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THE FUNDAMENTAL CATEGORY



Abstract setting



Fundamental category Abstract setting

Congruences on small categories

A congruence on a small category C is an equivalence relation ∼ over Mo(C) such that:

- γ ∼ γ′ ⇒ ∂-γ = ∂-γ′ and ∂+γ = ∂+γ′

- γ ∼ γ′, δ ∼ δ′ and ∂-γ = ∂+δ ⇒ γ ◦ δ ∼ γ′ ◦ δ′

In diagrams we have

x

δ
((

δ′
66≀ y

γ
((

γ′

66≀ z ⇒ x

γ◦δ
((

γ′◦δ′
66≀ z

Hence the ∼-equivalence class of γ ◦ δ only depends on the ∼-equivalence classes of γ and δ and we have a quotient
category C/ ∼ in which the composition is given by

[γ] ◦ [δ] = [γ ◦ δ]

The quotient map q : γ ∈ Mo(C) 7→ [γ] ∈ Mo(C)/ ∼ induces a functor q : C → C/ ∼
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Fundamental category Abstract setting

Natural congruences on a functor P : C → Cat

A natural congruence on a functor P : C → Cat is a collection of congruences ∼X on PX , for X ranging through the
objects of C, such that for all morphisms f : X → Y of C, for all α, β ∈ PX ,

α ∼X β ⇒ P(f )(α) ∼Y P(f )(β)

Then we can define the functor −→π1 : C → Cat as follows:

- for all X ∈ C, π1(X ) = P(X )/ ∼X

- for all f : X → Y in C
X

f // Y

PX
Pf //

qX

��

PY

qY

��
−→π1X −→π1f

// −→π1Y

The collection of quotient functors qX , for X ranging through the objects of C, provides a natural transformation from P
to −→π1 .
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The directed path functor



Fundamental category Directed path functor

Object part

Let X be a locally ordered space.

- The objects of PX are the points of X .

- The homset PX (a, b) is ⋃
r⩾0

{
γ ∈ Lpo([0, r ],X ) | γ(0) = a and γ(r) = b

}

- For δ : [0, r ] → X and γ : [0, r ′] → X with δ(r) = γ(0), define the concatenation

γ · δ : [0, r + r ′] // X

t
� //

{
δ(t) if t ⩽ r
γ(t − r) if t ⩾ r
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Fundamental category Directed path functor

Morphism part

The (Moore) path category construction gives rise to a functor P from Lpo to Cat since for all f ∈ Lpo(X ,Y ) and all paths
γ on X , the composite f ◦ γ is a path on Y .

P : Lpo // Cat

XXXX X

f
��

PX

Pf
��

Y PY

� //

with

Pf : PX // PY

XXXXXX p

γ

��

f (p)

f ◦γ
��

q f (q)

� //
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Natural congruences from directed homotopies



Fundamental category Natural congruences from directed homotopies

Equivalent directed paths on a local pospace X

An elementary homotopy is a finite concatenation of directed and anti-directed homotopies.

If θ : [0, r ] → [0, r ] is a reparametrization and γ ∈ Lpo([0, r ],X ), then γ and γ ◦ θ are dihomotopic.

Two directed paths γ : [0, r ′] → X and δ : [0, r ′′] → X on a local pospace are said to be equivalent (denoted by ∼X )
when there exists two reparametrizations θ : [0, r ] → [0, r ′] and ψ : [0, r ] → [0, r ′′] such that there is an elementary
homotopy between γ ◦ θ and δ ◦ ψ.

The relation ∼X is symmetric because if h(s, t) is an elementary homotopy, then so is the mapping (s, t) 7→ h(−s, t).

The relation ∼X is transitive because a concatenation of elementary homotopies is an elementary homotopy.

Given x , y ∈ X and r ∈ R+ , the relation ∼X is an equivalence relation on the set

⋃
r∈R+

{
γ ∈ Lpo([0, r ],X ) | γ(0) = x ; γ(r) = y

}
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Fundamental category Natural congruences from directed homotopies

Juxtaposition of homotopies
horizontal composition

Let h : [0, r ]× [0, q] → X and h′ : [0, r ′]× [0, q] → X be homotopies
from γ to δ and from γ′ to δ′ with ∂+γ = ∂-γ′.

The mapping h′ ∗ h : [0, r + r ′]× [0, q] → X defined by

h′ ∗ h(t, s) =

{
h(t, s) if 0 ⩽ t ⩽ r
h′(t − r , s) if r ⩽ t ⩽ r + r ′

is a homotopy from γ to δ.

δ

γ

h

δ′

γ′

h′

δ′ · δ

γ′ · γ

h′ · h

If h and h′ are ((weakly) directed) homotopies, then so is their juxtaposition h′ · h .

6 / 52



Fundamental category Natural congruences from directed homotopies

Juxtaposition of homotopies
horizontal composition

Let h : [0, r ]× [0, q] → X and h′ : [0, r ′]× [0, q] → X be homotopies
from γ to δ and from γ′ to δ′ with ∂+γ = ∂-γ′.

The mapping h′ ∗ h : [0, r + r ′]× [0, q] → X defined by

h′ ∗ h(t, s) =

{
h(t, s) if 0 ⩽ t ⩽ r
h′(t − r , s) if r ⩽ t ⩽ r + r ′

is a homotopy from γ to δ.

δ

γ

h

δ′

γ′

h′

δ′ · δ

γ′ · γ

h′ · h

If h and h′ are ((weakly) directed) homotopies, then so is their juxtaposition h′ · h .

6 / 52



Fundamental category Natural congruences from directed homotopies

Juxtaposition of homotopies
horizontal composition

Let h : [0, r ]× [0, q] → X and h′ : [0, r ′]× [0, q] → X be homotopies
from γ to δ and from γ′ to δ′ with ∂+γ = ∂-γ′.

The mapping h′ ∗ h : [0, r + r ′]× [0, q] → X defined by

h′ ∗ h(t, s) =

{
h(t, s) if 0 ⩽ t ⩽ r
h′(t − r , s) if r ⩽ t ⩽ r + r ′

is a homotopy from γ to δ.

δ

γ

h

δ′

γ′

h′

δ′ · δ

γ′ · γ

h′ · h

If h and h′ are ((weakly) directed) homotopies, then so is their juxtaposition h′ · h .

6 / 52



Fundamental category Natural congruences from directed homotopies

Juxtaposition of homotopies
horizontal composition

Let h : [0, r ]× [0, q] → X and h′ : [0, r ′]× [0, q] → X be homotopies
from γ to δ and from γ′ to δ′ with ∂+γ = ∂-γ′.

The mapping h′ ∗ h : [0, r + r ′]× [0, q] → X defined by

h′ ∗ h(t, s) =

{
h(t, s) if 0 ⩽ t ⩽ r
h′(t − r , s) if r ⩽ t ⩽ r + r ′

is a homotopy from γ to δ.

δ

γ

h

δ′

γ′

h′

δ′ · δ

γ′ · γ

h′ · h

If h and h′ are ((weakly) directed) homotopies, then so is their juxtaposition h′ · h .

6 / 52



Fundamental category Natural congruences from directed homotopies

Godement exchange law

Suppose we have

δ

h

ξ

γ

g

δ′

h′

ξ′

γ′

g ′

then it comes
(g ′ ∗ h′) · (g ∗ h) = (g ′ · g) ∗ (h′ · h)
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Fundamental category Natural congruences from directed homotopies

Applying Godement exchange law

h1 h2

h1 id

id h2

∗∗

h1 · id

id · h2
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Fundamental category Natural congruences from directed homotopies

Equivalences are congurences

If:

- h is an elementary homotopy between γ ◦ θ and δ ◦ ψ
- h′ is an elementary homotopy between γ′ ◦ θ′ and δ′ ◦ ψ′

- the endpoint of γ is the starting point of γ′

then h · h′ is an elementary homotopy from (γ · γ′) ◦ (θ · θ′) to (δ · δ′) ◦ (ψ · ψ′) .

The relation ∼X is a congruence on P(X )
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Fundamental category Natural congruences from directed homotopies

Naturality

If h is a homotopy from γ to γ′ on the topological space X and f : X → Y is a continuous map, then f ◦ h is a homotopy
from f ◦ γ to f ◦ γ′ on the topological space Y .

If h is a (weakly) directed homotopy from γ to γ′ on the local pospace space X and f : X → Y is a local pospace
morphism, then f ◦ h is a (weakly) directed homotopy from f ◦ γ to f ◦ γ′ on the local pospace space Y .

If γ, γ′ : [0, r ] → X are ((weakly) di)homotopic, then so are f ◦ γ, f ◦ γ′ : [0, r ] → Y .

10 / 52



Fundamental category Natural congruences from directed homotopies

Naturality

If h is a homotopy from γ to γ′ on the topological space X and f : X → Y is a continuous map, then f ◦ h is a homotopy
from f ◦ γ to f ◦ γ′ on the topological space Y .

If h is a (weakly) directed homotopy from γ to γ′ on the local pospace space X and f : X → Y is a local pospace
morphism, then f ◦ h is a (weakly) directed homotopy from f ◦ γ to f ◦ γ′ on the local pospace space Y .

If γ, γ′ : [0, r ] → X are ((weakly) di)homotopic, then so are f ◦ γ, f ◦ γ′ : [0, r ] → Y .

10 / 52



Fundamental category Natural congruences from directed homotopies

Naturality

If h is a homotopy from γ to γ′ on the topological space X and f : X → Y is a continuous map, then f ◦ h is a homotopy
from f ◦ γ to f ◦ γ′ on the topological space Y .

If h is a (weakly) directed homotopy from γ to γ′ on the local pospace space X and f : X → Y is a local pospace
morphism, then f ◦ h is a (weakly) directed homotopy from f ◦ γ to f ◦ γ′ on the local pospace space Y .

If γ, γ′ : [0, r ] → X are ((weakly) di)homotopic, then so are f ◦ γ, f ◦ γ′ : [0, r ] → Y .

10 / 52



Fundamental category Natural congruences from directed homotopies

Naturality

If h is a homotopy from γ to γ′ on the topological space X and f : X → Y is a continuous map, then f ◦ h is a homotopy
from f ◦ γ to f ◦ γ′ on the topological space Y .

If h is a (weakly) directed homotopy from γ to γ′ on the local pospace space X and f : X → Y is a local pospace
morphism, then f ◦ h is a (weakly) directed homotopy from f ◦ γ to f ◦ γ′ on the local pospace space Y .

If γ, γ′ : [0, r ] → X are ((weakly) di)homotopic, then so are f ◦ γ, f ◦ γ′ : [0, r ] → Y .

10 / 52



Fundamental category Natural congruences from directed homotopies

Conclusion

- The relations ∼X form a natural congruence on the directed path functor P : Lpo → Cat .

- The fundamental category functor −→π1 : Lpo → Cat is defined accordingly.

- The fundamental groupoid functor Π1 : Top → Grd is obtained by substituting “paths” and “homotopies” to
“directed paths” and “elementary homotopies”.
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Basic properties and computations



Fundamental category Basic properties and computations

- The fundamental category of the locally ordered real line is the corresponding partial order.

- For all local pospaces X and Y we have

−→π1(X × Y ) ∼= −→π1X ×−→π1Y

- Given a pospace X , −→π1X is loop-free i.e.

−→π1X (x , y) ̸= ∅ and −→π1X (y , x) ̸= ∅ ⇒ x = y and −→π1X (x , x) = {idx}

- The fundamental category of a local pospace has no nontrivial null homotopic directed paths i.e. any directed loop
that is related to a constant path by an elementary homotopy is actually a constant.

- In particular the fundamental category of a local pospace has no isomorphism but its identities.
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Fundamental category Basic properties and computations

The fundamental category of the locally ordered circle

- Given x , y , x̂y is the anticlockwise arc from x to y .
It is a singleton if x = y .

- −→π1S1(x , y) = {x} × N× {y}
- the identities are the tuples (x , 0, x)

- the composition is given by

- (y , p, z) ◦ (x , n, y) = (x , n + p, z) if x̂y ∪ ŷz ̸= S1
- (y , p, z) ◦ (x , n, y) = (x , n + p + 1, z) if x̂y ∪ ŷz = S1
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Fundamental category Basic properties and computations

Plane without a square
x = R2

+
\]0, 1[2

[0, 1]2

[2,+∞[2

]1,+∞[×[0, 1] ∪ [2,+∞[×[0, 2[A

D

B

C

If x ⩽2 y , then −→π1X (x , y) only depends on the elements of the partition x and y belong to.

→ A B C D

A σ β α
β′ ◦ β
α′ ◦ α

B σ β′

C σ α′

D σ
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CATEGORY OF COMPONENTS



Motivation



Category of components Motivation

Skeleta and equivalences of categories

- A skeleton of C is a full subcategory of C whose class of objects meets every isomorphism class of C exactly once.

- The skeleton of C is unique up to isomorphism, it is denoted by skC.
- Two categories are equivalent (i.e. there exists an equivalence of categories between them) iff their skeleta are

isomorphic.

- The skeleton of the category of finite sets is the full subcategory whose objects are {0, . . . , n − 1} for n ∈ N.
- The skeleton of the fundamental groupoid of a path-connected space is the fundamental group of this space.

- Problem: The fundamental category of a local pospace has no isomorphisms but its identities, hence it is its own
skeleton.
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Loop-free and one-way categories



Category of components Loop-free and one-way categories

The categories LfCat and OwCat

- A category C is said to be one-way when all its endomorphisms are identities i.e. C(x , x) = {idx} for all x
Every Grothendieck topos has a one-way site. C. MacLarty. Theor. Appl. of Cat. 16(5) pp 123-126 (2006).

- A one-way category C is said to be loop-free when for all x , y

C(x , y) ̸= ∅ and C(y , x) ̸= ∅ implies x = y

Complexes of groups and orbihedra in Group theory from a geometrical viewpoint.

A. Haefliger. World Scientific (1991).

- A loop-free category is its own skeleton

- A category is one-way iff its skeleton is loop-free
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Category of components Loop-free and one-way categories

Generalized congruences
M. A. Bednarczyk, A. M. Borzyszkowski, W. Pawlowski. Theor. Appl. Cat. 5(11). 1999

- Given a binary relation R on the set of morphisms of a category C, there is a unique category C/R and a unique
functor q : C → C/R such that for all functors f : C → D, if αRβ ⇒ f (α) = f (β), then there is a unique functor
g : C/R → D such that f = g ◦ q

C/R
g

!!
C

q

OO

f
// D

- Examples

- any congruence is a generalized congruence.

- C freely generated by x
α // y with idxRidy (resp. with αRidx ).

- (N,+, 0) with 0Rn for some n ∈ N.
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Systems of weak isomorphisms



Category of components Systems of weak isomorphisms

Goal

Let C be a one-way category:

- Define a class Σ of morphisms of C so we can keep one representative in each class of Σ-related objects without loss
of information

- To do so, we are in search for a class that behaves much like the one of isomorphisms

- From now on C denotes a one-way category
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Category of components Systems of weak isomorphisms

Potential weak isomorphisms
Let C be a one-way category

- For all morphisms σ and all objects z define

- the σ, z-precomposition as γ ∈ C(∂+σ, z) → γ◦σ ∈ C(∂-σ, z)
- the z, σ-postcomposition as δ ∈ C(z, ∂-σ) 7→ σ◦δ ∈ C(z, ∂+σ)

- One may have C(∂+σ, z) = ∅ or C(z, ∂-σ) = ∅
- Note that σ is an isomorphism iff for all z both precomposition and postcomposition are bijective.

- The latter condition is weakened: σ is said to preserve the future cones (resp. past cones) when for all z if
C(∂+σ, z) ̸= ∅ (resp. C(z, ∂-σ) ̸= ∅) then the precomposition (resp. postcomposition) is bijective.

- Then σ is a potential weak isomorphism when it preserves both future cones and past cones. Potential weak
isomorphisms compose.

- If C(x , y) contains a potential weak isomorphism, then it is a singleton
Requires the assumption that C is one-way
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Category of components Systems of weak isomorphisms

An example of potential weak isomorphism

z
∂+σ

σ

σ′

Due to the lower dipath, the σ, z-precomposition is not bijective; yet σ′ is a potential weak isomorphism.
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Category of components Systems of weak isomorphisms

An unwanted example of potential weak isomorphism

z

σ′′

Note that σ′′ is a potential weak isomorphism though there exists a morphism from ∂-σ′′ to z but none from ∂+σ′′ to z.
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Category of components Systems of weak isomorphisms

Stability under pushout and pullback

- A collection of morphisms Σ is said to be stable under pushout when for all σ ∈ Σ, for all γ with ∂-γ = ∂-σ, the
pushout of σ along γ exists and belongs to Σ

γ′
//

σ

OO

γ
//
σ′

OO

- A collection of morphisms Σ is said to be stable under pullback when for all σ ∈ Σ, for all γ with ∂+γ = ∂+σ, the
pullback of σ along γ exists and belongs to Σ

γ //

σ′

OO

γ′
//

σ

OO
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Category of components Systems of weak isomorphisms

Greatest inner collection stable under pushout and pullback

- Any collection Σ of morphisms of a category C admits a greatest subcollection that is stable under pushout and
pullback

- Construction:

- Start with Σ0 = Σ
- For n ∈ N define Σn+1 as the collection of morphisms σ ∈ Σn s.t. the pushout and the pullback of σ along

any morphism exists (when sources or targets match accordingly) and belongs to Σn

Σ0 ⊇ · · ·Σ1 ⊇ · · · ⊇ Σn ⊇ Σn+1 ⊇ · · ·

- The expected subcollection is the decreasing intersection

Σ∞ :=
⋂
n∈N

↓
Σn

- The collection Σ∞ is stable under the action of Aut(C)
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Category of components Systems of weak isomorphisms

Systems of weak isomorphisms

- The class of isomorphisms of any category is stable under pushout and pullback

- A system of weak isomorphisms is a collection of potential weak isomorphisms that is stable under pushout and
pullback

- The class of all isomorphisms of any category is a system of weak isomorphisms

- If Σ is a system of weak isomorphisms, then so is its closure under composition

- Hence we suppose the systems of weak isomorphisms are closed under composition
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Category of components Systems of weak isomorphisms

Examples of systems of weak ismorphisms

- Given a partition P of R into intervals, the following collection is a system of weak isomorphisms{
(x , y) | x ⩽ y ; ∃I ∈ P, [x , y ] ⊆ I

}

- In the preceding example, R can be replaced by any totally ordered set

- Let Σi ⊆ Ci be a family of collections of morphisms, then

∏
i Σi is a swi of

∏
i Ci iff each Σi is a swi of Ci

- The inverse image (resp. the direct image) of a system of weak isomorphisms by an equivalence of categories is a
system of weak isomorphisms.
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Category of components Systems of weak isomorphisms

Pureness

- A collection Σ of morphisms is said to be pure when

γ ◦ δ ∈ Σ ⇒ γ, δ ∈ Σ

- Given a one-way category C we have:

All the systems of weak isomorphisms of C are pure
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Category of components Systems of weak isomorphisms

The locale of systems of weak isomorphisms

- A locale is a complete lattice whose binary meet distributes over arbitrary join i.e.

x ∧
(∨

i

yi

)
=

∨
i

(x ∧ yi )

- The collection ΩX open subsets of a topological space X form a locale and we have the functor L : Top → Loc (that

admits a left adjoint) defined by

- L(X ) = ΩX
- L(f )(W ) = f −1(W ) for all f : X → Y and W ∈ ΩY

- The collection of systems of weak isomorphisms of a category has a greatest element

- Given a one-way category C we have:

- The collection of systems of weak isomorphisms of C forms a locale

- The greatest swi is invariant under the action of Aut(C)
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Category of components Construction

Components of a one-way category C

- From now on C is a one-way category and Σ is a system of weak isomorphisms on it

- Recall that if C(x , y) meets Σ, then C(x , y) is a singleton, a fact that we represent on diagrams by: x
Σ // y

- Given two objects x and y of C t.f.a.e.:

- there exists a Σ-zigzag between x and y

- there exists z such that x z
Σoo Σ // y

- there exists z such that x
Σ // z y

Σoo

- When any of the following property is satisfied x and y are said to be Σ-connected

- Σ-connectedness is an equivalence relation on the objects of C
- The equivalence classes are called a Σ-components
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Category of components Construction

Structure of the Σ-components
Σ system of weak isomorphisms of C one-way category

A prelattice is a preordered set in which x ∧ y and x ∨ y exist for all x and y .
However they are defined only up to isomorphism

Let K be a Σ-component of C and K be the full subcategory of C whose objects are the elements of K . The following
properties are satisfied:

1. The category K is isomorphic with the preorder (K ,≼) where x ≼ y stands for C[x , y ] ̸= ∅. In particular, every
diagram in K commutes.

2. The preordered set (K ,≼) is a prelattice.
3. If d and u are respectively a greatest lower bound and a least upper bound of the pair {x , y}, then Diagram 1 is

both a pullback and a pushout in C, and all the arrows apprearing on the diagram belong to Σ.
4. C = K iff C is a prelattice, and Σ is the greatest system of weak isomorphisms of C i.e. all the morphisms in this

case.
u u

x

??

y

``

x y x

??

y

__

Diagram 1

d

__ ??

Diagram 2

d

__ ??

Diagram 3
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Category of components Construction

Equivalent morphisms with respect to Σ

- Let δ ∈ C(x , y) and δ′ ∈ C(x ′, y ′). Then write δ ∼ δ′ when

- x ∼ x ′ and y ∼ y ′, and
- the inner hexagon of the next diagram commutes

x
δ // y

Σ

))d

Σ

55

Σ
))

∼= x ∧ x ′
Σ

::

Σ

$$

y ∨ y ′
$$Σ

::
Σ

u∼=

x ′
δ′
// y ′

Σ

55

- Note that if d ∼= x ∧ x ′ and u ∼= y ∨ y ′ then the outter hexagon also commutes, hence the relation ∼ is well
defined.

- If γ ∼ δ then ∂-γ ∼ ∂-δ and ∂+γ ∼ ∂+δ
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Category of components Construction

The relation ∼ is an equivalence

- The relation ∼ is:

- reflexive since Σ contains all identities
- symmetric by definition
- transitive

α

ΣΣ

Σ Σ

pullback

Σ

Σ

β
Σ

Σ

pushout

Σ

Σ

Σ

γ
Σ
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Category of components Construction

The relation ∼ fits with composition

- Suppose ∂-γ = ∂+δ, ∂-γ′ = ∂+δ′ and γ ∼ γ′ and δ ∼ δ′.

- Then we have γ ◦ δ ∼ γ′ ◦ δ′

x y z

x ∧ x ′ y ∧ y ′ y ∨ y ′ z ∨ z ′

x ′ y ′ z ′

δ γ

Σ ΣΣ

Σ

δ′′

Σ

Σ

pushout

and

pullback

γ′′

δ′ γ′

Σ Σ
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Category of components Construction

The category of components C/Σ

- The quotient category C/Σ (obtained by turning each morphism of Σ into an identity) can be defined as follows:

- The objects are the Σ-components
- The morphisms are the ∼-equivalence classes

- If ∂-γ ∼ ∂+δ then

- there exists γ′ and δ′ such that γ′ ∼ γ, δ′ ∼ δ, and ∂-γ′ = ∂+δ′

Σ γ′

δ

δ′

γ

Σ Σpushout

- so we define [γ] ◦ [δ] = [γ′ ◦ δ′]
- We have the quotient functor Q : C → C/Σ
- The category of components is C/Σ with Σ being the greatest swi of C
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Category of components Properties

Characterizing the identities of C/Σ

For any morphism δ of C t.f.a.e.

- δ ∈ Σ

- [δ] ⊆ Σ

- [δ] is an identity of C/Σ
The quotient functor Q : C → C/Σ satisfies the following universal property:
XXfor all functors F : C → D s.t. F (Σ) ⊆ {identities of D}
XXthere exists a unique G : C/Σ → D s.t. F = G ◦ Q

C/Σ

G

��
C

F
//

Q

>>

D
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Category of components Properties

The fundamental properties of C/Σ
with Σ being a system of weak isomorphisms of a one-way category C

- The quotient functor Q : C → C/Σ is surjective on morphisms
- The quotient category C/Σ is loop-free
- If C(x , y) ̸= ∅ then the following map is a bijection.

δ ∈ C(x , y) 7→ Q(δ) ∈ C/Σ
(
Q(x),Q(y)

)
- If C/Σ

(
Q(x),Q(y)

)
̸= ∅ then there exist x ′ and y ′ such that Σ(x ′, x), Σ(y , y ′), C(x ′, y), and C(x , y ′) are nonempty.

x y ′

x ∧ a a b y ∨ b

x ′ y

β

pushout

pullback

Σ

Σ

α Σ

Σ

Σ

γ

Σ

- The quotient functor Q preserves and reflects potential weak isomorphisms
- If C is finite then so is the quotient C/Σ
- C is a preorder iff C/Σ is a poset
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Category of components Properties

Describing the localization of C by Σ
with Σ being a system of weak isomorphisms of a one-way category C

- The objects of C[Σ−1] are the objects of C

- The morphisms are the equivalence classes of ordered pairs of coinitial morphisms (γ, σ) with σ ∈ Σ,

- Two pairs (γ, σ) and (γ′, σ′) being equivalent when ∂+σ = ∂+σ′, ∂+γ = ∂+γ′, and Q(γ) = Q(γ′)
- In the diagram below we have Q(γ′ ◦ γ′′) = Q(γ′) ◦ Q(γ′′) = Q(γ′) ◦ Q(γ) hence the composite

(γ′ ◦ γ′′, σ ◦ σ′′) neither depend on the choice of the pullback nor on the representatives (γ, σ) and (γ′, σ′).

σ′′

��

γ′′

��
pullback

γ

��

σ

��

σ′

��

γ′

��
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Category of components Properties

The canonical comparison P : C[Σ−1] → C/Σ
with Σ being a system of weak isomorphisms of a one-way category C

- Define I by I (γ) := (γ, id∂-γ) and the identity on objects

- Given a functor F : C → D s.t. F (Σ) ⊆ {isomorphisms of D} define

- G(x) := F (x) for all objects x of C[Σ−1] and
- G(γ, σ) := F (γ) ◦ (F (σ))−1 for any representative (γ, σ) of a morphism of C[Σ−1]

- The functor I : C → C[Σ−1] then satisfies the universal property: for all functors F : C → D there exists a unique
G : C → C[Σ−1] s.t. F = G ◦ I

- In particular there is a unique functor P s.t. Q = P ◦ I with Q : C → C/Σ and we have

The functor P is an equivalence of categories

- The skeleton of C[Σ−1] is C/Σ and C[Σ−1] is one-way.
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- Given a functor F : C → D s.t. F (Σ) ⊆ {isomorphisms of D} define

- G(x) := F (x) for all objects x of C[Σ−1] and
- G(γ, σ) := F (γ) ◦ (F (σ))−1 for any representative (γ, σ) of a morphism of C[Σ−1]
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G : C → C[Σ−1] s.t. F = G ◦ I
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Category of components Properties

Embeding C/Σ into C

- Let ϕ : Σ-components of C → Ob(C) such that

- for all Σ-components K ,K ′, if there exists x ∈ K and x ′ ∈ K ′ such that C(x , x ′) ̸= ∅, then
C(ϕ(K), ϕ(K ′)) ̸= ∅

- in this case C/Σ is isomorphic with the full subcategory of C whose set of objects is im(ϕ).
- the mapping ϕ is called an admissible choice (of canonical objects)

- Write ϕ ≼ ϕ′ when C(ϕ(K), ϕ′(K)) ̸= ∅ for all Σ-components K

- The collection of admissible choice then forms a (pre)lattice
- If C/Σ is finite then there exists an admissible choice
- If C/Σ is infinite the existence of an admissible choice is a open question
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Category of components Examples

Plane without a square
x = R2

+
\]0, 1[2

[0, 1]2

[2,+∞[2

]1,+∞[×[0, 1] ∪ [2,+∞[×[0, 2[A

D

B

C

Let x , y such that x ⩽2 y , then −→π1X (x , y) only depends on which elements of the partition x and y belong to

→ A B C D
A σ β γ β′ ◦ β

α′ ◦ α
B σ β′

C σ γ′

D σ
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The floating cube
Non potential weak isomorphisms
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A “vee” that does not extend to a pushout
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The floating cube
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Category of components Examples

The floating cube

- Since the pushout of f (resp. g) along g (resp. f ) does not exist, f , g ̸∈ Σ

- The commutative square f , g , f ′, and g ′ is a pullback:

- Therefore f ′, g ′ ̸∈ Σ (anyway they do not preserve the future cones)
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Finite connected loop-free categories



Category of components Finite connected loop-free categories

Commutative monoid
of nonempty finite connected loop-free categories

- The Cartesian product of categories A× B is non-empty iff so are A and B.
If A and B are indeed nonempty then we also have

- A× B finite iff so are A and B
- A× B connected iff so are A and B
- A× B loop-free iff so are A and B

- A ∼= A′ and B ∼= B′ implies A×A′ ∼= B × B′

- (A× B)× C ∼= A× (B × C)
- 1×A ∼= A ∼= A× 1

- A× B ∼= B ×A
- The collection of isomorphism classes of nonempty finite connected loop-free categories is thus a commutative

monoid M
The commutative monoid M is free.
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- A× B ∼= B ×A
- The collection of isomorphism classes of nonempty finite connected loop-free categories is thus a commutative

monoid M
The commutative monoid M is free.
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Category of components Finite connected loop-free categories

Criteria for primality

- The monoid M is graded by the following morphisms

- #Ob : C ∈ M 7→ card(Ob(C)) ∈ (N \ {0},×, 1)
- #Mo : C ∈ M 7→ card(Mo(C)) ∈ (N \ {0},×, 1)
- #Mo(C) ⩾ 2×#Ob(C)− 1, for all C ∈ M

- In particular if #Ob(C) or #Mo(C) is prime, then so is C.
The converse is false.

- Any element of M freely generated by a graph, is prime
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Category of components Finite connected loop-free categories

Comparing decompositions

- The mapping C ∈ M 7→ −→π0(C) ∈ M is a morphism of monoids

- We would like to know which prime element of M are preserved by it

- We known that −→π0(C) is null iff C is a lattices (e.g. −→π0(0 < 1) = {0} though {0 < 1} is prime in M)

- For all d-spaces X and Y , −→π1(X × Y ) ∼= −→π1X ×−→π1Y

- Hence N ′ := {X ∈ Hf ↿G⇂ | −→π1X is nonempty, connected, and loop-free}
is a pure submonoid of Hf ↿G⇂

- Then N := {X ∈ N ′ | −→π0(
−→π1X ) is finite} is a pure submonoid of N ′

- Therefore it is free commutative and we would like to know which prime elements are preserved by
X ∈ N 7→ −→π0(

−→π1X ) ∈ M
- Conjecture

If P ∈ N is prime and −→π1(P) is not a lattice, then −→π0(
−→π1(P)) is prime
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