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Fundamental Category of Partially Ordered Spaces
Category of components

The category PoTop
Fundamental category of a pospace
LfCat instead of Grd

Partially Ordered Space (or Pospace)
−→
X

S.Eilenberg 41 L.Nachbin 48 65 P.Johnstone 82

1 A topological space X ,

2 An order relation v over |X | whose graph is closed in X × X .
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The category PoTop
Fundamental category of a pospace
LfCat instead of Grd

Morphism of pospace from
−→
X to

−→
Y

A map f : |X | −→ |Y | inducing:

1 a continuous map from X to Y

2 an increasing map from (|X |,v
X

) to (|Y |,v
Y

).

PoTop is the category of pospaces and their morphisms
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Fundamental category of a pospace
LfCat instead of Grd

Examples
of pospaces

1 the real line R with its classical topology and order

(denoted
−→
R ),

2 the unit segment [0, 1] with the induced structure

(denoted
−−→
[0, 1]),

3 any morphism of PoTop from
−−→
[0, 1] to

−→
X is called a directed

path over
−→
X . Formally, the set of directed paths over

−→
X is

PoSpc
[−−→
[0, 1],

−→
X
]
, it is also denoted d

−→
X .
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Categorical Proprerties of PoTop
comparing Top and PoTop

Theorem (E.Haucourt 05)

1 complete and co-complete,

2 symetric monoidal closed,

3 the full subcategory of compact pospaces is complete,

co-complete and admits
−−→
[0, 1] as a cogenerator,

4 the full subcategory of compactly generated pospaces is
reflective in PoTop and cartesian closed.
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Fundamental category of a pospace
LfCat instead of Grd

Directed homotopy over
−→
X from α to β

M.Grandis 01 L.Fajstrup/M.Raussen/E.Goubault 98

A morphism h of PoTop from
−−→
[0, 1]×

−−→
[0, 1] to

−→
X such that U(h) is

a classical homotopy from U(α) to U(β).
Denote ∼−→

X
the symetric and transitive closure of{

(α, β) ∈ d
−→
X ×d

−→
X
∣∣∣there exists a directed homotopy from α to β

}
.

Dipaths α and β are said dihomotopic when α ∼−→
X
β.
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Directed Homotopy vs Classical Homotopy

H(−,s)

H(t,−)

directed homotopy
x

y

α

β

classic homotopy
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The category PoTop
Fundamental category of a pospace
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First subtlety
directed homotopy is not classic homotopy

Pb Vb Pa Va

Pb

Vb

Pa

Va

Pb VbPa Va

Pa

Va

Pb

Vb
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Fundamental Category of Partially Ordered Spaces
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The category PoTop
Fundamental category of a pospace
LfCat instead of Grd

Second subtlety
classic homotopy cannot “see” local extrema

Va

Pa

VaPa Pa Pb Vb Va

Pb

Pa

Va

Vb

local maximum
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Third subtlety
Floating cube between two pillars

A=Pb.Pc.Vb.Vc
B=Pc.Pa.Vc.Va
C=Pa.Pb.Va.Vb

bifurcation

Directed homotopy is not classic
homotopy plus fixed extremities

Another view of the model

bifurcation
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Image of a directed path
A special feature of directed topology

Theorem

1 The image of a dipath α over a pospace
−→
X is either

isomorphic (in PoTop) to {•} or
−−→
[0, 1]

2 Two dipaths sharing the same image are dihomotopic

3 There is no directed Peano curve
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Fundamental category −→π1(
−→
X ) of a pospace

−→
X

1 its objects are the elements of |X |,
2 its set of morphism from x to y , is the collection of
∼−→

X
-equivalence classes of{

α ∈ d
−→
X
∣∣∣α(0) = x and α(1) = y

}
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Loop-free categories introduced by A.Haefliger as ”scwols” 91

instead of groupoids

A (small) category C such that for all objects x and y of C, if
C[x , y ] 6= ∅ and C[y , x ] 6= ∅ then x = y and C[x , x ] = {idx}.
LfCat is the full subcategory (in Cat) of small loop-free categories.

1 LfCat is cartesian closed and reflective in Cat.

2 the fundamental category of a pospace is loop-free, whence
the functor

PoTop
−→π 1 // LfCat
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Van Kampen theorem for fundamental categories
M.Grandis 01 E.Goubault 01 also see P.J.Higgins ”Categories and Groupoids”

−→
X

in PoSpc

−→π1(
−→
X )

in LfCat

−→
X 1

j1

??~~~~~~~~
pushout

−→
X 2

j2

__@@@@@@@@
−→π1(
−→
X1)

−→π1(
−→
j1 )

;;vvvvvvvvv
pushout −→π1(

−→
X2)

−→π1(
−→
j2 )

ccHHHHHHHHH

−→
X 0

i1

__@@@@@@@@ i2

??~~~~~~~~
−→π1(
−→
X0)

−→π1(
−→
i1 )

ccHHHHHHHHH −→π1(
−→
i2 )

;;vvvvvvvvv
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Fundamental Category of Partially Ordered Spaces
Category of components

Yoneda system
Components and Fractions

Yoneda morphism
preserving the past and the future I

A morphism σ ∈ C[x , y ] is a Yoneda morphism when for any z :

future if C[y , z ] 6= ∅ then for all f ∈ C[x , z ], there is a unique
g ∈ C[y , z ] such that

z

x
σ

//

f
??��������
y

g

OO

past if C[z , x ] 6= ∅ then for all f ∈ C[z , y ], there is a unique
g ∈ C[z , x ] such that

x σ // y

z
f

??�������
g

OO
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Yoneda system
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Yoneda system of a small category C
preserving the past and the future II

A collection Σ of morphisms of C such that :

1 Σ is stable under composition,

2 Σ contains all the isomorphisms of C,

3 all the elements of Σ are Yoneda morphisms and

4 Σ is stable under change and cochange of base.

y

x

f

@@��������
y ′

σ∈Σ
__????????

x ′
σ′∈Σ

^^

f ′

??

pull

back

in C

y ′

x ′

f ′
??

y

σ′∈Σ
^^

x
σ∈Σ

``AAAAAAAA f

??~~~~~~~~

push

out

in C
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Yoneda system
Components and Fractions

Examples
of morphism which do not belong to any Yoneda system

z

x
y

σ

y

x

z

f

fσ

Va

Pa

VaPa Pa Pb Vb Va

Pb

Pa

Va

Vb
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Fundamental Category of Partially Ordered Spaces
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Yoneda system
Components and Fractions

Structure of Σ-components
C loop-free category and Σ Yoneda system over C

Theorem (E.Haucourt 05)

1 the relation ∼ over |C| defined by x ∼ y iff
∃z ∈ |C| Σ[x , z ] 6= ∅ and Σ[y , z ] 6= ∅ is an equivalence relation

2 Given any ∼-equivalence class K , the full subcategory of C
whose set of objects is K is a non empty lattice

3 If a ∼ b ∼ c ∼ d and C[a, b], C[d , b], C[c, a] and C[c, d ] are
not empty, then the following square is both a pullback and a
pushout in C.

a // b

c //

OO

d

OO
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Locale of Yoneda systems
topology without point over a loop-free category

Theorem (E.Haucourt 05)

The collection, ordered by inclusion, of the Yoneda systems of a
loop-free category, forms a locale whose maximum is denoted Σ.
Beside, its minimum is the collection of all identities of C.
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Fundamental Category of Partially Ordered Spaces
Category of components

Yoneda system
Components and Fractions

Category of components
generalizing the set of arcwise components

The category of components of a loop-free category C is the
quotient C/Σ.

Theorem (E.Haucourt 05)

A loop-free category C is a non empty lattice iff
its category of components is {•}
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Fundamental theorem
C loop-free category and Σ Yoneda system over C

Theorem (E.Haucourt 05)

1 the collection Σ is pure in C (β ◦ α ∈ Σ⇒ β, α ∈ Σ),

2 the category C/Σ is loop-free,

3 the categories C[Σ−1] and C/Σ are equivalent and

4 the category C[Σ−1] is fibered over the base C/Σ.
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A detailed example
square with centered hole

x ∈ y ∈ −→π1(
−→
X )[x , y ]

A A {σx ,y}
B1 B1 {σx ,y}
B2 B2 {σx ,y}
C C {σx ,y}
A B1 {rx ,y}
A B2 {hx ,y}
B1 C {h′x ,y}
B2 C {r ′x ,y}
B1 B2 ∅
B2 B1 ∅
A C {ux ,y , dx ,y}

With
r ′y ,z ◦ hx ,y = ux ,z , h′y ,z ◦ rx ,y = dx ,z

and 3 points x , y , z of the square such
that x v y v z ;

if x 6v y then −→π1(
−→
X )[x , y ] = ∅.

r’

h’h

r

2B

B1

C

A
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Example of product
parallel ”independent” composition

this pospace and the square with centered
hole have the same component category

Though their fundamental categories differ...
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The category of components
of the swiss flag

Pa Pb Vb Va

Pb

Pa

Va

Vb
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The components category
of a 2-semaphore

the pospace its category of components
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Fundamental Category of Partially Ordered Spaces
Category of components

Yoneda system
Components and Fractions

The components category
of the 3D swiss flag

Interior of the pospace Category of components Flattened
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