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Diagram in Top
from a precubical set K

- ∂-
i
∼= (x · · · x 0︸︷︷︸

i th

x · · · x) and ∂+
i
∼= (x · · · x 1︸︷︷︸

i th

x · · · x)

- for all n ∈ N for all x ∈ Kn for all i ∈ {0,. . . ,n-1}
and for ε ∈ {0, 1} we have the inclusion map

φεi ,n,x : {∂εi (x)} × [0, 1]n−1 → {x} × [0, 1]n

(t1, . . . , tn−1) 7→ (t1, . . . , ti−1, ε, ti , . . . , tn−1)

- |K |: the geometric realization of K is
the colimit of this diagram in Top

- for all K ,K ′ precubical sets, |K ⊗ K ′| ∼= |K | × |K ′|
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Geometric realization in Top
a calculation

- K0 = {a, b} and K1 = {α, β}
∂-α = ∂-β = a and ∂+α = ∂+β = b



MSC - Lyon 2014

Geometric
realization

Directed Topology

Local pospaces

Realization

Continuous interpretation

Geometric model

Fundamental
category

Precubical sets

Local pospaces

Some calculations

Geometric realization in Top
a calculation

- K0 = {a, b} and K1 = {α, β}
∂-α = ∂-β = a and ∂+α = ∂+β = b

a b



MSC - Lyon 2014

Geometric
realization

Directed Topology

Local pospaces

Realization

Continuous interpretation

Geometric model

Fundamental
category

Precubical sets

Local pospaces

Some calculations

Geometric realization in Top
a calculation

- K0 = {a, b} and K1 = {α, β}
∂-α = ∂-β = a and ∂+α = ∂+β = b

∂-α = a b = ∂+α



MSC - Lyon 2014

Geometric
realization

Directed Topology

Local pospaces

Realization

Continuous interpretation

Geometric model

Fundamental
category

Precubical sets

Local pospaces

Some calculations

Geometric realization in Top
a calculation

- K0 = {a, b} and K1 = {α, β}
∂-α = ∂-β = a and ∂+α = ∂+β = b

∂-β = ∂-α = a b = ∂+α = ∂+β



MSC - Lyon 2014

Geometric
realization

Directed Topology

Local pospaces

Realization

Continuous interpretation

Geometric model

Fundamental
category

Precubical sets

Local pospaces

Some calculations

Geometric realization in Top
another calculation

- K0 = {a, b} and K1 = {α, β}
∂-α = ∂+β = a and ∂+α = ∂-β = b
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Partially Ordered Spaces - pospaces
Eilenberg 41 / Nachbin 48

- A topological space X together with a closed partial order

- morphisms: increasing continuous maps
- e.g. R with its standard topology and order
- Potop is complete and cocomplete

but its colimits do not preserve the topology
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Locally Partially Ordered Spaces - local pospaces
Fajstrup, Goubault, and Raussen 98 (original version)

- X underlying topological space

- ordered chart on X : pospace over some open subset of X
- ordered atlas on X : collection U of ordered charts s.t.

i) for all U,U ′ ∈ U and x ∈ U ∩U ′ there exists U ′′ ∈ U s.t.
x ∈ U ′′ ⊆ U ∩ U ′ and the order on U ′′

matches both orders on U and U ′

ii) U induces a basis of topology of X
- morphism of atlases f : (X ,U)→ (Y ,V):

a continuous map f : X → Y such that for all x ∈ X
there exists U ∈ U , V ∈ V neighborhoods of x and f (x)
such that f induces a morphism of pospaces from U to V
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Locally Partially Ordered Spaces - local pospaces
Fajstrup, Goubault, and Raussen 98 (original version)

- Atlases U and U ′ on X are equivalent
when their union is still an atlas

- The union of all atlases equivalent to U is an atlas
- Local pospace: equivalence class of atlases
- If U ∼ U ′, V ∼ V ′, and f : U → V morphism of atlases

then f : U ′ → V ′ morphism of atlases
- e.g. the exponential map t ∈ R 7→ eit ∈ S1
- Lpotop is finitely complete but

misses some infinite products
its cocompleteness is an open question
its colimits do not preserve the topology
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Directed geometric realization in LpoTop
a claim

- For all finite precubical sets K , the directed
geometric realization �K�LpoTop exists

- and preserves the topology

U(�K�LpoTop) = |K |

- therefore

�K ⊗ K ′�LpoTop∼=�K�LpoTop × �K ′�LpoTop
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Realization of graphs
as local pospaces

G : A
∂-
//

∂+
// V

- underlying set V t A×]0, 1[

- v+ε union of {α}×]0, ε[
for all α ∈ A such that ∂-α = v and 0 < ε < 1

- v−ε union of {α}×]1− ε, 1[
for all α ∈ A such that ∂+α = v and 0 < ε < 1

- directed atlas
{α}×]a, b[ with α ∈ A and 0 6 a < b 6 1, and
{v} ∪ v+ε ∪ v−ε with v ∈ V and 0 < ε < 1
with obvious partial order

- denoted by �G�
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∂-
//

∂+
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Continuous sequential
virtual machine

- The labelling λ : D → A, with D = {(α, 12) | α ∈ A}

- for γ : [0, r ]→�G� the set γ -1(D) is a finite union
of disjoint compact intervals [a1, b1] ∪ · · · ∪ [an, bn]

- Instructions are performed when they are touched
so JγK = γ(an), . . . , γ(a1) is associated with γ
therefore the action of γ upon a distribution δ is JγK · δ

- for any execution trace s,
there exists a dipath γ such that JγK = s
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Continuous parallel
dynamics

- if the process is conservative then for any δ,
JγK · δ only depends on ∂-γ and ∂+γ

- therefore we have a potential function
F :�G� ×R → N
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Areas
definition

- G1, . . . ,Gd finite graphs

- (G1, . . . ,Gd)-block: B1 × · · · × Bn with Bk connected
subset of �Gk�
- (G1, . . . ,Gd)-areas: finite union of blocks
- The collection of (G1, . . . ,Gd)-areas forms

a boolean subalgebra of 2�G1 �×···×�Gd �
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Race conditions
conflicts in variable access

- G1, . . . ,Gd the control flow graphs of each process

- Race conditions is the subset of �G1� × · · ·× �Gd� s.t.
there is 1 6 i < j 6 d such that λ(vi ) and λ(vj)
are actions sharing some variable
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Forbidden area
via potential function

- F1, . . . ,Fd the associated potential functions

- F :�G1� × · · ·× �Gd� ×R → N the potential function

F (v1, . . . , vd , x) =
d∑

k=1

Fk(vk , x)

- Forbidden area is the subset of �G1� × · · ·× �Gd�

{(v1, . . . , vd) | ∃x ∈ R, F (v1, . . . , vd , x) > arity(x)}
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Walls
and geometric model

- Walls is the subset of (v1, . . . , vd) ∈�G1� × · · ·× �Gd� s.t.
there exists a synchronization x s.t.
the cardinal of {k ∈ {1, . . . , d} | λ(vk) = W (x)}
is neither 0 nor the arity of x

- The geometric model is then defined as
�G1� × · · ·× �Gd� \(Race ∪ Forbidden ∪Walls)



MSC - Lyon 2014

Geometric
realization

Directed Topology

Local pospaces

Realization

Continuous interpretation

Geometric model

Fundamental
category

Precubical sets

Local pospaces

Some calculations

Walls
and geometric model

- Walls is the subset of (v1, . . . , vd) ∈�G1� × · · ·× �Gd� s.t.
there exists a synchronization x s.t.
the cardinal of {k ∈ {1, . . . , d} | λ(vk) = W (x)}
is neither 0 nor the arity of x

- The geometric model is then defined as
�G1� × · · ·× �Gd� \(Race ∪ Forbidden ∪Walls)



MSC - Lyon 2014

Geometric
realization

Directed Topology

Local pospaces

Realization

Continuous interpretation

Geometric model

Fundamental
category

Precubical sets

Local pospaces

Some calculations

Geometric model: an example
y:=0.W(b).P(a).x:=z.V(a)|z:=0.W(b).P(a).x:=y.V(a)

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)
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Comparing
Discrete vs Continuous
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Fundamental category
of a precubical set K

- F (trunc1(K )) the category of paths on the underlying
graph of K

- the congruence ∼ over F (trunc1(K )) generated by
γ ∼ δ when γ and δ start and finish
at the lower and upper corners of the same n-cube

- define −→π1K = F (trunc1(K ))/ ∼
- −→π1K = −→π1(trunc2(K ))
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Dipath
on X ∈ LpoTop

- Dipath: morphism γ : [0, r ]→ X with r > 0
∂-γ = γ(0) and ∂+γ = γ(r)

- Concatenation γ · δ : [0, r + r ′]→ X when ∂-γ = ∂+δ;

γ · δ(t) =

{
δ(t) if t 6 r
γ(t) if r 6 t

- Dipath functor P : LpoTop→ Cat
- If X is the model of a program

then the dipaths on X is an overapproximation
of the execution traces

- Infinitely many paths between two points
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Dihomotopy
between dipaths on X

- morphism h : [0, r ]× [0, ρ]→ X s.t.
h(0, ) and h(r , ) are both constant

- 2-dimensional precubical set...

h

∂+
1h = δ

∂+
0h =cst ∂+

0h =cst

∂-
1h = γ

γ

δ

h

...and even more.
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Dihomotopy
2-category

- h : [0, r ]× [0, ρ]→ X and g : [0, r ]× [0, ρ′]→ X
with h( , ρ) = g( , 0)

g ∗ h : [0, r ]× [0, ρ+ ρ′]→ X defined by

g ∗ h(t, x) =

{
h(t, x) if x 6 ρ
g(t, x − ρ) if ρ 6 x

γ

ξ

h

ξ

δ
g

γ

δ

g ∗ h
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Exchange property
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(g ′ ∗ h′) · (g ∗ h) = (g ′ · g) ∗ (h′ · h)
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Directed topology vs Category
2-category

Directed topology Category

point category

dipath functor

dihomotopy natural transformation

path concatenation composition of functors

‘piled up’ homotopies composition of natural transformations

‘side-by-side’ homotopies juxtaposition of natural transformations
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Elementary homotopy

- anti-dihomotopy h : [0, r ]× [0, ρ]→ X such that
(t, x) 7→ h(t,−x) is a dihomotopy

- elementary homotopy hn ∗ · · · ∗ h1 where each hk
is either a dihomotopy or an antidihomotopy

- a finite juxtaposition of dihomotopies and
anti-dihomotopies can be ‘replaced’ by an elementary
homotopy
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The dihomotopy relation
γ and δ dipaths defined over [0, r ] and [0, r ′]

- Write γ ∼ δ when ∂-γ = ∂-δ, ∂+γ = ∂+δ
and there is an elementary homotopy
between c · γ and d · δ where c (resp. d)
is constant over [0, (r ∨ r ′)− r ] (resp. [0, (r ∨ r ′)− r ′])

- The relation ∼ is a congruence over PX
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The fundamental category

- By definition −→π1X = PX/ ∼

- f ◦ (hn ∗ · · · ∗ h1) = (f ◦ hn) ∗ · · · ∗ (f ◦ h1)
therefore γ ∼ δ implies f ◦ γ ∼ f ◦ δ

- Hence a functor −→π1 : LpoTop→ Cat
- −→π1(A× B) ∼= −→π1A×−→π1B
- for all dipaths γ : [0, r ]→ X for all θ morphisms

from [0, r ′] onto [0, r ], γ ∼ γ ◦ θ
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The fundamental category
of the n-cube

- Obj(−→π1[0, 1]) = [0, 1]

- (−→π1[0, 1])[a, b] =

{
{(a, b)} if a 6 b
∅ otherwise

- −→π1[0, 1]n = ([0, 1],6)n = ([0, 1]n,6n)
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The fundamental category
of the realization of a graph G as a local pospace

- A presentation is given by the graph

vertex: V t A×]0, 1[
arrows: (t, α, t ′) with α arrow of G and t < t ′ ∈ [0, 1]
∂-(t, α, t ′) = (α, t) if t > 0; ∂-α otherwise
∂+(t, α, t ′) = (α, t ′) if t < 1; ∂+α otherwise

- with the relations (t ′, α, t ′′) ◦ (t, α, t ′) = (t ′′, α, t)
for α arrow of G and t < t ′ < t ′′ ∈ [0, 1]
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The fundamental category
of the directed circle

- S1 = {z ∈ C | z of magnitude 1}

- Obj(−→π1S1)= S1
- −→π1S1[a, b] ∼= {a} × N× {b}
-

(b,m, c) ◦ (a, n, b) =

{
(a, n + m, c) if ab ∪ bc 6= S1
(a, n + m + 1, c) otherwise
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The fundamental category
of the directed complex plane

- The directed complex plane is not a local pospace
yet it contains the directed circle

- Obj(−→π1C)= C

- −→π1C[a, b] ∼=


{a} × N× {b} if a 6= 0 and |a| 6 |b|
{(0, b)} if a = 0
∅ otherwise

- (b,m, c) ◦ (a, n, b) =
(a, n + m, c) if ab ∪ bc 6= S1 and a 6= 0
(a, n + m + 1, c) if ab ∪ bc = S1 and a 6= 0
(0, c) if a = 0

- The fundamental category of the directed Riemann
sphere is analoguous
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Fundamental categories
of cubical areas - a conjecture

- Cubical area X : finite union of n-cubes

- There exists a finite family K of sub-cubical areas of X
such that ∀γ, δ dipaths on X sharing their extremities,
γ ∼ δ iff ∀K ∈ K s.t. img(γ) ⊆ K ⇔ img(δ) ⊆ K

- it fails if −→π1X contains loops



MSC - Lyon 2014

Geometric
realization

Directed Topology

Local pospaces

Realization

Continuous interpretation

Geometric model

Fundamental
category

Precubical sets

Local pospaces

Some calculations

Fundamental categories
of cubical areas - a conjecture

- Cubical area X : finite union of n-cubes
- There exists a finite family K of sub-cubical areas of X

such that ∀γ, δ dipaths on X sharing their extremities,
γ ∼ δ iff ∀K ∈ K s.t. img(γ) ⊆ K ⇔ img(δ) ⊆ K

- it fails if −→π1X contains loops



MSC - Lyon 2014

Geometric
realization

Directed Topology

Local pospaces

Realization

Continuous interpretation

Geometric model

Fundamental
category

Precubical sets

Local pospaces

Some calculations

Fundamental categories
of cubical areas - a conjecture

- Cubical area X : finite union of n-cubes
- There exists a finite family K of sub-cubical areas of X

such that ∀γ, δ dipaths on X sharing their extremities,
γ ∼ δ iff ∀K ∈ K s.t. img(γ) ⊆ K ⇔ img(δ) ⊆ K

- it fails if −→π1X contains loops


	Geometric realization
	Directed Topology
	Local pospaces
	Realization of graphs
	Continuous interpretation
	Geometric model

	Fundamental category
	Precubical sets
	Local pospaces
	Some calculations


