a homotopy from ~ to 4.

5%
q

If h and h’ are ((weakly) directed) homotopies, then so is their juxtaposition h’ - h .
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Godement exchange law

Suppose we have

g g’
@ \ Yl N
7 S 7
h h
Sl
U O

then it comes
(g"*h) (gxh)=(g"-g)*(h-h)
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Applying Godement exchange law

hy hy
hy id
* *
id h2
hy -id
id - hy
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Fundamental category Natural congruences from directed homotopies

Equivalences are congurences

- his an elementary homotopy between v 06 and 6 o ¢
- K’ is an elementary homotopy between ~’ 0 6’ and &’ o ¢’
- the endpoint of v is the starting point of +/
then h- A’ is an elementary homotopy from (y-+')o (60-0") to (§-8")o (¢ -¢’) .

The relation ~x is a congruence on P(X)
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el
Naturality

If his a homotopy from 7 to 4/ on the topological space X and f : X — Y is a continuous map, then f o h is a homotopy
from f o~y to f o+’ on the topological space Y.

If his a (weakly) directed homotopy from ~ to ' on the local pospace space X and f : X — Y is a local pospace
morphism, then f o his a (weakly) directed homotopy from f oy to f o4 on the local pospace space Y.

If v,~4" : [0, r] = X are ((weakly) di)homotopic, then so are fo~y,fo~' :[0,r] = Y.
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Fundamental category Natural congruences from directed homotopies

Conclusion

- The relations ~x form a natural congruence on the directed path functor P : Lpo — (Cat.
- The fundamental category functor ol Lpo — Cat is defined accordingly.

- The fundamental groupoid functor I, : Top — Grd is obtained by substituting “paths” and “homotopies” to
“directed paths” and “elementary homotopies” .
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- Given a pospace X, mX is loop-free i.e.

TX(x,y) #0 and TX(y,x) # 0 = x=y and mX(x,x) = {idx}

- The fundamental category of a local pospace has no nontrivial null homotopic directed paths i.e. any directed loop
that is related to a constant path by an elementary homotopy is actually a constant.

- In particular the fundamental category of a local pospace has no isomorphism but its identities.
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The fundamental category of the locally ordered circle

- Given x, y, xy is the anticlockwise arc from x to y.
It is a singleton if x = y.

- RS (x,y) = {x} x N x {y}
- the identities are the tuples (x, 0, x)
- the composition is given by

C (12pr2) 0 () = (x,n+ p,2) if Xy U gz # 51
- (P 2) o, ny) = (x,n+p+1,2)if xyUyz =St
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[0.1?

2, +oof?

117777777

777777777
b2222225%%

11, +o00[x[0, 1] U [2, +00[x[0, 2]
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Fundamental category Basic properties and computations

Plane without a square
x =R2\]0, 1[?

117777777

777777777
b2222225%%

If x <?y, then 7T_>1X(x,y) only depends on the elements of the partition x and y belong to.

- | A C D
Al o « /B:O/B
a' oa
B B’
C o o’
D o

14 /52
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Category of components Motivation

Skeleta and equivalences of categories

- A skeleton of C is a full subcategory of C whose class of objects meets every isomorphism class of C exactly once.

- The skeleton of C is unique up to isomorphism, it is denoted by skC.

- Two categories are equivalent (i.e. there exists an equivalence of categories between them) iff their skeleta are
isomorphic.

- The skeleton of the category of finite sets is the full subcategory whose objects are {0,...,n— 1} for n € N.

- The skeleton of the fundamental groupoid of a path-connected space is the fundamental group of this space.

- Problem: The fundamental category of a local pospace has no isomorphisms but its identities, hence it is its own
skeleton.
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functor g : C — C/R such that for all functors f : C — D, if aRS = f(a) = f(3), then there is a unique functor

g:C/R — Dsuchthat f =gogq
C/R

I

C*f>D

- Examples
- any congruence is a generalized congruence.

- C freely generated by x — > y with idxRidy (resp. with aRidx).
- (N, +,0) with ORn for some n € N.
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- One may have C(8*c,z) =0 or C(z,00) =0
- Note that o is an isomorphism iff for all z both precomposition and postcomposition are bijective.

- The latter condition is weakened: o is said to preserve the future cones (resp. past cones) when for all z if
C(0%o,z) # 0 (resp. C(z,0 ) # D) then the precomposition (resp. postcomposition) is bijective.

- Then o is a potential weak isomorphism when it preserves both future cones and past cones. Potential weak
isomorphisms compose.

- If C(x,y) contains a potential weak isomorphism, then it is a singleton

Requires the assumption that C is one-way
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[EITTLTVRI NSNS  Systems of weak isomorphisms

An unwanted example of potential weak isomorphism

Note that o’/ is a potential weak isomorphism though there exists a morphism from 9'¢’’ to z but none from 9'c’ to z.
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Greatest inner collection stable under pushout and pullback

- Any collection X~ of morphisms of a category C admits a greatest subcollection that is stable under pushout and
pullback

- Construction:

- Start with g = X
- For n € N define X1 as the collection of morphisms o € ¥, s.t. the pushout and the pullback of o along
any morphism exists (when sources or targets match accordingly) and belongs to X,

T2 X120 DX DXy D
- The expected subcollection is the decreasing intersection
1
Yoo =] Zn
- The collection X, is stable under the action of Aut(C)
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- The class of isomorphisms of any category is stable under pushout and pullback

- A system of weak isomorphisms is a collection of potential weak isomorphisms that is stable under pushout and
pullback

- The class of all isomorphisms of any category is a system of weak isomorphisms
- If X is a system of weak isomorphisms, then so is its closure under composition

- Hence we suppose the systems of weak isomorphisms are closed under composition
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Examples of systems of weak ismorphisms

- Given a partition P of R into intervals, the following collection is a system of weak isomorphisms

{(x,y) | x<y; P, [x,y] C I}

- In the preceding example, R can be replaced by any totally ordered set

- Let X; C C; be a family of collections of morphisms, then

[I;Xi is a swiof [];C; iff each X; is a swi of C;

- The inverse image (resp. the direct image) of a system of weak isomorphisms by an equivalence of categories is a
system of weak isomorphisms.
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- A collection X of morphisms is said to be pure when

YyodEXL = v,0€X

- Given a one-way category C we have:

All the systems of weak isomorphisms of C are pure
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- The collection X open subsets of a topological space X form a locale and we have the functor L : Top — Loc (that
admits a left adjoint) defined by
- L(X) =X
- L(A)(W) =FfY(W) forall f: X — Y and W € QY

- The collection of systems of weak isomorphisms of a category has a greatest element

- Given a one-way category C we have:

- ’ The collection of systems of weak isomorphisms of C forms a locale ‘

- ’ The greatest swi is invariant under the action of Aut(C) ‘
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Components of a one-way category C

- From now on C is a one-way category and X is a system of weak isomorphisms on it

- Recall that if C(x,y) meets ¥, then C(x, y) is a singleton, a fact that we represent on diagrams by: x T y

- Given two objects x and y of C t.f.a.e.:

- there exists a X-zigzag between x and y

. x P
- there exists z such that x <——z ——=y

. ¥ b
- there exists z such that x ——=z<——y

- When any of the following property is satisfied x and y are said to be X-connected
- X-connectedness is an equivalence relation on the objects of C

- The equivalence classes are called a X-components
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A prelattice is a preordered set in which x A y and x V y exist for all x and y.
However they are defined only up to isomorphism

Let K be a X-component of C and K be the full subcategory of C whose objects are the elements of K. The following
properties are satisfied:

1. The category K is isomorphic with the preorder (K, <) where x < y stands for C[x, y] # 0. In particular, every
diagram in C commutes.

2. The preordered set (K, <) is a prelattice.

If d and u are respectively a greatest lower bound and a least upper bound of the pair {x, y}, then Diagram 1 is
both a pullback and a pushout in C, and all the arrows apprearing on the diagram belong to ¥.
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> system of weak isomorphisms of C one-way category

A prelattice is a preordered set in which x A y and x V y exist for all x and y.
However they are defined only up to isomorphism

Let K be a X-component of C and K be the full subcategory of C whose objects are the elements of K. The following
properties are satisfied:

1. The category K is isomorphic with the preorder (K, <) where x < y stands for C[x, y] # 0. In particular, every
diagram in C commutes.

2. The preordered set (K, <) is a prelattice.

If d and u are respectively a greatest lower bound and a least upper bound of the pair {x, y}, then Diagram 1 is

both a pullback and a pushout in C, and all the arrows apprearing on the diagram belong to ¥.

C = K iff C is a prelattice, and X is the greatest system of weak isomorphisms of C i.e. all the morphisms in this
case.

4.
u u
7N AN
X y X y X y
A N A
d d
Diagram 1 Diagram 2 Diagram 3
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Category of components Construction

Equivalent morphisms with respect to X

- Let § € C(x,y) and &’ € C(x’,y’"). Then write § ~ &’ when
- x~x"and y ~y’, and
- the inner hexagon of the next diagram commutes

x—2>y
b
x
d

/i

T xAX yVy —~—u
b ba
b2 / b=
X/ 6/ y/

- Note that if d &2 x A x’ and u 2 y V y’ then the outter hexagon also commutes, hence the relation ~ is well
defined.

- If vy~ 4 then Oy ~ 96 and Oy ~ 09
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The relation ~ is an equivalence

- The relation ~ is:

- reflexive since X contains all identities
- symmetric by definition
- transitive

A AN
b pX
/ RN
AN
> > x >
- pullback ~~ p - pushout N
AN A

bx bx
S

31/52



Category of components Construction

The relation ~ fits with composition

32/52



Category of components Construction

The relation ~ fits with composition

- Suppose Oy =05, 0y =9'¢’ and vy ~~+" and § ~ §'.

32/52



Category of components Construction

The relation ~ fits with composition

- Suppose Oy =05, 0y =9'¢’ and vy ~~+" and § ~ §'.
- Then we have yo§ ~ ' 0§’

32/52



Category of components Construction

The relation ~ fits with composition

- Suppose Oy =05, 0y =9'¢’ and vy ~~+" and § ~ §'.
- Then we have yo§ ~ ' 0§’

32/52



Category of components Construction

The relation ~ fits with composition

- Suppose Oy =05, 0y =9'¢’ and vy ~~+" and § ~ §'.
- Then we have yo§ ~ ' 0§’

32/52



Category of components Construction

The relation ~ fits with composition

- Suppose Oy =05, 0y =9'¢’ and vy ~~+" and § ~ §'.
- Then we have yo§ ~ ' 0§’

X 3% z

pushout
!

’

X N\ X YAy and yVy zVz
pullback
! / /
X 5 y " z
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Category of components Construction

The relation ~ fits with composition

- Suppose Oy =05, 0y =9'¢’ and vy ~~+" and § ~ §'.
- Then we have yo§ ~ ' 0§’

X S y 7 z
5 pushout ’Y”
XAX ———— y Ay and yvVy! ————————— zv Z
pullback
! = NV > 2/
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Category of components Construction

The category of components C/%

- The quotient category C/% (obtained by turning each morphism of X into an identity) can be defined as follows:
- The objects are the X-components
- The morphisms are the ~-equivalence classes

- If Oy ~ 07§ then
- there exists v/ and §’ such that 4/ ~~, §' ~ 6, and O+ = 9§’

!
£, o,

/ ' XT pushout Tz

T>

- so we define [y] o [6] = [y 0 §']

- We have the quotient functor Q : C — C/X
- The category of components is C/X with X being the greatest swi of C
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For any morphism ¢ of C t.f.a.e.
-dex
- plcs
- [8] is an identity of C/%

The quotient functor Q : C — C/X satisfies the following universal property:
for all functors F : C — D s.t. F(X) C {identities of D}
there exists a unique G :C/X - Dst. F=GoQ
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with X being a system of weak isomorphisms of a one-way category C

- The quotient functor Q : C — C/X is surjective on morphisms
- The quotient category C/X is loop-free
- If C(x,y) # 0 then the following map is a bijection.

5 €C(xy) — Q(8) €C/T(Q(x), Qy))

- 1fC/Z(Q(x), Q(y)) # 0 then there exist x” and y’ such that Z(x’, x), Z(y,y’), C(x’,y), and C(x, y’) are nonempty.

X a y’
):T pushout T{
xNa—+a C s ph -5 yVb
zT TZ
x! y

5

- The quotient functor Q preserves and reflects potential weak isomorphisms
- If C is finite then so is the quotient C/%
- Cis a preorder iff C/X is a poset
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S
Describing the localization of C by ¥

with X being a system of weak isomorphisms of a one-way category C

- The objects of C[Z71] are the objects of C

- The morphisms are the equivalence classes of ordered pairs of coinitial morphisms (v, ) with o € X,
- Two pairs (v,0) and (7', ¢’) being equivalent when 8'c = d0’, 'y = 9'v/, and Q(v) = Q(Y’)
- In the diagram below we have Q(7' o v") = Q(¥') o Q(7y") = Q(7’) o Q(~) hence the composite
(7' 0+, 0 ") neither depend on the choice of the pullback nor on the representatives (v, o) and (v/,0’).
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with X being a system of weak isomorphisms of a one-way category C

- Define I by I(v) := (7,ido-~) and the identity on objects

- Given a functor F : C — D s.t. F(X) C {isomorphisms of D} define
- G(x) := F(x) for all objects x of C[X~!] and
- G(v,0) := F(v) o (F(c))~! for any representative (y, ) of a morphism of C[X 1]
- The functor | : C — C[Z 1] then satisfies the universal property: for all functors F : C — D there exists a unique
G:C—C[Z st F=Gol
- In particular there is a unique functor P s.t. @ = P o/ with Q : C — C/X and we have

’ The functor P is an equivalence of categories ‘

- The skeleton of C[£~!] is C/¥ and C[£ 1] is one-way.
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- Let ¢ : X-components of C — Ob(C) such that

- for all ¥-components K, K’, if there exists x € K and x’ € K’ such that C(x, x’) # 0, then
C(o(K), o(K")) # 0

- in this case C/X is isomorphic with the full subcategory of C whose set of objects is im(¢).
- the mapping ¢ is called an admissible choice (of canonical objects)

- Write ¢ < ¢’ when C(¢(K), ¢'(K)) # 0 for all X-components K
- The collection of admissible choice then forms a (pre)lattice
- If C/X is finite then there exists an admissible choice
- If C/X is infinite the existence of an admissible choice is a open question

38/52



Examples



Category of components Examples

Plane without a square
x =R2\]0, 1[?

39/52



Category of components Examples

Plane without a square
x =R2\]0, 1[?

V(a)-

P(a)-

P(a)q
V(a)q

39/52



Category of components Examples

Plane without a square
x =R2\]0, 1[?

[2, +oo]?

[0.1?

11, +o00[x[0, 1] U [2, +00[x[0, 2]

39/52



Category of components Examples

Plane without a square
x =R2\]0, 1[?

39/52



Category of components Examples

Plane without a square
x =R2\]0, 1[?

Let x, y such that x <? y, then 7T_)1X(X,y) only depends on which elements of the partition x and y belong to

—|A|B|C D

Alo | B |~ |BoB

o' oa

B o B8

C o 5

D p 39/52




Category of components Examples

Plane without a square
x =R2\]0, 1[?

B—©

Let x, y such that x <? y, then 7T_)1X(X,y) only depends on which elements of the partition x and y belong to

—|A|B|C D

Alo | B |~ |BoB

o' oa

B o B8

C o 5

D p 39/52




Category of components Examples

Two rectangles

40/52



Category of components Examples

Two rectangles




Category of components Examples

Two rectangles




Category of components Examples

Two rectangles




Category of components Examples

Two rectangles




Category of components Examples

Two rectangles




Category of components Examples

Two rectangles




Category of components Examples

Two rectangles

40 /52



=
Swiss Flag

41/52



=
Swiss Flag




=
Swiss Flag




=
Swiss Flag




=
Swiss Flag




=
Swiss Flag




=
Swiss Flag

F
C D
A B




=
Swiss Flag




=
Swiss Flag

o——
i

b

one
L
o

4152



Category of components Examples

Achronal overlaping square

42/52



Category of components Examples

Achronal overlaping square




Category of components Examples

Achronal overlaping square




Category of components Examples

Achronal overlaping square




Category of components Examples

Achronal overlaping square




Category of components Examples

Achronal overlaping square




Category of components Examples

Achronal overlaping square




Category of components Examples

Achronal overlaping square




Category of components Examples

Achronal overlaping square

o—
i

b

one
L
o

4252



Category of components Examples

Diagonal overlaping squares

43 /52



Category of components Examples

Diagonal overlaping squares




Category of components Examples

Diagonal overlaping squares




Category of components Examples

Diagonal overlaping squares




Category of components Examples

Diagonal overlaping squares




Category of components Examples

Diagonal overlaping squares

43 /52



=
The floating cube

Non potential weak isomorphisms

44 /52



Category of components Examples

The floating cube

Non potential weak isomorphisms

44 /52



=
The floating cube

A ‘“vee" that does not extend to a pushout

45 /52



=
The floating cube

A ‘“vee" that does not extend to a pushout

45 /52



=
The floating cube

Some pushouts squares

46 /52



=
The floating cube

Some pushouts squares

. 46 /52



=
The floating cube

47 /52



=
The floating cube

z 47 /52



=
The floating cube

48 /52



=
The floating cube

- Since the pushout of f (resp. g) along g (resp. f) does not exist, f,g ¢ &

48 /52



=
The floating cube

- Since the pushout of f (resp. g) along g (resp. f) does not exist, f,g ¢ &

- The commutative square f, g, f/, and g’ is a pullback:

48 /52



=
The floating cube

- Since the pushout of f (resp. g) along g (resp. f) does not exist, f,g ¢ &

- The commutative square f, g, f/, and g’ is a pullback:

- Therefore f', g’ ¢ ¥ (anyway they do not preserve the future cones)
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of nonempty finite connected loop-free categories

- The Cartesian product of categories A X B is non-empty iff so are A and B.
If A and B are indeed nonempty then we also have

- A x B finite iff so are A and B
- A x B connected iff so are A and B
- A x B loop-free iff so are A and B

- A~ A" and B~ B’ implies A x A’ 2 B x B’
- (AXB)xC=2Ax(BxC)

S IXxAXA2AXL

- AxB2Bx A

- The collection of isomorphism classes of nonempty finite connected loop-free categories is thus a commutative
monoid M

The commutative monoid M is free.
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Criteria for primality

- The monoid M is graded by the following morphisms
- #0b:C e M — card(0Ob(C)) € (N\ {0}, x,1)
- #Mo : C € M+ card(Mo(C)) € (N\ {0}, x,1)
- #Mo(C) =2 x #0b(C) — 1, for all C € M
- In particular if #0b(C) or #Mo(C) is prime, then so is C.
The converse is false.

- Any element of M freely generated by a graph, is prime
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Comparing decompositions

- The mappingC € M — 7 (C) € M is a morphism of monoids

- We would like to know which prime element of M are preserved by it

- We known that 73(C) is null iff C is a lattices (e.g. T(0 < 1) = {0} though {0 < 1} is prime in M)
- For all d-spaces X and Y, 7r1(X X Y) mX X TY

- Hence N’ := {X € Hf|G| | T X is nonempty, connected, and loop-free}
is a pure submonoid of Hr|G|

- Then N :={X € N’ | T (T X) is finite} is a pure submonoid of N’

- Therefore it is free commutative and we would like to know which prime elements are preserved by
X eN = m(mX) e M

- Conjecture

If P € N is prime and 71 (P) is not a lattice, then (71 (P)) is prime
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