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Exercice 1

Question 1:

The forbidden area is ([1,2[U[3,4]) x ([1,2[U[3,4]) (the bounds are not so im-
portant) so it is obviously factorized as a Cartesian product.

Question 2:

Warning : The model of the program is the complement of the forbidden area.
In this example, the forbidden area can be factorized, but its complement can-
not.

The two processes do not run independently since the model of the program is
0,1[x[0,00[ U [2,3[x[0,+00] U [4,+0c[x[0, +oo]

[0,400[x[0,1[ U [0, +00[x[2,3] U [0, +00[x[4, 400

which cannot be factorized. Of course one can easily guess the result since the
two processes request the ressource a which cannot be shared.

Question 3:
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Question 4:

Their fundamental categories are isomorphic since they are determined from the
components.



Exercice 2
Questions 1, 2 and 3:
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The fundamental category of the model is not connected.

Question 4:
P(a).V(a).P(a).V(a)|P(a).V(a).P(a).V(a)|P(a).V(a).P(a).V(a)
avec a smaphore d’arit 2.

Question 5:

The maximum occurs if we take, for example, z := (0,0,0) and y = (5,5,5).
Combinatorially, it can be calculated as follow : remark that the pair of actions
P(a).V(a) is in some sense “atomic” since once a process holds the mutex a, it
is not more available until its owner releases it. So you have 3 processes sequen-
tially trying to perform 2 atomic actions. Therefore the execution traces, up to
dihomotopy, are in bijection with the number of anagrams of the word 112233,
which corresponds to the case where the first process performs its 2 actions first,
then the second one and finally the third one.
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A more “geometric” approach consists on counting the number of directed paths
from A to B on the following directed graph.
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Exercice 3
Question 1:

Warning : a category of size 8 has exactly 8 morphisms (the identities have to
be counted among the morphisms). One also has to count the compositions,
for example the following category has 6 morphisms : 3 identities, 2 morphisms
represented by the arrows and the last one being given by their composite.

There are 11 connected loop-free categories of size 8. The two last ones are not
free, in other words there are relations between the paths over their underlying

graph.
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Question 2:

Given two small categories C and D, the set of objects and the set of mor-
phisms of the Cartesian product C x D are respectively Ob(C) x Ob(D) and
Mo(C) x Mo(D). Therefore the mapping C — card(Ob(C)) and C — card(Mo(C))
provide two examples of such mappings. Of course there is also the “trivial”
mapping C — 1, yet it is not so interesting.

Question 3a:

The category 1 is the only category with a single object and a single morphism,
hence ®(m,1) = 1. If m = 0 then ®(m,1) = 0 since a category with at least 1
object has at least 1 identity. If m > 2 then ®(m,1) = 0 because in a loop-free
category, there is no morphism from an object x to itself but its identity id,.
If m < 2 then ®(m,2) = 0 since a category with 2 objects has at least 2 iden-
tities, hence a category with 2 objects and at most 2 morphisms cannot be
connected.

If m > 3 then ®(m,2) = 1. Let us call a and b the only objects of some
connected loop-free category with at least 3 morphsims. Since the category
is connected we can suppose there is a morphism from a to b. Moreover C is
loop-free hence there is no morphism from b to a. as a consequence we have

card(Cla, b)) =m — 2 a
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Question 3b:

Given a small category, there is at least as many objects as morphisms i.e.
m < x implies ®(m, x) = 0, the result easily follows.

Actually we have a more accurate result derived from a classical fact of com-
binatorial graph theory : suppose a bridge can relate 2 islands and you want
to connect n > 1 islands. Then you need to build at least n — 1 bridges. The
optimal configuration being provided by any tree, in particular the “linear order
of length n”.

1—2— + — (n-1) —n

Then we have m < 2z — 1 implies ®(m, x) = 0.

Question 4a:

Reflexivity : x < x because idy € C[x, x].

Transitivity : z < y and y < z means that we have some § € C[x,y] # () and
v € Cly, 2] # 0. Tt follows that v o d € C[x, 2] # 0.

Antisymetry : < y and y < x means that C[z,y] # 0 and C[y, z] # 0. Since C
is loop-free we have z = y.

Question 4b:
The object part of the morphism R is provided by the mapping C — (Ob(C), <).
Suppose f is a functor from C to D and let x and y be 2 objects of C such that



z <X y. In other words we have some morphism ¢ of C from = to y. Since f is a
functor, Mo(f)(9) is a morphism of D from Ob(f)(x) to Ob(f)(y) and we have
Ob(f)(x) < Ob(f)(y). Hence the morphism part of the functor R is provided
by the mapping (f : C — D) — (Ob(f) : Ob(C) — Ob(D)).

Question 4c:
Let (X <) be a poset. The set of objects of the associated category is X, and
the set of morphisms is the “graph” of the binary relation < i.e. the collection

of ordered pairs
{(z,y) e Xx X |z=xy}

The source and the target of (x,y) are respectively x and y. The composition
is given by
(y,2) 0 (z,y) = (z,2)

which is sound since < is transitive. By reflexivity, the identities are the ordered
pairs (z,z) for z ranging in X. This category is loop-free since < is antisymet-
ric. We have defined the object part of the functor.

We define the morphism part of the functor R. Given a morphism of poset f,
R(f) has to be a functor between the corresponding loop-free categories. The
object part of R(f) is just f while its morphism part is given by the mapping
(x,y) = (f(2), f(y))

Question 4d:

Given a loop-free category C, the category IR(C) is as follows : its objects
are the objects of C and its morphisms are the ordered pairs (z,y) such that
Clz,y] # 0. Then the following mappings

idob(c) : X € OB(C) — x € Ob(C) and & € Mo(C) > (s(6),(6)) € Mo(IR(C))

induce a functor from C to TR(C) i.e. a morphism of Cat. The collection of
functors thus defined is actually a natural transformation from idc, to I o R.

Actually the category of posets is isomorphic with the full subcategory of Cat
whose objects are loop-free categories whose homsets have at most 1 element.

Question ba:

Warning : “generating set” usually means “which generates all non-identity
morphisms”, but the question was ambiguous about that so two answers are
possible.

Given a poset (X, =) say that the ordered pair (z,y) € X x X covers z if for
all z € X, z < 2z <X y implies x = z or z = y. Let C be a small category, the
smallest generating can be described as the colelction of morphisms § such that
(s(6),t(0)) covers s(d) in the poset R(C) (see Question 4).

In a less abstract way, the elements of the smallest generating set are the mor-
phisms « such that o = 7 o § implies either v or ¢ is an identity.

A simple remark proves this collection is generating, given a composable se-



quence (dy, ..., 01) of morphisms of a loop-free category C, if p < g and §, = d,
then for all p < n < g we have 6, = §, = id. So if we suppose C has finitely
many morphisms, the length of the composable sequences which do not contain
any identity is bounded by the number of morphisms of C.

Question 5b:

If the identities are admited in the generating sets, the answer is A x B, other-
wise the generating set of the Cartesian product is the collection of morphisms
id, x 0 and a x idy, for a € A, § € B, a object of A and b object of 5.
Actually T wanted to mean “without identities”. The notion of least generating
set of a finite loop-free category is the first step to the proof of the theorem of
decomposition of non-empty finite connected loop-free categories.

Question 6:
Consider the polynomial

I+ X+ X2+ X+ X 4 X =14+ X1+ X+ X)) =1+ X)(1+ X%+ XY

and “replace” the variable X by the loop-free category ¢ —— e (actually any
prime loop-free category would work). In order to make this idea sound, one
interprets the product of polynomials as the Cartesian product of categories and
the sum of polynomials as the disjoint union of categories. We provide some
details. Given two sets A and B, one might have AN B # (), in order to obtain
two disjoint copies of A and B we consider A x {0} =2 A and B x {1} = B
and we define the disjoint union A U B as the usual union A x {0} U B x {1}.
Now given two categories C and D, we define the disjoint union of C and D by
considering the disjoint union of their objects Ob(C) L Ob(D) and the disjoint
union of their morphisms Mo(C) U Mo(D). Remark that if C and D are non
empty, there disjoint union is disconnected. Moreover, any decomposition in
N[X] induces a decomposition in My because the Cartesian product distributes
over the disjoint union. Then we have two decompositions of

iucuctuciuctuce

and 1+ C is irreducible since it has 3 (prime number) objects. It remains to
check that 1 4+ C is not prime, for example by proving that it does not divide
1-+C3 nor 14+C+C?. To do so remark that the number of connected components
of an element of My induces a morphism of monoids from M3} to (N, x,1). Then
1+C? and 1+ C + C? have respectively 2 and 3 (two prime numbers) connected
components therefore they cannot be factorized.

The construction described above is inspired from a very well-known other one.
Indeed the set of polynomials Z[X] has a ring structure and given any « € Z,
the association X — « defines a unique ring morphism from Z[X] to Z known
as the “evaluation morphism at a”.



In we endow My with Cartesian product, disjoint union, 1 and the empty cat-
egory as product, sum, unit and zero, we almost have a ring (the additive
structure is just a monoid, not a group). The same way N[X] almost has a ring
structure. Then for all finite catgories C one has an “evaluation at C” mapping
from N[X] to My which preserves sum, product, unit and zero and which is
entirely determined by X — C.



