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Free monoid W (A)
words over the alphabet A

- The set A is called the alphabet, its elements are called the letters

- Given n ∈ N, a n-word is a finite sequences of letters of length n i.e.

w ∈ Set
h˘

0, . . . , n − 1
¯
,A
i

- The elements of W (A) are all the words i.e.

[
n∈N

Set
h˘

0, . . . , n − 1
¯
,A
i

- The internal law is the concatenation,
given words w and w ′ of lengths n and n′

w · w ′ :
˘

0, . . . , n + m − 1
¯ // AXXXXXXXXXXXXXXXXXX

XXXXXXXXXtX
� //


w(t) if 0 6 t 6 n − 1
w ′(t − n) if r 6 t 6 n + n′ − 1

- The neutral element is the empty word
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The free monoid functor

Remark : if w is a word over the alphabet A and f ∈ Set [A,A′] then f ◦ w is a word
over the alphabet A′

W : Set // Mon

XXXX A

f

��

W (A)

W (f )

��
A′ W (A′)

� //

with

W (f ) : W (A) // W (A′)

XXXXXX w
� // f ◦ w
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Free commutative monoid C (V )
Linear combinations with coefficients in N and variables in V

- Given ϕ ∈ Set
ˆ
V ,N

˜
, the support of ϕ is

˘
x ∈ V | ϕ(x) 6= 0

¯
- The elements of C(V ) are the linear combinations i.e.

the elements of Set
ˆ
V ,N

˜
with finite support

- The internal law is the pointwise sum,
given polynomials ϕ and ϕ′

ϕ+ ϕ′ : V // NXXXXXX

x
� // ϕ(x) + ϕ′(x)

- The neutral element is the null combination
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The free commutative monoid functor C (−)

C(−) : Set // Cmon

XXXX V

f

��

C(V )

C(f )

��
V ′ C(V ′)

� //

with

C(f ) : C(V ) // C(V ′)

XXXXXX ϕ � //

8<:
V ′ −→ N

x ′ 7−→
X
x∈V

f (x)=x′

ϕ(x)
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An example

V := {a, b, c} and V ′ := {x , y , z}

ϕ : V // N with ϕ(a) = 1, ϕ(b) = 2, ϕ(c) = 3

The element ϕ ∈ C(V ) can be denoted as a linear combination a + 2b + 3c

Consider f : V // V ′ with f (a) = f (b) = x and f (c) = z then

C(f )(ϕ) = C(f )(a + 2b + 3c) = f (a) + 2f (b) + 3f (c) = x + 2x + 3z = 3x + 3z

i.e. the mapping

C(f )(ϕ) : V ′ // N with

C(f )(ϕ)(x) = ϕ(a) + ϕ(b) = 3, C(f )(ϕ)(y) = 0, C(f )(ϕ)(z) = ϕ(c) = 3
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Assumption

From now on, all the monoids we consider are supposed to be commutative

unless otherwise stated
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Divisibility relation
in a commutative monoid (M, ∗, e)

Given a, b ∈ M by a|b we mean there exists q ∈ M s.t. b = a ∗ q

The divisibility relation | is a preorder
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Prime vs Irreducible
Let (M, ∗, e) be a commutative monoid

u ∈ M is said to be a unit when there exists x ∈ M such that u ∗ x = e

p ∈ M is said to be prime when p is not a unit and
for all a, b ∈ M, p|(a ∗ b)⇒ p|a or p|b

i ∈ M is said to be irreducible when for all a, b ∈ M,
if i = a ∗ b then either a or b is a unit (not both)
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Prime vs Irreducible
Examples

- Denote by N[X ] the collection of one indeterminate polynomials over N we have

1 + X + X 2 + X 3 + X 4 + X 5 = (1 + X 3)(1 + X + X 2) = (1 + X )(1 + X 2 + X 4)

- 1 + X is irreducible and not prime since 1 + X does not divide 1 + X 3 in N[X ]

The preceding example is due to Junji Hashimoto

- In the monoid ({0, 1},∨, 0), the element 1 is prime but not irreducible

- In the monoid (R+,+, 0) there is neither prime element nor irreducible one

- An element ϕ of the free commutative monoid C(V ) is prime iff it is irreducible
iff its support is a singleton {v} and ϕ(v) = 1 iffZ

V
ϕ :=

X
v∈V

ϕ(v) = 1
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Characterization
of the free commutative monoids

Given a commutative monoid M, the following are equivalent

- M is free (i.e. M ∼= C(V ) for some set V )

- M ∼= C(P) with P the set of prime elements of M

- M ∼= C(I) with I the set of irreducible elements of M

- for all x ∈ M, x is irreducible iff x is prime
and any element of M is a product of irreducible/prime elements

- any element of M can be written as a product of irreducible elements of M in a
unique way (up to permutation)

- any element of M can be written as a product of prime elements of M in a
unique way (up to permutation)
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The commutative monoid
of isomorphism classes of small categories

- We write A ∼= B to mean that A and B are isomorphic in Cat

- The relation ∼= is an equivalence relation

- We denote the isomorphism class of C by [C]

- If A ∼= A′ and B ∼= B′ then A× B ∼= A′ × B′
so we can define

[A]× [B] := [A× B]

- Since A× B ∼= B ×A we have [A]× [B] = [B]× [A]

- If we denote the category with one object and one morphism by 1 then

[1]× [A] = [A]× [1] = [A]

- Hence the collection of (isomorphism classes of)1 small categories
forms a commutative monoid

1in the sequel we identify a small category with its isomorphism class,
therefore omit to write “isomorphism classes of”
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Size of an isomorphism class

- The size of small category A is defined as the cardinal of the set Mo(A)

- Given small categories A and B we have

size(A× B) := size(A)× size(B)

- If A ∼= B then size(A) = size(B) so we can define

size
`
[A]
´

:= size(A)
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Connected categories

- Given two objects x and y of a category C, write x ↔ y when there exists a
zigzag of morphisms between x and y i.e.

��:::

x

??���
]]::: ···

AA���
AA��� y

__???

- The relation ↔ is a preorder

- A category C is said to be connected when the preorder ↔ is chaotic
i.e. for all objects x and y we have x ↔ y
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Loop-free categories
This notion has been introduced by André Haefliger

A category C is said to be loop-free when for all objects x and y

C[x , y ] 6= ∅ and C[y , x] 6= ∅ implies x = y and C[x , x] = {idx}

The fundamental category of any pospace is loop-free
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Some properties
preserved under isomorphisms

Let A and B be isomorphic categories

- A is finite iff so is B
- A is loop-free iff so is B
- A is connected iff so is B

So we can say that an isomorphism class of categories is
finite/loop-free/connected

when any of its representative is so
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Some properties
preserved and reflected by Cartesian product

Let A and B be non empty categories

- A× B is finite iff A and B are so

- A× B is loop-free iff A and B are so

- A× B is connected iff A and B are so
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The monoid M

The collection of non-empty connected loop-free finite categories forms
a sub-monoid M of the monoid of small categories

M is pure2 which means that for all small categories A and B,
if [A]× [B] ∈ M then [A] ∈ M and [B] ∈ M

The size function induces a morphism of monoids
from M to (N\{0},×, 1)

Theorem

M is a free commutative monoid.
The set of prime/irreducible elements of M is countable and infinite.

2in the monoid of small categories
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Prime elements of M
of size at most 7 (up to opposite)

a

b ca=cb

c
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The motivating example

#mutex a b

p = P(a).V(a)

q = P(b).V(b)

init: p q p

| [0,1[*[0,-[*[0,-[

| [2,-[*[0,-[*[0,-[

| [0,-[*[0,-[*[0,1[

| [0,-[*[0,-[*[2,-[

#mutex a b

p = P(a).V(a)

q = P(b).V(b)

init: p p q

| [0,1[*[0,-[*[0,-[

| [2,-[*[0,-[*[0,-[

| [0,-[*[0,1[*[0,-[

| [0,-[*[2,-[*[0,-[

([0,1[*[0,-[ | [2,-[*[0,-[ | [0,-[*[0,1[ | [0,-[*[2,-[)*[0,-[
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Semi-lattice of Intervals of R+

∅ empty interval

{a} singleton
[a,+∞[ closed unbounded
]a,+∞[ open unbounded

9=; for a ∈ R+

[a, b] closed bounded (compact)
]a, b[ open bounded
[a, b[ half-open of the right bounded
]a, b] half-open of the left bounded

9>>=>>; for a, b ∈ R+ and a < b

This collection forms a semi-lattice with
T

as product and [0,+∞[ as neutral element
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Semi-lattice of cubes
of dimension n ∈ N

Case n = 0 : semi-lattice ({0, 1},∧, 1)
Case n 6= 0 : semi-lattice of Cartesian products

nY
k=1

Ik

where Ik is an interval for all k in {1, . . . , n}.

“ nY
k=1

Ik
”
∩
“ nY

k=1

I′k
”

=
nY

k=1

(Ik ∩ I′k )

This collection forms a semi-lattice with
T

as product and [0,+∞[n as neutral element

“ nY
k=1

Ik
”
×
“ n+pY

k=n+1

Ik
”

=

n+pY
k=1

Ik
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Boolean algebra of cubical areas
of dimension n ∈ N

Cas n = 0 : Boolean algebra {0, 1}
Cas n 6= 0 : Boolean algebra of sets X ⊆ Rn

+
which can be written as

p[
i=1

Ci

where p ∈ N and for all i in {1, . . . , p}, the cube Ci is n-dimensional.

“ p[
i=1

Ci

”
∩
“ p′[

j=1

C ′j

”
=

p[
i=1

p′[
j=1

(Ci ∩ C ′j )

“ p[
i=1

Ci

”c
=

p\
i=1

C c
i

C c
i =

“ nY
k=1

Ik
”c

=
n[

k=1

R+ × · · · × R+| {z }
k−1 times

×Ick × R+ × · · · × R+| {z }
n−k times“ p[

i=1

Ci

”
×
“ p′[

j=1

C ′j

”
=

p[
i=1

p′[
j=1

(Ci × C ′j )
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Semi-lattice of cubical coverings
of dimension n ∈ N

A cubical covering C of dimension n is a finite set of n-dimensional
cubes

C v C′XXiffXX∀x ∈ C ∃x ′ ∈ C′ s.t. x ⊆ x ′

C ∧ C′ =
{
x ∩ x ′ | x ∈ C; x ′ ∈ C′

}
C × C′ =

{
x × x ′ | x ∈ C; x ′ ∈ C′

}
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CPO of sub-cubes of a cubical area
Maximal sub-cubes of a cubical area

A cubical area is the union of its maximal sub-cubes
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Cubique areas vs Cubique coverings
A Galois connection

{
Cubical coverings

} α // {
Cubical areas

}
γ

oo

α
(
C
)

:=
⋃

x∈C
x

γ
(
X
)

:=
{

maximal sub-cubes of X
}

α ◦ γ = idXXXandXXXid v γ ◦ α
If the cubical coverings C1 and C2 contain all the maximal sub-cubes of α(C1) and

α(C2), then C1 ∧ C2 contains all the maximal sub-cubes of α(C1) ∩ α(C2)
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Implementation of the graded Boolean structure
of the cubical areas of all dimensions

The Boolean algebra of cubical areas is isomorphic to collection of cubical coverings
whose elements are maximal sub-cubes of the area it covers. Concretely, the
non-empty n-cubes are words of non-empty intervals of length n. If C and C ′ are two
non-empty cubes of dimension n and m, then their Cartesian product C × C ′ is given
by the concatenation of words of intervals. Since we gather all the Boolean algebras of
n-cubical areas in a single graded one, we need to pay some attention to the empty
sets! Indeed, the empty set ∅n of dimension n differs from the empty set ∅m of
dimension m as soon as n 6= m since their complements (respectively Rn

+
and Rm

+
) do.

In particular if C is a m-cube, then ∅n × C = ∅n+m.

Yet, recall that the Boolean algebra of 0-dimensional cubical areas is {0, 1}. Then 1 is
the neutral element of the Cartesian product, this fact comes naturally if we represent
it by the singleton whose unique element is the empty word

˘
()
¯

.

This product obviously extends to cubical area which are represented by sets of cubes.
Intersection and Cartesian product are easily computed. The union requires we apply
the operator γ ◦ α : if C and C′ represent the cubical areas X and X ′, then X ∪ X ′ is
represented by γ ◦ α(C ∪ C′).
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Complement of a cubical area
a planar example
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Complement of a cubical area
a spatial example

forbidden area state space the four “vertical” maximal cubes
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Examples
of functions implemented in the OCaml library area.ml

futur cone might go infinity might go deadlock deadlock attractor
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Graded action
of the symmetrical groups Sn for n ∈ N over cubical algebra

- Given an n-cube x = I1 × · · · × In and a permutation σ ∈ Sn

we define σ · x = σ · (I1 × · · · × In) := Iσ(1) × · · · × Iσ(n)

- The preceding definition extends to cubical covering σ · C := {σ · x | x ∈ C}
- If C v C′ then σ · C v σ · C′

- Given two cubical coverings C1 and C2, if α(C1) = α(C2) then
α(σ · C1) = α(σ · C2) therefore we can define σ · X = α(σ · C) where C is any
cubical covering such that α(C) = X
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The monoid of cubical areas

- We identify each cubical area X with is set of maximal sub-cubes since
γ(X × Y ) = γ(X )× γ(Y )

- The non-empty cubical areas with Cartesian product forms a free monoid (it is
not commutative)
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The commutative monoid of cubical areas

- Given n-cubical areas X and Y , write X ∼ Y when there exists σ ∈ Sn s.t.
σ · X = Y

- ∼ is a congruence over the monoid of cubical areas i.e. ∼ is an equivalence
relation and X ∼ X ′ and Y ∼ Y ′ implies X × X ′ ∼ Y × Y

- The quotient of the monoid of cubical areas by ∼ is commutative free
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The motivating example

#mtx a b

#sem c 3

pa = P(a).P(c).V(c).V(a)

pb = P(b).P(c).V(c).V(b)

init: pa pb pa pb

| [0,1[*[0,1[*[0,-[*[0,-[

| [0,1[*[4,-[*[0,-[*[0,-[

| [0,1[*[0,-[*[0,-[*[0,1[

| [0,1[*[0,-[*[0,-[*[4,-[

| [4,-[*[0,1[*[0,-[*[0,-[

| [4,-[*[4,-[*[0,-[*[0,-[

| [4,-[*[0,-[*[0,-[*[0,1[

| [4,-[*[0,-[*[0,-[*[4,-[

| [0,-[*[0,1[*[0,1[*[0,-[

| [0,-[*[0,1[*[4,-[*[0,-[

| [0,-[*[4,-[*[0,1[*[0,-[

| [0,-[*[4,-[*[4,-[*[0,-[

| [0,-[*[0,-[*[0,1[*[0,1[

| [0,-[*[0,-[*[0,1[*[4,-[

| [0,-[*[0,-[*[4,-[*[0,1[

| [0,-[*[0,-[*[4,-[*[4,-[
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The motivating example

#mtx a b

#sem c 3

pa = P(a).P(c).V(c).V(a)

pb = P(b).P(c).V(c).V(b)

init: pa pa pb pb

| [0,1[*[0,-[*[0,1[*[0,-[

| [0,1[*[0,-[*[4,-[*[0,-[

| [0,1[*[0,-[*[0,-[*[0,1[

| [0,1[*[0,-[*[0,-[*[4,-[

| [4,-[*[0,-[*[0,1[*[0,-[

| [4,-[*[0,-[*[4,-[*[0,-[

| [4,-[*[0,-[*[0,-[*[0,1[

| [4,-[*[0,-[*[0,-[*[4,-[

| [0,-[*[0,1[*[0,1[*[0,-[

| [0,-[*[0,1[*[4,-[*[0,-[

| [0,-[*[0,1[*[0,-[*[0,1[

| [0,-[*[0,1[*[0,-[*[4,-[

| [0,-[*[4,-[*[0,1[*[0,-[

| [0,-[*[4,-[*[4,-[*[0,-[

| [0,-[*[4,-[*[0,-[*[0,1[

| [0,-[*[4,-[*[0,-[*[4,-[
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