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In this paper we describe a model of concurrency together with an algebraic structure reflecting the
parallel composition. For the sake of simplicity we restrict to linear concurrent programs i.e. the
ones with no loops nor branchings. Such programs are given a semantics using cubital areas that
we call geometric. The collection of all these cubical areas enjoys a structure of tensor product in
the category of semi-lattice with zero. These results naturally extend to fully fledged concurrent
programs up to some technical tricks.

1 Introduction

In the two last decades, many geometrical or topological models of concurrent programs have emerged
[6, 5, 15, 16, 11, 7, 14]. We are especially interested in a simple geometrical one based on the so-called
n-dimensional cubical areas which model the control flow for parallel composition of threads without
loops nor branchings . Their collection actually forms a boolean algebra BRn whose operations are
crucial in [3]. The purpose of our paper is to formalize the fact these operations are actually deduced
from their much simpler analog in BR. Formally we prove the tensor product of two boolean algebras
is still a boolean algebra when it is taken in the category of semilattice with zero (SLat0). We then show
the boolean algebra BRn , which is in particular a semilattice with zero, can be seen as such a product.

The class of concurrent program we study arises from a toy language manipulating mutex. Using
Djikstra’s notation [6], we consider processes to be sequences of locking operations Pa on mutex a and
unlocking operations Va. To each concurrent programs made of n processes we have a subset of Rn

representing the consistent states. By construction, such subsets of Rn are finite union of n-cubes, they
are called cubical areas. The points of this subset are to be considered as the states of the PV program.
Holes in this subsets arise from synchronizations between processes. The set of increasing paths on it
then overapproximate the collection of execution traces, and we have a natural equivalence relation upon
increasing paths such that equivalent paths have the same effect over the system [7].

We provide a motivating example for the result to be developped in the paper. Consider the follow-
ing program, written in PV language [6], that consists of two parallel processes T1 = Pa.Pb.V b.Va and
T2 = Pb.Pa.Va.V b where a and are mutex. Any PV program can be given a geometric semantics [5], in
our specific example it boils down to the so-called “Swiss flag”, Fig 1, regarded as a subset of R2. The
(interior of the) horizontal rectangle comprises global states that are such that T 1 and T 2 both hold a
lock on a, which is not allowed by the very definition of a mutex. Similarly, the (interior of the) vertical
rectangle consists of states violating the mutual exclusion property on b. Therefore both rectangles form
the inconsistent states, which is the complement of JT1|T2K the cubical area of (consistent) states i.e. the
model of the program. A cubical area (of dimension n) is a finite union of n-dimensional parallelepipeds
(or n-cubes for short) i.e. n-fold cartesian products of intervals of R. All geometric models of PV pro-
grams actually arise as cubical areas whose dimension is the number of processes the program is made
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Figure 1: The Swiss flag; At the left the forbiden region of mutex a, at the center the forbiden region of
mutex b, and the union of the two

of. More precisely the algorithm producing the geometric model of a PV program first returns the cubical
area of its inconsistent states and then compute the set theoretic complement of the later to obtain the
actual model of the program. For example the deadlock attractor of the program i.e. the subset of points
of the geometric model from which all emerging paths can be extended to a path ending at a deadlock, is
also a cubical area. In fact the collection of n-dimensional cubcical areas form a boolean subalgebra of
the powerset 2R

n
. Moreover the cubical areas can be handled automatically which makes them suitable

for implementation, this practical fact is at the origin of our interest for them. It is also worth to notice the
boolean algebra of cubical sets actually provides the ground upon which the static analyzer ALCOOL is
based. There is another crucial property of the geometric semantics of the PV language. Suppose we are
given two groups of processes P1, . . . ,Pn and Q1, . . . ,Qm so their sets of occuring resources are disjoint,
then

JP1| · · · |Pn|Q1| · · · |QmK = JP1| · · · |PnK× JQ1| · · · |QmK

from which one can (rather easily) deduces that

BJP1|···|Pn|Q1|···|QmK = BJP1|···|PnK⊗BJQ1|···|QmK

where BJXK denotes the boolean algebra of subareas of the model JXK of a PV program X . Conversely
one may ask whether a tensor decomposition of BJXK indicate a potential parallelization of X i.e. gatering
its processes in groups that do not interact with each other; and even more theoretically whether BJXK
admits a prime decomposition [3]. The purpose of this paper is to define and study the aforementioned
tensor product.

First remark the 1-dimensional cubical areas are the finite unions of intervals of the real line. Then
our main goal is to prove the boolean structure of n-dimensional cubical areas is the n-fold tensor prod-
uct of the boolean algebra 1-dimensional cubical areas. The main obstacle is that tensor product in the
category of boolean algebras is degenerated and so inapropriate. Yet we have finally discovered the right
category for our purpose is the one of semilattices with zero. It is worth to notice the zero hypothesis
(the presence of a least element) cannot be dropped.

Outline of the paper.
Section 2 defines cubical areas, and provides details about their structure of boolean algebra. Section 3
introduces the notion of tensor product in a category, and show that the tensor product of two boolean
algebras in SLat0 is still a boolean algebra. Section 4 relates the boolean algebra of cubical areas to the
tensor product by proving BR⊗BR 'BR2 .
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2 Cubical Area

A cube of dimension n ∈ N (or just n- cube) is the set product of a n-uple of (potentially unbounded)
intervals of the real line R. It is therefore a subset of Rn. A maximal subcube of X ⊆Rn is a cube C⊆ X
such that C =C′ holds for all cubes C′ such that C ⊆C′ ⊆ X . The union of any ⊆-chain of n-cubes is a
cube. As a consequence any subcube of X is contained in a maximal subcube of X . A cubical cover of
X is a family of cubes whose union is X . Then define α(X) as the collection of all maximal subcubes of
X . Given C and C ′ two families of n-cubes define γ(C ) as the union of all the elements of C and write
C 4 C ′ when any element of C is contained in some element of C ′. We call a cubical area the subset
of Rn admitting a finite cubical cover.

Example of a cubical area of R2

Cubical Area X maximal cubes of X A covering of X with 4 cubes

Lemma 2.1 Let C and C ′ be families of n-cubes that contains all the maximal subcubes of their unions
γ(C ) and γ(C ′). Then the family of n-cubes

{C∩C′ |C ∈ C and C′ ∈ C ′}

contains all the maximal subcubes of γ(C )∩ γ(C ′).

Let C′′ be a subcube of γ(C )∩ γ(C ′) and let C and C′ be subcubes of γ(C ) and γ(C ′) respectively such
that C′′ ⊆C and C′′ ⊆C′. Then C∩C′ is a subcube of γ(C )∩ γ(C ′) containing C′′.

Lemma 2.2 The complement of any n-cube admits at most 2n maximal subcubes

Let I1×·· ·× In be a cube, then any maximal subcube of its complement can be written as

R×·· ·×Jk︸︷︷︸
kth position

×·· ·×R

with Jk being a maximal subinterval of the complement of Ik in R. Given X ⊆Rn we denote the comple-
ment of X in Rn by Xc.

Proposition 2.1 A subset of Rn is a cubical area iff it has finitely many maximal subcubes.

Corollary 2.1 The collection BRn of all the n-cubical areas is a sub boolean algebra of the powerset of
Rn.

The empty set and Rn are cubical areas. From what we saw above it is quite clear that BRn is stable
under complement and binary intersection. From De Morgan laws it is also stable under binary unions .
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3 Tensor Product of Boolean Algebra

Tensor products of vector spaces are well-known, but it exists in many other categories equiped with a for-
getful functor to Set [4]. Examples of such categories that matters to us are boolean algebra,distributive
lattices, semilattices with zero etc .

Given A, B and X three object of the same category, a bimorphism from A,B to X is a set theo-
retic map f : A×B→ X such that for all a ∈ A and for all b ∈ B the mappings f (a, ) : B→ X and
f ( ,b) : A→ X are morphisms. Being given an object X of the category and a bimorphism i : A×B→ X
we say that X is a tensor product of A×B if for every object C and every bimorphism f : A×B→C there
exist a unique morphism h : X →C such that f = h◦ i. Tensor products are unique up to isomorphisms
and they are denoted by A⊗B. The bimorphism i is not surjective but its image generates A⊗B, thus we
call generating elements (of A⊗B) those coming from A×B and we will write i(a,b) = a⊗b.

Example of a bimorphism in R2

Let’s take a bimorphism f : BR×BR→C in SLat0. An element of BR is simply a union of segment
either open, close, or both (ie a cubical area) of R. f is a bimorphism means that f (0BR ,b) = f (a,0BR) =
0C, where a,b ∈BR and 0BR is the empty set (of R), and also f (a1∪BR a2,b) = f (a1,b)∪C f (a2,b). For
example take a1 =]0,1],a2 = [1,2], b1 = [0,1],b2 = [1,2], let a = a1∪a2 = [0,2] = b, now you have

f (a1,b2)∪ f (a2,b2)∪ f (a,b1) = f (a1∪a2,b2)∪ f (a2,b2) = (a1∪a2,b1∪b2) = f (a,b)

Geometrically it means that f is constant on the cubical area [0,2]2, even if you subdivide it.

a1 a2

b1

b2
f( ) =

a

b1

b2
f( ) =

a

bf( )

Formally a boolean algebra is a distributive lattice together with a complement that is an involution
x ∈ X 7→ xc ∈ X satisfying x∨ xc = 0 and x∧ xc = 1 for all x ∈ X , where 0 and 1 are the neutral elements
for ∨ and ∧ respectively. In particular any boolean algebra belongs to the categories of (bounded or not)
distributive lattices, semi-lattices with zero etc, and all of these have their own tensor product. Among
these categories we look for the one in which the n-fold tensor product of BR is isomorphic with BRn .
This isomorphism will actually be an isomorphism of boolean algebra.

For example let f be a bimorphism of bounded lattices from A, B to X ; given a∈ A and b∈ B we have
f (0A,b)= 0X and f (a,1B)= 1X , thus 0X = f (0A,1B)= 1X . Hence the set of bimorphism from A×B→X
is a singleton if X is degenerated; empty otherwise. In other words A⊗B is degenerated. In particular
the tensor product in Bool (resp. in bounded lattice and distributive bounded lattice) is irrelevant since
we ultimately wants to recover BRn from BR .

Tensor products of semilattices and related structures have already been the source of many publica-
tions [2, 9, 10, 17, 12, 13]. In particular the next theorem has been proved in [8] for semilattices. Minor
changes in the proof lead to the result for semilattices with zero.

Theorem 3.1 The collection of distributive lattice with zero is stable under finitary tensor product in
SLat0. Moreover let A,B be distributive lattices and ,ai, bi elements of A and B respectively, it satisfies :

(a1⊗b1)∧ (a2⊗b2) = (a1∧a2)⊗ (b1∧b2)
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From now, unless otherwise stated, all the tensor products are understood in SLat0.

Proposition 3.1
The tensor product (in SLat0) of a pair of boolean algebras is a boolean algebra

The previous theorem give us solid ground to prove the proposition. Indeed a boolean algebra being
a distributive lattice with complement, it now suffice to find a candidate for (a⊗ b)c for every element
a ∈ A, b ∈ B with A,B ∈ Bool.
Lemma 3.1 Given a pair of boolean algebras A, B and a ∈ A, b ∈ B we have:

(a⊗b)∨ ((1A⊗bc)∨ (ac⊗1B)) = 1 and (a⊗b)∧ ((1A⊗bc)∨ (ac⊗1B)) = 0

proof. First you need to expand the 1 as either a∨ac or b∨bc

(a⊗b)∨
(
(1A⊗bc)∨ (ac⊗1B)

)
= (a⊗b)∨

(
(a∨ac)⊗bc)∨ (ac⊗ (b∨bc)

)
Then by expanding or reducing using the fact that (a⊗b)∨ (a⊗ c) = a⊗ (b∨ c) and that a∨ac = 1, we
found this expression equal to 1. In quite the same way we deal with the second equality. We start by
distributing the ∨ over the ∧

(a⊗b)∧
(
(1A⊗bc)∨ (ac⊗1B)

)
= (a⊗b)∧ (1A⊗bc)∨ (a⊗b)∧ (ac⊗1B)

Similarly we prove that the preceding expression reduces to 0. �

Thus every generating element (i.e. of the form a⊗ b) has a complement. Any element is a finite
union of such generating elements x =

∨
i∈I(ai⊗bi) where I is finite. The existence of a complement for

any element then follows from the De Morgan’s law:

((a1⊗b1)∨ (a2⊗b2))
c = (a1⊗b1)

c∧ (a2⊗b2)
c

The later essentially derives from the relation, (a1⊗ b1)∧ (a2⊗ b2) = (a1 ∧ a2)⊗ (b1 ∧ b2) which is
provided by Theorem 3.1.

4 The collection of cubical areas BR×R as a tensor product

Theorem 4.1 The tensor product BR ⊗BR in SLat0 is actually a boolean algebra isomorphic (as
boolean algebras) with BR×R.

We will prove BR×R satisfies the universal property that characterizes the tensor product. Let X ∈ SLat0
and f : BR×BR→ X be a bimorphism in SLat0. We want to find a morphism h : BR×R→ X such that
the diagram commutes :

BR×BR

f ))

� � i // BR×R
h��

X

Where i is the inclusion. We define h on the image of i by h(i(I1, I2)) = f (I1, I2) with I1, I2 ∈BR. Since
h has to be a morphism this definition extends to all BR×R with h(C1∪C2) = h(C1)∨ h(C2) where the
Ci are generating element of BR×R i.e. elementary cubes which we write a× b . This mapping might
however not be well defined since a cubical area of R2 can be covered by smaller cubes in infinitely
many ways. So it remains to check the soundness of the definition.
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Lemma 4.1 Let h be defined as above, and let X =
⋃

i∈I Ci =
⋃

j∈J C′j be a cubical area describe as two
finite unions of generating elements Ci and C j then∨

i∈I

h(Ci) =
∨
j∈J

h(C′j)

and thus h is well defined .

Example in R2:
Covering of X with the Ci Covering of X with the Cj

common subdivision of the Ci’s and Cj’s

Let’s take the first cubical area X seen in sec-
tion 2. We can find a common subdivision
of the Ci and the C j, by cutting along every
coordinate of the cubes. We know that h on
a generating element a⊗ b (a cube) is equal
to f (a,b). And since f is a bimorphism you
can put together two cubes with one identical
coordinate. By using this method inductively
we get that the value of h is the same on those
three families of cubes.

Perspectives.
These results extend to cartesian products of geometric realizations of graphs (instead of Rn) so one

can take programs with branchings and loops into account. It means we can substitute in this paper,
connected subsets of the geometric realization of a graph to the intervals of R. The graphs considered
being the control flow graphs of threads [1].
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