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INDEPENDENCE



Independence

Compatible programs

Two programs P and Q are said to be compatible when their initial valuations and their arity maps coincide on the
intersection of their domains of definition. In that case we define the parallel composition P|Q.

By extension we define the parallel composition of P1, . . . ,PN when the programs are pairwise compatible.
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Syntactical independence



Independence Syntactical independence

Two programs are said to be syntactically independent when the set of resources they use are disjoint:

- they have no variables in common,

- they have no semaphores in common, and

- they have no barriers in common.

Syntactically independent programs are compatible.

Syntactical independence can be decided statically, it is compositional, but it is too restrictive.
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Model independence



Independence Model independence

Model Independence

Suppose the programs P1, . . . ,PN are conservative.

The programs P1, . . . ,PN are said to be model independent when

JP1| · · · |PNK = JP1K × · · · × JPNK

Model independence can be decided statically.
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Observational independence



Independence Observational independence

Compatible permutations

Assume we have a partition
{1, . . . , n} = S1 ⊔ · · · ⊔ SN

Two multi-instructions µ and µ′ (dom(µ), dom(µ′) ⊆ {1, . . . , n}) should not be swapped when{
j ∈ {1, . . . ,N} | Sj ∩ dom(µ) ̸= ∅

}
∩
{
j ∈ {1, . . . ,N} | Sj ∩ dom(µ′) ̸= ∅

}
̸= ∅

A permutation π of the set {0, . . . , q − 1} is said to be compatible with the sequence of multi-instructions µ0, . . . , µq−1

when it does not swap multi-instructions that should not be (it is order preserving on all pairs {k, k ′} such that µk and
µk′ should not be swapped).

The permutation π is said to be compatible with the directed path γ when it is compatible with its associated sequence of
multi-instructions.
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Independence Observational independence

Assume that S1 = {1, 3, 5} and S2 = {2, 4}.

γ

1
2
3
4
5

µ1 µ2 µ3 µ4 µ5

γ

1
2
3
4
5

µ1 µ2 µ4 µ3 µ5

γ

1
2
3
4
5

µ1 µ2 µ4 µ5 µ3
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Independence Observational independence

Observational independence
related to partial order reduction (?)

Suppose that the programs P1, . . . ,PN are compatible and that Pj has nj running processes.

The identifiers of the running processes of P1| · · · |PN are the elements of {1, . . . , n} with

n =
N∑
j=1

nj , and for j ∈ {1, . . . ,N} sj =

j∑
k=1

nk

Sj =
{
i ∈ {1, . . . , n} | sj−1 < i ⩽ sj

}
The programs P1, . . . ,PN are said to be observationally independent when:

- for all execution traces γ

- for all permutations π compatible with the sequence of multi-instructions (µ0 · · ·µq−1) associated with γ,

there exists an execution trace γ′ whose associated sequence of multi-instructions is π · (µ0 · · ·µq−1), which has the same
action on the system state than γ, that is to say

σ · (µ0 · · ·µq−1) = σ · (µπ−1(0) · · ·µπ−1(q−1)) .

Observational independence cannot be decided statically, moreover it is too loose.
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Comparison



Independence Comparison

Main theorem

syntactic independence
⇓

model independence
⇓

observational independence
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ISOTHETIC REGIONS



Boolean structure



Isothetic regions Boolean structure

One-dimensional regions

Let G be a finite graph, the collection R1G of all finite unions of connected subsets of |G | forms a Boolean subalgebra of
Pow(|G |).

Moreover
R1G ∼= Pow(V )× (R1]0, 1[)

cardA

with A (resp. V ) being the set of arrows (resp. vertices) of G , and R1]0, 1[ being the Boolean algebra of finite unions of
subintervals of ]0, 1[.

The elements of R1G are seen as one-dimensional blocks.

Proof: If X is a connected subset of |G | then for all arrows α ∈ G , X ∩ ({α}×]0, 1[) has at most two connected
components.

The finiteness condition is not necessary e.g.

· · · · · · · · ·· · · · · ·

Yet some infinite graphs may not enjoy the property e.g. when G is a graph with a single vertex and infinitely many arrows.

8 / 50



Isothetic regions Boolean structure

One-dimensional regions

Let G be a finite graph, the collection R1G of all finite unions of connected subsets of |G | forms a Boolean subalgebra of
Pow(|G |).

Moreover
R1G ∼= Pow(V )× (R1]0, 1[)

cardA

with A (resp. V ) being the set of arrows (resp. vertices) of G , and R1]0, 1[ being the Boolean algebra of finite unions of
subintervals of ]0, 1[.

The elements of R1G are seen as one-dimensional blocks.

Proof: If X is a connected subset of |G | then for all arrows α ∈ G , X ∩ ({α}×]0, 1[) has at most two connected
components.

The finiteness condition is not necessary e.g.

· · · · · · · · ·· · · · · ·

Yet some infinite graphs may not enjoy the property e.g. when G is a graph with a single vertex and infinitely many arrows.

8 / 50



Isothetic regions Boolean structure

One-dimensional regions

Let G be a finite graph, the collection R1G of all finite unions of connected subsets of |G | forms a Boolean subalgebra of
Pow(|G |).

Moreover
R1G ∼= Pow(V )× (R1]0, 1[)

cardA

with A (resp. V ) being the set of arrows (resp. vertices) of G , and R1]0, 1[ being the Boolean algebra of finite unions of
subintervals of ]0, 1[.

The elements of R1G are seen as one-dimensional blocks.

Proof: If X is a connected subset of |G | then for all arrows α ∈ G , X ∩ ({α}×]0, 1[) has at most two connected
components.

The finiteness condition is not necessary e.g.

· · · · · · · · ·· · · · · ·

Yet some infinite graphs may not enjoy the property e.g. when G is a graph with a single vertex and infinitely many arrows.

8 / 50



Isothetic regions Boolean structure

One-dimensional regions

Let G be a finite graph, the collection R1G of all finite unions of connected subsets of |G | forms a Boolean subalgebra of
Pow(|G |).

Moreover
R1G ∼= Pow(V )× (R1]0, 1[)

cardA

with A (resp. V ) being the set of arrows (resp. vertices) of G , and R1]0, 1[ being the Boolean algebra of finite unions of
subintervals of ]0, 1[.

The elements of R1G are seen as one-dimensional blocks.

Proof: If X is a connected subset of |G | then for all arrows α ∈ G , X ∩ ({α}×]0, 1[) has at most two connected
components.

The finiteness condition is not necessary e.g.

· · · · · · · · ·· · · · · ·

Yet some infinite graphs may not enjoy the property e.g. when G is a graph with a single vertex and infinitely many arrows.

8 / 50



Isothetic regions Boolean structure

One-dimensional regions

Let G be a finite graph, the collection R1G of all finite unions of connected subsets of |G | forms a Boolean subalgebra of
Pow(|G |).

Moreover
R1G ∼= Pow(V )× (R1]0, 1[)

cardA

with A (resp. V ) being the set of arrows (resp. vertices) of G , and R1]0, 1[ being the Boolean algebra of finite unions of
subintervals of ]0, 1[.

The elements of R1G are seen as one-dimensional blocks.

Proof: If X is a connected subset of |G | then for all arrows α ∈ G , X ∩ ({α}×]0, 1[) has at most two connected
components.

The finiteness condition is not necessary e.g.

· · · · · · · · ·· · · · · ·

Yet some infinite graphs may not enjoy the property e.g. when G is a graph with a single vertex and infinitely many arrows.

8 / 50



Isothetic regions Boolean structure

One-dimensional regions

Let G be a finite graph, the collection R1G of all finite unions of connected subsets of |G | forms a Boolean subalgebra of
Pow(|G |).

Moreover
R1G ∼= Pow(V )× (R1]0, 1[)

cardA

with A (resp. V ) being the set of arrows (resp. vertices) of G , and R1]0, 1[ being the Boolean algebra of finite unions of
subintervals of ]0, 1[.

The elements of R1G are seen as one-dimensional blocks.

Proof: If X is a connected subset of |G | then for all arrows α ∈ G , X ∩ ({α}×]0, 1[) has at most two connected
components.

The finiteness condition is not necessary e.g.

· · · · · · · · ·· · · · · ·

Yet some infinite graphs may not enjoy the property e.g. when G is a graph with a single vertex and infinitely many arrows.
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Isothetic regions Boolean structure

Higher dimensional blocks

- A block of dimension n ∈ N, or n-block, is the product of n connected subsets of the metric graph |G |.
- A collection of blocks is called a block covering of X ⊆ |G |n when the union of its elements is X .

- The collection of n-dimensional block coverings is denoted by CovnG , it is preordered by

C ≼ C ′ ≡ ∀b ∈ C ∃b′ ∈ C ′, b ⊆ b′
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Isothetic regions Boolean structure

Maximal blocks

- A block contained in X is said to be a block of X . Such a block is said to be maximal when no block of X strictly
contains it.

- The maximal connected block covering of X ⊆ |G |n is the set of all its maximal connected blocks, it is denoted by
αn(X ).

- αn(X ) = {∅} if and only if X = ∅.
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Isothetic regions Boolean structure

A Galois connection

We have a Galois connection (γn, αn) between CovnG and Pow(|G |n) with γn(D) =
⋃

D for all D ∈ CovnG .

CovnG
γn //

Pow(|G |n)
αn

oo

In particular γn ◦ αn = id and id ≼ αn ◦ γn. That Galois connection induces an isomorphism of Boolean algebras between
Pow(|G |n) and the image of αn i.e. the collection of maximal connected block coverings.

Proof: any connected block is contained in a maximal connected block (by the Hausdorff maximal principle).

⋃
i

↑
(
B

(i)
1 × · · · × B

(i)
n

)
=

(⋃
i

↑B
(i)
1

)
× · · · ×

(⋃
i

↑B
(i)
n

)
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Isothetic regions Boolean structure

Isothetic regions

- An isothetic region of dimension n is a subset of |G |n that admits a finite block covering.

- The geometric model of a conservative program is an isothetic region.

- The collection of isothetic regions of dimension n is denoted by RnG .

- The collection of finite block covering of dimension n is denoted by Covnf G .
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Isothetic regions Boolean structure

The previous Galois connection
restricted to isothetic regions

Suppose that the graph G is finite. The collection of n-dimensional isothetic regions RnG forms a Boolean subalgebra of
Pow(|G |n) and the previous Galois connection restricts to a Galois connection between Covnf G and RnG , which induces
an isomorphism of Boolean algebras between RnG and the image of αn i.e. the collection of finite maximal block
coverings.

Covnf G
γn // RnG
αn

oo

A subset X ⊆ |G |n is an isothetic region iff the collection of maximal subblocks of X is finite and covers X .
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Isothetic regions Boolean structure

The complement of a block is an isothetic region

If X is 1-dimensional then its maximal blocks are its connected components.
The complement of a block B = B1 × · · · × Bn can be written as

Bc =
n⋃

k=1

|G | × · · · × Bc
k × · · · × |G |

Its maximal blocks are found among that of Bc therefore they have the form

D1 × · · · × Dk−1 × Ck × Dk+1 × · · · × Dn

with k ∈ {1, . . . , n}, Ck ranging through the connected components of Bc
k and Dj , for j ̸= k, ranging through the

connected components of |G |.
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Isothetic regions Boolean structure

Intersection of two isothetic regions

The intersection of the blocks B and B′ is given by

B ∩ B′ = (B1 ∩ B′
1)× · · · × (Bn ∩ B′

n)

The maximal blocks of B ∩ B′ are therefore of the form

C1 × · · · × Cn

with each Ck ranging trough the connected components of (Bk ∩ B′
k ).

It follows from De Morgan’s laws that the intersection of two regions is still a region.

Moreover if B and B′ are block coverings of X and X ′ containing all their maximal blocks, then the collection of maximal
blocks of B ∩ B′ for B ∈ B and B′ ∈ B′ is a block covering of X ∩ X ′ containing all its maximal blocks.
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Isothetic regions Boolean structure

Concluding the proof

If F is any finite block covering of X , then

X c =
⋂

B∈F
Bc

- The collection of maximal blocks of Bc is finite and covers Bc .
- The maximal blocks of X c are obtained as certain finite intersection of the form⋂

{MB | B ∈ F}

where MB is a maximal block of Bc .
- The maximal blocks of X c thus form a finite block covering of X c .
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Isothetic regions Boolean structure

A result from directed topology

For all directed paths γ on ↿G⇂n and all X ∈ RnG , the inverse image of X by γ has finitely many connected components.

17 / 50



Isothetic regions Boolean structure

A result from directed topology

For all directed paths γ on ↿G⇂n and all X ∈ RnG , the inverse image of X by γ has finitely many connected components.

17 / 50



Additional operators



Isothetic regions Additional operators

Closure, interior, and boundary of an isothetic region

The closure operator preserves finite products, therefore it preserves blocks.

The closure operator preserves finite unions hence it preserves isothetic regions.

The boundary of a set is the intersection of its closure and the closure of its complement, hence it also preserves isothetic
regions.

The interior of a set is the difference between its closure and its boundary. It follows that the interior operator also
preserves isothetic regions.
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Isothetic regions Additional operators

The forward and the backward operators

Let A,B be subsets of a local pospace X .

- The forward and the backward operators are defined as

frw(A,B) = {∂+δ | δ directed path on X ; ∂-δ ∈ A; im(δ) ⊆ A ∪ B}

bck(A,B) = {∂-δ | δ directed path on X ; ∂+δ ∈ A; im(δ) ⊆ A ∪ B}

- The future cone of A in X is conefA := frw(A,X ) and
XXthe past cone of A in X is conepA := bck(A,X ).

- The future closure of A in X is A
f
:= frw(A,A) and

XXthe past closure of A in X is A
p
:= bck(A,A).

The closure A being understood in X .

Theorem: if A, B, and X are isothetic regions, then so are frw(A,B), conefA, A
f
, and their duals.
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Isothetic regions Additional operators

Future/past stable subsets of X

let A be a subset of a local pospace X .

- conefconefA = conefA and conepconepA = conepA

- A is said to be future (resp. past) stable (in X )
when conefA = A (resp. conepA = A)

- A is future stable iff X \ A is past stable

- The collection of future stable subsets of X is a complete lattice, the greatest lower (resp. least upper) bound of a
family being given by its intersection (resp. union).

- The same holds for past stable subsets.
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Isothetic regions Additional operators

Past/future attractors

Let A be a subset of a local pospace X .

conepA = {p ∈ X from which A can be reached} = bck(A,X ) = conepA

escapefA = {p ∈ X from which A is avoided} = {p ∈ X from which A cannot be reached}

escapefA = (conepA)c

attpA = {p ∈ X from which A cannot be avoided}

attpA = escapef(escapefA)
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Isothetic regions Additional operators

The deadlock attractor of a conservative program

Let G1, . . . ,Gn be the running processes of a conservative program P.
Let JPK be the geometric model of the program.

- The reachable space of JPK is the future cone of the initial point

- A point p ∈↿Gi⇂ is said to be terminal when JγK is empty for all directed paths on ↿Gi⇂ starting at p.

- A point p ∈ JPK is said to be terminal when so are all its projections

- The terminal points form a future stable isothetic region of JPK
- A point p ∈ JPK is said to be deadlock when its future cone neither contains directed loops (i.e. it is loop-free) nor

terminal points.

- The deadlock points form a future stable isothetic region of JPK
- The deadlock attractor of the program is the past attractor of its deadlock region.
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Isothetic regions Additional operators

Deadlock attractor of the Swiss Cross

sem 1 a b

proc:

p = P(a).P(b).V(b).V(a)

q = P(b).P(a).V(a).V(b)

init: p q
P(a)

P
(
b
)

P(b)

P
(
a
)

V(b)

V
(
a
)

V(a)

V
(
b
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Isothetic regions Additional operators

Three dining philosophers

x

y

z

P(a) P(b) V(a) V(b)

P(c)

P(a)

V(c)

V(a)

P(b)
P(c)

V(b)
V(c)
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Free commutative monoids



Factoring isothetic regions Free commutative monoids

Commutative monoids

- (M, ∗, ε) such that for all a, b, c ∈ M,

- (ab)c = a(bc)
- εa = a = aε
- ab = ba

- For all set X the collection MX of multisets over X
i.e. maps ϕ : X → N s.t. {x ∈ X | ϕ(x) ̸= 0} is finite
forms a commutative monoid with pointwise addition

- A commutative monoid is said to be free when
it is isomorphic with some MX

- Functor M : Set → Cmon
- A multiset ϕ can be written as ∑

x∈X

ϕ(x)x

- In particular, if f : X → Y is a set map, then

M(f )(ϕ) =
∑
x∈X

ϕ(x)f (x)
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Factoring isothetic regions Free commutative monoids

Prime vs irreducible

- d divides x , denoted by d |x , when there exists x ′

such that x = dx ′

- u unit: exists u′ s.t. uu′ = ε then write
x ∼ y when y = ux for some unit u

- i irreducible: i nonunit and x |i implies x ∼ i or x unit

- p prime: p nonunit and p|ab implies p|a or p|b
- If M contains nontrivial units, then one can consider

the quotient monoid M/ ∼ where x ∼ y stands for:
there exists a unit u s.t. y = ux
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Factoring isothetic regions Free commutative monoids

Examples

monoid irreducibles primes units

N \ {0},×, 1 {prime numbers} {1}
N,+, 0 {1} {0}
R+ ,+, 0 ∅ {0}
R+ ,∨, 0 ∅ R+ \ {0} {0}
Z6,×, 1 ∅ {2, 3, 4} {1, 5}
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Factoring isothetic regions Free commutative monoids

Graded commutative monoid

- (M, ∗, ε) graded: there is a morphism g : (M, ∗, ε) → (N,+, 0)
s.t. g−1({0}) = {units of M}

- If M is graded then

- {irreducibles of M} generates M
- {primes of M} ⊆ {irreducibles of M}
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Factoring isothetic regions Free commutative monoids

Irreducible that are not prime
M = ({a+ b

√
10 | a, b ∈ Z; a ̸= 0 or b ̸= 0},×, 1)

- N : M → (Z \ {0},×, 1); N(a+ b
√
10) = a2 − 10b2

N(uv) = N(u)N(v)
u unit iff N(u) ∈ {±1} [hint: u−1 = N(u)ū with ū = a− b

√
10 if u = a+ b

√
10]

N(a+ b
√
10) mod 10 ∈ {0, 1, 4, 5, 6, 9}

therefore N(a+ b
√
10) ̸∈ {±2,±3}

uv N(uv) N(u)
2 4 ±1,±2,±4
3 9 ±1,±3,±9

4±
√
10 6 ±1,±2,±3,±6

- 2, 3, and 4±
√
10 are irreducible but not prime

since 2 · 3 = (4 +
√
10) · (4−

√
10)

- {a+ b
√
10 | a, b ∈ Z} \ {0} is graded by the

number of prime factors of N(u)
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Factoring isothetic regions Free commutative monoids

N[X ] polynomials with coefficients in N
On Direct Product Decomposition of Partially Ordered Sets. Junji Hashimoto

Annals of Mathematics 2(54), pp 315-318 (1951)

X 5 + X 4 + X 3 + X 2 + X + 1 ={
(X + 1)(X 4 + X 2 + 1) = (X 3 + 1)(X 2 + X + 1) in N[X ]
(X + 1)(X 2 + X + 1)(X 2 − X + 1) in Z[X ]

- therefore X + 1, X 2 + X + 1, X 3 + 1, and X 4 + X 2 + 1
are irreducible but not prime

- N[X ] \ {0} is graded by the degree
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Characterization of the free commutative monoids
Unique factorization

- The following are equivalent:

- M is free commutative
- any element of M can be written as a product

of irreducibles in a unique way up to reordering
- {primes of M} = {irreducibles of M} and generates M
- M is graded and {irreducibles of M} ⊆ {primes of M}

- Standard examples:

- (N \ {0},×, 1)
- (N,+, 0) and its finite products in the category of commutative monoids.

Indeed (N,+, 0)n ∼= M({1, . . . , n})
- (Z[X ] \ {0},×, 1) (if F is a factorial ring, then so is F [X ]) Algebra, Serge Lang. Springer (2002)

- Note that two free commutative monoids are isomorphic in Cmon iff
their set of prime elements have the same cardinality
e.g. (N \ {0},×, 1) ∼= (Z[X ] \ {0},×, 1) in Cmon
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Connected sum of manifolds
A less common example

In differential geometry, the compact, connected, oriented, smooth n-dimensional manifolds without boundary equipped
with the connected sum # form a commutative monoid Mn whose neutral element is the n-sphere.
tom Dieck, T. Algebraic Topology. European Mathematical Society 2008. p.390

M2 is freely generated by the torus T 2.
Massey, W.S. A Basic Course in Algebraic Topology. Springer 1991. Chapter 1.

M3 is freely generated by countably many elements.
Hempel, J. 3-Manifolds. American Mathematical Society 1976. Chapter 3.

Jaco, W. Lectures on Three-Manifold Topology. American Mathematical Society 1980. Chapter 2.

- existence of the decomposition is due to Hellmuth Kneser (1929)
Kneser, H. Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten.

Jahresbericht der Deutschen Mathematiker-Vereinigung 38:248–259 1929.

- uniqueness of the decomposition is due to John W. Milnor (1962)
Milnor, J. A Unique Decomposition Theorem for 3-Manifolds.

American Journal of Mathematics 84(1):1–7 1962.

In particular M2
∼= (N,+, 0) and M3

∼= (N \ {0},×, 1)
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Kneser, H. Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten.

Jahresbericht der Deutschen Mathematiker-Vereinigung 38:248–259 1929.

- uniqueness of the decomposition is due to John W. Milnor (1962)
Milnor, J. A Unique Decomposition Theorem for 3-Manifolds.

American Journal of Mathematics 84(1):1–7 1962.

In particular M2
∼= (N,+, 0) and M3

∼= (N \ {0},×, 1)

32 / 50



Factoring isothetic regions Free commutative monoids

Connected sum of manifolds
A less common example

In differential geometry, the compact, connected, oriented, smooth n-dimensional manifolds without boundary equipped
with the connected sum # form a commutative monoid Mn whose neutral element is the n-sphere.
tom Dieck, T. Algebraic Topology. European Mathematical Society 2008. p.390

M2 is freely generated by the torus T 2.
Massey, W.S. A Basic Course in Algebraic Topology. Springer 1991. Chapter 1.

M3 is freely generated by countably many elements.
Hempel, J. 3-Manifolds. American Mathematical Society 1976. Chapter 3.

Jaco, W. Lectures on Three-Manifold Topology. American Mathematical Society 1980. Chapter 2.

- existence of the decomposition is due to Hellmuth Kneser (1929)
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Kneser, H. Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten.

Jahresbericht der Deutschen Mathematiker-Vereinigung 38:248–259 1929.

- uniqueness of the decomposition is due to John W. Milnor (1962)
Milnor, J. A Unique Decomposition Theorem for 3-Manifolds.

American Journal of Mathematics 84(1):1–7 1962.

In particular M2
∼= (N,+, 0) and M3

∼= (N \ {0},×, 1)

32 / 50



Monoids of homogeneous languages



Factoring isothetic regions Monoids of homogeneous languages

33 / 50



Factoring isothetic regions Monoids of homogeneous languages

33 / 50



Factoring isothetic regions Monoids of homogeneous languages

33 / 50



Factoring isothetic regions Monoids of homogeneous languages

33 / 50



Factoring isothetic regions Monoids of homogeneous languages

33 / 50



Factoring isothetic regions Monoids of homogeneous languages

33 / 50



Factoring isothetic regions Monoids of homogeneous languages

The noncommutative monoid of languages

- A∗ (non commutative) monoid of words on the alphabet A.
Let ε denotes the empty word

- A language is a set of words on A. Let D and D′ be languages

- define D · D′ := {w · w ′ | w ∈ D;w ′ ∈ D′}
- one has ∅ · D = D · ∅ = ∅ and {ε} · D = D · {ε} = D
- The monoid of nonempty languages is D(A)
- D(A) is commutative iff Card(A) ⩽ 1. Note that D(∅) ∼=

{
{ε}
}

- however D({a}) is not freely commutative
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Factoring isothetic regions Monoids of homogeneous languages

The noncommutative monoid of homogeneous languages

- H ∈ D(A) is homogeneous when all the words in H have the same length

- Define dim(H) as the length common to all the words of H.
It is well defined since H is nonempty.

- H · H′ = {w · w ′ | w ∈ H ; w ′ ∈ H′} is homogeneous iff so are H and H′

- Dh(A) ⊆ D(A) the pure submonoid of homogeneous languages.

- H ∈ Dh(A) 7→ dim(H) ∈ (N,+, 0) is a morphism of monoid

- dim(H) = 0 iff H = {ε}
- Dh(A) is commutative iff Card(A) ⩽ 1

- Dh({a}) ∼= (N,+, 0)
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Factoring isothetic regions Monoids of homogeneous languages

Action of the symmetric groups
on the left of the homogeneous languages

- The nth symmetric group Sn acts on the left of the set of words of length n
i.e. mappings from {1, . . . , n} to A, by σ · ω := ω ◦ σ -1

- Then Sn acts on the left of the homogeneous languages of dimension n

- Write H ∼ H′ when dim(H) =dim(H′) and H′ = σ · H for some σ ∈ Sdim(H)

- If σ ∈ Sn and σ′ ∈ Sn′ then define σ ⊗ σ′ ∈ Sn+n′ as:

σ ⊗ σ′(k) :=

{
σ(k) if 1 ⩽ k ⩽ n(

σ′(k − n)
)
+ n if n + 1 ⩽ k ⩽ n + n′

- A Godement exchange law is satisfied, which ensures that ∼ is actually a congruence:

(σ · H) · (σ′ · H′) = (σ ⊗ σ′) · (H · H′)

i.e. H ∼ K and H′ ∼ K ′ implies HH′ ∼ KK ′
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Factoring isothetic regions Monoids of homogeneous languages

The commutative monoid of homogeneous languages

- The commutative monoid of homogeneous languages is H(A) = (Dh(A), ·, {ε})/ ∼
- The monoid H(A) is graded by H ∈ H(A) 7→ dim(H) ∈ (N,+, 0)

The commutative monoid H(A) is free

- For any homogeneous language H and σ ∈ Sdim(H), card(H) = card(σ · H) so we can define the cardinality of any
element of H(A)
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Factoring isothetic regions Monoids of homogeneous languages

The commutative monoid of finite homogeneous languages

- M′ ⊆ M is said to be pure when for all x , y ∈ M, xy ∈ M′ implies x , y ,∈ M′

- A pure submonoid of a free commutative monoid is free

- The submonoid Hf (A) ⊆ H(A) of finite languages is pure, therefore it is free

- H ∈ Hf (A) 7→ Card(H) ∈ (N \ {0},×, 1) is a morphism of monoid

- The primality of Card(H) does not imply that of H
e.g. H = {ab, ac} = {a} · {b, c} though card(H) = 2

- The primality of H does not imply that of Card(H)
e.g. H = {a, b, c, d} is prime though card(H) = 4
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Factoring isothetic regions Monoids of homogeneous languages

The brute force algorithm for factoring in Hf (A)
Theory

Given w ∈ An and I ⊆ {1, . . . , n}, we write w|I for the subword of w consisting of letters with indices in I .

Given a homogeneous language H of dimension n, we write

H|I =
{
w|I | w ∈ H

}
Denoting I c for {1, . . . , n} \ I , we have

[H] = [H|I ] · [H|I c ]

in Hf (A) if and only if for all words u, v ∈ H there exists a word w ∈ H such that

w|I = u|I and w|I c = v|I c
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Factoring isothetic regions Monoids of homogeneous languages

The brute force algorithm for factoring in Hf (A)
Practice

For I ⊆ {1, . . . , n} let π|I be the “projection” that sends w ∈ H to w|I ∈ Acard(I).

1. choose I ⊆ {1, . . . , n} of cardinality k ⩽ n/2

2. if π|I c (π
-1
|I
(u)) does not depend on u ∈ H|I , then we have the factorization

[H] = [H|I ] · [H|I c ]

and we are done

3. otherwise check whether there are still subsets of {1, . . . , n} to check:

3.1. yes: go to step 1
3.2. no: [H] is prime
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3.1. yes: go to step 1
3.2. no: [H] is prime
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Factoring isothetic regions Homogeneous languages and isothetic regions

Factoring a program

sem: 1 a b

sem: 2 c

proc:

p = P(a);P(c);V(c);V(a)

q = P(b);P(c);V(c);V(b)

init: p q p q
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Factoring isothetic regions Homogeneous languages and isothetic regions

Factoring a program

sem: 1 a b

sem: 2 c

proc:

p = P(a);P(c);V(c);V(a)

q = P(b);P(c);V(c);V(b)

init: p q p q
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Factoring isothetic regions Homogeneous languages and isothetic regions

The preorder ≼ over H(A)
inherited from a preorder ≼ over A

- Let ≼n be the product preorder on the words of length n

- Given H,H′ ∈ Dh(A) of the same dimension n, write H ≼ H′ when for all ω ∈ H there exists ω′ ∈ H′ such that
ω ≼n ω′

- Given X ,Y ∈ H(A) of the same dimension n write X ≼ Y when there exist H ∈ X and K ∈ Y such that H ≼ K

- X ≼ Y and X ′ ≼ Y ′ implies X · X ′ ≼ Y · Y ′

i.e. (H(A),≼) is a preordered commutative monoid

- If ≼ is actually a partial order on A, then so is ≼ on H(A)
- If ≼ is the equality relation, then X ≼ Y amounts to HX ⊆ HY for some representatives HX and HY of X and Y .

43 / 50



Factoring isothetic regions Homogeneous languages and isothetic regions

The preorder ≼ over H(A)
inherited from a preorder ≼ over A

- Let ≼n be the product preorder on the words of length n

- Given H,H′ ∈ Dh(A) of the same dimension n, write H ≼ H′ when for all ω ∈ H there exists ω′ ∈ H′ such that
ω ≼n ω′

- Given X ,Y ∈ H(A) of the same dimension n write X ≼ Y when there exist H ∈ X and K ∈ Y such that H ≼ K

- X ≼ Y and X ′ ≼ Y ′ implies X · X ′ ≼ Y · Y ′

i.e. (H(A),≼) is a preordered commutative monoid

- If ≼ is actually a partial order on A, then so is ≼ on H(A)
- If ≼ is the equality relation, then X ≼ Y amounts to HX ⊆ HY for some representatives HX and HY of X and Y .

43 / 50



Factoring isothetic regions Homogeneous languages and isothetic regions

The preorder ≼ over H(A)
inherited from a preorder ≼ over A

- Let ≼n be the product preorder on the words of length n

- Given H,H′ ∈ Dh(A) of the same dimension n, write H ≼ H′ when for all ω ∈ H there exists ω′ ∈ H′ such that
ω ≼n ω′

- Given X ,Y ∈ H(A) of the same dimension n write X ≼ Y when there exist H ∈ X and K ∈ Y such that H ≼ K

- X ≼ Y and X ′ ≼ Y ′ implies X · X ′ ≼ Y · Y ′

i.e. (H(A),≼) is a preordered commutative monoid

- If ≼ is actually a partial order on A, then so is ≼ on H(A)
- If ≼ is the equality relation, then X ≼ Y amounts to HX ⊆ HY for some representatives HX and HY of X and Y .

43 / 50



Factoring isothetic regions Homogeneous languages and isothetic regions

The preorder ≼ over H(A)
inherited from a preorder ≼ over A

- Let ≼n be the product preorder on the words of length n

- Given H,H′ ∈ Dh(A) of the same dimension n, write H ≼ H′ when for all ω ∈ H there exists ω′ ∈ H′ such that
ω ≼n ω′

- Given X ,Y ∈ H(A) of the same dimension n write X ≼ Y when there exist H ∈ X and K ∈ Y such that H ≼ K

- X ≼ Y and X ′ ≼ Y ′ implies X · X ′ ≼ Y · Y ′

i.e. (H(A),≼) is a preordered commutative monoid

- If ≼ is actually a partial order on A, then so is ≼ on H(A)
- If ≼ is the equality relation, then X ≼ Y amounts to HX ⊆ HY for some representatives HX and HY of X and Y .

43 / 50



Factoring isothetic regions Homogeneous languages and isothetic regions

The preorder ≼ over H(A)
inherited from a preorder ≼ over A

- Let ≼n be the product preorder on the words of length n

- Given H,H′ ∈ Dh(A) of the same dimension n, write H ≼ H′ when for all ω ∈ H there exists ω′ ∈ H′ such that
ω ≼n ω′

- Given X ,Y ∈ H(A) of the same dimension n write X ≼ Y when there exist H ∈ X and K ∈ Y such that H ≼ K

- X ≼ Y and X ′ ≼ Y ′ implies X · X ′ ≼ Y · Y ′

i.e. (H(A),≼) is a preordered commutative monoid

- If ≼ is actually a partial order on A, then so is ≼ on H(A)
- If ≼ is the equality relation, then X ≼ Y amounts to HX ⊆ HY for some representatives HX and HY of X and Y .

43 / 50



Factoring isothetic regions Homogeneous languages and isothetic regions

The preorder ≼ over H(A)
inherited from a preorder ≼ over A

- Let ≼n be the product preorder on the words of length n

- Given H,H′ ∈ Dh(A) of the same dimension n, write H ≼ H′ when for all ω ∈ H there exists ω′ ∈ H′ such that
ω ≼n ω′

- Given X ,Y ∈ H(A) of the same dimension n write X ≼ Y when there exist H ∈ X and K ∈ Y such that H ≼ K

- X ≼ Y and X ′ ≼ Y ′ implies X · X ′ ≼ Y · Y ′

i.e. (H(A),≼) is a preordered commutative monoid

- If ≼ is actually a partial order on A, then so is ≼ on H(A)

- If ≼ is the equality relation, then X ≼ Y amounts to HX ⊆ HY for some representatives HX and HY of X and Y .

43 / 50



Factoring isothetic regions Homogeneous languages and isothetic regions

The preorder ≼ over H(A)
inherited from a preorder ≼ over A

- Let ≼n be the product preorder on the words of length n

- Given H,H′ ∈ Dh(A) of the same dimension n, write H ≼ H′ when for all ω ∈ H there exists ω′ ∈ H′ such that
ω ≼n ω′

- Given X ,Y ∈ H(A) of the same dimension n write X ≼ Y when there exist H ∈ X and K ∈ Y such that H ≼ K

- X ≼ Y and X ′ ≼ Y ′ implies X · X ′ ≼ Y · Y ′

i.e. (H(A),≼) is a preordered commutative monoid

- If ≼ is actually a partial order on A, then so is ≼ on H(A)
- If ≼ is the equality relation, then X ≼ Y amounts to HX ⊆ HY for some representatives HX and HY of X and Y .

43 / 50



Factoring isothetic regions Homogeneous languages and isothetic regions

Homogeneous languages
over the alphabets ↿G⇂ and R1G \ {∅} with G being a finite graph

- A = ↿G⇂ is the geometric realization of a finite graph:

- a point of ↿G⇂n can be seen as a word of length n on A
- a nonempty subset of ↿G⇂n is thus a homogeneous language on A
- the product of the monoid Dh(A) corresponds to the cartesian product of isothetic regions

- A = R1G \ {∅} is the collection of nonempty finite unions of connected subsets of ↿G⇂:

- an n-block is an n-fold product of nonempty elements of R1G
i.e. a word of length n on A

- a nonempty family of n-blocks is thus an homogeneous language on A (of dimension n)
- the concatenation of words on A corresponds to the cartesian product of blocks
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Factoring isothetic regions Homogeneous languages and isothetic regions

The canonical morphism of monoids γ : H(R1G \ {∅}) → H(↿G⇂)

- Let γ be the map sending an homogeneous language on R1G \ {∅} to the union of its elements

- γ is a morphism of monoids from Dh(R1G \ {∅}) to Dh(↿G⇂)
- γ is compatible with the action of the symmetric groups in the sense that

H′ = σ · H ⇒
⋃

H′ = σ · (
⋃

H)
- γ induces a morphism of monoids from H(R1G \ {∅}) to H(↿G⇂)

- The induced morphism γ does not preserve the prime elements e.g. consider a covering of [0, 1]2 with 3 disctinct
rectangles
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Factoring isothetic regions Homogeneous languages and isothetic regions

The canonical morphism of monoids α : H(↿G⇂) → H(R1G \ {∅})

- Define α(X ) as the collection of maximal blocks of X :

- given X ⊆ ↿G⇂n and Y ⊆ ↿G⇂m, the collection of maximal blocks of X × Y is{
C × D | C and D are maximal blocks of X and Y

}
- the unique maximal block of the unique nonempty subset of ↿G⇂0 is ε
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Factoring isothetic regions Homogeneous languages and isothetic regions

The free commutative monoids of isothetic regions

- By definition, an isothetic region is a finite union of blocks of X ⊆ ↿G⇂n.

- We have seen that an isothetic region has finitely many maximal blocks .

- For X ,Y ∈ H(↿G⇂), α(X · Y ) is finite iff α(X ) and α(Y ) are so:

- then {X ∈ im(α) | card(X ) is finite} is a pure submonoid of im(α)
- this commutative monoid is thus free and isomorphic to the monoid of isothetic regions, the latter being

defined as

γ({X ∈ im(α) | card(X ) is finite})

- The monoid of isothetic regions is thus free commutative.
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Factoring isothetic regions Homogeneous languages and isothetic regions

A better factoring algorithm
by Nicolas Ninin

Let X ⊆ |G |n be an isothetic region and F be a finite block covering of X c

- For each block (ω1, . . . , ωn) that belongs to F define the subset

Bω = {k ∈ {1, . . . , n} | ωk ̸= |G |}

- The finest partition of {1, . . . , n} that is coarser than the collection

{Bω | ω ∈ F}

induces a factorization of X .

If F = α(X c ) then we obtain the prime factorization of X
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Factoring isothetic regions Homogeneous languages and isothetic regions

Factoring a program

sem: 1 a b

sem: 2 c

proc:

p = P(a);P(c);V(c);V(a)

q = P(b);P(c);V(c);V(b)

init: p q p q
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Factoring the space of states
subtle

[2,3[ [2,3[ [2,3[ [0,+∞[

[2,3[ [2,3[ [0,+∞[ [2,3[

[1,4[ [0,+∞[ [1,4[ [0,+∞[

[2,3[ [0,+∞[ [2,3[ [2,3[

[0,+∞[ [1,4[ [0,+∞[ [1,4[

[0,+∞[ [2,3[ [2,3[ [2,3[

[4,+∞[ [4,+∞[ [4,+∞[ [4,+∞[

[2,3[ [2,3[ [2,3[ [0,+∞[

[2,3[ [2,3[ [0,+∞[ [2,3[

[1,4[ [0,+∞[ [1,4[ [0,+∞[

[2,3[ [0,+∞[ [2,3[ [2,3[
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[4,+∞[ [4,+∞[ [4,+∞[ [4,+∞[

[1,4[ [1,4[
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