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Distributed computation

- Variable amount of available resources
- Variable population of parallel processes
- e.g. SETI@home, Bitcoin, e-shopping
- Usual requirements: availability, coherence,

fault tolerance
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Fine grain parallelism

- Constant amount of available resources
- Constant population of parallel processes
- e.g. control-command, graphic rendering
- Usual requirements: deterministic output,

nonblocking, as fast as possible
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Expressions and values
V: variables E : expressions built on the following operators

v content of v ∈ V x ∈ R constant

∧ minimum ∨ maximum

+ addition − substraction

∗ multiplication / division

6 less or equal > greater of equal

< strictly less > strictly greater

¬ complement = equal

⊥ bottom

nullary unary

⊥, x ∈ R, v ∈ V ¬
binary

∧, ∨, +, −, ∗, /, <, >, 6, >, =
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Interpretation of expressions
J K : (V → R⊥)→ E → R⊥

- distribution: δ : V → R⊥

- JvKδ = δ(v)
- 0 stands for false any value in R \ {0} stands for true
- J¬K : R⊥ → R⊥,

J¬K(0) = 1, and
J¬K(x) = 0 for all x ∈ R \ {0}

- JeK = ⊥ for all expression e in which ⊥ occurs
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Interpretation of expressions
J K : (V → R⊥)→ E → R⊥

- distribution: δ : V → R⊥
- JvKδ = δ(v)

- 0 stands for false any value in R \ {0} stands for true
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J¬K(0) = 1, and
J¬K(x) = 0 for all x ∈ R \ {0}
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Interpretation of expressions
J K : (V → R⊥)→ E → R⊥

- distribution: δ : V → R⊥
- JvKδ = δ(v)
- 0 stands for false any value in R \ {0} stands for true

- J¬K : R⊥ → R⊥,
J¬K(0) = 1, and
J¬K(x) = 0 for all x ∈ R \ {0}

- JeK = ⊥ for all expression e in which ⊥ occurs
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Interpretation of expressions
J K : (V → R⊥)→ E → R⊥

- distribution: δ : V → R⊥
- JvKδ = δ(v)
- 0 stands for false any value in R \ {0} stands for true
- J¬K : R⊥ → R⊥,

J¬K(0) = 1, and
J¬K(x) = 0 for all x ∈ R \ {0}

- JeK = ⊥ for all expression e in which ⊥ occurs
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Interpretation of expressions
J K : (V → R⊥)→ E → R⊥

- distribution: δ : V → R⊥
- JvKδ = δ(v)
- 0 stands for false any value in R \ {0} stands for true
- J¬K : R⊥ → R⊥,

J¬K(0) = 1, and
J¬K(x) = 0 for all x ∈ R \ {0}

- JeK = ⊥ for all expression e in which ⊥ occurs
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Interpretation of actions
J K : (V → R⊥)→ V → E → (V → R⊥)

- v : variable, e: expression, δ: distribution
- v := e is called an action, A set of all the actions

- Jv := eKδ is the distribution as follows
Jv := eKδ(v) = JeKδ
Jv := eKδ(v ′) = δ(v ′) for v ′ 6= v
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Interpretation of actions
J K : (V → R⊥)→ V → E → (V → R⊥)

- v : variable, e: expression, δ: distribution
- v := e is called an action, A set of all the actions
- Jv := eKδ is the distribution as follows

Jv := eKδ(v) = JeKδ
Jv := eKδ(v ′) = δ(v ′) for v ′ 6= v
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- v : variable, e: expression, δ: distribution
- v := e is called an action, A set of all the actions
- Jv := eKδ is the distribution as follows
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Interpretation of actions
J K : (V → R⊥)→ V → E → (V → R⊥)

- v : variable, e: expression, δ: distribution
- v := e is called an action, A set of all the actions
- Jv := eKδ is the distribution as follows

Jv := eKδ(v) = JeKδ
Jv := eKδ(v ′) = δ(v ′) for v ′ 6= v
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Control Flow Graphs
A: arrows, V : control points, A: actions

G : A
∂-
//

∂+
// V and λ : A→ A

- Φ : V → (E × A)∗

if Φ(v) = [(e1, α1), . . . , (ek , αk)]
then ∂-αi = v for all v ∈ V and all i ∈ {1, . . . , k}

- v0 ∈ V the starting point
- (G , λ,Φ, v0) is the middle-end representation
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A: arrows, V : control points, A: actions

G : A
∂-
//

∂+
// V and λ : A→ A

- Φ : V → (E × A)∗

if Φ(v) = [(e1, α1), . . . , (ek , αk)]
then ∂-αi = v for all v ∈ V and all i ∈ {1, . . . , k}

- v0 ∈ V the starting point
- (G , λ,Φ, v0) is the middle-end representation
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A: arrows, V : control points, A: actions

G : A
∂-
//

∂+
// V and λ : A→ A

- Φ : V → (E × A)∗

if Φ(v) = [(e1, α1), . . . , (ek , αk)]
then ∂-αi = v for all v ∈ V and all i ∈ {1, . . . , k}

- v0 ∈ V the starting point

- (G , λ,Φ, v0) is the middle-end representation
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Control Flow Graphs
A: arrows, V : control points, A: actions

G : A
∂-
//

∂+
// V and λ : A→ A

- Φ : V → (E × A)∗

if Φ(v) = [(e1, α1), . . . , (ek , αk)]
then ∂-αi = v for all v ∈ V and all i ∈ {1, . . . , k}

- v0 ∈ V the starting point
- (G , λ,Φ, v0) is the middle-end representation
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Sequential
Virtual Machine

- δ0 : initial state (with the starting point v0)

- (vn, δn): current state
suppose Φ(vn) = [(e1, α1), . . . , (ek , αk)]
define i = min{j ∈ {1, . . . , k} | JejKδn is true}
if i exists then vn+1 = ∂+αi and δn+1 = Jλ(αi )Kδn
otherwise the induction stops

- deterministic behavior and output
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- deterministic behavior and output
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Sequential
Virtual Machine

- δ0 : initial state (with the starting point v0)
- (vn, δn): current state

suppose Φ(vn) = [(e1, α1), . . . , (ek , αk)]
define i = min{j ∈ {1, . . . , k} | JejKδn is true}
if i exists then vn+1 = ∂+αi and δn+1 = Jλ(αi )Kδn
otherwise the induction stops

- deterministic behavior and output
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An example
The Hasse/Syracuse algorithm

input x;

while x 6=1

do

if x mod 2 = 0

then x:=x/2

else x:=3∗x+1

done



MSC - Lyon 2014

Parallelisms

Virtual Machines

Middle-End

Dynamics

Concurrency

Generalizing graphs

Control flow

PV language

An example
The Hasse/Syracuse algorithm

input x;

while x 6=1

do

if x mod 2 = 0

then x:=x/2

else x:=3∗x+1

done



MSC - Lyon 2014

Parallelisms

Virtual Machines

Middle-End

Dynamics

Concurrency

Generalizing graphs

Control flow

PV language

An example
The Hasse/Syracuse algorithm

x = 1

input x;

while x 6=1

do

if x mod 2 = 0

then x:=x/2

else x:=3∗x+1

done
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An example
The Hasse/Syracuse algorithm

input x;

while x 6=1
x 6= 1

do

if x mod 2 = 0

then x:=x/2

else x:=3∗x+1

done
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An example
The Hasse/Syracuse algorithm

input x;

while x 6=1

do

if x mod 2 = 0

x is eventhen x:=x/2

else x:=3∗x+1

done
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An example
The Hasse/Syracuse algorithm

input x;

while x 6=1

do

if x mod 2 = 0

x is odd

then x:=x/2

else x:=3∗x+1

done
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An example
The Hasse/Syracuse algorithm

input x;

while x 6=1

do

if x mod 2 = 0

then x:=x/2

else x:=3∗x+1

done
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An example
The Hasse/Syracuse algorithm

input x;

while x 6=1

do

if x mod 2 = 0

then x:=x/2

else x:=3∗x+1

done
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An example
The Hasse/Syracuse algorithm

input x;

while x 6=1

do

if x mod 2 = 0

then x:=x/2

else x:=3∗x+1

done

ω

α

γ δ

α stands for input x

ω stands for “exit”

γ stands for x:=x/2

δ stands for x:=3*x+1
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An execution trace
Hasse/Syracuse algorithm

input x;

while x 6=1

do

if x mod 2 = 0

then x:=x/2

else x:=3∗x+1

done

ω

α

γ δ
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An execution trace
Hasse/Syracuse algorithm

input x; x = 7

while x 6=1

do

if x mod 2 = 0

then x:=x/2

else x:=3∗x+1

done

ω

αα

γ δ

αα



MSC - Lyon 2014

Parallelisms

Virtual Machines

Middle-End

Dynamics

Concurrency

Generalizing graphs

Control flow

PV language

An execution trace
Hasse/Syracuse algorithm

input x;

while x 6=1

do

if x mod 2 = 0

x = 22

then x:=x/2

else x:=3∗x+1

done

ω

α

γ δδ

α δδ
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An execution trace
Hasse/Syracuse algorithm

input x;

while x 6=1

do

if x mod 2 = 0
x = 11

then x:=x/2

else x:=3∗x+1

done

ω

α

γγ δ

α δ γγ
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An execution trace
Hasse/Syracuse algorithm

input x;

while x 6=1

do

if x mod 2 = 0

x = 34

then x:=x/2

else x:=3∗x+1

done

ω

α

γ δδ

α δ γ δδ
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An execution trace
Hasse/Syracuse algorithm

input x;

while x 6=1

do

if x mod 2 = 0
x = 17

then x:=x/2

else x:=3∗x+1

done

ω

α

γγ δ

α δ γ δ γγ
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An execution trace
Hasse/Syracuse algorithm

input x;

while x 6=1

do

if x mod 2 = 0

x = 52

then x:=x/2

else x:=3∗x+1

done

ω

α

γ δδ

α δ γ δ γ δδ
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An execution trace
Hasse/Syracuse algorithm

input x;

while x 6=1

do

if x mod 2 = 0
x = 26

then x:=x/2

else x:=3∗x+1

done

ω

α

γγ δ

α δ γ δ γ δ γγ
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An execution trace
Hasse/Syracuse algorithm

input x;

while x 6=1

do

if x mod 2 = 0
x = 13

then x:=x/2

else x:=3∗x+1

done

ω

α

γγ δ

α δ γ δ γ δ γ γγ
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An execution trace
Hasse/Syracuse algorithm

input x;

while x 6=1

do

if x mod 2 = 0

x = 40

then x:=x/2

else x:=3∗x+1

done

ω

α

γ δδ

α δ γ δ γ δ γ γ δδ
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An execution trace
Hasse/Syracuse algorithm

input x;

while x 6=1

do

if x mod 2 = 0
x = 20

then x:=x/2

else x:=3∗x+1

done

ω

α

γγ δ

α δ γ δ γ δ γ γ δ γγ
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An execution trace
Hasse/Syracuse algorithm

input x;

while x 6=1

do

if x mod 2 = 0
x = 10

then x:=x/2

else x:=3∗x+1

done

ω

α

γγ δ

α δ γ δ γ δ γ γ δ γ γγ
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An execution trace
Hasse/Syracuse algorithm

input x;

while x 6=1

do

if x mod 2 = 0
x = 5

then x:=x/2

else x:=3∗x+1

done

ω

α

γγ δ

α δ γ δ γ δ γ γ δ γ γ γγ
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An execution trace
Hasse/Syracuse algorithm

input x;

while x 6=1

do

if x mod 2 = 0

x = 16

then x:=x/2

else x:=3∗x+1

done

ω

α

γ δδ

α δ γ δ γ δ γ γ δ γ γ γ δδ
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An execution trace
Hasse/Syracuse algorithm

input x;

while x 6=1

do

if x mod 2 = 0
x = 8

then x:=x/2

else x:=3∗x+1

done

ω

α

γγ δ

α δ γ δ γ δ γ γ δ γ γ γ δ γγ
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An execution trace
Hasse/Syracuse algorithm

input x;

while x 6=1

do

if x mod 2 = 0
x = 4

then x:=x/2

else x:=3∗x+1

done

ω

α

γγ δ

α δ γ δ γ δ γ γ δ γ γ γ δ γ γγ
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An execution trace
Hasse/Syracuse algorithm

input x;

while x 6=1

do

if x mod 2 = 0
x = 2

then x:=x/2

else x:=3∗x+1

done

ω

α

γγ δ

α δ γ δ γ δ γ γ δ γ γ γ δ γ γ γγ
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An execution trace
Hasse/Syracuse algorithm

input x;

while x 6=1
x = 1

do

if x mod 2 = 0

then x:=x/2

else x:=3∗x+1

done

ω

α

γγ δ

α δ γ δ γ δ γ γ δ γ γ γ δ γ γ γ γγ
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An execution trace
Hasse/Syracuse algorithm

input x;

while x 6=1

do

if x mod 2 = 0

then x:=x/2

else x:=3∗x+1

done

ωω

α

γ δ

α δ γ δ γ δ γ γ δ γ γ γ δ γ γ γ γ ωω
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Execution traces of a program
as paths over its control flow graph

- Any execution trace induces a path
- Some paths do not come from an execution trace

Therefore the collection of all paths provides a (strict)
overapproximation of the collection of execution traces

The (infinite) collection of paths is entirely determined by the

(finite) control flow graph
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Execution traces of a program
as paths over its control flow graph

- Any execution trace induces a path
- Some paths do not come from an execution trace

Therefore the collection of all paths provides a (strict)
overapproximation of the collection of execution traces

The (infinite) collection of paths is entirely determined by the

(finite) control flow graph
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Execution traces of a program
as paths over its control flow graph

- Any execution trace induces a path
- Some paths do not come from an execution trace

Therefore the collection of all paths provides a (strict)
overapproximation of the collection of execution traces

The (infinite) collection of paths is entirely determined by the

(finite) control flow graph
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The overall idea
of Static Analysis

The model of a program should be the finite representation of an

overapproximation of the collection of all its execution traces.
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The parallel composition operator
Enabling several actions to be performed at the same time

- Middle-end: d-sequence of control flow graphs
- Shared memory: all variables can be seen by all processes
- State: a d-uple of control points with a single distribution
- The virtual machine has to be adapted accordingly
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The parallel composition operator
Enabling several actions to be performed at the same time

- Middle-end: d-sequence of control flow graphs

- Shared memory: all variables can be seen by all processes
- State: a d-uple of control points with a single distribution
- The virtual machine has to be adapted accordingly
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The parallel composition operator
Enabling several actions to be performed at the same time

- Middle-end: d-sequence of control flow graphs
- Shared memory: all variables can be seen by all processes

- State: a d-uple of control points with a single distribution
- The virtual machine has to be adapted accordingly
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The parallel composition operator
Enabling several actions to be performed at the same time

- Middle-end: d-sequence of control flow graphs
- Shared memory: all variables can be seen by all processes
- State: a d-uple of control points with a single distribution

- The virtual machine has to be adapted accordingly
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- {Objects of �+} = N

- �+[n,m] =
{words of length m on {0, 1, x} with n occurences of x}
empty when n > m; singleton when n = m

- idn = xn

- ∂-
i
∼= (x · · · x 0︸︷︷︸

i th

x · · · x) and ∂+
i
∼= (x · · · x 1︸︷︷︸
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- if w : a→ b and w ′ : b → c then w ′w is obtained
replacing the i th occurrence of x in w ′

by the i th letter of w .
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Tensor product
of precubical sets

Given precubical sets K and K ′ of dimension p and q, the
set of n-cubes for 0 6 n 6 p + q

(K ⊗ K ′)n =
⊔

i+j=n

Ki × Kj

For x ⊗ y ∈ Ki × K ′j with i + j = n the kth face map, with
0 6 k < n, is given by

∂±k (x ⊗ y) =

{
∂±k (x)⊗ y if 0 6 k < i
x ⊗ ∂±k−py) if i 6 k < n
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True concurrency - discrete version
Virtual Machine

- get rid of the global clock

- an execution step from ((v1, . . . , vd), δ) becomes
a multiset M on {1, . . . , d}

- need a total order on multisets to provide a global choice
- interleaving model only allows M such that |M| = 1
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True concurrency - discrete version
Virtual Machine

- performing M only makes sense under the sheaf condition:
for all finite sequences s of length `

with elements in {1, . . . , d} and satisfying
#{i | si = k} 6 M(k) for all k ∈ {1, . . . , d},

the intermediate state of the interleaving execution at step
` from the inital state (v1, . . . , vd , δ) and according to
the global choice s, only depends on the multiset
k 7→ #{i | si = k}.
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True concurrency - discrete version
Control flow from tensor product of control flow graphs

(process p) x:=0 ; x:=2|

(process q) x:=1 ; x:=2

XXXXX

- p + q ⊆ 2p + 2q
- 2p + 2q is compatible yet p + q is not
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True concurrency - discrete version
Virtual Machine

(process p) x:=y ; x:=2|

(process q) x:=z ; x:=2
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?

XXXXX

- filling square may depend on the current distribution
- solution: actions with disjoint sets of occuring variables
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The control flow precubical set
Middle-end representation taking race conditions into account

- G1 ⊗ · · · ⊗ Gd tensor product of the control flow graphs

- Labelling all cubes of dimenson 1 6 k 6 d by
λ(α1 ⊗ · · · ⊗ αk) = λ1(α1), · · · , λk(αk) for k 6 d

- remove all cubes α1 ⊗ · · · ⊗ αk s.t. there are
1 6 i < j 6 k whose actions λi (αi ) and λj(αj)
share some variable
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True concurrency - discrete version
Virtual Machine

- the true concurrency virtual machine is thus well-defined

- language extension paradigm:
parallelize as much as possible

- a weak form of synchronization remains...
...continuous models are not far

- how do we deal with nondeterminacy?
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The PV language
Dijkstra 68 - Input language for ALCOOL in an extended form

- Sem: set of semaphores with arity in N \ {0, 1}

- Mtx : set of mutex, an alias for a semaphore of arity 2
- A semaphore x of arity n is a resource offering n− 1 tokens,

each process can hold one token or more
- a process acquire a token executing the instruction P(x)

and release it executing the instruction V(x)

- A mutex can be held by only one process at the time
- Trying to perform P(x) though x is not available

blocks the execution unless x is a mutex
already held by the process

- the instruction V(x) is not blocking
- Wait: set of synchronization bareers with arity in N \ {0, 1}
- Instruction W(x) blocks the execution of the process

until n (arity of x) processes are blocked by x

then all the execution are resumed at the same time
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Extending the middle-end representation
Potential function along a path

- R = {semaphores and mutex}

- distribution: δ : V ∪R → N

JP(a)Kδ(x) =

{
δ(x) if x 6=a

δ(a) + 1 if x =a

JV(a)Kδ(x) =

{
δ(x) if x 6=a

max{0, δ(a)− 1} if x =a

JW(a)K = ignored
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Extending the middle-end representation
Conservative process

- γ = γ1, . . . , γn a path on a cfg, then by definition
JγK · δ = Jλ(γn)K · · · Jλ(γ1)K · δ
is the action of the path γ on the distribution δ

- A process is conservative when for all paths γ, γ′ on its
cfg, all x ∈ R and all distributions δ

∂-γ = ∂-γ′ and ∂+γ = ∂+γ′ ⇒ JγK · δ(x) = Jγ′K · δ(x)
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Being conservative
is decidable

- approximation: a mapping from V to 2N
R

- s ⊆ s ′ means s(v) ⊆ s ′(v) for all v ∈ V
- {s0, . . . , sn} inductively defined as follows:

The initial term s0 is defined by s0(v0) = {δ0}, and
s0(v) = ∅ for v 6= v0.
Assuming sn is built, sn+1 is defined for all v ∈ V by

sn+1(v) = sn(v) ∪
⋃

f ∈A; ∂+f =v ; λ(f )∈{P,V}

f · sn(∂-f )
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Being conservative
induces a potential function

- The induction stops at the nth step when either of the
following property is satisfied:

sn = sn−1: ‘true’, or
there exists some v ∈ V such that #sn(v) > 2: ‘false’

- in the first case we have the potential function
F : V ×R → N defined by
F (v , x) = δ(x) where sn(v) = {δ}
note that if sn(v) = ∅ then v is unreachable
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The potential function
of a PV program P1| · · · |Pd

- assume each Pk is conservative
and Fk the associated potential function

- let K0 = V1 × · · · × Vd the 0-dimensional cubes of the
control flow precubical set K obtained
by ignoring instructions P, V, and W

- The potential function F : K0 ×R → N is

F (v1, . . . , vd , x) =
d∑

k=1

Fk(vk , x)
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The control flow precubical set
taking P, V, and W into account

- Remove from K all v such that
F (v , x) > arity(x) for some semaphore or mutex x

- replace each n-cubes c whose edges carrying W(x)

for some synchronization bareer x of arity n
by an arrow low(c)→ up(c)

- remove all arrows carrying W(x)

for some synchronization bareer x
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Control Flow Precubical Set: an example
y:=0.W(b).P(a).x:=z.V(a)|z:=0.W(b).P(a).x:=y.V(a)

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)



MSC - Lyon 2014

Parallelisms

Virtual Machines

Middle-End

Dynamics

Concurrency

Generalizing graphs

Control flow

PV language

Control Flow Precubical Set: an example
y:=0.W(b).P(a).x:=z.V(a)|z:=0.W(b).P(a).x:=y.V(a)

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)



MSC - Lyon 2014

Parallelisms

Virtual Machines

Middle-End

Dynamics

Concurrency

Generalizing graphs

Control flow

PV language

Control Flow Precubical Set: an example
y:=0.W(b).P(a).x:=z.V(a)|z:=0.W(b).P(a).x:=y.V(a)

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)



MSC - Lyon 2014

Parallelisms

Virtual Machines

Middle-End

Dynamics

Concurrency

Generalizing graphs

Control flow

PV language

Control Flow Precubical Set: an example
y:=0.W(b).P(a).x:=z.V(a)|z:=0.W(b).P(a).x:=y.V(a)

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)



MSC - Lyon 2014

Parallelisms

Virtual Machines

Middle-End

Dynamics

Concurrency

Generalizing graphs

Control flow

PV language

Control Flow Precubical Set: an example
y:=0.W(b).P(a).x:=z.V(a)|z:=0.W(b).P(a).x:=y.V(a)

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)



MSC - Lyon 2014

Parallelisms

Virtual Machines

Middle-End

Dynamics

Concurrency

Generalizing graphs

Control flow

PV language

Control Flow Precubical Set: an example
y:=0.W(b).P(a).x:=z.V(a)|z:=0.W(b).P(a).x:=y.V(a)

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)



MSC - Lyon 2014

Parallelisms

Virtual Machines

Middle-End

Dynamics

Concurrency

Generalizing graphs

Control flow

PV language

Control Flow Precubical Set: an example
y:=0.W(b).P(a).x:=z.V(a)|z:=0.W(b).P(a).x:=y.V(a)

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)



MSC - Lyon 2014

Parallelisms

Virtual Machines

Middle-End

Dynamics

Concurrency

Generalizing graphs

Control flow

PV language

Control Flow Precubical Set: an example
y:=0.W(b).P(a).x:=z.V(a)|z:=0.W(b).P(a).x:=y.V(a)

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)



MSC - Lyon 2014

Parallelisms

Virtual Machines

Middle-End

Dynamics

Concurrency

Generalizing graphs

Control flow

PV language

Control Flow Precubical Set: an example
y:=0.W(b).P(a).x:=z.V(a)|z:=0.W(b).P(a).x:=y.V(a)

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)



MSC - Lyon 2014

Parallelisms

Virtual Machines

Middle-End

Dynamics

Concurrency

Generalizing graphs

Control flow

PV language

Control Flow Precubical Set: an example
y:=0.W(b).P(a).x:=z.V(a)|z:=0.W(b).P(a).x:=y.V(a)

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)



MSC - Lyon 2014

Parallelisms

Virtual Machines

Middle-End

Dynamics

Concurrency

Generalizing graphs

Control flow

PV language

Control Flow Precubical Set: an example
y:=0.W(b).P(a).x:=z.V(a)|z:=0.W(b).P(a).x:=y.V(a)

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)



MSC - Lyon 2014

Parallelisms

Virtual Machines

Middle-End

Dynamics

Concurrency

Generalizing graphs

Control flow

PV language

Control Flow Precubical Set: an example
y:=0.W(b).P(a).x:=z.V(a)|z:=0.W(b).P(a).x:=y.V(a)

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)



MSC - Lyon 2014

Parallelisms

Virtual Machines

Middle-End

Dynamics

Concurrency

Generalizing graphs

Control flow

PV language

Control Flow Precubical Set: an example
y:=0.W(b).P(a).x:=z.V(a)|z:=0.W(b).P(a).x:=y.V(a)

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)



MSC - Lyon 2014

Parallelisms

Virtual Machines

Middle-End

Dynamics

Concurrency

Generalizing graphs

Control flow

PV language

Control Flow Precubical Set: an example
y:=0.W(b).P(a).x:=z.V(a)|z:=0.W(b).P(a).x:=y.V(a)

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)



MSC - Lyon 2014

Parallelisms

Virtual Machines

Middle-End

Dynamics

Concurrency

Generalizing graphs

Control flow

PV language

Control Flow Precubical Set: an example
y:=0.W(b).P(a).x:=z.V(a)|z:=0.W(b).P(a).x:=y.V(a)

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)



MSC - Lyon 2014

Parallelisms

Virtual Machines

Middle-End

Dynamics

Concurrency

Generalizing graphs

Control flow

PV language

Control Flow Precubical Set: an example
y:=0.W(b).P(a).x:=z.V(a)|z:=0.W(b).P(a).x:=y.V(a)

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)



MSC - Lyon 2014

Parallelisms

Virtual Machines

Middle-End

Dynamics

Concurrency

Generalizing graphs

Control flow

PV language

Control Flow Precubical Set: an example
y:=0.W(b).P(a).x:=z.V(a)|z:=0.W(b).P(a).x:=y.V(a)

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)


	Different kinds of parallelism
	Virtual Machines
	Middle-End Representation
	Execution model

	Concurrency
	Generalizing graphs
	Control flow precubical set
	The extended PV language


