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A BIT OF CATEGORY THEORY



Categories



Category theory Categories

Category C
Definition (the “underlying graph” part)

- Ob(C) : collection of objects

- Mo(C) : collection of morphisms

- ∂-, ∂+ : mappings source, target as follows

Mo(C) Ob(C)
∂-

∂+

- We define the homset C(x , y) :=
{
γ ∈ Mo(C)

∣∣∣ ∂-γ = x and ∂+γ = y
}
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Category theory Categories

Category C
Definition (the “underlying local monoid” part)

- id : provides each object with an identity

Mo(C) Ob(C)
∂-

∂+

id

- The binary composition is a partially defined and often denoted by ◦

{
(γ, δ)

∣∣ γ, δ morphisms of C s.t. ∂-γ = ∂+δ
}

Mo(C)composition

∂+δ = ∂-γ

∂-δ ∂+γ

γδ

γ◦δ
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Category theory Categories

Category C
Definition (the axioms)

- The composition law is associative

- For all objects x one has ∂-idx = x = ∂+idx

idx
x

- For all morphisms γ one has id∂+γ ◦ γ = γ = γ ◦ id∂-γ
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Category theory Categories

Standard examples

- Set : the category of sets.

- Mon: the category of monoids

- Cmon: the category of commutative monoids

- Gr : the category of groups

- Pre: the category of preordered sets.

- Pos: the category of posets.

- Any preordered set can be seen as a category in which any homset has at most one element.

- Any monoid can be seen as a category with a single object.

- The opposite of a category is obtained by reversing all its arrows (i.e. by swapping the roles of the source and the
target)
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Category theory Categories

Some special kinds of morphisms

- f is an isomorphism when there exists g such that both f ◦ g and g ◦ f are identities.

- Two objects related by an isomorphism are said to be isomorphic.

- A groupoid is a category that only has isomorphisms.

- f is a monomorphism when it is left-cancellative i.e. for all g1, g2, f ◦ g1 = f ◦ g2 implies g1 = g2.

- f is a epimorphism when it is right-cancellative i.e. for all g1, g2, g1 ◦ f = g2 ◦ f implies g1 = g2.

- any isomorphism is both monomorphism and an epimorphism, the converse is false in general (e.g. Pos).

- if r ◦ s = id then r is called a retract/split epimorphism and s is called a section/split monomorphism.
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Category theory Categories

The category of graphs (Grph)

The elements of V are the vertices and those of A are the arrows
In particular A and V are sets

Objects

.

A

V

ts

ϕ1

ϕ0

X.Morphisms

A A′

V V ′

ts

ϕ1

t′s′

ϕ0

XXXXComposition

A A′ A′′

V V ′ V ′′

ts

ϕ1

t′s′

ψ1

t′′s′′

ϕ0 ψ0

with s′(ϕ1(α)) = ϕ0(∂-α) and t′(ϕ1(α)) = ϕ0(∂+α)
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Category theory Categories

The category of bases of topologies (Bas)

A base of a topology is a collection of sets B such that

for all U, V ∈ B, all p ∈ U ∩ V , there exists W ∈ B such that
p ∈ W ⊆ U ∩ V .
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Category theory Categories

The category of bases of topologies (Bas)
A map f : B → B′ is continuous when

for every point p of B, every V ∈ B′ with f (p) ∈ V ,
there exists U ∈ B with p ∈ U such that f (U) ⊆ V .
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Category theory Categories

The category of topological spaces (Top)

A topological space is a set X and a collection ΩX ⊆ P(X ) s.t.

1) ∅ ∈ ΩX and X ∈ ΩX

2) ΩX is stable under union
3) ΩX is stable under finite intersection

Equivalently, a topological space is a base of a topology stable under union.

A continuous map f : (X ,ΩX ) → (Y ,ΩY ) is a map f : X → Y s.t.

∀x ∈ X

∀V ∈ ΩY s.t. f (x) ∈ V , ∃U ∈ ΩX s.t. x ∈ U and . . .f (U) ⊆ V

or equivalently
∀V ∈ ΩY f -1(V ) ∈ ΩX

The elements of ΩX are called the open subsets of X .
The complement of an open subsets is said to be closed.
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Functors



Category theory Functors

Functors f from C to D
Definition (preserving the “underlying graph”)

A functor f : C → D is defined by two “mappings” Ob(f ) and Mo(f ) such that

Mo(C) Ob(C)

Mo(D) Ob(D)

∂-

∂+

Mo(f ) Ob(f )

∂-′

∂+′

with ∂-′(Mo(f )(α)) = Ob(f )(∂-α) and ∂+′(Mo(f )(α)) = Ob(f )(∂+α)

Hence it is in particular a morphism of graphs.
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Category theory Functors

Functors f from C to D
Definition (preserving the “underlying local monoid”)

The “mappings” Ob(f ) and Mo(f ) also make the following diagram commute

Mo(C) Ob(C)

Mo(D) Ob(D)

Mo(f )

id

Ob(f )

id′

and satisfies Mo(f )(γ ◦ δ) = Mo(f )(γ) ◦Mo(f )(δ)

x y z f (x) f (y) f (z)
δ

γ◦δ

γ f (δ)

f (γ◦δ)

f (γ)
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Category theory Functors

Functors compose as morphisms of graphs do

Mo(C) Mo(D) Mo(E)

Ob(C)] Ob(D) Ob(E)

st

Mo(f )

Mo(g◦f )

Mo(g)

s′t′ s′′t′′

Ob(f )

Ob(g◦f )

Ob(g)

Hence functors should be thought of as morphisms of categories

The small categories and their funtors form a (large) category denoted by Cat
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Category theory Functors

Some forgetful functors

(M, ∗, e) ∈ Mon 7→ M ∈ Set
(X ,Ω) ∈ Top 7→ X ∈ Set
(X ,⊑) ∈ Pos 7→ X ∈ Set

C ∈ Cat 7→ Ob(C) ∈ Set
C ∈ Cat 7→ Mo(C) ∈ Set

C ∈ Cat 7→
(

Mo(C) Ob(C)
∂+

∂-

)
∈ Grph
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Category theory Functors

Some small functors
(functor between small categories)

The morphisms of monoids are the functors between small categories with a single object

The morphisms of preordered sets are the functors between small categories whose homsets contain at most one element

The actions of a monoid M over a set X are the functors from M to Set which sends the only element of M to X
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Category theory Functors

Given a functor f : C → D and two objects x and y we have the mapping

fx,y : C[x , y ] → D[Ob(f )(x),Ob(f )(y)]

α 7→ Mo(f )(α)

- f is faithful when for all objects x and y the mapping fx,y is one-to-one (injective)

- f is full when for all objects x and y the mapping fx,y is onto (surjective)

- f is fully faithful when it is full and faithful

- f is an embedding when it is faithful and Ob(f ) is one-to-one

- f is an equivalence when it is fully faithful and every object of D is isomorphic to an object of the form f (C) with
C ∈ C.
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Category theory Functors

Some full embeddings in Cat

Remark : The full embeddings composeRemark

Pre ↪→ Cat
Mon ↪→ Cat
Pos ↪→ Pre
Gr ↪→ Mon

Cmon ↪→ Mon
Ab ↪→ Cmon
Ab ↪→ Gr
Set ↪→ Pos
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Category theory Functors

Topological spaces and their bases

Full embedding I : Top → Bas.

Space functor Sp : Bas → Top sending B to
{⋃

C | C ⊆ B
}
.

Given B ∈ Bas, we denote by UB the underlying set of B, i.e. the union of all the elements of B. E.g.: bases of R2.

Given B ∈ Bas, the identity map on UB induces an isomorphism from B to Sp(B) which we denote by B ⇛ Sp(B); and an
isomorphism from Sp(B) to B which we denote by Sp(B) ⇛ B. We have (B ⇛ Sp(B))−1 = (Sp(B) ⇛ B)

The functors I and Sp are equivalences of categories.

15 / 51



Category theory Functors

Topological spaces and their bases

Full embedding I : Top → Bas.

Space functor Sp : Bas → Top sending B to
{⋃

C | C ⊆ B
}
.

Given B ∈ Bas, we denote by UB the underlying set of B, i.e. the union of all the elements of B. E.g.: bases of R2.

Given B ∈ Bas, the identity map on UB induces an isomorphism from B to Sp(B) which we denote by B ⇛ Sp(B); and an
isomorphism from Sp(B) to B which we denote by Sp(B) ⇛ B. We have (B ⇛ Sp(B))−1 = (Sp(B) ⇛ B)

The functors I and Sp are equivalences of categories.

15 / 51



Category theory Functors

Topological spaces and their bases

Full embedding I : Top → Bas.

Space functor Sp : Bas → Top sending B to
{⋃

C | C ⊆ B
}
.

Given B ∈ Bas, we denote by UB the underlying set of B, i.e. the union of all the elements of B. E.g.: bases of R2.

Given B ∈ Bas, the identity map on UB induces an isomorphism from B to Sp(B) which we denote by B ⇛ Sp(B); and an
isomorphism from Sp(B) to B which we denote by Sp(B) ⇛ B. We have (B ⇛ Sp(B))−1 = (Sp(B) ⇛ B)

The functors I and Sp are equivalences of categories.

15 / 51



Category theory Functors

Topological spaces and their bases

Full embedding I : Top → Bas.

Space functor Sp : Bas → Top sending B to
{⋃

C | C ⊆ B
}
.

Given B ∈ Bas, we denote by UB the underlying set of B, i.e. the union of all the elements of B. E.g.: bases of R2.

Given B ∈ Bas, the identity map on UB induces an isomorphism from B to Sp(B) which we denote by B ⇛ Sp(B); and an
isomorphism from Sp(B) to B which we denote by Sp(B) ⇛ B. We have (B ⇛ Sp(B))−1 = (Sp(B) ⇛ B)

The functors I and Sp are equivalences of categories.

15 / 51



Category theory Functors

Topological spaces and their bases

Full embedding I : Top → Bas.

Space functor Sp : Bas → Top sending B to
{⋃

C | C ⊆ B
}
.

Given B ∈ Bas, we denote by UB the underlying set of B, i.e. the union of all the elements of B. E.g.: bases of R2.

Given B ∈ Bas, the identity map on UB induces an isomorphism from B to Sp(B) which we denote by B ⇛ Sp(B); and an
isomorphism from Sp(B) to B which we denote by Sp(B) ⇛ B. We have (B ⇛ Sp(B))−1 = (Sp(B) ⇛ B)

The functors I and Sp are equivalences of categories.

15 / 51



Category theory Functors

Topological spaces and their bases

Full embedding I : Top → Bas.

Space functor Sp : Bas → Top sending B to
{⋃

C | C ⊆ B
}
.

Given B ∈ Bas, we denote by UB the underlying set of B, i.e. the union of all the elements of B. E.g.: bases of R2.

Given B ∈ Bas, the identity map on UB induces an isomorphism from B to Sp(B) which we denote by B ⇛ Sp(B); and an
isomorphism from Sp(B) to B which we denote by Sp(B) ⇛ B. We have (B ⇛ Sp(B))−1 = (Sp(B) ⇛ B)

The functors I and Sp are equivalences of categories.

15 / 51



Natural transformations



Category theory Natural transformations

Natural Transformations
morphisms of functors from f : C → D to g : C → D

A natural transformation η : f → g is a collection of morphisms (ηx )x∈Ob(C) where ηx ∈ D[f (x), g(x)] and such that for
all α ∈ C[x , y ] we have ηy ◦ f (α) = g(α) ◦ ηx i.e. the following diagram commute

f (x) f (y)

x y

g(x) g(y)

ηx

f (α)

ηy
α

g(α)

This description is summarized by the following diagram

C D
f

g

η

If every ηx is an isomorphism of D, then η is said to be a natural isomorphism, its inverse η−1 is (ηx−1)x∈Ob(C).
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Category theory Natural transformations

A functor f : C → D is an equivalence iff there exists a functor g : D → C and natural isomorphisms idC ∼= g ◦ f and
idD ∼= f ◦ g .

E.g.: we have idTop = I ◦ Sp and the collection B ⇛ Sp(B) for B ∈ Bas is a natural isomorphism from idBas to Sp ◦ I .
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AN ALGEBRAIC TOPOLOGY TEASER



An algebraic topology teaser

The overall idea of algebraic topology

Every functor preserves the isomorphisms

Problem: prove the topological spaces X and Y are not the same
Strategy: find a functor F defined over Top such that F (X ) ̸∼= F (Y )
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An algebraic topology teaser Compactness

More topological notions

The interior of a subset A of X is the greatest open subset of X contained in A.

Then closure of a subset A of X is the least closed subset of X containing A.

A neighbourhood of a subset A of X is a subset of X whose interior contains A.

A topological space X is said to be Hausdorff when for all x , x ′ ∈ X , if x ̸= x ′ then x and x ′ have disjoint neighbourhoods.

A subset Q of X is said to be saturated when

Q =
⋂{

U | U open and Q ⊆ U
}

Every subset of a Hausdorff space is saturated.
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An algebraic topology teaser Compactness

Compactness and local compactness

Let X be a topological space.

- An open covering of X is a collection of open subsets of X whose union is X .

- X is said to be compact when every open covering of X admit a finite sub-covering.

- X is said to be locally compact when for every x ∈ X , every open neighbourhood U of x contains a saturated
compact neighbourhood of x .

A Hausdorff space is locally compact iff each of its points admits a compact neighbourhood.
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An algebraic topology teaser Connectedness

The connected component functor

1) A topological space X is said to be connected when its only closed-open subsets are ∅ and X
2) A union of connected subspaces sharing a point is connected
3) The connected components of a topological space induce a partition of its underlying set
4) Any connected subset of X is contained in a connected component of X
5) Any continuous direct image of a connected subset of X is connected

Top Set

X π0 (X )

Y π0 (Y )

π
0

f π
0
(f )
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An application
The continuous image of a connected space is connected

The image of the space B is entirely contained in a connected component of the space V.

B

V1

V2
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This situation is abstracted by classifying continuous maps from B to V according to which connected component (V1 or
V2) the single connected components of B (namely B itself) is sent to. There are exactly two set theoretic maps from the
singleton {B} to the pair {V1,V2} hence there is at most (in fact exactly) two kinds of continuous maps from B to V .

{B} {V1,V2}

In particular B and V are not homeomorphic.
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Application
The compact interval and the circle are not homeomorphic

Let S1 :=
{
z ∈ C

∣∣ |z| = 1
}
be the Euclidean circle

and suppose φ : [0, 1] → S1 is a homeomorphism.

Then φ induces a homeomorphism

[0, 1
2
[ ∪ ] 1

2
, 1] → S1\

{
φ( 1

2
)
}

which does not exist!

φ( 1
2
)1

2
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An algebraic topology teaser Connectedness

Generalization
Bouquets of circles

These topological spaces are pairwise not homeomorphic. Why ?
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Categories of Metric Spaces



Metric spaces Categories of metric spaces

Metric spaces

A metric space is a set X together with a mapping d : X × X → R+ ∪ {∞} such that:

- d(x , y) = 0 ⇔ x = y

- d(x , y) = d(y , x)

- d(x , z) ⩽ d(x , y) + d(y , z)

The open balls B(c, r) = {x ∈ X | d(c, x) < r} with x ∈ X and r > 0 form a base of a topology.

Goal: turn any graph into metric space in a functorial way.
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Metric spaces Categories of metric spaces

Metric space morphisms

- Metemb f : X → Y s.t. ∀x , x ′ ∈ X , dY (f (x), f (x ′)) = dX (x , x
′)

- Metctr f : X → Y s.t. ∀x , x ′ ∈ X , dY (f (x), f (x ′)) ⩽ dX (x , x
′)

- Met f : X → Y s.t. ∃r ∈ ]0,∞[ ∀x , x ′ ∈ X , dY (f (x), f (x ′)) ⩽ r · dX (x , x ′)
- Mettop f : X → Y s.t. ∀x ∈ X ∀ε > 0 ∃η > 0, f

(
B(x , η)

)
⊆ B

(
f (x), ε

)

Metemb ↪→ Metctr ↪→ Met ↪→ Mettop
full
↪→ Top
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Metric spaces Categories of metric spaces

Length spaces

The length ℓ(γ) of a path γ : [0, r ] → (X , d) is the least upper bound of the collection of sums

n∑
i=0

d
(
γ(ti+1), γ(ti )

)
where n ∈ N and 0 = t0 ⩽ · · · ⩽ tn = r .
The metric space (X , d) is a length space when the distance between two points x , x ′ ∈ X is the following greatest lower
bound

inf
{
ℓ(γ) | γ is a path from x to x ′

}
A path γ from x to x ′ such that ℓ(γ) = d(x , x ′) is said to be geodesic.
The space is said to be geodesic when any two points are related by a geodesic path.
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Metric spaces Categories of metric spaces

The Hopf-Rinow theorem
Metric Spaces of Non-Positive Curvature, M. R. Bridson, and A. Haefliger, 1999

A metric space is said to be complete when all its Cauchy sequences admit a limit.

Let X be a length space.
If X is complete and locally compact, then

- every closed bounded subset of X is compact, and

- X is a geodesic space.
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Metric spaces Categories of metric spaces

Isometric embedding in Rn

- Rn is a geodesic space

- Rn \ {0} with the distance inherited from Rn is a length space, not a geodesic one.

- Rn \ [0, 1]n with the distance inherited from Rn is not a length space.

- Any metric space (X , d) is associated to a length space (X , dℓ) with

dℓ(x , x
′) = inf

{
ℓ(γ) | γ is a path from x to x ′

}
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Metric Graphs



Metric spaces Metric graphs

Neighbours

G : A V
∂-

∂+

- The underlying set of the metric graph is A×]0, 1[ ⊔ V

- Two points p, p′ are said to be neighbours when there is an arrow a such that p, p′ ∈ {a}×]0, 1[ ⊔ {∂-a, ∂+a}
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Metric spaces Metric graphs

Distance between two neighbours

- If ∂-a ̸= ∂+a there is a canonical bijection

ϕ : {a}×]0, 1[ ⊔ {∂-a, ∂+a} → [0, 1]

In that case d(p, p′) = |t − t′| with t = ϕ(p) and t′ = ϕ(p′).

- If ∂-a = ∂+a there is a canonical bijection

ϕ : {a}×]0, 1[ ⊔ {∂-a, ∂+a} → [0, 1[

In that case
d(p, p′) = min

{
|t − t′|, 1− |t − t′|

}
with t = ϕ(p) and t′ = ϕ(p′).
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Metric spaces Metric graphs

Itinerary

An itinerary on A×]0, 1[ ⊔ V is a (finite) sequence p0, . . . , pq of points such that pk and pk+1 are neighbours for
k ∈ {0, . . . , q − 1}.

The length of that itinerary is

ℓ(p0, . . . , pq) =

q−1∑
k=0

d(pk , pk+1)

The distance between two points p and p′ of A×]0, 1[ ⊔ V is

d(p, p′) = inf
{
ℓ(p0, . . . , pq) | p0, . . . , pq is a itinerary from p to p′

}
The metric graph associated with G is the metric space(

A×]0, 1[ ⊔ V , d
)
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Metric spaces Metric graphs

Open balls

The open ball of radius r < 1 centered at the vertex v is the set

{v} ∪ {a | ∂-a = v}×]0, r [ ∪ {a | ∂+a = v}×]1− r , 1[

For (a, t) ∈ {a}×]0, 1[ the open ball of radius r ⩽ min{t, 1− t} centered at the vertex (a, t) is the set

{a}×]t − r , t + r [

That collection of open balls forms a base of open sets.

If r ⩽ 1
4
then B(c, r) is geodesically stable, i.e. for all p, q ∈ B(c, r)

{p, q} ⊆
⋃{

im(γ) | γ geodesic from p to q
}

⊆ B(c, r) .
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Metric spaces Metric graphs

The metric graph construction is functorial from Grph to Metctr

Every finite graph with weighted arrows (in R+\{0}) with can be embedded in R3.
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LOCALLY ORDERED METRIC GRAPHS



Ordered Bases



Locally ordered metric graphs Ordered bases

The category of ordered bases (OB)

We write that (X ,⩽X ) is a subposet of (Y ,⩽Y ), or (X ,⩽X ) ↪→ (Y ,⩽Y ), when X ⊆ Y and a⩽Xb ⇔ a⩽Y b for all a, b ∈ X .

An ordered base is a collection of posets B such that for all (U,⩽U), (V ,⩽V ) ∈ B, every p ∈ U ∩ V , there exists
(W ,⩽W ) ∈ B such that p ∈ (W ,⩽W )↪→(U,⩽U), (V ,⩽V ).
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Locally ordered metric graphs Ordered bases

The category of ordered bases (OB)
A map f : U → V is locally order-preserving when

for every point p of U , every (V ,⩽V) ∈ V with f (p) ∈ V ,
there exists (U,⩽U) ∈ U with p ∈ U such that f (U) ⊆ V and f is order-preserving from (U,⩽U) to (V ,⩽V).

Ordered bases and locally order-preserving maps form the category OB.
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The underling topology of an ordered base

If B is an ordered base, then UB =
{
UB | B ∈ B

}
is a base of a topology (UB denotes the underlying set of the poset B).

If f : B → B′ is locally order-preserving, then Uf : UB → UB′ is continuous; we have a forgetful functor OB → Bas.

We have a functor U : OB → Set obtained as the composite OB → Bas → Set .

The underlying space functor Sp : OB → Top is the composite OB → Bas → Top.

We write B ∼ B′ when Sp(B) = Sp(B′) and B ∪ B′ is still an ordered base; and we say that B and B′ are equivalent.

The relation ∼ is an equivalence relation on the collection of ordered bases over a given set.

If A ∼ A′ and B ∼ B′, then any map f : UA → UB is locally order-preserving from A to B iff it is so from A′ to B′.
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Locally ordered metric graphs Ordered bases

Locally ordered spaces

An ordered base B is said to be maximal when for every poset X , if UX is open in Sp(B) and B ∪ {X} is still an ordered
base, then X ∈ B.

A locally ordered space is a maximal ordered base.

We denote by LoSp the full subcategory of OB whose objects are the locally ordered spaces.

Lemma: Every ordered base is contained in a unique maximal ordered base.

Proposition: the full embedding LoSp → OB is an equivalence of categories whose quasi-inverse is the functor that assigns
its locally ordered space to every ordered base.
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Locally ordered metric graphs Ordered bases

The locally ordered line
Examples of equivalent ordered bases on R

- {(I ,⩽) | I open interval of R},
- {(U,⩽) | U open subset of R},
- {(U,⊑U) | U open subset of R} where x ⊑U y stands for x ⩽ y and [x , y ] ⊆ U,

- {(U,⊑′
U) | U open subset of R} where x ⊑′

U y is any extension of ⊑U .

Suppose that [0, 1] ∪ [2, 3] is a locally ordered subspace of R, the map t ∈ [0, 1] ∪ [2, 3] 7→ t + 2 (mod 4) ∈ [0, 1] ∪ [2, 3]
is locally order-preserving. A directed path on an ordered base B is a locally order-preserving map defined over some
compact interval equipped with the ordered base inherited from R.
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Locally ordered metric graphs Ordered bases

The locally ordered circle
Examples of equivalent ordered bases on S1

- {(A,⩽) | A open arc} where ⩽ is the order induced by R and the restriction of the exponential map to an open
subinterval of {t ∈ R | e it ∈ A} of length at most 2π,

- {(U,⊑U) | U proper open subset of S1} where x ⊑U y means that the anticlockwise compact arc from x to y is
included in U,

- {(U,⊑′
U) | U proper open subset of S1} where ⊑′

U is any extension of the partial order ⊑U .
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Locally ordered metric graphs Ordered spaces

Ordered spaces
Topology and Order, L. Nachbin, 1965

An ordered space is a topological space X together with a partial order ⊑ on (the underlying set of) X .
If the relation ⊑ is closed in the sense that

{(a, b) ∈ X × X | a ⊑ b}

is a closed subset of X × X , then X is said to be a partially ordered space (or pospace).
A ordered space morphism is an order-preserving continuous map.

Ordered spaces and their morphisms form the category Ord .

The underlying space of a pospace is Hausdorff.
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Locally ordered metric graphs Ordered spaces

Examples

- The real line with standard topology and order.

- Any subset of a pospace with the induced topology and order.

- The collection of compact subsets of a metric space equipped with the Hausdorff distance is a metric space.

dH(K ,K ′) = sup
{
d(x ,K ′), d(x ′,K) | x ∈ K ; x ′ ∈ K ′}

d(x ,K) = inf
{
d(x , k) | k ∈ K

}
The induced topological space ordered by inclusion is a pospace.

- Problem: there is no pospace on the circle whose collection of directed paths is{
e iθ(t) | θ : [0, r ] → R increasing

}
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Locally ordered metric graphs Ordered spaces

Ordered spaces as locally ordered spaces

Each ordered space (X ,⊑) can be seen as a locally ordered space(
X ,

{
(U,⊑|U ) | U open subset of X

})
The resulting functor is:

- faithful

- not injective on object (hence not an embedding)

- not full
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Locally ordered metric graphs Ordered spaces

Directed loops on locally ordered spaces

A locally order-preserving map δ : [a, b] → X whose image is contained in C ∈ X induces an order-preserving map from
[a, b] to C .

A directed path δ on a local pospace X is constant iff its extremities are equal and there exists C ∈ X that contains the
image of δ.

A vortex is a point every neighbourhood of which contains a non-constant directed loop.

A local pospace has no vortex.
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Locally ordered metric graphs Ordered bases on metric graphs

A convenient open covering

Let B be the collection of open balls B of |G | such that

- B is centred at a vertex and its radius is ⩽ 1
3
, or

- B = {a} × U for some arrow a and some open interval U ⊆ ]0, 1[ of length ⩽ 1
3
.

Given B,B′ ∈ B if B is of the second kind, then so is B ∩ B′.

If B,B′ are centred at v and v ′ we have

- v ̸= v ′ ⇒ B ∩ B′ = ∅ and

- v = v ′ ⇒ B ⊆ B′ or B′ ⊆ B
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Locally ordered metric graphs Ordered bases on metric graphs

Ordered open stars

An element B of B centred at v of radius r ⩽ 1
3
is the disjoint union of {v} together with

- {a}×]0, r [ for each arrow a such that ∂-a = v

- {a}×]1− r , 1[ for each arrow a such that ∂+a = v

The partial order on B is characterized by the following constraints:

- each branch {a}×]1− r , 1[ and {a}×]0, r [ inherits its order from R
- {v} ⊑ {a}×]0, r [ for each arrow a such that ∂-a = v

- {a}×]1− r , 1[ ⊑ {v} for each arrow a such that ∂+a = v

We have B ∩ B′ ̸= ∅ ⇒ B ∩ B′ ∈ B and

⊑B|B∩B′
= ⊑B∩B′ = ⊑B′

|B∩B′

The metric graph of |G | thus becomes a local pospace.

The locally ordered metric graph construction is functorial.
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Locally ordered metric graphs Ordered bases on metric graphs

Description

There exists a (unique) intrinsic metric dG on |G | such that the open balls of radii ε > 0 about (a, t) and v are
{a} × ]t − ε, t + ε[ if ε ⩽ min(t, 1− t), and{
a ∈ G (1) | tgt(a) = v

}
×]1− ε, 1[ ∪ {v} ∪

{
a ∈ G (1) | src(a) = v

}
×]0, ε[ if ε ⩽ 1

2
.

The partial order ⊑ and the metric dG on the ball centered at v of radius ε are characterized by the following properties:

dG((a, t), v) = 1− t (a, t) ⊑ v if t ∈ ]1− ε, 1[

dG(v , (a, t)) = t v ⊑ (a, t) if t ∈ ]0, ε[

dG((a, t), (a, t′)) = t′ − t (a, t) ⊑ (a, t′) if t ⩽ t′ and (t, t′ ∈ ]0, ε[ or t, t′ ∈ ]1− ε, 1[)

dG((a, t), (a, t′)) = min{t′ − t, 1− (t′ − t)} (a, t′) ⊑ (a, t) if t ∈ ]0, ε[ and t′ ∈ ]1− ε, 1[

dG((a, t), (b, t′)) = dG((a, t), v) + dG(v , (b, t′)) if a ̸= b

(a, t) ⊑ (b, t′) if t ∈ ]1− ε, 1[ and t′ ∈ ]0, ε[

If ε ⩽ 1
4
then the ball centered at v of radius ε, say B, is geodesically stable: for all p, q ∈ B, the union of the images of

the geodesics from p to q is nonempty and contained in B.

The standard ordered base of G is the collection of ordered open balls of radii ε ⩽ 1
2
with their ‘canonical’ partial order.
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then the ball centered at v of radius ε, say B, is geodesically stable: for all p, q ∈ B, the union of the images of

the geodesics from p to q is nonempty and contained in B.

The standard ordered base of G is the collection of ordered open balls of radii ε ⩽ 1
2
with their ‘canonical’ partial order.
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Locally ordered metric graphs Ordered bases on metric graphs

Description

There exists a (unique) intrinsic metric dG on |G | such that the open balls of radii ε > 0 about (a, t) and v are
{a} × ]t − ε, t + ε[ if ε ⩽ min(t, 1− t), and{
a ∈ G (1) | tgt(a) = v

}
×]1− ε, 1[ ∪ {v} ∪

{
a ∈ G (1) | src(a) = v

}
×]0, ε[ if ε ⩽ 1

2
.

The partial order ⊑ and the metric dG on the ball centered at v of radius ε are characterized by the following properties:
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