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euclidean ordered bases
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Ordered manifolds, invariant cone fields, and semigroups. Lawson, J. D., Forum Mathematicum, 1989.
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(W, <) € B such that p € (W, <,,)—(U,<,), (V,<,). NB: < means ‘subposet of".

An ordered base £ is said to be euclidean of dimension n € N when every point p of £ is contained in some E € £ with
E = R" (as ordered spaces).
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A map f:U — Vis locally order-preserving (resp. a local embedding) when for every point p of U, every (V,<,) € V
with f(p) € V, there exists (U, <,) € U with p € U such that f(U) C V and f is order-preserving (resp. an embedding)
from (U, <) to (V,<,).

A local dihomeomorphism is an open local embedding.
If U is euclidean, then f is said to be a euclidean.
If U is a directed compact interval, then f is said to be a directed path on V.
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The standard ordered base of G is the collection of ordered open balls of radii ¢ < 5 with their ‘canonical’ partial order.
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BLOWING UP SINGULARITIES
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src

I1G|| = (G“)x]o,l[)u{(a, b) € GVx G | tgt(a) = src(b)} :  set

For small € > 0, the e-neighborhoods of (a, t) and (a, b) are

{{a}x]t—e,t—i—a[ (for e < min{t,1— t})
{a} x]1 —e,1[ U {(a,b)} U {b} x]0,¢[ (fore < 3)
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G=| GY" — G :  graph

IG|| = (G(”x]o,l[)u{(a, b) € GVx G | tgt(a) = src(b)} :  set

For small € > 0, the e-neighborhoods of (a, t) and (a, b) are

{ {a} x|t —e, t +¢] (for e < min{t,1— t})
{a} x]1 —¢,1] U {(a,b)} U {b} x]0,e[ (fore <

The standard ordered base £ of G is the collection of e-neighborhoods
(each of them being equipped with the obvious total order); it is euclidean.






The blowup of G is the map
Be = lIGI — G|
(a,b) — tgt(a)(= src(b))
(at) — (a,1)



The blowup of G is the map

Be + G| — |G
(a,b) +— tgt(a)(= src(b))
(a,t) — (a,t)

The map f; induces a euclidean local embedding from &; to X.



Theorem (Universal property of graph blowups)

For every euclidean local embedding f : £ — X, x --- x X, of dimension n, there is a unique

continuous map g : € — &, x --- x & such that f = Bog with § = 3o, x --- x B.; moreover
g Is a euclidean local dihomeomorphism.




























FROM CONTINUOUS TO SMOOTH






The standard charts of ||G|| are the following bijections
¢, : {a}x]0,1[ — 10,1[, and

65 = fabx]31[U{(ab)} U {b}x]0.3[ — ]-3.3]
with  (a,t) —»t—1, (a,b)—0, (b, t)—>t

for all arrows a and all 2-tuples of arrows (a, b) such that tgt(a) = src(b).
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65 = fabx]31[U{(ab)} U {b}x]0.3[ — ]-3.3]
with  (a,t) —»t—1, (a,b)—0, (b, t)—>t

for all arrows a and all 2-tuples of arrows (a, b) such that tgt(a) = src(b).
The standard atlas Ag of G is the collection of its standard charts.

The transition maps are translations:

buodt it el = t—1 € ]-3,0]
ppod,t it €]0,3 = t e 101
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Given ¢ and ¢ standard charts of G, we have d(¢p o ¢ 1), , = idg.

(P
If uand v represent the same tangent vector in the standard charts ¢ and v, then u = v.

TA¢ = AgxR and bAc = {p} xR

The standard vector field on the standard atlas is

Ac — TAg
p — (p1)
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Ty(tu) = (v(),7'(t) - v).



A curve is a smooth map defined on an open interval of R; a smooth path is the restriction of
a curve to a compact subinterval.

For every smooth path v on Ag, every ¢ € Ag we have
Ty(t,u) = ((t),7'(t) - u) .

The tangent vector to v at t is of the form (v(t),~/(t)); v is locally order-preserving iff
~/(t) = 0 for every t.






Proposition (standard vector field vs standard ordered base)

For every ¢ € Ag, for all p, g € dom(¢), we have p < q (with (dom(¢), <) € Eg) iff there
exists a smooth path ~v on Ag from p to q with im(y) C dom(¢) andy' >0, i.e. poyisa
smooth map between open intervals of R with nonnegative derivative, min(¢oy) = ¢(p), and

max(¢ o v) = ¢(q).




APPROXIMATION






From every norm |_| on R" one defines the length of a smooth path v = (y1,...,7a) on Ag x -+ x Ag, by

L) = / _ (e

with 4/ (t) = (v1(t),...,75(t)) the coordinates of the tangent vector to 7y at t in the standard base
((y1(t),1),..., (ya(t), 1)) of the tangent space at (t).
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We also define the distance between p, g € |Gi| x -+ x |G, as d(p, q) = |de.(pr, &), - - -, de, (s, g.)| from which we
deduce the length L(v) of any path v on |G1| x -+ x |Gp].
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From every norm |_| on R" one defines the length of a smooth path v = (y1,...,7a) on Ag x -+ x Ag, by

L) = / _ (e

with 4/ (t) = (v1(t),...,75(t)) the coordinates of the tangent vector to 7y at t in the standard base
((y1(t),1),..., (ya(t), 1)) of the tangent space at (t).

We also define the distance between p, g € |Gi| x -+ x |G, as d(p, q) = |de.(pr, &), - - -, de, (s, g.)| from which we
deduce the length L(v) of any path v on |G1| x -+ x |Gp].

If 6 is a smooth path on Ag, x --- x Ag, then L£(6) = L((Be, x --- x B¢,) 00).

Sh X Riemannian

|X1: ce 7Xn‘2

> |xil cumulative execution time

|X17"'7Xn‘1

[X1,. . s Xnloo = max{xi,...,xn} parallel execution time
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A subset X of |G,| x --- x |G,| is said to be tile compatible when for all p, g € |G,| x --- x |G,| such that
(e -3 76)(P) = (Tay - - -, 76,)(q), we have p € X iff g € X.

The standard cone of Ag x +++ x Ag at p=(py,...,p,) is the cone G, = {327 1(p, A) | A =2 0} C T,(Ag x -+ xAg).

A conal path on a subset Y of ||G,|| x --- x ||G,|| is a smooth path 6 on Ag x --- x A; such that §(t) € Y and
To(t) € Gy, for every t € dom(9).

Theorem (Approximation)

For every directed path v = (v, ...,7,) on a tile compatible subset X of |G| x -+ x
conal path § = (6,,...,8,) on (Bs x -+ x B6) " (X) such that:

— v and (B¢ x -+ x Bg,) 00 start (resp. finish) at the same point,

— max {d,(7(t), B.(6,(t))) | t €dom(); i € {1,...,n}} <&, and

- L.(8) < L ().

G,

, and every € > 0, there exists a




