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From discrete to continuous
The discrete semantic of P(a).P(b).V(b).V(a)|P(b).P(a).V(a).V(b)

By construction, time is “discrete”.
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From discrete to continuous
The discrete semantic of P(a).P(b).V(b).V(a)|P(b).P(a).V(a).V(b)

An execution trace consists on an interlacing of “atomic” actions.
This model does not allow “true concurrency”.
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From discrete to continuous
The discrete semantic of P(a).P(b).V(b).V(a)|P(b).P(a).V(a).V(b)

We can locally permute some actions of the given path and thus yield another path
which is seen as “equivalent”
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From discrete to continuous
The discrete semantic of P(a).P(b).V(b).V(a)|P(b).P(a).V(a).V(b)

But identifying two paths may require many permutations.
From a combinatorial point of view, this approach is not efficient.
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From discrete to continuous
The discrete semantic of P(a).P(b).V(b).V(a)|P(b).P(a).V(a).V(b)

Using topology we define a continuous model
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From discrete to continuous
The discrete semantic of P(a).P(b).V(b).V(a)|P(b).P(a).V(a).V(b)

The resulting model allows “true concurrency”.
The execution traces are represented by the directed paths.
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From discrete to continuous
The discrete semantic of P(a).P(b).V(b).V(a)|P(b).P(a).V(a).V(b)

The local permutation of actions are then replaced by (directed) homotopies
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From discrete to continuous
The discrete semantic of P(a).P(b).V(b).V(a)|P(b).P(a).V(a).V(b)

The (directed) homotopies actually allow “global” permutation of actions
so they could be combinatorially more efficient

provided we find a handy representation
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From discrete to continuous
The discrete semantic of P(a).P(b).V(b).V(a)|P(b).P(a).V(a).V(b)

In fact all equivalent paths between two given points
can be easily described as a union of “rectangles”

[0, 1]×[0, 5] ∪ [0, 3]×[2, 5] ∪ [0, 5]×[4, 5]
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Directed homotopy between directed paths
Usual formal definition

Let X be a pospace and r , ρ ∈ R+

A directed homotopy is a morphism of pospaces h ∈ Po
ˆ
[0, r ]× [0, ρ],X

˜
such that the

mappings

h(0,−) : s ∈ [0, ρ] 7→ h(0, s) and h(r ,−) : s ∈ [0, ρ] 7→ h(r , s)

are constant

[0, r ]

[0, ρ]
h

x y

h(−, ρ)

h(−, 0)
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Directed homotopy between directed paths
seen as directed paths

h is also a path on the pospace X [0,r ] since

h ∈ Po
ˆ
[0, r ]× [0, ρ],X

˜
X∼=XPo

ˆ
[0, ρ],X [0,r ]

˜

x y

h(−, ρ)

h(−, 0)

h

Defining γ := h(−, ρ) and δ := h(−, 0), the second point of view leads us

to introduce the following notation

x

γ

��

δ

BB y
KS
h
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Directed Homotopies and Natural Transformations

The directed homotopies formally have the same properties as
the natural transformations replacing

“category” by “point”

“functor” by “path”

and

“natural transformation” by “directed homotopy”
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Congruence over a small category C

A congruence over C is an equivalence relation ∼ over Mo(C) such that

1)XXγ ∼ δ implies s(γ) = s(δ) and t(γ) = t(δ)

2)XXγ ∼ δ, γ′ ∼ δ′ and s(γ′) = t(γ) implies γ′ ◦ γ ∼ δ′ ◦ δ
γ

��

δ

FF

γ′

��

δ′

FFo o XX impliesXX

γ′◦γ

��

δ′◦δ

FFo

Then the we can define the quotient category C/∼ defining [γ] ◦ [δ] = [γ ◦ δ] and we
have the quotient functor q : C → C/∼ defining q(γ) = [γ]
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The underlying preorder of a small category C

Cat // Pre

XXXX C

f

��

(Ob(C),4C)

Ob(f )

��
D (Ob(D),4D)

� //

with

x 4C y when C[x , y ] 6= ∅
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Comparing paths defined on distinct segments

Given γ ∈ Po[[0, r ],X ] and δ ∈ Po[[0, r ′],X ] put γ 4 δ when there exist

θ ∈ Po[[0, 1], [0, r ]] and θ′ ∈ Po[[0, 1], [0, r ′]] and a directed homotopy

from γ ◦ θ to δ ◦ θ′.
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Loop-free paths and Regular paths
see U. Fahrenberg and M. Raußen paper “Reparametrizations of Continuous Paths”

Let X be a Hausdorff space and γ ∈ Top
ˆ
[0, r ],X

˜
- γ is said to be loop-free when γ(t) = γ(t′) ⇒ γ is constant on [t, t′]

- If X Hausdorff and γ ∈ Top
ˆ
[0, r ],X

˜
loop-free then

im(γ) ∼= [0, 1] or im(γ) ∼= {0}
- γ is said to be regular when γ constant on [t, t′] 6= ∅ implies that t = t′ or

[t, t′] = [0, r ]

- there exist θ0, θ1 s.t. γ ◦ θ0 = δ ◦ θ1 iff there exist ξ, θ2, θ3 such that
γ = ξ ◦ θ2 and δ = ξ ◦ θ3

- for all γ there exists a regular path γ′ and θ such that γ = γ′ ◦ θ
- if γ ◦ θ0 = δ ◦ θ1 with γ and δ regular, then there exists an ϕ iso s.t. δ = γ ◦ ϕ
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Reparametrizations and Directed Homotopies

- Let γ ∈ Po
ˆ
[0, r ],X

˜
then h(s, t) = γ(t) is a directed homotopy

- If γ, δ ∈ Po
ˆ
[0, r ],X

˜
, im(γ) = im(δ) and γ v δ then

h(t, s) := ϕ
“
ϕ-1◦γ(t) + s ·

`
ϕ-1◦δ(t)− ϕ-1◦γ(t)

´”

is a directed homotopy from γ to δ with ϕ : [0, 1]
∼= // X

- If γ, δ ∈ Po
ˆ
[0, r ],X

˜
, im(γ) = im(δ) then we can define the directed path

γ ∨ δ : t ∈ [0, r ] 7→ max(γ(t), δ(t))
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Comparing paths defined on distinct segments

- The relation 4 is a preorder (but it is not so easy to prove)

- We denote by ∼ the equivalence relation generated by 4 i.e. γ ∼ δ iff there is a
“zigzag” of directed homotopies

γ

;C����
X` :::

::: ...

>F��� ���
δ

Zb >>>>>>

- The relation ∼ is actually a congruence over
−→
P (X )

as a consequence of the “Godement product” construction
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The Fundamental Category functor over Po

The preceding construction gives rise to a functor −→π1 from Po to Cat since for all
f ∈ Po[X ,Y ] and all directed homotopies h between paths on X , the composite f ◦ h
is a directed homotopy between paths on Y .

−→π1 : Po // Cat

XXXX X

f

��

−→π1(X )

−→π1(f )

��
Y −→π1(Y )

� //

with

−→π1(f ) : −→π1(X ) // −→π1(Y )

XXXXXX p

[γ]

��

f (p)

[f ◦γ]

��
q f (q)

� //
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The Fundamental Category functor over Po

The preceding construction gives rise to a functor −→π1 from Po to Cat since for all
f ∈ Po[X ,Y ] and all directed homotopies h between paths on X , the composite f ◦ h
is a directed homotopy between paths on Y .

−→π1 : Po // Cat

XXXX X

f

��

−→π1(X )

−→π1(f )

��
Y −→π1(Y )

� //

with

−→π1(f ) : −→π1(X ) // −→π1(Y )

XXXXXX p

[γ]

��

f (p)

[f ◦γ]

��
q f (q)

� //
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The directed real line and plane

The fundamental category of the directed real line
−→R is the poset (R,6) seen as a

small category

The fundamental category of the directed real plane
−→R ×−→R is the poset

(R,6)× (R,6) seen as a small category.
Indeed, given γ and δ sharing the same extremities we define γ ∨ δ so

h(t, s) = (1− s) · γ(t) + s · (γ ∨ δ)(t) and h′(t, s) = (1− s) · δ(t) + s · (γ ∨ δ)(t)

are directed homotopies

In general we have −→π1(X × Y ) ∼= −→π1(X )×−→π1(Y )
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Two squares on the antidiagonal

One has 9 “components”

In dimension 2 it suffices to draw the “past cones” from bottom left corners and the
“future cones” from upper right ones
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Holes cast shadows

One has 7 “components”
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Holes cast shadows
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Holes cast shadows

One has 7 “components”
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Corners in holes do not shed any light

One has 4 “components”

35



Corners in holes do not shed any light

One has 4 “components”

36



Corners in holes do not shed any light

One has 4 “components”

37



Corners in holes do not shed any light

One has 4 “components”

38



Corners in holes do not shed any light

One has 4 “components”

39



Corners in holes do not shed any light

One has 4 “components”
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The floating cube

Up to directed homotopy equivalence,
there is a unique directed path from (0, 0, 0) to (3, 3, 3)
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The floating cube
ss the picture suggests, there are 26 “components”
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