
Some Invariants of Directed Topology
towards a Theoretical Base

for a Static Analyzer Dealing with
Fine-Grain Concurrency

– Habilitation thesis –

Emmanuel Haucourt

October 27, 2016



Foreword
This memoir is an account of my work and centers of interest during the last decade.
As a research engineer at CEA LIST, I’ve always been alternating between theory and
applications. The ALCOOL software would not have existed without the thorough
theoretical work upon which it is based. Conversely, many theoretical problems I am
interested in arise from practical issues.

The practical roots of my work lie in parallel automata (i.e. parallel composition of
sequential processes that communicate via a shared pool of resources). In this context
no instance of a process can be spawned nor killed at runtime. Nor the characteristic
of a resource can be altered during the execution of the program. Pointer arithmetic is
moreover forbidden. These restrictions allow us to define an analog of the control flow
graph for any program of a certain language. The programs written in this language
are actually special cases of higher dimensional automata (cf. Pratt (1991)). From the
precursory work of Dijkstra (1965) and the previous observation, one is led to consider
directed topology as a natural place for studying the control flow structures of such
programs.

I owe much of my knowledge about local pospaces and fundamental categories to
Lisbeth Fajstrup, Eric Goubault, andMartin Raußen with whom I regularly collaborate.

I was initiated to the subtleties of streams by their inventor himself, Sanjeevi Krish-
nan, during his post-doctoral stay at the CEA.

My interest in unique decomposition theorems goes back to a collaboration with
Thibaut Balabonski in 2006 during his three months internship. In 2012, Nicolas Ninin
also wrote his master thesis upon related questions.

1



Contents

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Introduction 4
1 Static Analyzers and Compilers . . . . . . . . . . . . . . . . . . . . . . 4
2 Control Flow Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4 Concurrency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5 Directed Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
6 Invariants of Directed Topology . . . . . . . . . . . . . . . . . . . . . 7
7 Practical Situation of Concurrency . . . . . . . . . . . . . . . . . . . . 8
8 Organization and description of chapters . . . . . . . . . . . . . . . . . 8

1 The Parallel Automata Meta Language 10
1.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Middle-End Representation . . . . . . . . . . . . . . . . . . . . . . . 17
1.3 Interpreting Multi-Instructions . . . . . . . . . . . . . . . . . . . . . 19
1.4 Small Step Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.5 Independence of Programs . . . . . . . . . . . . . . . . . . . . . . . 24
1.6 Abstract Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 Combinatorial Structures 31
2.1 A Topology Reminder . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2 Realization and Nerve . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3 A Topological Digression . . . . . . . . . . . . . . . . . . . . . . . . 38
2.4 Cubical Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Precubical Semantics 48
3.1 Exhaustive Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 Control Flow Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 Another Abstract Machine . . . . . . . . . . . . . . . . . . . . . . . 53
3.4 Discrete Models of Conservative Programs . . . . . . . . . . . . . . 57

4 Models of Directed Topology 67
4.1 Partially Ordered Spaces . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2 Framework for Directed Topology . . . . . . . . . . . . . . . . . . . 73
4.3 Locally Ordered Spaces . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4 Streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.5 D-spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.6 Other Formalisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

2



5 The Fundamental Category 107
5.1 Homotopies of Paths and 2-Categories . . . . . . . . . . . . . . . . . 107
5.2 Generic Construction . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.4 The Seifert - van Kampen Theorem . . . . . . . . . . . . . . . . . . 115
5.5 Enveloping Groupoids vs Fundamental Groupoids . . . . . . . . . . . 117
5.6 Trace Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6 Isothetic Regions 120
6.1 The Directed Geometric Realization of a Graph . . . . . . . . . . . . 121
6.2 Block Coverings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.3 Product of Isothetic Regions . . . . . . . . . . . . . . . . . . . . . . 140
6.4 Directed Topological Regions . . . . . . . . . . . . . . . . . . . . . . 142
6.5 Metric Properties of Regions . . . . . . . . . . . . . . . . . . . . . . 150

7 Continuous Semantics 154
7.1 Switching to the continous framework . . . . . . . . . . . . . . . . . 154
7.2 Justifying the Topological Approach . . . . . . . . . . . . . . . . . . 159
7.3 Independence of Conservative Programs . . . . . . . . . . . . . . . . 162

8 Categories of Components 165
8.1 Loop-Free Categories vs One-Way Categories . . . . . . . . . . . . . 166
8.2 Systems of Weak Isomorphisms . . . . . . . . . . . . . . . . . . . . 167
8.3 Categories of Components . . . . . . . . . . . . . . . . . . . . . . . 172
8.4 Sections of the Quotient Functor . . . . . . . . . . . . . . . . . . . . 181
8.5 Components of a Product . . . . . . . . . . . . . . . . . . . . . . . . 183
8.6 A Homotopical Perspective . . . . . . . . . . . . . . . . . . . . . . . 186
8.7 Components of Regions . . . . . . . . . . . . . . . . . . . . . . . . . 188

9 Unique Decomposition Theorems 193
9.1 Prime vs Irreducible . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
9.2 Action of the Symmetric Groups . . . . . . . . . . . . . . . . . . . . 197
9.3 Isothetic Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
9.4 Finite Connected Loop-Free Categories . . . . . . . . . . . . . . . . 203
9.5 Boolean Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
9.6 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

10 Perspectives 223
10.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
10.2 Does Model Category Fit with Directed Topology ? . . . . . . . . . . 223
10.3 About Homology of Directed Spaces ? . . . . . . . . . . . . . . . . . 225
10.4 A Glance at Directed Universal Coverings . . . . . . . . . . . . . . . 226
10.5 Finding Linear Representations of Fundamental Categories . . . . . . 226
10.6 Locally Star-Shaped Pospaces . . . . . . . . . . . . . . . . . . . . . 227



Introduction

This chapter sketches a rough picture of my work: which branch of computer science
it is related to, what practical situation it applies to, and what theoretical ground it is
based on.

Static Analyzers and Compilers
Static analysis encompasses all the methods by which one extracts information on the
behaviour of a program from its source code. It relies on software, namely static
analysers, that builds mathematical abstractions of the program under study. Any
static analyser is thus associated with a programming language, that is to say a parser
(i.e. a syntaxic analyzer which recognizes the grammar of the language and generates
the abstract syntaxic trees – AST for short), and a semantics (i.e. the mathematical
description of the language), which provide the raw material for building the models.
A chain of transformations (handling internal abstract representations aka middle-end
representations) is indeed applied to the AST at the end of which one obtains the
expected abstraction. In particular one may substitute the parser with another one so
another programming language can be taken into account without necessarily changing
the whole chain of transformations. Therefore in some sense, static analyzers and
compilers belong to the same family: the latter generate executable files E while the
former return mathematical objects M yet both work by successive transformations of
middle-end representations. One even finds domain specific languages allowing the
user to alter the generation process by directly handling the middle-end representations
(e.g. the MELT language allows one to deal with the GCC internals aka “Gimples” –
see Starynkevitch (2012)).

Control Flow Graphs and Flowcharts
The concept of Control Flow Graph (or CFG for short) was introduced by Allen (1970)
with a view toward optimization of sequential programs, and quickly became a founding
notion in compiler middle-ends design. For example the internals of the current ver-
sions of both LLVM and GCC follow this approach. According to the analogy between
compilers and analyzers, control flow graphs became a key ingredient of static analysis.
The collection T of all possible execution traces of a program is finitely described by
nature. However its obvious and faithful description, the source code itself, may not
be convenient for automated handling. The CFG is thus intended to be an overapprox-
imation of T in the following sense: any execution trace is associated with a path on
the CFG. In the sequential realm the definition of the CFG is rather clear: a node is

4



x := f

a1

b1

φ?

Yes No

a1

b1 b2

a1 a2

b1

START

b1 HALT

a1

Figure 1: Basic elements of the flowchart language.

provided for each control instruction so the execution is entirely determined from the
initial state of the system (e.g. the input provided by the user). A sequential program
is in particular characterized by the fact that it has a single instruction pointer. From
an abstract point of view a sequential program can therefore be defined as a pointed
graph G labelled by endomorphisms of a given set X which should be thought of as
the state space of the system. In some sense the structure G is intrinsic, indeed any
programming language proposes at least two features to define the control flow: the
branching and the loop constructions which often follow the syntax thereafter. Loosely
speaking, these instructions shape the control flow graph.

XXXif condition
XXXthen code
XXXelse code

XXXwhile condition do
XXXXXcode
XXXdone

Flowcharts, which were introduced by Floyd (1967), are intended to provide pro-
grams with semantics. Formally, they are very close to control flow graphs though they
are related to the static analysis of programs instead of their compilation. Flowcharts
are built from five basic elements shown on Figure 1. Each of them is associated with
one of the basic features shared by all the sequential programming languages, namely
the assignments, the conditional branchings, the join, and the entry and terminating
points.

Dynamics
The structure described in the preceding section comes with its dynamics. The distin-
guished vertex of the control flow graph is the initial state (i.e. the one upon which
the instruction pointer stands at the beginning of the execution). The current state
of the system is then updated according to the action carried by the first arrow whose
condition is satisfied: the set of arrows is supposed to be totally ordered. If no condition
is satisfied then the execution is over. As for dynamical systems, the behaviour (i.e. the
sequence of states visited during the execution) of the program is entirely fixed by the
choice of the initial point. Sequential programs are therefore said to be deterministic.
The state of the system at the end of the execution is the result of the computation.

5



What matters here is that not only two terminating executions starting at the same vertex
will return the same result, but they will go through the same sequence of states.

Concurrency
From the mid sixties it became clear for computer scientists that concurrency would
be both a major feature of programming languages and the source of severe and unpre-
dictable errors – see Naur and Randell (1969); Randell (1979). Indeed Dijkstra (1968)
points out several practical problems that are seemingly simple but whose “obvious”
solutions are drastically wrong for subtle reasons. According to (Hansen, 2002, p.7-12)
the previous article appears on the top of the list of publications that founded concurrent
programming theory which is thoroughly explained in a book byMichel Raynal (2013).
A system is said to be concurrent when it is made of several agents acting simultane-
ously. Applying this loose definition in the context of the previous section, a program
is said to be concurrent when it may have several instruction pointers wandering on
separate control flow graphs. This point of view was implicit in Dijkstra (1968) before
Coffman et al. (1971) and later Carson and Reynolds Jr. (1987) definitely formalize the
notion of progress graphs. We thus represent a concurrent program by the collection
of the control flow graphs associated with its many processes. A separate analysis of
the constituent processes cannot however produce a fine analysis of the global behavior
of the program. This is to be compared with the law of probability of a tuple of random
variables which cannot, in general, be fully recovered from the laws of probability of its
components – unless they are independent. The control flow graphs of the constituent
processes then should be gathered in a single structure giving an account of the inter-
actions between them. From the idea that each process has its own instruction pointer
wandering on its own control flow graph emerges a correspondence between the number
of concurrent processes and the number of control flow graphs. The representation of a
concurrent program with d processes then should be some mathematical structure M of
dimension d. One of the seminal remarks of the domain is that, under mild hypotheses,
the interplay between the processes of the program are represented by holes in M . The
study of such structures is at the core of algebraic directed topology. For a detailed
account of the rise a topological methods in concurrency theory, see Goubault (2000).

Directed Topology
Therefore it seems flourishing to go in search of a generalization of the notion of
graph that enables the concept of higher dimension. Mathematics provide an obvious
candidate, namely the precubical sets, which can be defined as cubical sets with-
out degeneracies (cf. Goubault (2003)). In particular they led Pratt (1991) and van
Glabbeek (1991) to introduce higher dimensional automata, a model of concurrency
which encompasses many (if not all the) standard combinatorial models of concurrency
– Winskel (1995); van Glabbeek (2006); Goubault and Mimram (2012). Shortly after
they were introduced, higher dimensional automata became the subject of theoretical
papers (Goubault and Jensen (1992); Goubault (1993)) and were used to provide toy
languages like λ-Linda with a semantics – Cridlig and Goubault (1993). Nevertheless
the combinatorial nature of precubical sets make them poorly fitted with the fundamen-
tal speed independence hypothesis made in Dijkstra (1968). Modelling concurrency by
means of combinatorial structures implicitly imposes the existence of a global clock.

6



A way of tackling the problem is the use of continuous models (i.e. topological spaces
built from the real line R and its iterated Cartesian products). With respect to mod-
elling concurrency, topology however lacks expressivity: any programming language
comes with an implicit notion of direction which derives from the fact that a sequence
of instructions in a source code is executed as it is read, namely from the top to the
bottom and from left to right. Graphs (and precubical sets) possess their own canonical
notion of direction, on the contrary topological spaces do not. Directed topology was
introduced to overcome this difficulty, however there is no consensus about a specific
formalism. A part of my research work has consisted of comparing these formalisms,
in particular I have thoroughly studied pospaces – Nachbin (1965), local pospaces –
Fajstrup et al. (2006); Haucourt (2014), d-spaces – Grandis (2003, 2009), and streams
– Krishnan (2009); Haucourt (2012). The notion of isothetic region has emerged from
these investigations – Haucourt (2014).

Invariants of Directed Topology
After one has admitted that concurrency would favourably be modelled by directed
topology, one may ask if there exist relevant invariants in the manner of fundamental
groupoid for topological spaces – Higgins (1971); Brown (2006). The fundamental
category construction has arisen from this question – Fajstrup et al. (2006). The path-
connected components of a topological space are in canonical correspondence with the
connected components of its fundamental groupoid. In fact the fundamental groupoid
of a topological space is equivalent (as a category) to the disjoint union (i.e. coproduct
in the category of small groupoids) of the fundamental groups – Hatcher (2002) of its
path-connected components. In many concrete cases one can thus substitute a groupoid
having uncountably many objects with a groupoid having finitely many ones. Is the
same substitution possible when dealing with directed topology? The question has been
investigated first in Fajstrup et al. (2004) and gave birth to categories of components.
Nevertheless, at present time, this concept is fully understood only in the case of
directed topology without directed loops – Haucourt (2006). Another important part of
my research work has been dedicated to extending this concept to a broader framework:
though it may seem anecdotal, this problem is actually related to the hypothetical notion
of directed homotopy type. Mywork on the subject convinced me that model categories
– Quillen (1967); Hovey (1999) do not fit with directed topology, though they naturally
cross your mind when trying to define a notion of homotopy type over a category. A
more promising approach is provided by Dwyer et al. (2004), see also Section 8.6.

Another problem I have been concerned with is the decomposition of processes
– Milner and Moller (1993); Luttik (2003); Luttik and Oostrom (2005); Dreier et al.
(2013). Balabonski and Haucourt (2010) indeed provides the decomposition of any PV
program – Dijkstra (1968), as a parallel composition of subprograms that run indepen-
dently of each others. This decomposition is moreover unique and obtained from the
geometric model of the program. During his internship in our lab, Thibaut Balabonski
proved a unique decomposition theorem for finite connected loop-free categories. They
arise as categories of components of directed topologies without directed loops. More-
over the category of components construction preserves cartesian products. Then one
asks whether the unique decomposition of a geometric model is sent to the unique de-
composition of its category of components. This problem even has further connections
with decomposition of metric spaces – Foertsch and Lytchak (2008). I have actively
worked on the subject.

7



Practical Situation of Concurrency
Starting from control flow graphs and concurrent programming, we have arrived at the
study of invariants of directed topology (i.e. algebaic directed topology). However, to be
fully honest, we have to shed light on the limitations of this approach. We describe some
explicit situations of concurrency to locate the range of applications of our methods.

– Distributed systems are made of a potentially large population of clones of a given
process. The individuals of this population can be seen as ants performing a little
bit of a huge task, their efforts being gathered on the fly. The “Map-Reduce”model
of parallel computation, which derives from the celebrated Divide and Conquer
strategy, is a typical example of this situation. Among its easiest applications
there is the computation of the product of a huge collection of elements of a
commutative monoid. Many real world systems are based on this idea. For
example SETI@home performs spectral analysis on signals from space. The size
of the population may vary depending on how much resources are available. In
particular, life and death of a small group of processes does not matter as long as
the product of the work already done is kept coherent.

– Operating Systems consist of a group of distinguished processes (windows and
memory managers, task scheduler etc) that manage a heterogeneous population
of processes which are spawned and killed according to the user requirements.
The main problem here is to keep the “fundamental” processes active, the other
ones being expandable with respect to the global stability of the system.

– Control command systems are made of a given group of processes, each of them
being devoted to a specific activity, tightly communicating with each other so
they efficiently drive some device. Every process of such systems tends to be
important if not vital. It is then crucial to ensure that a command control system
will not freeze (i.e. that it is has no deadlock). Also, it is often important to
guarantee that its decision is deterministic (i.e. only depends on its current state
instead of the execution trace that led to it). The other specific feature of this
family of systems is that their available resources as well as their population of
threads are both constant and known after a syntactic analysis of the source code.

Ourmethodsmostly apply to the last kind of systems, more precisely to the asynchronous
ones, as they strongly depend on the property that the population and the available
resources be constant and declared in the header of the source code. They also require
that all the processes of the system be conservative (cf. Definition 3.4.1).

Organization and Description of the Chapters
The Parallel Automata Meta Language (or just Paml in the sequel) is introduced in
Chapter 1. It is based on the toy language introduced by Edsger Wybe Dijkstra (1968).
Unlike its ancestor, it does not allow processes to be spawned, killed, or overwritten
at runtime. Moreover the parameters of a synchronisation mechanism cannot be dy-
namically changed, and pointer arithmetic on shared variables is forbidden. Abstract
machines are described and two notions of independence are introduced: the first one
is based on a syntactical analysis of the program while the other one relies on the
observation of the execution traces. The chapter finishes with the notion of control flow
graph.

8



The relation between presheaves over a small category and their realization/nerve
is discussed at the beginning of Chapter 2 in a very broad sense. The purpose is to
introduce two instances of this setting, namely the cubical and the precubical sets, and
also to explain why they better match the requirements of directed topology than the
celebrated simplicial sets, which are the standard choice for combinatorial homotopy
theory. Chapter 3 is devoted to the precubical models of Paml programs. They are built
from tensor products of control flow graphs.

There is actually no consensus about theway directed topology should be formalized
to fit with algebraic directed topology. Some approaches are studied in Chapter 4 from
a categorical point of view. They are compared through the realization of (pre)cubical
sets. For this purpose, we provide in Section 4.2 an abstract framework in which the
constructions described in the subsequent chapters make sense.

The fundamental categories, which are the directed counterpart of fundamental
groupoids, are the main concern of Chapter 5. A generic construction is given so it
can be applied to all the categories described in Chapter 4. The resulting fundamental
categories are compared.

Isothetic regions are introduced in Chapter 6. They provide a good compromise
between genericity and tractability. In practice, they had been implemented in the
ALCOOL software before they were formally defined since the continuous model of
any Paml program (cf.Definition 7.1.2) naturally lies in their class. In theory, one checks
that isothetic regions canonically embed in all the categories defined in Chapter 4, and
several abstract constructions from algebraic directed topology can be automated in
the context of isothetic regions. Hence they are put forward to provide the “right”
framework for studying the kind of concurrency depicted in the introduction. From a
combinatorial point of view, isothetic regions are related to labelled tensor products of
1-dimensional precubical sets (i.e. graphs), and as such, to special higher dimensional
automata.

Categories of components are studied in Chapter 8. They are defined in a purely
categorical context which makes the construction independent from directed topology
and concurrency. Nevertheless, the intuition is that categories of components are to
fundamental categories (in directed topology) as fundamental groups are to fundamental
groupoids (in topology). From a technical point of view, the idea is to find classes of
morphisms that contain the classes of isomorphisms and have similar properties.

In Chapter 9 we relate parallelization of code and unique decomposition results that
hold for some of the invariants introduced in the preceding chapters.

Open problems and perspectives are discussed in the last chapter.

9



1

The Parallel Automata
Meta Language
Classical Semantics

The programming language handled in Dijkstra (1968) is an extension of ALGOL60
providing the ‘parallel compound’ construction parbegin ...parend. Dijkstra spec-
ifies its semantics in the following terms: “Initiation of a parallel compound implies
simultaneous initiation of all its constituent statements, its execution is completed after
the completion of the execution of all its constituent statements.” In other words the
parallel compound construction is a synchronisation mechanism. On that basis, Di-
jkstra generalizes Dekker’s mutual exclusion algorithm so that it works for more than
two concurrently running processes. Starting from that, he explains how to implement
general semaphores and introduces the primitives P(_) and V(_). Strictly speaking,
Dijkstra’s PV language refers to that ALGOL60 extension. It is not hard to see that any
reasonable sequential language can be extended the same way. For example, Parallel
Pascal (Cridlig (1995, 1997)) and the C programming language together with POSIX
Threads can be seen as direct descendants of this idea. Nevertheless, all these languages
are general purpose ones1 while the methods that we will describe are in the first place
dedicated to asynchronous control command systems. In this memoir, we therefore
impose restrictions that are commonly met in the design of the latter. For example, the
original PV language allows parallel compounds to occur anywhere in a program so
they can be nested. On the contrary, asynchronous control command systems are often
built on the following paradigm: a collection of sequential processes, known at compile
time, is launched at the beginning of any execution of the program. Consequently, we
only allow parallel compound in outermost position2. We also suppose that a pool of
resources, also fixed at compile time, is shared by the running processes which might
therefore get stuck because of a lack of available resources. In other words, the PV
programs we consider have the form shown on Figure 1.1, where all the processes are
sequential. In order to take these limitations into account, we only consider a frag-
ment of the original Dijkstra’s PV language by introducing the Parallel Automata Meta
Language, or just Paml in the sequel. Since we aim at modelling programs more than

1 The C language has been created to develop operating systems. The most widespread ones, namely
Windows, UNIX, and Linux, are largely written in it.

2A similar assumption is made in (Miné, 2013, p.19).

10



1.1. Syntax 1. The Parallel Automata Meta Language

resource declarations;
parbegin

process1;
process2;
...
processN;

parend

Figure 1.1: The general form of the PV programs to which the methods described in
this memoir apply.

parsing them, Paml is not, strictly speaking, a restriction of the PV language. Instead, it
is much closer to the intermediate language of a compiler like GCC or LLVM than to a
human friendly one. The grammar of Paml is made explicit in Figure 1.2 following the
Extended Backus-Naur Form3. The reason why we describe its syntax in detail is that
Paml is the input language of the ALCOOL static analyzer. In particular, a complete
description would require us to give, explicitly, a lexer and a parser (cf. (Aho et al., 2007,
Chap. 3 and 4)). We will not do so and assume that we already have a “middle-end”
representation at our disposal.

An informal description of the Paml syntax is given in Section 1.1. The middle-end
representation of such programs is described in Section 1.2. They provide a structure
that is easier to handle than raw source code. In particular, they are used to define a
semantics for Paml in Sections 1.3 and 1.6. A naive approach to Paml programs parallel
decomposition is presented in Section 1.5. The chapter ends with the description of an
abstract machine for Paml (Section 1.6).

1.1 Syntax
The source code of a Paml program consists of a sequence of statements. Each of them
is either the declaration of a resource, the description of a sequential process associated
with an identifier, or a linear combination of identifiers with coefficients in N. The
latter is to be interpreted as the multiset of processes that are simultaneously launched
at the beginning of any execution of the program.

Definition 1.1.1. Following the C programming language convention (Kernighan and
Ritchie, 1988, p.25), identifiers are made up of letters and digits; the first character
must be a letter, and the underscore character counts as a letter. A constant is a
nonempty finite sequence of digits, possibly followed by a dot and another nonempty
finite sequence of digits. In mathematical terms, constants are (decimal representations
of) decimal numbers.

Definition 1.1.2. The expressions are finite trees whose nodes carry identifiers, con-
stants, unary and binary operators taken from the following sets.

{ − , ¬ } { ∧ , ∨ , + , − , ∗ , / , < , > , 6 , > , = , % }

The number of branches of a node being the arity of the operator it carries. The arity
of any identifier or constant is null. Any expression e comes with the set F(e) of free

3The Extended Backus-Naur Form is described in the ISO/IEC 14977:1996(E) norm reference.

11



1.1. Syntax 1. The Parallel Automata Meta Language

digit = '0' '1' '2' '3' '4' '5' '6' '7' '8' '9' ;
lowercase = 'a' 'b' 'c' 'd' 'e' 'f' 'g' 'h' 'i' 'j' 'k' 'l' 'm' 'n' 'o' 'p' 'q' 'r' 's' 't'
lowercase = 'u' 'v' 'w' 'x' 'y' 'z' ;
uppercase = 'A' 'B' 'C' 'D' 'E' 'F' 'G' 'H' 'I' 'J' 'K' 'L' 'M' 'N' 'O' 'P' 'Q' 'R'
uppercase = 'S' 'T' 'U' 'V' 'W' 'X' 'Y' 'Z' ;
letter = lowercase uppercase ; spc = {' '}- ;
comma = ',' , [spc] ; semicolon = ';' , [spc] ; dot = '.' , [spc] ; nat = {digit}- , [spc] ;
id = (letter '_') , {letter digit '_'} , [spc] ; id list = [nat] , id , {spc , [nat] , id}
int = ['-' '+'] , nat ; cst = ['-' '+'] , { digit }- , ['.' , nat] ;
equal = '=' , [spc] ; assign = ':=' , [spc] ;
left bracket = '(' , [spc] ; right bracket = ')' , [spc] ;
unary op = ( 'not' 'abs' ) , [spc] ;
binary op = ('+' '-' '*' '/' '&' '|' '<' '<=' '=' '>=' '>' '<>') , [spc] ;
expr = cst id left bracket , expr , right bracket unary op , expr expr , binary op , expr ;
variable = ('variable:' 'var:') , spc , id , equal , expr , {comma , id , equal , expr} ;
mutex = ('mutex:' 'mtx:') , spc , id list ;
semsync = ('semaphore:' 'sem:' 'synchronization:' 'sync:') , spc , [int , spc] , id list ;
jpvw = ('J' 'P' 'V' 'W') , left bracket , id , right bracket ;
instruction = id , assign , expr jpvw sum left bracket , [sum] , right bracket ;
sequence = instruction , {semicolon , instruction} ;
plus = '+' , [spc] ; left square bracket = '[' , [spc] ; right square bracket = ']' , [spc] ;
sum = sequence , {plus , [left square bracket , expr , right square bracket , plus] , sequence} ;
proc = ('process:' 'proc:') , spc , id , equal , sequence , {comma , id , equal , sequence} ;
declaration = {variable mutex semsync proc} ;
program = [spc] , declaration , ['init:', spc , id list] ;

Figure 1.2: The Paml grammar – following EBNF standard

12



1.1. Syntax 1. The Parallel Automata Meta Language

variables of the e, viz all the identifiers appearing in it. The expressions are provided
by the rule expr on Figure 1.2.

Example 1.1.3. The expression 3 ∗ x + 1.

+

∗ 1

3 x

Definition 1.1.4. According to rule instruction on Figure 1.2, an instruction is either

◦ an assignment <identifier>:=<expression>,

◦ a jump J(<identifier>),

◦ a resource request P(<identifier>) / deallocation V(<identifier>),

◦ a forced synchronisation W(<identifier>),

◦ a conditional branching as below, where all the ek (resp. ik) are expressions
(resp. instructions),

i1 + [e1] + · · · + in + [en] + in+1

◦ the instruction that “does nothing”, namely Nop.

◦ a sequence of instructions between grouping parentheses, and separated by semi-
colons,

The keywords P(_) and V(_) stand for the Dutch terms prolaag, short for probeer te
verlagen (i.e. “try to reduce”), and verhogen (i.e. “increase”). The keywords J and W
stand for “jump” and “wait”. The last kind of instructions is said to be compound. By
opposition, the first ones are called single instructions. The set of free variables of a
single instruction is defined below.

F(x: =e) = F(e)

F(i1 + [e1] + · · · + in + [en] + in+1) =
n⋃
i=1
F(ei)

F(P(x)) = F(V(x)) = F(W(x)) = F(J(x)) = ∅

Definition 1.1.5. A resource declaration (cf. rule declaration on Figure 1.2) is one of
the following statement:

◦ sem: <int> <set of identifiers> (e.g. sem: 3 a b, declares the semaphores a
and b, both of them being of arity 3),

◦ sync: <int> <set of identifiers> (e.g. sem: 7 a b c, declares the synchroni-
sation barriers a, b, and c, all of them being of arity 7), or

◦ var: <identifier> = <constant> (e.g. var: x = 0, declares variable x and set
its initial value to 0).

A process description is a statement of the form

13



1.1. Syntax 1. The Parallel Automata Meta Language

◦ proc: <identifier> = <instruction>. In most cases the instruction is compound
(e.g. proc: p = (P(a);V(a)) associates the identifier p with the compound
instruction (P(a);V(a))). The right-hand part of the declaration is called the
body of the process.

A program bootup is a statement of the form

◦ init: <multiset of identifiers> (e.g. init: a 2b 3c, indicates that one copy
of a, two copies of b, and three copies of c are simultaneously launched at the
beginning of each execution of the program).

A program is thus made of a set of sequential processes executing their instructions in
parallel, and sharing a pool of resources. The arity of a semaphore a indicates the total
number of tokens of type a. At the beginning of the execution of the program, all of
them are in the common pool of resources. Simultaneous execution is constrained by
limited resources which are taken and released by means of instructions P(_) and V(_).
Given a semaphore a, the former (resp. the latter) applied to a should be read as “take a
token of type a from the common pool of resources” (resp. “put it back to the pool”). A
process which performs the instruction P(a) is granted with a token of type a provided
at least one is available in the pool, otherwise its execution is stopped until it is. In
doing so, the process becomes the owner of a token. A process which performs the
instruction V(a) put a token of type a back in the common pool of resources, provided
it owns some; otherwise the instruction is just ignored and the process execution keeps
on going. It is worth noticing that Paml semantics differs from the PV language one
as the latter does not take the concept of owner of a token into account. Also compare
with the definition given in (Raynal, 2013, p.63). On the way, the notion of semaphore
is quantitative while the notion of mutex (a short for “mutual exclusion”) is qualitative.
It means that the same process can hold several tokens of the same semaphore, but not
several tokens of the same mutex. In practice, there is a single token for each mutex, if
its owner tries to take it again, it is not stopped, the P(_) instruction being ignored. On
the contrary, a process that tries to acquire a token of some unavailable semaphore is
blocked regardless of the amount of tokens of that type it already owns. For the sake of
simplicity, Paml mutices are just semaphores with a single token (i.e. of arity 1), hence
they are quantitative. Adding genuine mutices (i.e. the qualitative ones) to Paml would
not have raised any problem but a longer description of the semantics.

Parallel execution is also constrained by the ‘wait’ instructionW(_)which is intended
to synchronise a given group of existing processes. The instruction W(b), which should
be read as “wait behind the barrier b”, indeed stops any process that meets it until a
certain number of processes get blocked by it. When the threshold, viz the arity of
the barrier b, is crossed, the executions of all the processes stalled by the instruction
resume. The ‘Wait’ instruction can be seen as a weakened form of parallel compound
since the latter creates the processes that it synchronises while the former does not.

Remark 1.1.6. The loops are provided by the jump instruction. With the aid of paren-
theses and conditional branchings, an instruction can actually be a tree whose nodes
carry conditional branchings. This is to be related to the standard notion of extended
basic blocks which is used, for example, in both GCC and LLVM compilers – see also
(Cooper and Torczon, 2011, p.418). In other words, the process declarations define
tree-like extended basic blocks. The Paml version of the Hasse/Syracuse algorithm is
given below, the PV language version is given on Figure 3.4. The question of whether
this algorithm terminates for all initial values of x is still open.

14



1.1. Syntax 1. The Parallel Automata Meta Language

var: x = 7
proc:

does_it_continue = J(continue)+[x<>1]+() ,
continue = (x:=x/2 ; J(does_it_continue))+[x % 2 = 0]+

(x:=3*x+1; J(does_it_continue))
init: does_it_continue

Definition 1.1.7. A Paml source code is a finite sequence of resource declarations and
process descriptions ended with a program bootup. The multiset given by the program
bootup is called the bootup multiset.

Example 1.1.8 (Race Condition). In concurrent programming, a race condition occurs
when the execution of several instructions, that are meant to be performed simultane-
ously, results in an output that depends on the order in which the instructions have been
executed. In the program below, two concurrent processes try to modify the content
of the same variable. The assignments are enclosed between the instructions P(a) and
V(a), which prevents a race condition to occur (i.e. that several processes access the
variable simultaneously) because there is a single token of type a. OCaml threads are
implemented that way: a global mutex ensures that two threads never access memory
at the same time. This approach is certainly safe, but it is also the most inefficient one
because it forbids parallel execution. JoCaml (cf. Fournet et al. (2003)) and ReactiveML
(cf.Mandel and Pouzet (2005)) are OCaml extensions allowing efficient parallelism.

var: x = 0
sem: 1 a
proc:

p1 = P(a); x:=1; V(a) ,
p2 = P(a); x:=2; V(a)

init: p1 p2

In general, a part of code that must be executed by a single process at the time is
called a critical section (cf. (Raynal, 2013, p.9)).

Example 1.1.9 (Producer vs Consumer). In this program, a cyclic process called “pro-
ducer” increments a variable at each turn. Another cyclic process called “consumer”
decrements the same variable at each turn. Using a synchronisation barrier, we ensure
that the variable content remains non-negative. In case of a race condition, which corre-
sponds to the situation where the producer increments the variable while the consumer
decrements it, we assume that the variable content is left unchanged. One easily check
that the variable varies in {0, 1, 2}.

sync: 1 b
var: amount = 0
proc:

producer = amount := amount + 1 ; W(b) ; J(producer) ,
consumer = W(b) ; amount := amount - 1 ; J(consumer)

init: producer consumer

The race condition can even be avoided by considering the following program. In

15



1.1. Syntax 1. The Parallel Automata Meta Language

this case the variable alternatively takes the values 0 and 1.

sync: 1 b c
var: amount = 0
proc:

producer = amount := amount + 1 ; W(b) ; W(c) ; J(producer) ,
consumer = W(b) ; amount := amount - 1 ; W(c) ; J(consumer)

init: producer consumer

Example 1.1.10 (Deadlock). Homer and Barney are at Moe’s to have a drink. Un-
fortunately, all that’s left is one bottle of beer, and its cap cannot be removed without
the unique bottle cap opener available in the tavern. Homer rushes to the beer while
Barney decides to get the bottle cap opener first. The situation is formalized by the
Paml program below.

sem: 1 bottle opener
proc:

Homer = P(bottle);P(opener);open bottle;V(opener);drink;V(bottle) ,
Barney = P(opener);P(bottle);open bottle;V(opener);drink;V(bottle)

init: Homer Barney

If Homer grab the bottle while Barney catch the opener then both of them got stuck and
the beer is not drunk. Such a scenario appears in Dijkstra (1968) where two processes
ask for additional memory space to the operating system, the problem being that none
of the requests can be satisfied unless one of the two processes free the memory space
it occupies. Dijkstra originally called such a situation a deadly embrace though it is
nowadays better known as a deadlock. Hoare (1978) tells a similar story with “dining
philosophers” and Chandy and Misra (1984) generalize it to “drinking philosophers”.

Example 1.1.11 (Simultaneity). Instructions P(_) and V(_) are used to prevent si-
multaneous executions from happening while instructions W(_) synchronise processes.
Consequently, the left hand program below cannot avoid deadlock. On the contrary, no
deadlock can occur during the execution of the right hand one.

sem: 1 a
sync: 1 b
proc: p = P(a);W(b);V(a)
init: 2p

sem: 1 a
sync: 1 b
proc: p = W(b);P(a);V(a)
init: 2p

Remark 1.1.12. A Paml program is thus made of several sequential processes running
in parallel, with the following restrictions:

– the number of running processes as well as the amount of available resources of
the ambient system are known and fixed at compile time,

– there are no pointer arithmetics nor aliases. In particular the name of a variable
should be thought of as an absolute address in the memory, therefore x := y

copies the content of the “memory cell” y in the “memory cell” x.

16



1.2. Middle-End Representation 1. The Parallel Automata Meta Language

These restrictions arise from the fact that compilers/static analyzers need for generating
the control flow structure of a program statically. We should keep in mind that the
control flow structure is intended to be an overapproximation of the set of execution
traces of the program. In order to be efficient, this structure has to take into account the
interplay between processes due to synchronisation mechanisms. For example, suppose
that a group of processes sharing some resource can nevertheless work concurrently
without competing because the stock is large enough to supply them all. Now suppose
that a process is created at runtime which also needs the common resource, then tension
between processes could appear thus affecting the control flow structure. In fact any
dynamical alteration of the global amount of resources may create or remove conflicts
between processes. The ban on pointer arithmetics and aliases arises from another
issue: we would like to know at compile time when two memory accesses refer to
the same location. Under these assumptions, the answer becomes straightforward:
different variables refer to different memory locations. Otherwise the question cannot
be decided.

1.2 Middle-End Representation of Paml Programs
The middle-end representation of a program is a generic term that encompasses all
the structures actually handled by compilers (resp. static analyzers) in the process of
turning source codes (which are just texts) into binary files (resp. information about
them). The control flow graphs of programs form an essential part of their middle-end
representations but they are defined for sequential programs (i.e. Paml processes in
our context) only. Still, they are the bricks from which we will make up the higher
dimensional control flow structures of Paml programs. As the name suggests, the
conditional branching instructions are represented by the branchings of the control flow
graphs.

As we have already mentioned, dealing with Paml programs from their source
codes requires to apply to the latter some routine compilation transformations that are
summarized in Figure 1.3 (Aho et al., 2007, p.41). Roughly speaking, the lexical
analyzer recognizes the keywords, the identifiers, and the constant appearing in the
source code which is, strictly speaking, just a text. The parser then check that the text
matches the grammar of the language and builds the so-called abstract syntax tree. On
the way, it relates identifiers with syntactic constructions. In our case, the intermediate
model generator builds the control flow grahs of the sequential processes. The symbol
table is updated accordingly. At the output of the grayed part of Figure 1.3, which will
be referred to as “the black box” in the sequel, we have the middle-end representation
of the Paml program under consideration. The purpose of this section is to formalize
the latter notion so we can get rid of the source code of a Paml program and identify it
with its middle-end representation.

Definition 1.2.1. The black box readily extracts from the source code all the variables,
the semaphores, and the barriers occurring in a program. They are respectively collected
in the finite setsV, S, and B.

Definition 1.2.2. According to the Paml grammar, each variable occurring in the source
code is initialized when it is declared. The initial valuation is the mapping

init : V → {constants}

17



1.2. Middle-End Representation 1. The Parallel Automata Meta Language

Lexical
Analyzer

Parser
Intermediate

Model
Generator

Symbol
Table

source

code

tokens syntax

tree
middle-end

representation

Figure 1.3: Producing the middle-end representation from the source code

which assigns a constant (cf. Definition 1.1.2) to every variable appearing in the source
code. The set of expressions occurring in the program is denoted by E.
Definition 1.2.3. Each semaphore or barrier comes with an element of N∪ {∞} called
its arity. Each Paml source code thus gives the mapping

arity : S t B → N ∪ {∞}

which associates each resource (semaphore or barrier) with its arity.

Definition 1.2.4. A process identifier (or just pid for short) is an ordered pair made of
an identifier and a natural number. From the bootup (cf. Definition 1.1.5) appearing in
a source code, the black box readily determines the set P of process identifiers of the
(running processes of the) program. For example, if the bootup is the following line

init: 2p 3q

then P is the following set.{
(p, 0), (p, 1), (q, 0), (q, 1), (q, 2)

}
The black box also provides the mapping

body : P → {bodies of instructions}

which assigns a body of instructions (cf. Definition 1.1.4) to each process identifier.
Given p ∈ P it is often useful to consider the set P(p) of processes involved in p, which
is defined as the least subset of P containing p, and such that if the instruction J(q)
appears in body(q′) for some q′ ∈ P(p), then q ∈ P(p).

The setsV, S, and B as well as the mappings init, arity, and body, are actually part
of the symbol table of Figure 1.3. In fact, they are almost produced by the parser.

Before going further, we have to point out that a text that matches the grammar
described on Figure 1.2 may not be a correct source code. For example using a variable
(resp. calling a process) which has not been defined should be considered as an error.
Correctness is partially checked by the black box so we assume that all the process and
variable identifiers met in the source code of any program under consideration have
been duly initialized.

Definition 1.2.5. The middle-end representation of a Paml program is the output of
the black box, namely:

– the setsV, S, B, and E (cf. Definitions 1.2.1 and 1.2.2)

– the mappings init : V → {constants} (cf. Definition 1.2.2) and arity : S t B →
N ∪ {∞} (cf. Definition 1.2.3), and

– the mapping body : P → {bodies of instructions} (cf. Definition 1.2.4).

18



1.3. Interpreting Multi-Instructions 1. The Parallel Automata Meta Language

1.3 Interpreting Multi-Instructions
From a theoretical point of view, an abstract machine is a map J_K which assigns a
(possibly infinite) sequence JPK of elements of a set Σ to (the middle-end representation
of) every Paml program P. The elements of Σ are the (internal) states of the machine.
The map J_K is defined inductively according to the structure of Paml programs, starting
from its most simple elements, namely its expressions (cf. Definition 1.1.2).

Definition 1.3.1. An abstract valuation is a mapping fromV to R.

Recall that V is the set of variables appearing in the program under consideration.
Hence, a valuation should be thought of as a “memory state”. In particular the variables
take their values in R (due to the restricted set of operators we could have worked with
Q).

Definition 1.3.2. An abstract expression is a partial mapping

ε : {abstract valuations} → R

together with a subset F(ε) ⊆ V such that if the valuations ν and ν′ match on F(ε)
then ε(ν) = ε(ν′). The free variables of ε are the elements of F(ε).

We produce an abstract expression (cf. Definition 1.3.2) from a “concrete” one
(cf. Definition 1.1.2).

Definition 1.3.3. The evaluation J_K of an expression of the Paml language is an
abstract expression defined inductively for all abstract valuations ν:

◦ JxK = ν(x) for all x ∈ V, undefined if x has not been declared,

◦ JcK is the element of R whose decimal representation is the constant c,

◦ each of the operator is evaluated as an operator in R:

◦ J−K returns the opposite of its argument,
◦ J¬K returns 0 if its argument is nonzero, and 1 otherwise,
◦ J%K is the modulo operator,
◦ J+K and J−K are the addition and the substraction operators,
◦ J∗K and J/K are the multiplication and the division operators,
◦ J∧K and J∨K are the minimum and the maximum operators,
◦ the evaluations of the Boolean operators return 1 for “true” and 0 for “false”,

◦ for all unary operators op and all expressions e, Jop eK = JopK(JeK)

◦ for all binary operators op and all expressions e1, e2, Je1 op e2K = JopK(Je1K, Je2K)

Remark 1.3.4. The operators J%K and J/K are the only ones that are not defined on the
entire domain R2 since division by zero is not allowed.

Remark 1.3.5. In most cases, the evaluation of an expression depends on ν so we write
J_Kν to emphasize this factwhen it is necessary. Nevertheless, if no variable occurs in the
expression e, then JeKν does not depend on ν. In particular, if init : V → {constants}
is the initial valuation of a Paml program (cf. Definition 1.2.2), then we define the
corresponding abstract valuation as below.

JinitK : v ∈ V 7→ Jinit(v)K ∈ R

19



1.3. Interpreting Multi-Instructions 1. The Parallel Automata Meta Language

In order to interpret the instructions of the language, we need a partial description of
the internal states of the abstract machines.

Definition 1.3.6. A distribution of resources is map sending each element of S to
a multiset over P. Given such a mapping σ and s ∈ S, the multiset σ(s) should be
understood as the mapping that binds each process p with the number of tokens of type
s that it owns. In particular for all s ∈ S the mass

|σ(s)| =
∑
p∈P

(
σ(s)

)
(p)

is the total amount of tokens of type s held by (all the running processes of) the program.
Consequently, Paml takes the notion of owner into account. On the contrary, the original
PV language does not.

Definition 1.3.7. A context of interpretation is a map defined over V t S whose
restriction to V (resp. S) is an abstract valuation (resp. a distribution of resources).
Given the middle-end representation of a Paml program, the interpretation of the initial
valuation JinitK (cf. Remark 1.3.5) and the map which sends every s ∈ S to the empty
multiset over P, form the associated initial context.

A language enabling concurrent execution has to offer the programmer a way to tell
the compiler/static analyzer which part of the code should/should not be executed in
parallel. There are two opposite approaches: “parallelize unless otherwise stated” vs
“parallelize only if explicitly stated”. The former paradigm is the most commonly met
(e.g. POSIX threads), so it is the one we have chosen to base the Paml language on (the
restriction on parallel execution arising from instructions P(_), V(_), and W(_)). This
choice is reflected by the convention made in the subsequent definitions.

Since Paml is a parallel language, there are many cases where several instructions
should be allowed (not forced) to be performed at the same time. Indeed the Paml
language was designed to enable simultaneous execution, so its abstract machine should
be adapted accordingly. Yet, it is clear from a quick examination of Example 1.6.3 that
we must put a limitation on what can be done simultaneously. In this spirit, we define
and interpret multi-instructions (cf. Definition 1.3.8), which should be compared to the
multisets of actions introduced by Cattani and Sassone (1996).

Definition 1.3.8. A multi-instruction is a partial map µ from P to the set of single
instructions. It is said to be trivial when, as a (partial) map, it always returns Nop. Two
multi-instructions are said to be disjoint when so are their domains of definition.

Following many parallel architectures so far the memory is shared. That assumption is
reflected here by the fact that all the variables can be seen by all the running processes.
Hence we have to deal with the problem of race conditions (cf. Example 1.1.8). We
could choose any arbitrary rule of precedence, without specifying it, so the result of
any parallel execution leading to a race condition would not be specified. We forbid
such executions instead.

Definition 1.3.9. Two instructions conflict when both modify the same variable (one
says that it is a write-write conflict) or one of them alters a free variable of the other
(one says that it is a read-write conflict).

Remark 1.3.10. In the first case, both instruction are assignments x:=e and x:=e′

regardless of e and e′ being identical. In the second case, one of the instructions is an
assignment x := e while the other is a conditional branching or an assignment in which
x occurs as a free variable.

20



1.3. Interpreting Multi-Instructions 1. The Parallel Automata Meta Language

Remark 1.3.11. Definition 1.3.9 proposes a simple criterion allowing parallel execution
of assignments. Nevertheless this approach fails if pointer arithmetics and index arrays
are allowed since in that case, one is no longer able to decide whether assignments
read/write the same part of the memory. It is the reason why we refrain from providing
the Paml language with such features.

Definition 1.3.12. A multi-instruction µ defined over M ⊆ P is said to be admissible
in the context σ when:

– for i, j ∈ M with i , j, µ(i) and µ( j) do not conflict,

– for all semaphores s ∈ S, |σ(s)| + card{i ∈ M | µ(i) = P(s)} 6 arity(s), and

– for all synchronising barriers b ∈ B, card{i ∈ M | µ(i) = W(b)} is either null or
greater than arity(b) in the strict sense.

The empty multi-instruction is admissible. Any multi-instruction µ defined on a sin-
gleton {i} is admissible unless µ(i) = W(b) with arity(b) > 1. The arity of a semaphore
s is the number of available occurrences of s, while the arity of a barrier is the maximal
number of processes that it can stop. Therefore, one should always have |s |σ 6 arity(s),
and a barrier of arity n can be gone through iff at least n + 1 processes “push” on it.
These constraints are reflected by the last two conditions. In particular any process
trying to acquire an occurrence of a semaphore of null arity is definitely blocked. The
same happens when a process comes across a synchronisation barrier whose arity is
infinite. On the contrary, semaphores of infinite arity and barriers of null arity are
harmless: the latter are roughly speaking ignored and the former cannot bring about
the process stalling. It is worth noticing that our semaphore semantics slightly differs
from the one found in Dijkstra (1968) which does not take the concept of “owner” of a
semaphore occurrence into account. Moreover the arity of a semaphore s in the sense
of the article (Dijkstra (1968)) is arity(s) + 1.

As an immediate by-product of Definition 1.3.12, we define a partial action of the set
of multi-instructions on the right side of the set of contexts.

Definition 1.3.13. Assuming that the multi-instruction µ is admissible in the context
σ, the context σ · µ is defined as follows.

– For all x ∈ V there is at most one i ∈ {1, . . . , n} such that the instruction µ(i)
modifies x. In that case the instruction is an assignment x:=e and the value

σ · µ(x) = JeK(σ |V)

does not depend on the instructions µ( j) for j ∈ {1, . . . , n} \ {i} since they do
not alter the free variables of e. Nevertheless JeK(σ |V) may not be well-defined
(e.g. division by zero). In that case we say that the multi-instruction µ “crashes”
in the context σ. If no component of the multi-instruction µ alters the variable
x, then σ · µ(x) = σ(x).

– For all semaphores s ∈ S, the multiset σ · µ(s) is defined as follows.

σ(s) +
{
p ∈ M

�� µ(p) = P(s)
}
−

{
p ∈ M

�� µ(p) = V(s)
}

21



1.4. Small Step Semantics 1. The Parallel Automata Meta Language

We are considering the arithmetic of themultisets hence negative values are not allowed.
In particular the multiset σ · µ(s) is the mapping from P to N defined below.

p 7→


(
σ(s)

)
(p) + 1 if p ∈ M and µ(p) = P(s)

max{0,
(
σ(s)

)
(p) − 1} if p ∈ M and µ(p) = V(s)(

σ(s)
)
(p) in all other cases

The interpretation JµK of the multi-instruction µ is thus a partial mapping from the set
of contexts to itself defined by JµK(σ) = σ · µ. Its domain of definition is the collection
of contexts in which µ is admissible.

Definition 1.3.14. A finite family of multi-instructions is said to be summable in the
context σ when its members are pairwise disjoint and its union is still admissible in the
context σ.

Remark 1.3.15. Given a summable family {µ1, . . . , µn} in the context σ, and a permu-
tation π of {1, . . . , n} the contextsσ · µ1 · · · µk andσ · µπ(1) · · · µπ(k) are well-defined for
all k ∈ {1, . . . , n}. Moreover, if k = n, they are equal. Nevertheless, due to the barriers
of synchronisation, a restriction µ′ of a multi-instruction µ may not be admissible in
the context σ even if µ is.

1.4 Small Step Semantics
We describe an abstract machine which provides Paml with a structural operational
semantics (Plotkin (2004)). The first step consists of defining its internal states so
that the control flow can be managed. We suppose that we have the middle-end
representation of the program to execute (cf. Definition 1.2.5). Given a nonempty
sequence (x1, x2, . . .) we introduce the following notation.

head(x1, x2, . . .) = x1 tail(x1, x2, . . .) = (x2, . . .)

Definition 1.4.1. Given a finite sequence of instructions (i1, . . . , in), the finite sequence
of instructions unbox(i1, . . . , in) is defined recursively as:

– (i1, . . . , in) if i1 is a single instruction, and

– unbox( j1, . . . , jm, i2, . . . , in) if i1 is the compound instruction ( j1;. . .; jm)

A finite sequence of instructions which is left invariant by the unbox operator is said to
be unboxed.

Definition 1.4.2. An internal state of the abstract machine is a map σ defined over
the setV tS t P such that the restriction of σ toV tS is a context of interpretation
(cf. Definition 1.3.7) and σ(p) is an unboxed finite sequence of instructions for all
p ∈ P. Such a sequence is called a stack of instructions. The initial context of the
program (cf. Definition 1.3.7) together with the map (cf. Definition 1.2.5)

p ∈ P 7→ unbox(body(p))

form the initial state of the machine.

We extend the partial action of multi-instructions on contexts (cf. Definition 1.3.13) to
an action on internal states.

22



1.4. Small Step Semantics 1. The Parallel Automata Meta Language

q

p x:=1

y:=2

x:=1

y:=2

x:=1

y:=2

Figure 1.4: Execution traces as time lines

Definition 1.4.3. Let µ be a multi-instruction that is admissible in the context of the
internal state σ. Applying Definition 1.3.13, the context of σ · µ is the following one.

(σ |VtS) · µ

Then given p ∈ P, the stack of instructions (σ · µ)(p) is:

– σ(p) if p < dom µ,

– unbox(body(q)) if µ(p) = J(q),

– unbox(ik) · tail(σ(p)) if µ(p) = i1 + [e1] + · · · + in + [en] + in+1 and

k = min
(

n + 1 , inf
{

k
�� JekKσ , 0

} )
with the usual convention that inf ∅ = ∞, and

– unbox(tail(σ(p))) in all other cases.

The interpretation JµK of themulti-instruction µ given inDefinition 1.3.13 thus extends
to a partialmapping from the set of internal states to itself. It is defined by JµK(σ) = σ·µ.
By definition, its domain of definition is the collection of contexts in which µ is
admissible. It provides Paml with an operational semantics allowing several processes
to execute their current instruction simultaneously.

Remark 1.4.4. From an internal state σ and a subset M of P such that for all p ∈ M ,
the sequence σ(p) is nonempty, one defines a multi-instruction µ over M by µ(p) =
head(σ(p)). We insist that if σ(p) is empty for some p ∈ M , then µ is undefined.
Extending Definition 1.3.12, the set M is said to be admissible in the state σ when µ is
admissible in the context σ |VtS . In that case we define the action of M of the right of
σ, denoted by σ ·M , as the action of µ of the right of σ (i.e. as the internal state σ · µ).

Definition 1.4.5. An execution trace starting at the internal stateσ (cf.Definition 1.4.2)
is a (possibly infinite) sequence M0 . . . Mn . . . of nonempty subsets of P such that for all
n, if Mn is defined then the associated multi-instruction is well-defined and admissible
in the internal state σ · M0 · · ·Mn−1 (cf. Remark 1.4.4). An execution trace is said to
be maximal when it is infinite or when there exists n ∈ N such that every nonempty
set that is admissible in the state σ0 ·M0 · · ·Mn induces a multi-instruction that crashes
(cf. Definition 1.3.13). An execution trace is said to be interleaving when every multi-
instruction it contains is either a single instruction (i.e. M is a singleton) or has a range
reduced to the singleton {W(b)} for some barrier b. An execution trace of a Paml
program P is an execution trace starting at the initial state of P.

There are three reasons why an execution trace cannot be extended.

23



1.5. Independence of Programs 1. The Parallel Automata Meta Language

q

p

var: x = 0, y = 0
proc: p = x:=1
proc: q = y:=2
init: p q

Figure 1.5: Execution traces as time lines (abstract form)

Definition 1.4.6. Let σ be the output internal state of a finite maximal execution trace
of a program P:

– if all the stacks σ(p) are empty, then we say that the execution properly finishes,

– if some stack σ(p) is not empty and the only admissible set is the empty one,
then we say that the execution ends in a deadlock,

– in all other cases, the execution crashes.

The notion of deadlock is illustrated by Example 1.1.10. We will look again at the
notion of deadlock in a more abstract context (cf. Definition 3.4.10). The last case
occurs when the only available instructions lead to division by zero.

It is often useful to visualize execution traces as parallel time lines along which single
instructions are pinned. Vertically aligned instructions should therefore be understood
as the components of a multi-instruction. An illustration is given on Figure 1.4 with two
running processes (i.e. the set P has two elements). Sometimes we are only interested
in the domain of definition of the multi-instructions, in that case we simplify the visual
representations by just pinning dots on time lines instead of instructions, see Figure 1.5.

1.5 Independence of Programs
This section provides syntactic criteria ensuring that a parallel composition of Paml
programsmake sense and introduces two standard notions of independence of programs.

Definition 1.5.1. A (finite) family of Paml programs is said to make coherent declara-
tions when it satisfies the following properties:

– any variable identifier declared in two programs of the family is initialized with
the same value (i.e. the initial valuations of any two programs of the family are
compatible (cf. Definition 1.2.2))

– any semaphore (resp. synchronisation barrier) identifier declared in two programs
of the family have the same arity (i.e. the arity maps of any two programs of the
family are compatible (cf. Definition 1.2.3)), and

– any process identifier appearing in two programs of the family is associated with
the same body of instructions (i.e. the body maps of any two programs of the
family are compatible (cf. Definition 1.2.4)).

24



1.5. Independence of Programs 1. The Parallel Automata Meta Language

Definition 1.5.2. Given a finite sequence of Paml programs P1, . . . , PN that make
coherent declarations, it makes sense to define their parallel composition P1 | · · · |PN

as the following Paml program:

– any variable, semaphore, or synchronisation barrier declared in one of the pro-
grams is declared the same way in the parallel composition

– any identifier associated with a body of instruction in one of the programs is
associated with the same body in the parallel composition.

– the bootup multiset of the parallel composition is the sum of all the bootup
multisets of the programs.

In that case, the middle-end representation of the parallel composition P1 | · · · |PN is
deduced from the middle-end representations of the programs Pi in the obvious way.

Definition 1.5.3. A family of Paml programs is said to be syntactically independent
when any variable, semaphore, or synchronisation barrier appearing in one of them
does not appear in the others.

Remark 1.5.4. The intuition behind Definition 1.5.3 is rather clear: since the sets of
resources required by the programs are pairwise disjoint, they should be able to run
concurrently, the ones independently from the others. This idea will be formalized in
two other ways inDefinitions 1.5.7 and 7.3.1. In practice, one is interested in separating
Paml programs, that is to say obtain them as parallel compound of “independent” Paml
programs. For the moment, it is done by syntactic means only. We will provide a
semantic approach in Section 9.3 which will turn out to be more accurate.

Example 1.5.5. The following Paml programs are syntactically independent.
sem: 2 a
var: x = 0
proc: p = P(a);x:=1;V(a)
init: 2p

sem: 2 x
var: a = 0
proc: q = P(x);a:=1;V(x)
init: 2q

Remark 1.5.6. Renaming is a standard manipulation on source codes which, formally
speaking, consists of applying to a source code a permutation of the set of all existing
identifiers in the obvious way. When a family of Paml source codes is under considera-
tion for parallel composition, applying the same permutation to all the members of the
family neither alters the coherence of its declarations nor its syntactic independence.
Because the resources are shared, a variable (resp. semaphore, barrier) declaration ap-
pearing in one the programs of the family is global in the whole family. On the contrary,
a process declaration is local to the program in which it appears. As an illustration,
the programs below are syntactically independent though they do not make coherent
declarations due to a process naming conflict. But they clearly do so if, for example,
one changes p into q in the right-hand program.
sem: 1 a
proc: p = P(a);V(a)
init: p

sem: 1 b
proc: p = P(b);V(b)
init: p

More generally, one can soundly rename the processes in each member of a family of
programs so that no conflicting process declaration occurs. Indeed, that renaming does
not change the meaning of the parallel composition. In particular, any Paml program

25



1.5. Independence of Programs 1. The Parallel Automata Meta Language

P1

P2

µ′ µ′

U={1} U′={2}

P1

P2

µ′ µ′

U={1,2} U′={1,2}

Figure 1.6: Disjoint vs not disjoint multi-instructions

P with n running processes can be written as a parallel compound of n Paml programs
with a single running process: it suffices to declare each running process individually.
An example is given below.

sem: 1 a
proc: p = P(a);V(a)
init: 2p

sem: 1 a
proc: p = P(a);V(a)
proc: q = P(a);V(a)
init: p q

Consequently, Definitions 1.5.1 and 1.5.2 could beweakened by dropping the constraints
on process declarations. The only drawback in using the weak form of Definitions 1.5.1
is that the middle-end representation of the parallel compound of a family of programs
is no longer canonically obtained from the middle-end representations of the members
of the family. Indeed, one may need to apply some unspecified process renaming to
make these representations compatible.

The notion of execution trace (cf.Definition 1.4.5) allows us to introduce another notion
of independence. Suppose that the programs P1, . . . , PN make coherent declarations
(cf. Definition 1.5.1) and that Pn is the set of (process identifiers of the) running
processes of Pn for all n ∈ {1, . . . , N}. The set P of (process identifiers of the) running
processes of the parallel composition P1 | · · · |PN is the disjoint union P1 t · · · t PN .
Extending Definition 1.3.8, we say that the multi-instructions µ and µ′ are disjointwith
respect to the parallel composition P1 | · · · |PN when the sets of programs they trigger
are disjoint. Formally, if U (resp. U ′) is the set of indices n ∈ {1, . . . , N}, such that
dom µ∩ Pn , ∅ (resp. dom µ′ ∩ Pn , ∅), then U ∩U ′ = ∅. On Figure 1.6, we provide
an example of disjoint multi-instructions (on the left-hand side) and an example of not
disjoint ones (on the right-hand side). Given K ∈ N, a permutation π of {0, . . . ,K} is
said to be compatible with the parallel compound P1 | . . . |PN and the finite sequence
of multi-instructions µ0, . . . , µK when it is order preserving for all k, k ′ ∈ {0, . . . ,K}
such that µk and µk′ are not disjoint with respect to P1 | . . . |PN .

k 6 k ′ ∧ µk and µk′ not disjoint with respect to P1 | . . . |PN ⇒ π(k) 6 π(k ′)

For the sake of readability, we often omit the dependency to P1 | . . . |PN . Recall that the
symmetric groupsSK+1 acts on the left of the sequences µ of length K + 1 as follows:

π · µ = µ ◦ π−1 = µπ -1(0) · · · µπ -1(K)

where µ is interpreted as a mapping defined over {0, . . . ,K}.

Definition 1.5.7. Denoting by σ the initial state of the parallel compound P1 | · · · |PN ,
the programs P1, . . . , PN are said to be observationally independent when for all

26



1.5. Independence of Programs 1. The Parallel Automata Meta Language

P1

P2

µ′ µ′

U={1} U′={2}

P1

P2

µ′µ′

U={1}U′={2}

Figure 1.7: Compatible transposition

internal states σ′ such that σ′ |P = σ |P , for all execution traces µ = µ0, . . . , µK
starting at σ′, and for all permutations π compatible with it, the sequence π · µ is still
an execution trace starting at σ′ and has the same action as µ on σ′.

σ′ · µ0 · · · µK = σ′ · µπ -1(0) · · · µπ -1(K)

In less formal words, a family of programs is observationally independent when up to the
initial values of the variables, the output of any execution trace of the parallel compound
does not depend on the order in which disjoint multi-instructions were performed. The
permutation shown on Figure 1.7 is compatible. Hence, if P1 and P2 are observationally
independent, the actions on internal states σ′ of the two execution traces on Figure 1.7
are the same.

Remark 1.5.8. The notion of independence given in Definition 1.5.7 is related to the
notion of deterministic Paml programs from Remark 1.6.2. It is weak in the sense that
n copies of a program can be observationally independent. For example, consider the
programwhose unique process has a unique instruction, namely the assignment x:=1. A
family of n copies of this program is observationally independent, but not syntactically.
var: x = 0
proc: p = (x := 1)
init: p

var: x = 0
proc: p = (x := 1)
init: np

Replacing the assignment x:=1 by a request P(s) (resp. a synchronisation W(b)) also pro-
vides an example of program that is observationally independent from itself, regardless
of the arity of the semaphore s (resp. the barrier b).

Remark 1.5.9. Syntactically independent programs are observationally independent
but the converse is false as shown by Remark 1.5.8.

Syntactical independence is decidable yet too restrictive. On the contrary observational
independence is purely theoretic because it cannot be stated until all the execution traces
have been tested or a mathematical proof has been given. We will introduce a third
notion of independence (cf. Definition 7.3.1) which is strictly weaker that the syntactic
one yet still decidable. We complete this section with a technical result that will be used
in the proof of Theorem 7.3.4. We denote the set of fixpoints of a map f by fix ( f ).

Definition 1.5.10. Let us define a rolling as a cyclic permutation ρ of the form

( x x + 1 · · · x + y )

for some x, y ∈ N, that is to say defined by ρ(x + t) = x + (t + 1 mod y + 1). A rolling
is canonically written as a composite of elementary transpositions.

( x x + 1 · · · x + y ) = (x x + 1) (x + 1 x + 2) · · · (x + y − 1 x + y)

27



1.5. Independence of Programs 1. The Parallel Automata Meta Language

1

2

3

4

5

6

7

πρ−1
1ρ−1

2ρ−1
3ρ−1

4ρ−1
5

x0

x1

x2

x3

x4

Figure 1.8: Rolling decomposition of a permutation

Since elementary transpositions (i.e. permutations of the form (x x + 1)) generate the
symmetric groups, the rollings generate them too. Nevertheless, among all the ways
of writing a given permutation π as a composite of rollings, one can be considered
as “canonical”. More precisely one has a finite sequence of rollings ρ1, . . . , ρD with
D ∈ N such that, denoting πd = π ◦ ρ−1

1 ◦ · · · ◦ ρ
−1
d

for all d ∈ {0, . . . ,D}, we get
πD = id (i.e. π = ρD ◦ · · · ◦ ρ1) and the greatest initial segment of fix (πd) is strictly
contained in the greatest initial segment of fix (πd+1). If πd is not an identity and xd is
the least element of its support, then ρd+1 is the rolling below.

ρd+1 = (xd xd + 1 · · · π−1
d (xd))

The induction obviously stops and the sequence ρ1, . . . , ρD is called the rolling de-
composition of π = ρD ◦ · · · ◦ ρ1. The construction is illustrated on Figure 1.8. It plays
a special role as it preserves compatibility.

Remark 1.5.11. If ρ1, . . . , ρD is the rolling decomposition of π, then ρd, . . . , ρD is the
rolling decomposition of πd−1.

Lemma 1.5.12. If ρ1, . . . , ρD is a rolling decomposition and ρD ◦ · · ·◦ ρ1 is compatible
with the sequence of multi-instructions µ, then ρ1 is compatible with µ and π1 =
ρD ◦ · · · ◦ ρ2 is compatible with ρ1 · µ.

Proof. Let x be the least element of the support of π. Given 0 6 k < k ′ 6 K , one
has ρ1(k) > ρ1(k ′) iff k ′ = π−1(x) and x 6 k < π−1(x). Then π(k ′) = x < π(k) by
minimality of x. Because π is compatible with µ, the multi-instructions µk and µk′ are
disjoint.

Given 0 6 k < k ′ 6 K such that π1(k) > π1(k ′), we would like to prove that µρ−1
1 (k)

and µρ−1
1 (k′)

are disjoint. Note that π1 = π ◦ ρ−1
1 = ρD ◦ · · · ◦ ρ2 and apply the following

change of variables.
k = ρ1(k ′′) k ′ = ρ1(k ′′′)

We need to prove that the multi-instructions µk′′ and µk′′′ are disjoint under the hy-
pothesis that π(k ′′) > π(k ′′′). Because π is compatible with µ it suffices to check that
k ′′ < k ′′′. Assume that it is not the case (i.e. ρ−1

1 (k) > ρ−1
1 (k

′) since k ′′ and k ′′′

cannot be equal). Then by definition of ρ−1
1 we have k = x and x + 1 6 k ′ 6 π(x). As

a consequence we get

π1(k) = π1(x) = π(ρ−1
1 (x)) = π(π−1(x)) = x

28



1.6. Abstract Machine 1. The Parallel Automata Meta Language

because π(x) = ρ1(x) by definition of ρ1. For the same reason we have π1(k ′) =
π(k ′ − 1). Because k ′ − 1 < π−1(x) and by minimality of x, we deduce the equalities

π1(k ′) = π(k ′ − 1) > x = π1(k)

which is a contradiction.

1.6 Abstract Machine
From a general point of view, an abstractmachine can be seen as a device that produces
maximal execution traces of programs using the action of the multi-instructions on the
internal states (cf. Definition 1.4.3). Formally, it can be defined as a map

M : Ω × {Paml programs} → {execution traces}

which returns the maximal execution trace of the second argument according to the
parameters provided by the first argument. Hence the set Ω gathers all the parameters
that drive the behaviour of the machine. For example, the abstract machine is said to
be interleaving when all the execution traces it produces are interleaving. Therefore an
interleaving abstract machine cannot execute more than one single instruction at each
tick of the clock. The unique exception comes from the instruction W(_) which forces
simultaneous execution. More concretely, an abstract machine comes with a scheduler
that is to say a map

τ : Ω × {internal states} → {subsets of P}

such that the set τ(ω, σ) is admissible in the state σ (cf. Remark 1.4.4) and such that
τ(ω, σ) , ∅ unless no other admissible subset is available. The scheduler is thus
a parametrized and constrained function of choice. From its scheduler, an abstract
machine produces a maximal execution trace of a program P in the obvious way: σ0 is
the initial state associated with P, and for all n ∈ N, if µn = τ(σn) is not empty and the
related multi-instruction µn does not crash (cf. Definition 1.3.13), then σn+1 = σn · µn;
otherwise the abstract machine stops either on a deadlock or a crash.

Remark 1.6.1. A realistic scheduler should be concerned about all the previous steps
of execution. Moreover it should be designed to be fair (i.e. to give each non finished
process a chance to execute an instruction). Even further it should take a priority scale
into account, thus giving the user a reasonable control over its behaviour. For reasons
of effectiveness, we could also assume that the scheduler selects maximal sets with
respect to inclusion. In doing so, we would maximize parallelism. Unfortunately this
requirement cannot be ensured in practice. In fact the behaviour of a scheduler used to
test a program should even be partially random.

Remark 1.6.2. The execution of a program heavily depends on the scheduler, over
which the programmer has limited control at best. Whenever the program has at
least two running processes, it is submitted to this inherent phenomenon in concurrent
programming, and there is no reasonable way to rule it out. Still, we would like
to guarantee that when the execution finishes, the valuation associated with the final
internal state of the machine does not depend on the scheduler. A program satisfying
this weaker form of determinism, which is eventually the only significant one, is said
to be deterministic – see Example 1.6.3.

29



1.6. Abstract Machine 1. The Parallel Automata Meta Language

Example 1.6.3. The left hand program below is not deterministic in the sense that the
final content of the variable x depends on which of the processes p and q performs
the last assignment. The right hand one is deterministic because the synchronisation
barrier forces p to modify x first so its final content is 2.

Non deterministic

XXvar: x = 0
X
XXproc:
XXXXp = x := 1
XXXXq = x := 2
XXinit: p q

Deterministic

XXvar: x = 0
XXsync: 2 b
XXproc:
XXXXp = x := 1 ; W(b)
XXXXq = W(b) ; x := 2
XXinit: p q

30



2

Combinatorial Structures

One of the striking achievements of algebraic topology is the relation between the
combinatorial and the topological approaches to homotopy theory. In modern math-
ematics, this fact is formalized by a Quillen equivalence between the model category
of simplicial sets and the model category of topological spaces. There are actually
several versions of the latter depending on the class of topological spaces one con-
siders (k-spaces, compactly generated spaces – Lewis (1978)) yet they are all Quillen
equivalent. The Quillen equivalence between simplicial sets and topological spaces
is actually given by the geometric realization – (Hovey, 1999, Theorem 3.6.7). We
expect an analogous result in directed topology. In this regard however, the cubical sets
(and their realizations in the categories described in Chapter 4) better fit with directed
topology than the simplicial sets, see Example 2.2.9. More precisely the realizations
of cubical sets in the category of complete filled d-spaces (cf. Definition 4.5.14 and
Definition 4.5.31) (or the corresponding streams) are fully satisfactory. However, in the
directed context, no notion corresponding to Quillen equivalences has been discovered
yet. Moreover, from the computer science point of view, the concept of cubical set is
too wide so that of precubical sets is preferred.

In Section 2.1, one finds a topology aide mémoire gathering up the definitions of
compact Hausdorff space and homotopy. The realization/nerve construction is recalled
in Section 2.2. The requirements for both functors to exist are extremely weak: from
any small category of any cocomplete category with large isomorphism classes (i.e. the
isomorphism class of any non-initial object is not a set) the nerve functor admits a left
adjoint which is, by definition, the realization functor. From the homotopy theory point
of view, the overall idea of this approach is that certain presheaf categories can be taken
as models of homotopy types – see Cisinski (2006). We loosely borrow from this idea
and dedicate the last two sections of the chapter to presheaf categories that both fit with
directed topology and concurrency theory. The exposition remains “down to earth”. In
Section 2.3, we recall some complete and cocomplete Cartesian closed subcategories
of Top whose associated simplicial realizations are left exact (i.e. preserve all the finite
limits). The special cases of cubical and precubical sets are treated in Section 2.4. Both
are special instances of the construction described in Section 2.2. Precubical sets are
used in Section 3.4 to define the precubical model of Paml programs. The role played
by higher dimension mathematical structures emerges on this occasion.

31



2.1. A Topology Reminder 2. Combinatorial Structures

2.1 A Topology Reminder
Since topological spaces are pervasively used in this text, we briefly recall their definition
as well as some well-known facts that will be referred to in the subsequent chapters.

Definition 2.1.1. A topological space is a set X together with a collection of subsets
of X , called the open subsets, such that: the union (resp. the intersection) of any family
(resp. any finite family) of open subsets is open. Since the union (resp. the intersection)
of the empty family is ∅ (resp. X), both ∅ and X are open. The complement of an open
subset of X is said to be closed. It is common to denote both the topological space and
its underlying set by X . A continuous map (i.e. a morphism of topological spaces) is a
map between the underlying sets such that the inverse image of an open subset is open.
The topological spaces and the continuous maps form the category Top.

Example 2.1.2. Any metric space (X, d) induces a topological space whose open
subsets are those subsets U such that for all u ∈ U there exists ε > 0 such that for all
x ∈ X , d(u, x) < ε ⇒ x ∈ U. In particular R is the real line equipped with the distance
d(x, y) = |y − x | and S1 is {

z ∈ C
�� |z | = 1

}
together with the distance d(z, z′) = min{θ, 2π − θ} with θ being the unique element of
[0, 2π[ such that z′ = eiθ z. The metric space described above is actually a length space
(Burago et al., 2001, Chapter 2). All the topological spaces we will meet in concrete
situations arise from a metric space, and most of them are actually length spaces.

Definition 2.1.3. Any subset A of a topological space X inherits a topology from X , its
open subsets being of the form A ∩U with U being an open subset of X . We say that
A is a subspace of X . The interior of A is the greatest open subset of X contained in
A. The closure of A is the least closed subset of X containing A.

Definition 2.1.4. A topological space is said to be Hausdorff when for all x, y ∈ X ,
x , y implies the existence of disjoint open subsetsU andV such that x ∈ U and y ∈ V .
The full subcategory of Hausdorff spaces is denoted by Haus.

Proposition 2.1.5. The category Haus is complete and cocomplete and the inclusion
functor Top ↪→ Haus has a left adjoint.

Proof. See (Mac Lane, 1998, p.135, Proposition 2).

A collectionU of subsets of X is called a covering of X when the union of its elements
is X . A subcovering ofU is a subcollection ofU whose union of the elements is still
X . A covering is said to be open when so are its elements.

Definition 2.1.6. A topological space X is said to be compact when one can extract
a finite subcovering from any open of its open coverings. A topological space is said
to be locally compact when all its points admit a compact neighborhood. The full
subcategory of Top whose objects are the compact spaces is denoted by Comp and the
one whose objects are the compact Hausdorff spaces is denoted by CHaus.

The compact subsets of Rn are its bounded closed subsets and the compact intervals
of R are the sub-spaces [a, b] with a 6 b.

Definition 2.1.7. A continuous map from some compact interval of R to X is called a
path on X .

32



2.2. Realization and Nerve 2. Combinatorial Structures

Definition 2.1.8. Given two continuous maps f , g : X → Y and a subspace A ⊆ X , a
homotopy from f to g relative to A is a mapping η : X × [0, r] → Y with r ∈ R+ such
that η(_ , 0) = f , η(_ , r) = g, and for all a ∈ A, the mapping h(a, _) is constant. When
A = ∅ one just writes that η is a homotopy from f to g. Note that:

– the mapping (a, t) ∈ X × [0, r] 7→ f (a) ∈ Y if a homotopy from f to f relative to
all the subsets of X .

– the mapping (a, t) ∈ A × [0, r] 7→ η(a, r − t) ∈ Y is a homotopy from g to f
relative to A.

– if h : X → Y is another map and η′ : X × [0, s] → Y is a homotopy from g to
h relative to A, then the mapping (a, t) ∈ X × [0, r + s] → Y defined by η(a, t) if
t 6 r and by η′(a, t − r) if r > t, is a homotopy from f to h relative to A.

So the binary relation defined by f ∼A g when there exists a homotopy from f to g

relative to A is an equivalence relation. We write that f and g are homotopic relatively
to A or just that f and g are homotopic when A = ∅. A map is said to be null homotopic
when it is homotopic with a constant map.

Definition 2.1.9. Amapping f : X → Y is called a homotopy equivalencewhen there
exists a mapping g : Y → X such that g ◦ f and f ◦ g are respectively homotopic with
idX and idY .

2.2 Realization and Nerve
Most mathematical formalization of a given concept come with representatives whose
properties do not match the intuition. The notion of topology is a striking example
of this situation. While it is meant to generalize metrics, not to say Rn, there is a
plethora of topologies which fail to satisfy the most elementary properties of metric
spaces (e.g. order topologies, Zariski topologies, stably compact spaces, and so many
others). Denoting the category related to a given formalization by C, a way to prevent
these “pathologies” from happening is to choose a class of “nice” objects of C and to
consider only those which can be obtained by assembling “nice” objects in a restricted
way. Formally speaking, it amounts to choosing a functor B : Θ→ C and to narrowing
the class of objects under consideration to those which can be obtained as colimits of
diagrams whose arrows are in the image of B. For technical reason the category Θ
should be small. Intuitively, the collection of objects of Θ is the catalog of all the
building blocks available in a construction-toy system. Its morphisms indicate all the
ways of assembling these blocks allowed by the system. Choosing a functor B specifies
which material the building blocks are made of. That intuition is formalized by means
of presheaves, viz functors from the opposite of a small category, in this instance Θ, to
Set. A presheaf K over Θ plays the role of an assembly manual which explains how to
build a certain object from nice ones. An element of K is an ordered pair (x, a) such
that a ∈ K x for some object x of Θ. A morphism from (x, a) to an element (y, b) is a
morphism f ∈ Θop(x, y) such that K f (a) = b, it should be read as “assemble a with b
according to f ”.

Definition 2.2.1. The elements ofK and themorphisms between them form the category
Elts(K) (cf. (Borceux, 1994a, p.22) or (Mac Lane and Moerdijk, 1994, p.41)). The
B-realization of K in C is, when it exists, the colimit of the functor FK : Elts(K)op → C

33



2.2. Realization and Nerve 2. Combinatorial Structures

defined by FK (x, a) = Bx and FK ( f ) = B f for all objects (x, a) and all morphisms f
of Elts(K)op. It is denoted by |K |B.

Due to the smallness assumption, presheaves over Θ form, together with natural trans-
formations between them, the category SetΘop

. A natural transformation η : K → K ′

of SetΘop
induces a functor η : Elts(K) → Elts(K ′) by setting Elts(η)(x, a) = (x, ηx(a))

and Elts(η)( f ) = f for all morphisms f : (x, a) → (y, b). This definition makes sense
because K ′( f ) ◦ ηx(a) = ηy(b), the latter equality resulting from naturality of η and
K( f )(a) = b. The initial cocone over FK′ , when it exists, can be seen as a natural trans-
formation µ from FK′ to the constant functor |K ′ |B. Then µ·η is a natural transformation
from FK′ ◦ η to the constant functor |K ′ |B. Then observe that FK′ ◦ η = FK hence µ · η
can be seen as a cocone over FK . The universal property of colimits gives a morphism
|η |B : |K |B → |K ′ |B. A routine verification proves that |η′ ◦ η |B = |η′ |B ◦ |η |B for any
morphism η′ : K ′ → K ′′ of SetΘop

. We have extended Definition 2.2.1 to a functor
from SetΘop

to C.

Definition 2.2.2. If all the functors FK have a colimit in C, the B-realization functor is
well-defined. It is denoted by |_|B : SetΘop → C.

Let us examine the case where C is Top or Haus. In particular we have a forgetful
functor to Set whose left adjoint embeds Set in C. Moreover the inclusions of the
components of a coproduct are monomorphisms and if X0, X1 are the images of two
distinct such inclusions, then X0 ∩ X1 = ∅. In categorical terms, it more or less
amounts to assuming that C has both a terminal object and an initial one, and that all
its coproducts are disjoint in the sense of (Borceux, 1994c, Def.3.4.8, p.216). Then
C canonically contains a copy of Set and for all sets S and all objects X of C, the
Cartesian product S × X exists and is isomorphic to the coproduct of S copies of X
(i.e. the coproduct of the family {a} × X for a ∈ S). In particular, for all f ∈ Θop(x, y)
and all a ∈ K x, we define GK (x, a) as {a} × Bx and GK ( f ) as below.

{K f (a)} × By
! ×Bf // {a} × Bx

Then |K |B is again the colimit of GK and we can carry the toy building set metaphor
further saying thatK is a construction kit whose building blocks are the objects {a}×Bx,
and that they are assembled according to the morphisms GK ( f ) defined above. Having
these additional hypotheses in mind, the relation K f (a) = b for (a, b) ∈ K x×Ky should
be interpreted as: the copy of By labelled by b is identified with some “subspace” (spec-
ified by B f ) of the copy of Bx labelled by a.

The realization functor assembles the elements of a construction kit according to
an instruction manual, viz an object of SetΘop

. We are now interested in the reverse
procedure: drawing an assembly manual from an object X of C in such a way that its
realization is as close as possible to the original object.

Definition 2.2.3 (Nerve). Given an object X of C, the B-nerve of X is the presheaf
N(X) defined as follows:

– for all objects x of Θop, N X(x) := C(Bx, X),

– for all morphisms f ∈ Θop(x, y), N X( f ) is the precomposition by B f . Indeed, if
γ ∈ C(Bx, X) then γ ◦ B f ∈ C(By, X).

34



2.2. Realization and Nerve 2. Combinatorial Structures

Given a morphism g ∈ C(X,Y ), one obtains a natural transformation from N X to NY
by post-composition. Indeed, if δ ∈ C(Θ(x), X) then g ◦ δ ∈ C(Θ(x),Y ). The functor
N is called the B-nerve functor. It is worth noticing that no assumption on C were
required during the construction.

Assuming that the B-realization functor is well-defined, the realization of the nerve of
X is indeed as close to X as possible. This idea is formalized by the following standard
result.

Theorem 2.2.4. (Mac Lane and Moerdijk, 1994, p.41, Theorem 2).
The B-realization and the B-nerve form a pair of adjoint functors.

|_|B a NB

Remark 2.2.5. In Definition 2.2.2 we stress that only certain colimits are required.
Our purpose is to emphasize that Theorem 2.2.4 actually remains valid when C only
has the colimits of the functors FK , for all the objects K of SetΘop

. This subtlety
will matter when it comes to realizing presheaves in the category of local pospaces
(cf. Definition 4.3.17).

Remark 2.2.6. When C is cocomplete the B-realization functor is well defined (cf.Def-
inition 2.2.2) and by Theorem 2.2.4, it can be defined as the adjoint to the left of the
B-nerve. This approach, however concise, relies on abstract results which do not say
a word about the intuition on which realizations and nerves are based. The preceding
discussion is intended to fill that gap.

The range of applications of Definition 2.2.2 is almost unlimited. We give some
examples including the standard and degenerated ones.

Example 2.2.7 (Trivial Realization). The degenerated case where C is the terminal
category stresses that the colimits in C might induce identifications in the realization
of K ∈ SetΘop

that are not specified by K .

Example 2.2.8 (Graphs andBipartiteGraphs). Let B be the inclusion of the subcategory
Θ of Top generated by {∗} → {0} ↪→ [0, 1] and {∗} → {1} ↪→ [0, 1]. The category
Θ is readily isomorphic to the category freely generated by the graph v ⇒ a. An
object G of SetΘop

is thus defined by two sets G(a) and G(v) together with two set maps
from G(a) to G(v). One easily checks that the category SetΘop

is that of graphs. The
realization of the graph with a single vertex and a single arrow is the circle S1. If we
had considered the subcategory Θ of Top generated by the graph {0} ↪→ [0, 1] and
{1} ↪→ [0, 1], then the category Θ would have been isomorphic to the category freely
generated by v0 → a← v1 and SetΘop

would have been the category of bipartite graphs
(i.e. the graphs with a partition V− ∪ V+ of the set of vertices such that the source
(resp. the target) of any arrow belongs to V− (resp. V+)). Going back to the case where
SetΘop

is the category of graphs, if we had substituted the inclusion functor with the
functor B that sends [0, 1] to a point, the B-realization of a graph would have been the
set (seen as a discrete space) of connected components of the graph.

Example 2.2.9 (Simplicial Realization). The standard n-dimensional simplex can be
defined as the convex subset of Rn generated by the totally ordered set of points
Pn = {On < pn1 < . . . < pnn} with On being the origin of Rn and pn

k
being the point

all coordinates of which are 0 except the k th one which is 1 (e.g. the 2-dimensional
simplex is generated by P2 = {(0, 0) < (1, 0) < (0, 1)}). Erasing a single element of

35



2.2. Realization and Nerve 2. Combinatorial Structures

Pn+1 defines an affine inclusion from the n-dimensional simplex to one of the n + 1
faces of the n + 1-dimensional simplex, namely the one that induces a one-to-one
order-preserving map from Pn to Pn+1. Moreover duplicating a single element of Pn

defines an affine projection from the n + 1-dimensional simplex to one of its n + 1
faces, namely the one that induces an order-preserving map from Pn+1 onto Pn. The
common practice in algebraic topology is to consider the category generated by the
affine inclusions and the affine projections that we have previously described. This
category is isomorphic to the category of non-decreasing maps between finite initial
segments of N (i.e. {0, . . . , n − 1} for n ∈ N). It is called the simplicial category
and usually denoted by ∆. The category Set∆op

is denoted by SSet and its objects are
called the simplicial sets. The left adjoint given by Theorem 2.2.4 in the case that
simplices are taken in Top, is called the simplicial realization in Top. For all n ∈ N, the
simplicial set ∆(_, n) is called the standard n-simplex, and its realization in Top is the
n-dimensional simplex. The adjunction between simplicial realization and simplicial
nerve is given by (Goerss and Jardine, 1999, Prop.2.2, p.7) and thoroughly studied in
(May, 1967, Chap.III) and (Gabriel and Zisman, 1967, Chap.III) while a more general
approach can be found in (Riehl, 2014, Section 1.5, p.12-16).

Example 2.2.10 (Cubical Realization). As the category ∆ naturally springs up by
considering the n-dimensional simplices for all n ∈ N, the box (or cubical) category�
arises by focusing on the n-dimensional cubes (i.e. [0, 1]n). It is indeed the subcategory
ofTop generated by the facemaps δni,ε and the degeneracymaps σn

i with i ∈ {0, . . . , n}
and ε ∈ {0, 1}.

δni,ε : (x0, . . . , xn−1) ∈ [0, 1]n 7→ (x0, . . . , xi−1, ε, xi, . . . , xn−1) ∈ [0, 1]n+1

σn
i : (x0, . . . , xn) ∈ [0, 1]n+1 7→ (x0, . . . , xi−1, xi+1, . . . , xn) ∈ [0, 1]n

The category of cubical sets, denoted by CSet, is the presheaf category Set�op
. The

adjunction between cubical realization and cubical nerve is given by (Brown et al.,
2011, Th.11.1.15, p.371).

Example 2.2.11 (Idle Realization). The presheaf category SetΘop
is complete and

cocomplete (Borceux, 1994a, p.89, Corollary 2.15.4) so it is a potential setting for
defining a realization functor (i.e. C = SetΘop

). In this case, the functor B is the Yoneda
embedding Y : Θ → SetΘop

. In regard with Proposition 2.2.12 the realization functor
|_|Y is the left Kan extension ofY along itself. As one can easily guess |_|Y = idSetΘop .

By Theorem 2.2.4, each functor B : Θ→ C can be associated with a pair of adjoint
functors between SetΘop

and C. In fact, that construction extends to an equivalence
of categories to which the theoretical content of this section actually boils down. The
special case where Θ is the simplicial category (cf. Example 2.2.9) is given by (Hovey,
1999, p.76, Proposition 3.1.5).

Proposition 2.2.12. Let Θ and C be categories, with Θ small and C cocomplete. The
category of functors CΘ is equivalent to the category Adj(SetΘop

, C) of adjunctions
from SetΘop

to C.

We give a brief overview of the proof of Proposition 2.2.12 using all the abstract ma-
chinery provided by category theory. In particular we introduce the celebrated Yoneda
embedding Y : Θ → SetΘop

(cf. (Borceux, 1994a, Theorem 1.3.3, p.11), (Mac Lane,
1998, p.59-62)). Given an object x of Θ the presheaf Yx is described on Figure 2.1.

36



2.2. Realization and Nerve 2. Combinatorial Structures

Θop Yx // Set Yx
Yg // Yx ′

y

f
��

Θ(y, x)
(−◦ f )

��

Θ(y, x)
(−◦ f )

��

(g◦−) // Θ(y, x ′)
(−◦ f )
��

y′ Θ(y′, x)

� //

Θ(y′, x)
(g◦−)
// Θ(y′, x ′)

Figure 2.1: The Yoneda embedding in a nutshell.

Moreover any g ∈ Θ(x, x ′) induces, by post-composition, a natural transformation
Yg : Yx → Yx ′ because the composition law of any category is associative (cf. Fig-
ure 2.1). Then any functor G : SetΘop → C is associated with the object G ◦ Y of
CΘ. This association actually extends to a functor which provides the quasi-inverse
of the equivalence announced in Proposition 2.2.12. Conversely, we have to build an
adjunction from a functor B : Θ → C. Its left part, namely the B-realization functor
(cf. Definition 2.2.2), is the left Kan extension of B along Y (cf. (Borceux, 1994a,
Theorem 3.7.2 and Proposition 3.7.3, p.123-125)) while the right one is the B-nerve
functor (cf. Definition 2.2.3).

The category of simplicial sets is the most common combinatorial setting in alge-
braic topology. From the homotopy theory point of view we can indifferently work
with either topological spaces or simplicial sets. Making this statement precise would
require that we introduce the notion of model category – Quillen (1967); Hovey (1999).
Let us just say that a model category provides a categorical setting for homotopy theory
and not surprisingly, Top admits a model structure that matches the usual homotopy
theory. The interesting point is that SSet is also amodel category fromwhich a notion of
homotopy emerges. The striking fact is that the model categories SSet and Top induce
the same notion of homotopy. In other words they are related by a Quillen equivalence
(i.e. a pair of adjoint functors that preserves the model category structures). As one
can guess the Quillen equivalence is given by the realization functor |_| : SSet→ Top
(Hovey, 1999, Theorem 3.6.7). The relation between simplicial sets and topological
spaces, and more generally its importance in algebraic topology, is explained in several
monographs: see for example Gabriel and Zisman (1967), Quillen (1967), May (1967),
(Hovey, 1999, Chapter 3), Goerss and Jardine (1999).

With respect to the Quillen equivalence between SSet and Top, a computer scientist
may ask whether there exist a sound and complete collection of “rewriting rules” such
that K and K ′ are homotopic in SSet iff one can turn K into K ′ by finitely many
applications of these rules. In the language of model categories, it amounts to finding a
collection of morphismsA such that the homotopy category of SSet is equivalent to the
localization SSet[A−1]. Moreover we would like to haveA as simple as possible. The
class A of anodyne extensions (Gabriel and Zisman, 1967, p.60, Chapter 4, section
2) fulfills the above requirements: define Λk

n, the k th horn of the standard n-simplex,
as the boundary of ∆n from which the k th face has been removed. The horn inclusions
Λk

n ↪→ ∆n are monomorphisms of SSet which generate A in the following sense: it
is the least saturated collection of monomorphisms (Gabriel and Zisman, 1967, p.60)
that contains all of them. Then we deduce from (Hovey, 1999, p.80, Proposition 3.2.3)
and (Joyal and Tierney, 2008, p.59, Proposition 3.4.2), that the anodyne extensions are

37



2.3. A Topological Digression 2. Combinatorial Structures

the injective weak equivalences of SSet.
Interpreting A as a rewriting system based on the horn inclusions, the anodyne

extensions can be understood as the “contexts” inwhich one is allowed to “fill” horns and
“reduce” simplices without changing the homotopy type of the geometric realization.
However the problem of the homotopy between simplicial sets is undecidable (i.e. there
is no algorithm to decide whether two simplicial sets are homotopic or not).

There is an analogy between the notion of saturated class of monomorphism and
the notion of class of weak isomorphisms – see Definition 8.2.4. We will see (in
Section 8.6) that any one-way or loop-free category equipped with a system of weak
isomorphisms is a homotopical category in the sense of Dwyer et al. (2004).

2.3 A Topological Digression
The categorical structure of SetΘop

is, by construction, strongly related to the one of
Set. It is thus natural to ask to what extent one can, in the language of categories,
express the fact that a category behaves like Set. The answer is given by the notion
of topos (i.e. Cartesian closed categories with a subobject classifier (cf.Mac Lane and
Moerdijk (1994); Goldblatt (1984))). Toposes are especially well-behaved categories
so one naturally tries to get as close to them as possible. In particular the morphisms of
toposes, also called geometric morphisms, are the left adjoint left exact (i.e. preserving
finite limits) functors. Not surprisingly, any presheaf category is a topos (cf.Mac Lane
and Moerdijk (1994)). Moreover Theorem 2.2.4 tell us that all realization functors
are left adjoint. Then one naturally asks how far a realization functor is from being a
geometric morphism. First the category Top is not a topos because it has no subobject
classifier and it seems that no reasonable subcategory of Top can have one. Moreover,
the simplicial realization in Top does not preserve binary products, nevertheless it
remains that if K and K ′ are finite simplicial sets then their simplicial realization in Top
satisfies the following relation (cf.Milnor (1957), Gabriel and Zisman (1967) or (May,
1967, Th.14.3 p.57)).

|K × K ′ | � |K | × |K ′ |

Even further the category Top is not closed. Actually, there are only few exponentiable
objects in the category of topological spaces. However there are cocomplete Cartesian
closed full subcategories of Top that contains all the finite dimensional simplices and
whose associated realization functor is left exact. The simplicial realization and the
simplicial nerve in these “convenient” subcategories of Top are very well known, they
are studied in the third chapter of Gabriel and Zisman (1967) and in the third chapter
of May (1967) (to mention some textbooks only). The preceding discussion about
the relation between realization and geometric morphisms can be found in (Mac Lane
and Moerdijk, 1994, p.454-455). We now recall some common such “convenient”
subcategories of Top.

Definition 2.3.1. A topological space X it is said to be

– compactly generated when any subset U of X is open when f −1(U) is open for
all continuous maps f from a compact Hausdorff space K to X .

– weakly Hausdorff when the continuous image in X of any compact Hausdorff
space K , is closed.

38



2.3. A Topological Digression 2. Combinatorial Structures

The full subcategory of Top whose objects are compactly generated is denoted by CG.
The full subcategories of CG whose objects are Hausdorff (resp. weakly Hausdorff)
are respectively denoted by CGH and CGWH. The compactly generated Hausdorff
spaces appeared in Gale (1950) which actually attributes the definition to Hurewicz.

The categories CG, CGH, and CGWH are Cartesian closed, contain all the finite
dimensional simplices, and their associated realization functors are left exact. The
Cartesian closedness is proven in (Kelley, 1955, p.229-231), Steenrod (1967), (Lewis,
1978, Appendix), (Engelking, 1989, p.148), or (Hovey, 1999, p.58) while proofs of the
left exactness can be found in (Gabriel and Zisman, 1967, p.49) and (Goerss and Jardine,
1999, Prop.2.4, p.9). An even more general approach to Cartesian closed subcategories
of Top is given by (Goubault-Larrecq, 2013, Section 5.7, p.180-194).

Definition 2.3.2. In the sequel, a convenient subcategory ofTopwill refer to eitherCG,
CGH, or CGWH. More generally it could be any complete and cocomplete Cartesian
closed subcategory of Top in which the simplicial realization preserves finite limits.

Note that the terminology is not standardized: “Kelley spaces” or “k-space” may refer
to either of the three notions. Because the underlying space of a partially ordered spaces
is Hausdorff, we prefer the category CGH as a convenient one. Proposition 2.3.3 and
Figure 2.2 (where the solid arrows are inclusions and the dashed ones are their adjoints)
gather some common results about these categories, see Lewis (1978), (Engelking,
1989, p.152-155), (Borceux, 1994b, p.359, Section 7.2), and (Hovey, 1999, p.58-
59). Weak Hausdorff compactly generated spaces are thoroughly treated in (Strickland
(2009)).

Proposition 2.3.3.

1. The inclusion functorCG ↪→ Top has a right adjoint k. For all topological spaces
X , k X is the least compactly generated topology (on the underlying set of X) that
contains the topology of X . If X is compactly generated, then k X = X . The
result still holds if we substitute CG and Top with CGH and Haus (resp. CGWH
and WH, the category of weak Hausdorff spaces).

2. The inclusion functor CGWH ↪→ CG has a left adjoint w. For all compactly
generated spaces X , wX is the maximal weak Hausdorff quotient of X . If X is
weak Hausdorff, then wX = X .

3. The inclusion functor CGH ↪→ CGWH has a left adjoint h. For all compactly
generated spaces weak Hausdorff space X , hX is the maximal Hausdorff quotient
of X . If X is Hausdorff, then hX = X .

4. The category CG is complete and cocomplete: the colimits are taken in Top, the
limits are obtained by applying k to the limits in Top.

5. The category CGWH is complete and cocomplete: the limits are taken in CG,
the colimits are obtained by applying w to the colimits in CG.

6. A topological space X is Hausdorff compactly generated iff X � Y/∼ for some
locally compact space Y and some closed equivalence relation ∼ on Y .

7. If X is compactly generated and Y is locally compact, then X × Y = X ×CG Y

39



2.3. A Topological Digression 2. Combinatorial Structures

CG //

w

��

Top
k

oo

w

��
CGWH

OO

//

h
��

WH

OO

k
oo

h

��
CGH

OO

// Haus

OO

k
oo

Figure 2.2: Some remarkable subcategories of Top.

8. If X is compactly generated Hausdorff and Y is locally compact Hausdorff, then
X × Y = X ×CGH Y

9. For X,Y topological spaces, U an open subset of Y , and f ∈ Top(K, X) with K
being compact Hausdorff, define

W( f ,U) :=
{
g ∈ Top(X,Y )

�� g ◦ f (K) ⊆ U
}

ThenC(X,Y ) is the topological space overTop(X,Y )with the topology generated
by the family {W( f ,U); f ,U}. Define YX as kC(X,Y ). If X , Y , and Z are
compactly generated then

CG(X ×CG Y, Z) � CG(X, ZY )

with X ×CG Y being the image under k of the product X × Y in Top (i.e. the
product in CG). Therefore CG is Cartesian closed.

10. Any locally compact Hausdorff space X is compactly generated, exponentiable
in Top, and for all topological spaces Y , the space YX is the homset Top(X,Y )
equippedwith the compact-open topology. IfY is compactly generatedHausdorff,
then so is the latter space.

From the eighth point of Proposition 2.3.3 a homotopy (cf. Definition 2.1.8) can be
understood as a path (cf. Definition 2.1.7) on the function space YX . We have seen
(cf. Example 2.2.9) that Top and SSet are (Quillen equivalent) model structures. We
also have seen that some full subcategories of Top are more tractable than Top in
practice. However one can reasonably ask whether the notion of homotopy is altered by
this replacement. The answer is simple: CG, CGH, and CGWH admit model category
structures that are Quillen equivalent to the one of Top. From the homotopy theory
point of view, we can therefore indifferently work with either of the categories Top,
CG, CGH, or CGWH. More precisely:

– the inclusion functor CG ↪→ Top is a Quillen equivalence, (Hovey, 1999, p.58-
59), and

– the left adjoint functor w : CG → CGWH is a Quillen equivalence (Hovey,
1999, p.58-59).

Note that Hovey (1999) does not explicitly treat the case ofCGH, yet one can reasonably
guess that it is alsoQuillen equivalent toTop. Since the firstmodels of directed topology
that we will meet are the partially ordered spaces (cf. Definition 4.1.1) and since the

40



2.4. Cubical Sets 2. Combinatorial Structures

underlying space of a pospace needs to be Hausdorff (cf. Remark 4.1.2), we prefer the
category CGH.

The remaining of the chapter is divided into two sections respectively dedicated to
cubical sets and precubical sets, both of them being examples of the construction made
in Section 2.2.

2.4 Cubical Sets
This section is devoted to the presheaf category Set�op

introduced in Example 2.2.10.
Most of the results presented in this section can be found in (Brown et al., 2011, Chap. 11
Sect. 1). For practical purpose, the box category � can be extensively described as
follows – Crans (1995); Haucourt (2012). We write [n] for {0, . . . , n− 1}; therefore [0]
is empty. The set of objects is N and the homset �[n,m] is the (finite) set of ordered
pairs (n,w) where w is a word of length m on the alphabet {0, 1} ∪

{
x0, . . . , xn−1

}
such

that for all i, j ∈ [n] if w(i) = xi′ , w( j) = xj′ and i < j, then i′ < j ′. The composition
being defined as follows:

(w′ ◦ w)(k) =
{
w′(k) if w′(k) ∈ {0, 1}
w(k ′) if w′(k) = xk′

The identity of n is represented by the word (n, x0 · · · xn−1). The face and degeneracy
morphisms are therefore represented, for i ∈ {0, . . . , n} and ε ∈ {0, 1}, by the following
words:

δni,ε = (n, x0 · · · xi−1εxi · · · xn−1) σn
i = (n + 1, x0 · · · xi−1xi+1 · · · xn)

We recover the usual cubical relations – see Figure 2.3, and any morphism of � can be
written as a composite of faces and degeneracies in a unique way (provided we impose
some extra constraints). For example one has the following decomposition.

(5, 01x00x4111) ◦ (7, x101x30) = (7, 01x100111) = (δ3,0)2(δ3,1)3δ0,0 δ0,1(σ1)5σ0

The box category also enjoys a monoidal structure (cf. (Mac Lane, 1998, p.161)) given
by

(n,w) ⊗ (n′,w′) = (n + n′,w · (w′ |xi←xi+n ))
where the dot · is the word concatenation and w′ |xi←xi+n is obtained from w′ replacing
each occurrence of xi by xi+n for all i ∈ {0, . . . , n′ − 1}. However this structure is
not symmetric. As a monoidal category � is generated by δ0 = (0, (0)), δ1 = (0, (1)),
σ = (1, ()), and id = (1, (x0)); while (0, ()) is the neutral element of the monoidal
product. Note that δε ⊗ σ = σ ⊗ δε for ε ∈ {0, 1} but σ ⊗ id = (2, (x1)) while
id ⊗σ = (2, (x0)). For example

(7, 01x100111) = δ0 ⊗ δ1 ⊗ σ ⊗ id ⊗δ⊗2
0 ⊗ δ

⊗3
1 ⊗ σ

⊗5

Remark 2.4.1. Any morphism (n,w) ∈ �(n,m) (with m being the length of w) is
canonically associated with a non-decreasing map φ : Rn → Rm that is defined (for
k ∈ {0, . . . ,m − 1}) by

projk(φ(t0, . . . , tn−1)) =
{

tk′ if wk = xk′
wk if wk ∈ {0, 1}

This remark is one of the motivations for introducing the notion of framework for
directed topology in Section 4.2.

41



2.4. Cubical Sets 2. Combinatorial Structures

for all n ∈ N, i ∈ [n], j ∈ [n + 1] and α, β ∈ {0, 1}

δ
(n+1)
j,β ◦ δ(n)i,α =


δ
(n+1)
i,α ◦ δ(n)

j−1,β if i < j

δ
(n+1)
i+1,α ◦ δ

(n)
j,β if i > j

for all n ∈ N, i ∈ [n + 2], and j ∈ [n + 1]

σ
(n)
j ◦ σ

(n+1)
i =


σ
(n)
i ◦ σ

(n+1)
j+1 if i 6 j

σ
(n)
i−1 ◦ σ

(n+1)
j if i > j

for all n ∈ N, i ∈ [n + 1], j ∈ [n], and ε ∈ {0, 1}

δ
(n)
j,ε ◦ σ

(n)
i =


σ
(n+1)
i ◦ δ(n+1)

j+1,ε if i 6 j

σ
(n+1)
i+1 ◦ δ(n+1)

j,ε if i > j

for all n ∈ N \ {0}, i ∈ [n], j ∈ [n + 1], ε ∈ {0, 1}

σ
(n)
j ◦ δ

(n)
i,ε =



δ
(n−1)
i,ε ◦ σ(n−1)

j−1 if i < j

idn if i = j

δ
(n−1)
i−1,ε ◦ σ

(n−1)
j if i > j

Figure 2.3: Cubical relations

42



2.4. Cubical Sets 2. Combinatorial Structures

Definition 2.4.2. Mimicking Example 2.2.11, we define the standard n-cube �n, for
n ∈ N, as the functor �(_, n). Given a cubical set K the elements of K(n) are the
n-dimensional cubes (or elements) of K . A cube of K is said to be degenerated when
it is in the image of some map K(σn

i ), and it is said to be generating when it is not
the face of some non-degenerated cube. The dimension of K , which takes its values in
N ∪ {∞}, is defined as

sup{dim c | c is a cube of K that is not degenerated}

Remark 2.4.3. One technical thing to note about cubical sets is that the face and the
degeneracy maps go the opposite ways. Consequently, if any of the sets Kn is nonempty,
then so are all the others: there is actually much redundancy due to the degeneracy
maps. All the relevant information about a cubical set K can however be obtained
from its generating cubes and the relations expressed in terms of face and degeneracy
maps that are not derived from the cubical relations. All the cubical sets K we will
be interested in satisfy the following property: for all cubes x there exists a generating
cube y and a morphism f of � such that K( f )(y) = x. We give an example of cubical
set, namely�∞, that violates it: its n-cubes, for n ∈ N, are the ordered pairs (n, s)where
s is a sequence indexed by N of elements of {0, 1} ∪

{
x0, . . . , xn−1

}
such that:

– i < j, s(i) = xi′ , and s( j) = xj′ implies i′ < j ′, and

– there exists a rank beyond which sk is 0.

Given (m,w) ∈ �(m, n) we define K(w)(n, s) as (m, s ◦ w) that is to say by updating the
dimension and by replacing the occurrence of xi in the sequence s by the letter of index
i in the word w. We note that �d canonically embeds into �d+1 (by adding a ‘0’ at the
end of each word of length d) and that one actually has

colim
(
�0 ⊆ �1 ⊆ · · · ⊆ �n ⊆ �n+1 ⊆ · · ·

)
= �∞

We also note that, dropping the constraint on the asymptotic behaviour of sequences s,
we obtain another cubical set which canonically contains�∞ but which, for cardinality
reasons, is not isomorphic to it.

Example 2.4.4. Applying the dogma of Remark 2.4.3, the n-standard cube is entirely
described by its unique generating element which is n-dimensional. From K = �2
and its unique generating element s we can describe the directed compact cylinder by
adding the relation

K(δ1
0,0)(s) = K(δ1

0,1)(s) [rel. 1]

which identifies two opposite edges of the square. The torus is then obtained by adding
the relation

K(δ1
1,0)(s) = K(δ1

1,1)(s) [rel. 2]

Remark 2.4.5. One can easily get convinced that the standard n-cube is not the only
cubical set whose realization is [0, 1]n. The subdivision of cubical sets (Krishnan
(2013)) is one of the many phenomena that imply the existence of a plethora of (non
isomorphic) cubical sets whose realizations are some given (non empty) space.

Anticipating the next chapter, we claim that CSet is a more natural setting for
algebraic directed topology because the canonical geometric realization of the standard
n-cube (i.e. [0, 1]n) naturally inherits from the product order of Rn. On the contrary,

43



2.4. Cubical Sets 2. Combinatorial Structures

there is no canonical way to provide the n-simplex with an order. Indeed we could have
chosen our n-dimensional simplex as the convex hull of a chain (resp. an antichain) of
points ofRn instead of the one we have chosen in Example 2.2.9. The induced orders are
obviously not isomorphic. In classical algebraic topology, the category of simplicial
sets SSet is often preferred to CSet for several technical reasons – see Maltsiniotis
(2009). One of them is that the simplicial geometric realization preserves finite limits
(if one accepts to work in a convenient subcategory of Top – see Section 2.3) while
this property fails for the cubical geometric realization (i.e. the B-realization where B
is the functor that sends n ∈ N to [0, 1]n considered as an object of Top). The defect is
intrinsically due to theCartesian product of cubical sets (cf.Example 2.4.6) and therefore
cannot be fixed by substituting Top with some of its convenient subcategories.

Example 2.4.6. The standard 1-dimensional cube �1 is supposed to play the role of
the “unit interval” of CSet but its 2-fold Cartesian product in CSet is rather puzzling
since �1 × �1 is actually isomorphic to S2 ∨ S1 (i.e. the union of the boundary of
[0, 1]3 together with the diagonal joining (0, 0, 0) to (1, 1, 1)). This fact is explained
in (Maltsiniotis, 2009, Section 6) and according to it, was known by Daniel M. Kan
and made him give up the cubical sets in favour of the simplicial ones. Let us give an
intuition about this phenomenon. For n ∈ N, one has by definition �1(n) = �(n, 1).
Therefore �1(0) = {0, 1} and �1(n + 1) = �(n, 1) ∪ {xn} for all n ∈ N. Since the
Cartesian product of presheaves is calculated pointwise, we have

�1 ×�1(0) = {00, 01, 10, 11}

and
�1 ×�1(1) = �1 ×�1(0) ∪ {0x0, x00, x01, 1x0, x0x0 }

and also

�1 ×�1(2) = �1 ×�1(1) ∪ {0x1, 0x1, x10, x11, x0x1, x1x0, x1x1 }

The “extra” copy of S1 comes from the elements x0x0 and x1x1 which are actually
identified. The 1-skeleton of �1 × �1 is depicted on the left hand side of Figure 2.4
while the copy of S2 is the union of the squares x0x1 and x0x1 whose boundaries are
identified with the outer shape of the 1-skeleton.

Though the cubical approach is not as popular as the simplicial one, it has been
the subject of (or a tool in) many publications during the last sixty years: Kan (1955);
Brown and Higgins (1981); Antolini (2000, 2002); Jardine (2002); Isaacson (2009);
Maltsiniotis (2009); Isaacson (2011) to cite only a few of them, and especially (Serre
(1951)) which has introduced the cubical nerve and (Brown et al. (2011)) which gathers
in a single book a new foundation for algebraic topology. The overall goal is to find
an alternative to the notion of simplicial sets that enjoys all its nice properties without
suffering its practical drawbacks (e.g. finding a simplicial set whose realization is a
given topological spaces is hardly ever an easy task, even for the most common objects
of algebraic topology, in particular the decomposition of ∆n×∆m into standard (n+m)-
simplices is a fundamental construction of the simplicial theory). Yet it remains that
the Cartesian product of cubical sets is ill-behaved with respect to homotopy theory
(cf. Example 2.4.6). An approach consists of adding morphisms to the category � in a
way that one obtains a category �′ so that:

– the mapping sending n ∈ N to [0, 1]n extends to a functor B from �′ to some
convenient subcategory of Top, and

44



2.4. Cubical Sets 2. Combinatorial Structures

× ⊗

Figure 2.4: The 1-skeleton of �1 ×�1 and the tensor product �1 ⊗ �1 = �2

– the B-realization is left exact (i.e. preserves finite limits).

The cubical sets with connections, introduced in Brown and Higgins (1981), have been
proven to be a satisfactory candidate in a very strong sense by Maltsiniotis (2009).
As another remedy one can consider the non-symmetric monoidal structure of CSet
(Kan (1955); Brown et al. (2011)) whose tensor product reflects, through the cubical
geometric realization, the Cartesian product of (nice) topological spaces. Provided one
works in a convenient subcategory of Top, we have indeed

|K ⊗ K ′ | � |K | × |K ′ |

for all cubical sets K and K ′ – see (Brown et al., 2011, Prop.11.2.3).1 The tensor
product of K,K ′ ∈ CSet in dimension n (i.e. (K ⊗ K ′)n) is the quotient of the union of
the products of sets Kp × K ′q with p + q = n, by the equivalence relation that identifies
(K(σr

r )(x), y) and (x,K(σs
0 )(y))with r + s = n−1, see Kan (1955); Brown et al. (2011),

and also (Borceux, 1994a, Sect.3.8 p.128) for a general tensor product of set-valued
functors.

Example 2.4.7. The two fold tensor product of �1 is shown on the right hand side
Figure 2.4. More generally the n-fold tensor product of �1 is (isomorphic to) the
standard n-cube �n, and one refers to �2 and �3 respectively as the square and the
cube. This confirms that the tensor product of CSet takes up the role in which one has
expected to see the Cartesian product.

Mathematically speaking, the precubical sets are the cubical sets without degenera-
cies. From the computer science point of view, their interest have appeared with the
rise of higher dimensional automata in concurrency theory (cf. Remark 2.4.9).

Definition 2.4.8. The category pCSet of precubical sets is Set�+op
with �+ being the

subcategory of Top generated by the face maps defined in Section 2.4. We define, for
all n ∈ N, the standard n-cube �+

n as the functor �+(_, n). Given a precubical set K the
elements of K(n) are the n-dimensional cubes (or elements) of K . For all n ∈ N, the
nth truncature is the endofunctor of pCSet that removes all the elements of dimension
strictly greater than n from precubical sets.

Remark 2.4.9. The category Grph of graphs is canonically isomorphic to the full
subcategory of 1-dimensional precubical sets. The other way round, one can define a
precubical set as a higher dimensional graph. This point of view leads to the concept of
Higher Dimensional Automata or HDA for short – Pratt (1986, 1991); van Glabbeek
(1991); Pratt (2000), which has been proved to encompass almost all the mainstream
computer science models of concurrency (cf. van Glabbeek (2006); Goubault and
Mimram (2012)). At this point we should also mention asynchronous transition

1 the cellular isomorphism χ : |K | ⊗ |L | → |K ⊗ L | between skeletal filtrations induces a homeomor-
phism χ : |K | × |L | → |K ⊗ L | between the underlying topological spaces.

45



2.4. Cubical Sets 2. Combinatorial Structures

systems – Winskel (1995), which can be seen, in a loose sense, as the 2-dimensional
higher dimensional automata.

Remark 2.4.10. The notion of degenerated cube is pointless for precubical sets. A
cube of a precubical set is thus said to be generating when it is not the face of some
other cube. The dimension of K , which takes its values in N ∪ {∞}, is defined below.

dim(K) = sup{n ∈ N | Kn , ∅}

Because the Cartesian product of precubical sets is calculated pointwise (i.e. (K×K ′)n =
Kn × K ′n for all n ∈ N), the following relation holds for all precubical sets K and K ′.

dim(K × K ′) = min{dim(K ′), dim(K)}

Remark 2.4.11. Given a precubical set K , the 1-dimensional truncature of K is a graph.
The category P that it freely generates is, by definition, the category of paths on K .
Each 2-dimensional element x of K is a square which makes its lower path equivalent
to its upper one. Denote by ∼ the resulting congruence over P and anticipating on
Definition 5.2.10, define −→π1K , the fundamental category of K , as the quotient of P
by ∼. According to this definition, note that a precubical set and its 2-dimensional
truncature have the same fundamental category.

Since �+ is a subcategory of �, the inclusion �+ ↪→ � induces a functor CSet →
pCSet by precomposition. Also note that �+ only contains monomorphisms and if
the morphism (n, ω) is a composite of face maps, then denoting its codomain (i.e. the
length of ω) by m, the set of variables occurring in ω is {x0, . . . , xn−1} with

n = m − #
{

i ∈ {0, . . . ,m − 1}
�� ω(i) ∈ {0, 1} } .

Any morphism (n, ω) of �+ is thus entirely characterized by ω and we have

ω = δω(i1)
i1,m − n ◦ · · · ◦ δ

ω(im−n)
im−n,m

with { i1 < . . . < im−n } =
{

i ∈ {0, . . . , n − 1}
�� ω(i) ∈ {0, 1} }. By the way, we note

that the second subscripts are implicitly given by the length of the word to decompose,
so we omit them. Moreover we know from the description of � given in Section 2.4
that each element of {x0, . . . , xn−1} occurs in ω exactly once, and that if ω(i) = xi′
and ω( j) = xj′ with i < j, then i′ < j ′. The morphism (n, ω) is therefore entirely
characterized by the word obtained by substituting each occurrence of a variable in ω
with the same variable, let us say x. The homset�+(n,m) can therefore be described as
the collection of words of length m on the alphabet {0, 1, x} with n occurrences of x.
For example

01xx0x11 = 01x0x10x211 = δ−0 ◦ δ+1 ◦ δ−4 ◦ δ+6 ◦ δ+7
Consequently, the (non-symmetric) strict monoidal strcture of �+ is given by the mere
concatenation of words, moreover �+(n,m) is empty if n > m, and it is a singleton if
n = m. In particular �+ is loop-free – see Definition 8.1.1.

Applying the results of Section 2.2, we define the precubical realization functor
|_|pCSet and the precubical nerve functor NpCSet, the former being the adjoint on the left
of the latter. We omit the subscript when there is no ambiguity. From a homotopy point
of view, the Cartesian product of pCSet does not behavemuch better than its counterpart
in CSet – see Example 2.4.13. Yet the category pCSet also enjoys a non-symmetric
monoidal structure whose tensor product satisfies

|K ⊗ K ′ | � |K | × |K ′ |

46



2.4. Cubical Sets 2. Combinatorial Structures

× ⊗

Figure 2.5: The Cartesian product �+1 ×�
+
1 and the tensor product �+1 ⊗ �

+
1

for all K and K ′ in pCSet provided that the precubical sets are realized in a convenient
subcategory of Top (if K and K ′ are finite, the isomorphism remains valid for realiza-
tions in Top and Haus). Its tensor product is actually even simpler to describe than the
one of CSet:

Definition 2.4.12. The tensor product of K,K ′ ∈ pCSet in dimension n (i.e. (K ⊗K ′)n)
is the union of the products of sets Kp×K ′q with p+q = n. The faces of (x, y) ∈ Kp×K ′q
are defined below, for i ∈ {0, . . . , n − 1} and ε ∈ {0, 1}.

(K ⊗ K ′)(δp+q−1
i,ε )(x, y) =


(
K(δp−1

i,ε ) , y
)

if 0 6 i < p(
x , K ′(δq−1

i−p,ε)
)

if p 6 i < p + q

Example 2.4.13. As in the cubical setting, the standard 1-dimensional cube �+
1 is

supposed to play the role of the “unit interval” of pCSet and the n-fold tensor product
of �+

1 is (isomorphic to) the standard n-cube �+
n – see �+

2 on the right and side of
Figure 2.5. Since the Cartesian product of presheaves is calculated pointwise, we have

�+
1 ×�

+
1(0) = {00, 01, 10, 11}, �+

1 ×�
+
1(1) = {xx},

and�+
1×�

+
1(n) = ∅ for n > 2. In particular�+

1×�
+
1 is 1-dimensional and disconnected.

Remark 2.4.14. By definition, the precubical sets avoid much redundancy (e.g. the set
of k-dimensional elements of�+

n is empty for k > n), yet the description of the cylinder
and the one of the torus given in Example 2.4.4 are still valid. The expressiveness of
the precubical sets with respect to the cubical ones is an interesting question: can the
realization of any cubical set be realized as a precubical one? I have not been able
to answer the question in the topological setting, however counter-examples abound in
directed topology, and they are not pathological – see Example 4.3.39.

47



3

Precubical Semantics
of the Parallel Automata Meta Language

We use the precubical sets (cf. Definition 2.4.8) and the middle-end representations
(cf. Definition 1.2.5) to provide each Paml programs with a model which prefigures the
continuous one (cf. Definition 7.1.2). The mathematical structure carried by this model
is a partial precubical set, that is to say a precubical set whose face maps might be
partial. These objects naturally arise as we need to be able to remove elements x from
a precubical set without removing the elements y whose boundaries contains x. Partial
precubical sets were introduced by Fahrenberg and Legay (2015). Nevertheless, they
come with a technical burden with which we do not want to deal here. This is also one
of the reason why we advocate for using continuous models. Indeed, if the underlying
set of a directed realization �K� of a precubical set K is the set1⋃

n∈N
Kn×]0, 1[n

and if we want to remove the elements contained in the set F, then the following set
induces a subobject of �K� . ⋃

n∈N

(
Kn \ F

)
×]0, 1[n

3.1 Exhaustive Models
From any Paml program, one can build a partial higher dimensional automata (in the
sense of Fahrenberg and Legay (2015)) in a very natural way. Considering precubical
sets as higher dimensional graphs, the latter can be seen as the “higher dimensional
Cayley graph” (Karrass et al., 2004, p.57) of the action of subsets of P on internal states
(cf. Definition 1.4.3). Recall that a program comes with its middle-end representation
(cf. Definition 1.2.5) in which P denotes the set of running processes. For technical
purpose, we assume that P is totally ordered so we can define the ith element of any
subset of P for any i less that its cardinal.

1This condition is almost always satisfied.

48



3.2. Control Flow Graphs 3. Precubical Semantics

Definition 3.1.1. The exhaustive model of a Paml program is a partial higher dimen-
sional automatonwhose elements are the ordered pairs (σ, M)where M is an admissible
subset of P in the state σ (cf. Remark 1.4.4). The dimension of such an element is the
cardinal of M . Given a partial map ε : M → {0, 1}, we define the element ∂εM (σ, M)
as the ordered pair (

σ · M ′, M \ dom ε
)

where M ′ is the set of elements x of dom ε such that ε(x) = 1. By definition, it is
well-defined if and only if M ′ is admissible in the state σ and M \ dom ε is admissible
in the state σ · M ′.

Remark 3.1.2. The operators introduced in Definition 3.1.1 encompasses the usual
face operators: it suffices to the cases where dom ε is a singleton. In particular, a
precubical relation at (σ, M) is satisfied when the two corresponding single instructions
extracted from the multi-instruction associated with M in the state σ (cf. Remark 1.4.4)
can be executed in any order without altering the final output. The latter condition is
satisfied because for all the elements (σ, M) the set M is admissible in the state σ.
However, because the operators are partial, the operators ∂εM (σ, M) such that dom ε
is a singleton are no longer generating. Roughly speaking, a composite might exist
though some intermediate composite does not. Nevertheless, one readily checks that if
no synchronisation instructions appear in the program under consideration, then such
a situation does not occur. In other words the exhaustive model is a higher dimension
automata in the usual sense.

Remark 3.1.3. The exhaustive model of a Paml program mixes information about
control flow, local concurrency, and variable content. Even if one can reduce the size
of the exhaustive model of a program by obvious reachability argument, it remains, in
almost all cases, infinite. Its interest is thus mainly theoretical. Yet, we will see that
under reasonable assumptions, the information about control flow and local concurrency
can be gathered in a single finite structure that is defined separately from any variable
content consideration.

3.2 Control Flow Graphs
As already mentioned in the introduction of this memoir, (labelled) graphs play a
key role in compilers and static analyzers. The control flow graphs introduced in
Definition 3.2.1 are inspired from that of F. E. Allen (1970) and from the flowcharts of
R. W. Floyd (1967). In particular the vertices of the control flow graphs are labelled
with single instructions which are executed when the instruction pointer goes through
them. We describe a simple algorithm which produces the control flow graph of every
process defined in (the middle-end representation of) a Paml program. Following suit,
we add to the middle-end representation of every Paml program a map which associates
each of its running processes with its control flow graph.

Definition 3.2.1. A control flow graph is a finite graph

G : A
∂- //

∂+
// V

together with:

– a distinguished vertex, its origin,

49



3.2. Control Flow Graphs 3. Precubical Semantics

– a total order vv on
{
a ∈ A

�� ∂-a = v
}
for all v ∈ V ,

– a labelling λV : V → {P(_), V(_), W(_), Nop} (cf. Definition 1.1.4), and

– a labelling λA : A→ {expressions} (cf. Definition 1.1.2).

These data are submitted to the following constraints: for all v ∈ V ,

– if
{
a ∈ A

�� ∂-a = v
}
is not a singleton, then λV (v) = Nop,

– if
{
a ∈ A

�� ∂-a = v
}
= {a}, then λA(a) is the constant 1 (and it should be

understood as true).

We also impose that all vertices and all arrows of the graph are met by some path
starting at its origin.

Remark 3.2.2. The distinguished vertex is the entry point of the process so it seems
reasonable to require that all points and vertices can be reached from it. A vertex v

with multiple outgoing arrows represents a branching, hence the instruction it carries
“does nothing”. However the expressions carried by the outgoing arrows together with
the total order on them provide the information needed to decide which branch should
be taken. In particular, we define the set of free variables F(a) of an arrow a as the
set of free variables of λAa. We also define the set of free variables F(v) of a vertex v

as the union of the sets of free variables of a for all arrows a such that ∂-a = v. This
definition will make sense in Definition 3.3.6.

Remark 3.2.3. Control flow graphs should be seen as abstract forms of processes,
this fact is illustrated by the execution trace shown on Figure 3.1. It is important to
note that in this interpretation, the arrows between nodes are are intermediate positions
of the instruction pointer. Moreover, as suggested by Figure 3.1, we assume that the
instruction carried by a vertex is executed at the moment the instruction pointer arrives
on the vertex.

Definition 3.2.4. A point on a (control flow) graph is thus either a vertex or an arrow. A
path on a (control flow) graph is a sequence of points p = p(0) · · · p(K) whose first and
last elements are vertices, and such that for all k ∈ {1, . . . ,K}, if p(k − 1) (resp. p(k))
is an arrow, then p(k) (resp. p(k − 1)) is its target (resp. its source). From any path on
a control flow graph, one deduces a sequence of instructions in the obvious way. A
path on a control flow graph is an execution trace when every expressions (carried by
an arrow) met along the path is satisfied in the current internal state (e.g. Figure 3.1).

Remark 3.2.5. Both examples shown on Figure 3.2 actually produce the same execution
traces (up to the occurrences of Nop). Referring to “the” control flow graph of a process
is therefore an abuse of language. Transformations of control flow graphs are the basis
of optimization techniques in compilation. We just provide a simple algorithm to build
control flow graphs from basic blocks which we now define.

Definition 3.2.6. A basic block is a control flow graph whose underlying graph is a
tree (i.e. it is acyclic and all its vertices but its origin have a unique ingoing arrow),
and whose leaves (i.e. its vertices with no outgoing arrow) can be labelled with a jump
instruction.

Following Remark 1.1.6, we suppose that we are able to produce the extended basic
block of any body of instructions. From the latter, we build the control flow graph
associated with the process identifier p as follows:

50



3.2. Control Flow Graphs 3. Precubical Semantics

en
try
po
int

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the value of x is 5

en
try
po
int

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the value of x is 5

en
try
po
int

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the value of x is 16

en
try
po
int

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the value of x is 16

en
try
po
int

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the value of x is 16

en
try
po
int

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the value of x is 16

en
try
po
int

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the value of x is 8

en
try
po
int

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the value of x is 8

( · · · )

en
try
po
int

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the value of x is 1

en
try
po
int

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the value of x is 1

en
try
po
int

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the value of x is 1

Figure 3.1: An execution trace on a control flow graph

51



3.2. Control Flow Graphs 3. Precubical Semantics

en
try
po
int

x:=x/2

x:=3*x+1

x%2=0

x=1

en
try
po
int

x:=x/2

x:=3*x+1

x%
2=
0

x=1

Figure 3.2: Two equivalent control flow graphs

◦ we consider the disjoint union of all the basic blocks associated with all the
elements of P (cf. Definition 1.2.4),

◦ we draw an arrow (labelled with 1) from every vertex carrying a jump instruction
J(q) to the entry point of the basic block of q,

◦ we keep the connected component containing the entry point of p (i.e. the other
ones are removed),

◦ we “shunt” all the vertices containing a jump instruction (cf. Figure 3.3),

◦ the entry point is that of p.

Consider a vertex of the graph obtained at the second step and suppose that its label
is a jump instruction. Then one can check that it has a unique ingoing arrow and a
unique outgoing arrow, and that they are not equal. For this reason, such a vertex can
be shunted.

Remark 3.2.7. The action of multi-instructions on internal states (cf. Definition 1.4.3)
dynamically replaces the jumps by the corresponding bodies of instructions. In com-
parison, the control flow graph of a process is produced by connecting the vertices
carrying jumps to the entry points of the corresponding basic blocks. In particular,
all the instructions J(_) are statically treated. Both are inspired from “inlining”, a
standard transformation that is discussed in (Cooper and Torczon, 2011, Section 8.7.1,
p.458) and (Muchnick, 1997, Section 15.2 and 15.3, p.465–472). In the latter case, it
is dynamical, in the former one, it is statical.

Remark 3.2.8. As suggested by the way action of multi-instructions on internal states
and control flow graphs are defined, the jump instruction has no built-in “return mecha-
nism”. This means that even when the destination process finishes, it does not give the
control back to the origin process. Once again, Paml is just an intermediate language.

Example 3.2.9. We explain on Figure 3.4 how the control flow graph of the process
does_it_continue of Remark 1.1.6 is built. For the sake of readability, the identifiers
does_it_continue and continue have been replaced by p and q. Moreover, when
the label of a vertex has been omitted, it should be understood as the instruction Nop.
An unlabelled arrow a is the one that should be chosen when none of the expressions
carried by the arrows sharing the same source as a is satisfied. In more concrete terms,
it is the default branch of a “match case” construction.

52



3.3. Another Abstract Machine 3. Precubical Semantics

v

Assuming that the vertex v has a unique ingoing arrow and a unique outgoing arrow as
above. We would like to shunt it.

v

We add an arrow from the source of the ingoing arrow to the target of the outgoing one.

We remove v and its adjacent arrows to end up with the following graph.

Figure 3.3: Shunting a vertex.

Remark 3.2.10. Control flow graphs have been defined in such a manner that any
execution trace of a single process corresponds to a path on its control flow graph.
However the converse is false. Indeed, considering the Hasse-Syracuse algorithm
(cf. Figure 3.4), we note that no path going through x:=3*x+1 twice in a row matches an
execution trace. The set of paths on a control flow graph is thus an overapproximation
of the set of execution traces.

From now on, we assume that the middle-end representation of every Paml program
(cf. Definition 1.2.5) comes with a map

cfg : P → {control flow graphs}

relating each element p of P with a control flow graph that “faithfully” represents
body(p) (cf. Definition 1.2.4) in the sense that any execution trace on a control flow
graph (cf. Definition 3.2.4) is actually (up to the occurrences of the Nop instruction) an
execution trace in the sense of Definition 1.4.5. A rigorous proof of this fact would be
tedious, we do not provide it here.

3.3 Another Abstract Machine
In this section, we describe an alternative abstract machine based on control flow
graphs instead of stack of instructions (cf. Definition 1.4.3 and Section 1.6). The
first step consists of providing every Paml program with a control flow structure. For
technical purpose, we assume that P is totally ordered so it is isomorphic with the set of
integers {1, . . . , N} for some N ∈ N. Following Remark 3.2.3 we generalize the notion
of point (cf. Definition 3.2.4) to higher dimensions in the obvious way.

Definition 3.3.1. A point is an N-tuple whose nth component, for n ∈ {1, . . . , N},
is a point of the control flow graph Gn of the nth running process of the program
(cf. Definition 3.2.4). Considering graphs as 1-dimensional precubical sets, the points
are precisely the elements of the following tensor product.

G1 ⊗ · · · ⊗ Gn

53



3.3. Another Abstract Machine 3. Precubical Semantics

entry point of the

basic block of p

x=1

J(q)

J(q)

entry point of the

basic block of q

x:=3*x+1

x:=x/2

x%
2=
0

J(p)

J(p)

The above trees are the basic blocks associated with p and q.

entry point of the

basic block of p
x=1

J(q)

entry point of the

basic block of q

x:=3*x+1

x:=x/2

x%
2=
0 J(p)

J(p)

Connect the basic blocks.

entry point of the con-

trol flow graph of p

x=1

x:=x/2

x%
2=
0

x:=3*x+1

The vertices carrying the call instructions are shunted.

en
try
po
int

x:=x/2

x:=3*x+1

x%2=0

x=1

A more concise view of the preceding control flow graph.

Figure 3.4: Building the control flow graph of the Hasse/Syracuse algorithm.

54



3.3. Another Abstract Machine 3. Precubical Semantics

a0

a1p

s

Figure 3.5: Discrete directed paths are “continuous”.

Extending the notion of path is a bit subtler.

Definition 3.3.2. A path on a given tuple of graphs (G1, . . . ,Gn), typically the running
processes of a program, is a finite sequence of points p = p(0) · · · p(K) such that for all
k ∈ {1, . . . ,K} we have

– execution: ∂+pn(k − 1) = pn(k) for all n ∈ Dk , or

– selection: ∂-pn(k) = pn(k − 1) for all n ∈ Dk ,

where Dk =
{
n ∈ {1, . . . , N}

�� pn(k) , pn(k − 1)
}
.

Remark 3.3.3. The constraints imposed on the notion of path might seem surprising
at the first sight. They actually force paths to be “continuous” in the following sense.
Assume that the picture on Figure 3.5 is the unit square [0, 1]2 split into points (its
corners), open segments (the interior of its edges), and open unit square (its interior).
A naive definition would accept any sequence of points such that pn(k) = pn(k + 1),
∂-pn(k + 1) = pn(k), or ∂+pn(k) = pn(k + 1) for all n ∈ {1, . . . , N} and all k ∈
{0, . . . ,K − 1}. In particular, it would accept the sequence (a0, a1) on Figure 3.5
although no continuous path on the unit square can go from a0 to a1 without meeting
p or s. The terminology “execution” and “selection” will be explained later in this
section.

Remark 3.3.4. Assuming that the set of vertices and that of arrows are disjoint and
given k ∈ {0, . . . ,K}, if both conditions “execution” and “selection” are satisfied, then
p(k) = p(k + 1).

We provide the points introduced in Definition 3.3.1 with a labelling.

Definition 3.3.5. The label λ(p) of a point p = (p1, . . . , pN ) is (λ1(p1), . . . , λN (pN ))
where λn refers to the labelling of Gn as described in Definition 3.2.1. We thus have a
labelling λ on the set of elements of G1 ⊗ · · · ⊗ Gn.

Definition 3.3.6. A state of the new abstract machine is an ordered pair made of
a context (cf. Definition 1.3.7) and a point (cf. Definition 3.3.1) which respectively
indicate the current state of the memory, the current distribution of resources, and the
current position of the instruction pointer. Let µ be a multi-instruction. Having in mind
that the elements of dom µ are the identifiers of the processes that try to simultaneously
execute their current instruction, we say that µ is admissible in the state (σ, p) (i.e. σ
is a context and p = (p1, . . . , pN ) is a point) when it is admissible in the context σ
(cf. Definition 1.3.12).

Definition 3.3.7. Each path is associated with a sequence M1 · · ·MK of subsets of P
which is described thereinafter for k ∈ {1, . . . ,K}.

Mk =
{
n ∈ {1, . . . , N}

�� pn(k) = ∂+pn(k − 1) or λn(pn(k)) = W(_)
}

55



3.3. Another Abstract Machine 3. Precubical Semantics

For all k ∈ {1, . . . ,K} we have the corresponding multi-instruction µk which is defined
by setting µk(n) = λn(pn(k)) for all n ∈ Mk . This convention implements a specific
behaviour: any instruction is triggered at the verymoment it is reached by the instruction
pointer. It also reveals that the instruction W(_) is persistent in the sense that it remains
active until the instruction pointer leaves the vertex carrying it. On the contrary, the
instructions P(_) and V(_) instantly alter the internal state of the machine where after
its effect is over. Given σ the initial state of the program, a path is said to be admissible
when for all k ∈ {0, . . . ,K}, the multi-instruction µk is admissible (cf.Definition 3.3.6)
at state σ · µ0 · · · µk−1, in this case we define the action of p on the right of σ as follows.

σ · p = σ · µ0 · · · µK
This suggests that the entry point of a control flow graph be labelled with the Nop
instruction. The terminology “execution” introduced in Definition 3.3.2 comes from
that action. An admissible path p is an execution trace when all the conditional
branchings met along the way are respected, in other words when for all k ∈ {1, . . . ,K},
for all n ∈ {1, . . . , N} such that ∂-pn(k) = pn(k−1), the arrow pn(k) is the least element
of the following set (cf. Definition 3.2.1){

a arrow of Gn

�� ∂-a = pn(k − 1) and Jλn(a)Kσ ·µ0 · · ·µk−1 , 0
}

Notation J_K refers to Definition 1.3.3, it only depends on the context of evaluation
of a state. By Remark 3.3.4, if there exists n ∈ {1, . . . , N} such that ∂-pn(k) =
pn(k − 1) then there is no n ∈ {1, . . . , N} such that ∂+pn(k − 1) = pn(k), hence
the evaluation of the expressions cannot be disturbed. The terminology “selection”
introduced in Definition 3.3.2 comes from that remark. It is related to the convention
that an instruction is executed at the very moment it is reached by the instruction pointer.
Remark 3.3.8. Definition 3.3.7 has been adjusted so that, provided that the last point
of a path p is the first point of another path p′, the sequence of multi-instructions
associated with the concatenation pp′ is the concatenation of the associated sequences
of multi-instructions (up to occurrences of the empty ones). Moreover, it is convenient
to say that an expression ε is “met along” a path p when it is the label of a point pn(k)
such that ∂-pn(k) = pn(k − 1) or when ∂+pn(k − 1) = pn(k) and the label of the point
pn(k) is an assignment whose right-hand part is ε.
Remark 3.3.9. Any path is therefore associated with a sequence of executions and
selections. During an execution step, some processes simultaneously execute their
current instruction. One has to check at runtime that the correspondingmulti-instruction
is admissible. During a selection step, some processes decide which instruction will be
executed next. If that path is actually an execution trace, then the choice is in accordance
with the conditions carried by the arrows.
Remark 3.3.10. The notion of execution trace from Definition 1.4.5 is not “equivalent”
to that of Definition 3.3.7. This is mainly due to the fact that branching instructions are
atomic in the latter, not in the former. More precisely there might be several execution
step between the “moment” that a branching point is reached, and the moment that the
expression carried by the outgoing arrows are evaluated. This can be fixed up imposing
a selection step after every execution step together with some extra constraints on the
admissible multi-instructions that reflect the ones imposed to them by Definition 1.4.5.
More precisely, an execution trace in the sense of Definition 3.3.7 along with which
every process that executed an instruction at a given step selects an outgoing arrow at the
next step, is actually an execution trace in the sense of Definition 1.4.5. The distinction
vanishes when the program under consideration has a single running process.

56



3.4. Discrete Models of Conservative Programs 3. Precubical Semantics

3.4 Discrete Models of Conservative Programs
Until now, admissibility (cf. Definitions 1.3.12 and 3.3.6) had to be checked at runtime.
The purpose of this section is to tackle this problem. Suppose for example that we want
to execute the multi-instruction (P(a), P(a)). Clearly, we should be able to execute it
concurrently iff (at least) two occurrences of the semaphore x are available. However
the availability of a semaphore is a matter of internal state of the abstract machine.
In order to get rid of this runtime dependency we would like to encode the resource
availability in the precubical control flow of the program, which cannot be achieved
without confining the range of “accepted” Paml programs. Informally speaking, the
engaged amount of resources should only depend on the position of the instruction
pointer.

From a physicist point of view, the situation suggests to compare the action of a
directed path on the semaphores sharing with the work of a force along a curve. As a
physicist saying that a force is conservative when this work only depends on the starting
and the ending of the curve, we say that a process is conservative when the action
(on the abstract machine states) of a directed path (over the control flow graph) only
depends on its source and its target.

From computer science considerations, the similar notion of wellbehaved processes
was independently introduced in Fahrenberg (2002) without reference to the analogy
with Physics. More generally, the notion is related to the idea that values of variables
can be encoded in the states of a system.

Definition 3.4.1. Given a control flow graph G, the neutralized control flow graph
N(G) associated with G is obtained by replacing every instruction but P(_) and V(_)
by Nop. In particular both G and N(G) have the same entry point and the semaphores
appearing in N(G) are the ones appearing in G. Assume that the arities of all the
semaphores appearing in G (and therefore in N(G)) are infinite. In particular every
path on N(G) is admissible and no crash can occur. The control flow graph G is said
to be conservative when for all initial states σ and for all paths p on N(G) starting at
the initial point, the restriction of σ · p to S only depends on the endpoint of p. A
middle-end representation is conservative when it associates every element of P with
a conservative control flow graph, in other words when the mapping introduced at the
end of Section 3.2 actually has the following type.

cfg : P → {conservative control flow graphs}

Remark 3.4.2. We could have parametrized the notion of conservative control flow
graph with the map assigning each semaphore to its arity. Following this approach,
the control flow graph depicted on the right-hand part of Figure 3.6 is conservative iff
arity s 6 1. Indeed, for greater arity, the pathwinding around the circle is admissible. A
control flow graph is conservative in the sense of Definition 3.4.1 when it is conservative
with respect to any arity. For similar reasons, we have “neutralized” assignments so
that no crash (i.e. zero division in our restricted language) can occur. In particular, the
values initially assigned by σ to the variables appearing in G do not play any role in the
conservativity of G. Hence we only have to test the criterion given in Definition 3.4.1
for one initial state σ.

Remark 3.4.3. Claiming that a program is conservative (as suggested by the title
of this section) is actually an abuse of language that deserves clarification. Being
conservative is indeed a property that applies to control flow graphs. Whether a

57



3.4. Discrete Models of Conservative Programs 3. Precubical Semantics

P(s)

V(
s)

Nop

P(s)

P(
s)

Nop

Figure 3.6: Conservative vs nonconservative loops.

Nop P(s)
V(s)

Nop P(s) P(s)
V(s)

Figure 3.7: Conservative vs nonconservative lollipops.

program is conservative or not thus heavily depends on the way the control flow graphs
of its running processes are defined. For example the Paml process

p = P(s);V(s);J(p)

is conservative – see the left-hand control flow graph on Figure 3.6 while

p = P(s);J(p)

is not – see Figure 3.8, since infinite control flow graphs are obviously prohibitive
in practice. The V(_) instruction is non-blocking and according to its semantics, the
number of semaphore tokens held by a process is non-negative. Since the amount
of tokens held by the processes is assumed to be zero at the beginning of a program
execution, the left-hand control flow graph on Figure 3.7 is conservative while the
right-hand one is not. As a matter of branchings, the Paml process

P(a);(x:=0 + x:=1);V(a)

is conservative – see Figure 3.9 while

P(a);(x:=0 + (x:=1;V(a)))

P(s)Nop

Nop Nop Nop NopP(s) P(s) P(s) P(s) . . .

Figure 3.8: A nonconservative loop and its conservative (but infinite) unfolding.

58



3.4. Discrete Models of Conservative Programs 3. Precubical Semantics

x:=0

x:=1

P(a) V(a)

Figure 3.9: A conservative branching.

P(b)

P(a)

P(b)

P(a)

Figure 3.10: Conservative process may be obtained by duplicating vertex.

is worth a closer examination – see Figure 3.10. The latter suggests that certain
nonconservative control flow graphs can be turned into conservative ones by a mild
transformation, the overall idea being that we try to encode the amount of semaphore
occurrences held into a finite control flow graph. As shown by Figure 3.8 there are
situations where no such transformation is possible. For practical reasons, it is always
convenient to merge the output vertices of a branching. Nevertheless, for the sake of
simplicity of control flow graph description, we did not include this optimization in
Section 3.2.

Remark 3.4.4. From a theoretical point of view, it may yet be convenient to encode
the system states as vertices of the control flow graph, which sometimes amounts to
resorting to infinite (conservative) control flow graphs. The question is related to the
model described in Section 3.1 as well as to the notion of unfolding of a directed graph,
and by extension to the directed universal covering problem – see Section 10.4.

Remark 3.4.5. In physics a force is traditionally defined as a vector field over a (simply
connected) smooth manifold, and it is said to be conservative when its work along a
curve only depends on its extremities. In a very loose analogy control flow graphs
can be seen as vector fields2. Pushing on with the analogy, the control flow graphs of
(the running processes of) a Paml program form a parallelization of the tensor product
G1⊗· · ·⊗Gd (cf. the brief note about parallelizable manifolds at the end of Section 4.5).

Remark 3.4.6. Conservativity is only concerned with resources. Following the physi-
cist metaphor, we restrict to programs in which the amount of available resources
provided by the system can be seen as a potential; in other words the ones whose
resource consumption depend neither on branchings nor loop iterations.

The property of being conservative can be checked by a breadth-first traversal
algorithm which is similar to the one found in Fahrenberg (2002) to detect well-behaved
processes. Let us denote the commutative monoid of multisets over S by NS . By a

2 This way of thinking arises from a discussion with Samuel Mimram and his will to explore relations
between computer science and physics.

59



3.4. Discrete Models of Conservative Programs 3. Precubical Semantics

slight abuse of notation we write 0 for empty multiset (i.e. the map sending all s ∈ S to
0). The instructions P(_) and V(_) acts on the right of multisets over S in the obvious
way: π · P(s) = π + {s} and π · V(s) = π − {s}. We inductively define a sequence of
partial function of type {points} → NS . The first term π0 is only defined at the origin
of the graph and π0(origin) = 0. Assuming that πn is defined, for each ordered pair of
points (p, p′) such that:

– πn(p) is defined but not πn(p′), and

– ∂-p′ = p or p′ = ∂+p,

we define a strict extension of πn, by assigning to p′ the following element on N.

p′ 7→
{
πn(p) if ∂-p′ = p
πn(p) · λ(p′) if p′ = ∂+p

If all these extensions are compatible, then πn+1 is their union. Otherwise the induction
stops and the graph is not conservative. In case the induction does not stop we have,
due to the finiteness of the set of points, a stationary chain of extensions whose limit is
denoted by π.

π0 ⊆ · · · ⊆ πn ⊆ πn+1 ⊆ · · ·
For every point of a control flow graph can be reached from its origin (cf. Defini-
tion 3.2.1) the mapping π is defined everywhere. If the condition

π(p′) =

{
π(p) if ∂-p′ = p
π(p) · λ(p′) if p′ = ∂+p

holds for all ordered pairs of points (p, p′) such that ∂-p′ = p or p′ = ∂+p, then G is
conservative, otherwise it is not.

Example 3.4.7. The upper left part of Figure 3.11 is a control flow graph. The upper
right one displays its neutralized form, the highlighted part is the domain of definition
of π5. We have π5(s, p) = 0 for all points p of this domain. The partial map π9 is shown
on the lower left part. The points p in the thick highlighted part satisfy π9(s, p) = 1.
The total map π15 is depicted on the last part of Figure 3.11. For all points p, we have
π15(s, p) = 1 if p belongs to the thick highlighted part, else π15(s, p) = 0. The control
flow graph is thus conservative. In Figure 3.12, the label V(s) has been replaced by
x++. The resulting control flow graph is not conservative. Applying the algorithm
to the left hand control flow graph on Figure 3.10 results in a sequence π0, . . . , π5, the
map π6 being undefined. On the contrary, if the algorithm is applied to the right hand
control flow graph on Figure 3.6 one obtains a limit π = π5, however it is not a potential
function (as in the case of Figure 3.12).

Definition 3.4.8. Pushing the analogy with conservative forces in physics, the control
flow graph G is conservative if and only if it comes with a potential funtion, in other
words a map F : {points of G} × S → N such that for all paths p on G starting at the
initial point of G, one has the following equality with p and σ being the endpoint of p
and an initial state.

(σ · p)(s) = F(p, s)
The potential function of a conservative control flow graph is actually the limit of the se-
quence (πn)n∈N described above. The potential function F : {points of the program}×
S → N of a conservative middle-end representation is thus defined as the sum of the

60



3.4. Discrete Models of Conservative Programs 3. Precubical Semantics

x:=0

P(s)

V(
s)

x++

P(s)

V(
s)

P(s)

V(
s)

P(s)

V(
s)

Figure 3.11: Conservativity algorithm applied to a conservative control flow graph

61



3.4. Discrete Models of Conservative Programs 3. Precubical Semantics

x:=0

P(s)

x+
+

x++

P(s)

P(s)
P(s)

conflict

Figure 3.12: Conservativity algorithm applied to a non-conservative control flow graph

62



3.4. Discrete Models of Conservative Programs 3. Precubical Semantics

potential functions of the control flow graphs G1, . . .Gn of the running processes.
Keeping in mind that a point of the program is a tuple (p1, . . . , pn) where each pi is a
point of Gi , the function F is given by the formula below. By analogy with multilinear
algebra, it is the product of a tuple of linear forms and a tuple of vectors.

F(p1, . . . , pn, s) =

n∑
i=1

Fi(pi, s)

Remark 3.4.9. It is worth mentioning that the complexity of the algorithm that deter-
mines whether a control flow graph is conservative or not is linear with respect to its
number of arrows. Compared to the complexity of the algorithms used to build the
geometric model of a program (cf. Definitions 3.4.10 and 7.1.2), the overhead can be
neglected.

We introduce the discrete models of conservative middle-end representations and
give a technical result that will be used to prove Theorem 7.2.4 which is one of the
motivation for introducing topological methods in the study on concurrency. We denote
the potential function of that representation by F (cf. Definition 3.4.8).

Definition 3.4.10. A point p = (p1, . . . , pN ) of some conservative middle-end repre-
sentation is said to be:

– conflicting when λn(pn) and λm(pm) conflict for some n,m ∈ {1, . . . , N} such
that n , m (cf. Definition 1.3.9),

– exhausting when there exists a semaphore s ∈ S such that

F(p1, . . . , pN, s) > arity(s) ,

– synchronising when there is some synchronisation barrier b ∈ B such that

0 < card
{
n ∈ {1, . . . , N}

�� λn(pn) = W(b)
}
6 arity(b) ,

– terminal when the sequence of multi-instructions associated with any directed
path starting at p only contains trivial multi-instructions (cf.Definitions 1.3.8 and
3.3.2).

The forbidden set of the program P gathers all the conflicting, exhausting , and
synchronising points.

{fobidden} = {conflicting} ∪ {exhausting} ∪ {synchronising}

The discrete model of the program is the complement of its forbidden set.

{points of the program} \ {forbidden points}

A deadlock is a non-terminal point p such that any directed paths on the model starting
at p is associated with a sequence of trivial multi-instructions. Equivalently, a deadlock
is a point p such that any directed path which starts at p and triggers some non trivial
multi-instruction actually meets a forbidden point. The latter formulation exactly states
that the forbidden region hinders the expected functioning of the program.

63



3.4. Discrete Models of Conservative Programs 3. Precubical Semantics

The following result is one of the main motivations for introducing conservative pro-
cesses and discrete models. From a practical point of view, it states that for conservative
programs, admissibility no longer need to be checked at runtime because it is statically
encoded in the discrete model.

Theorem3.4.11. Adirected pathwhich does notmeet any forbidden point is admissible.
Conversely, for each admissible path which meets a forbidden point there exists a
directed path which avoids them and such that both paths induce the same sequence of
multi-instructions up to empty multi-instructions.

Proof. Let p = p(0) · · · p(K) be a path that is not admissible and let k be such that the
multi-instruction µk defined in Definition 3.3.7 is not admissible at state σ · µ0 · · · µk−1.
If µk contains a conflict then so does λ(p(k)), the latter being an extension of the former
(cf. Definition 3.3.7). By definition of µk we have for all barriers b ∈ B

{n | µk(n) = W(b)} = {n | λ(p(k))(n) = W(b)}

hence if µk forces a barrier (i.e. the left hand set above is not empty and its cardinal is less
or equal than arity(b)) then the point p(k) is forbidden in the sense of Definition 3.4.10.
Since the program is conservative, the following holds for all semaphores s ∈ S

σ · µ0 · · · µk = F(p(k), s)

so if the left hand term of the preceding equality is strictly greater that arity(s), then
the point p(k) is forbidden. Conversely suppose that the path p is admissible and that
p(k) is forbidden, also suppose that k is minimum. By similar arguments to those
exposed above, we conclude that there exist n,m ∈ {1, . . . , N} such that λn(pn(k)) and
λm(pm(k)) conflict in the sense of Definition 3.4.10. Because p is admissible, there
must be some k ′ < k such that the following holds for all k ′′′ ∈ {k ′, . . . , k}.

λm(pm(k ′′′)) = λm(pm(k))

In less formal words, the mth process is stalled on an assignment in conflict with the
instruction λn(γn(k)). The interpretation of arrows as interlude between instructions
plays a role here. Denote by k ′′ the first index such that the mth coordinate of p(k ′′)
is the unique arrow α outgoing from pm(k ′). If no such index exists, then k ′′ = ∞.
To obtain the expected directed path, it suffices to change the mth coordinate of points
p(k ′′′) into α for all k ′ < k ′′′ < k ′′, which amounts to set the instruction pointer of
the mth process in an intermediate position. One readily deduces from Definition 2.1.7
that the altered directed path induces the same sequence of multi-instructions than the
original one. Of course there might be another m′ ∈ {1, . . . , N} such that λn(pn(k))
and λm′(pm′(k)) conflict, but then it suffices to iterate the preceding construction until
all such indices have been treated. Finally we obtain a directed path p′ whose initial
segment p′(0), . . . , p′(k) does not meet any forbidden point and induces the same
sequence of multi-instructions than p(0), . . . , p(k). We conclude by a straightforward
induction over k.

Remark 3.4.12. There might be admissible paths that meet forbidden points. However,
by Theorem 3.4.11, it is always possible to “replace” such a path by an “equivalent” one
which avoids forbidden points as illustrated by Figure 3.13. Therefore restricting the
class of admissible paths to those which do not meet any forbidden point does not result

64



3.4. Discrete Models of Conservative Programs 3. Precubical Semantics

x:=1

x:
=0

× × ×

Figure 3.13: A discrete model, an admissible path on it that meets a forbidden point, a
possible replacement, and a nonadmissible path.

in a significant loss. Moreover it allows to turn the instructions P(_), V(_), and W(_)
into directives, in other words to treat them statically rather than dynamically. Indeed
they mould the discrete model of the program at compile time after which they do not
interfer on the runtime execution of the program because the language does not offer
any feature to access the amount of occurrences held at a given moment.

Remark3.4.13. Theorem3.4.11 demands to sacrifice pointer arithmetics (which should
be seen as a good thing from the static analysis point of view) as well as to have a notion
of conflicting instructions that can be decided statically. For example, according to
Definition 1.3.9, every assignment conflicts with itself. Our credo is to statically treat
concurrency as far as possible, by encoding the constraints imposed on executions in
the models of the programs.

We provide a technical result that will be used in the proof of Theorem 7.2.4.
Indeed, writing a multi-instruction as a union of smaller ones can be seen as a discrete
version of the notion of weakly dihomotopic directed paths which will be introduced in
Definition 7.2.1. Corollary 3.4.14 is illustrated on Figure 3.14 where every horizontal
axis is to be understood as the “timeline” of a running process of a program. Each
“dot” is the time at which some instruction is executed, hence vertically aligned dots
represent a multi-instruction.

Corollary 3.4.14. Let p and p′ be two paths (cf. Definition 3.3.2) that do not meet any
forbidden points (cf.Definition 3.4.10). Suppose that the sequence of multi-instructions
associated with p is µ1, . . . , µK while the one associated with p′ is the concatenation
of S1, . . . , SK where each Sk is a sequence of multi-instructions whose union is equal
to µk . Let σ be the initial state of the program. For all initial segments µ′1, . . . , µ

′
K′ of

the concatenation S1 · · · SK there exists k 6 K and K ′′ such that µ′K′′, . . . , µ
′
K′ is a strict

initial segment of Sk+1 and µ′1, . . . , µ
′
K′ = S1 · · · Sk · (µ′K′′, . . . , µ′K′). Let σ be the initial

context of the program. Then for all expressions ε met along the path p′
K′′−1 · · · p

′
K′

(cf.Remark 3.3.8) the evaluations of ε (cf.Definition 1.3.3) in the contextsσ · µ′1 · · · µ
′
K′

and σ · µ1 · · · µk are the same:

JεKσ ·µ′1 · · ·µ′K′ = JεKσ ·µ1 · · ·µk

In particular p is an execution trace iff so is p′.

Proof. By Theorem 3.4.11 both p and p′ are admissible (cf. Definition 3.3.6). Because
p′(K ′′ − 1) = p(k) a free variable occurring in some expression ε met along the path

65



3.4. Discrete Models of Conservative Programs 3. Precubical Semantics

γ

γ′

µ1 µ2 µ3 µ4 µ5

µ′1 µ′2 µ′3 µ′4 µ′5 µ′6 µ′7 µ′8 µ′9 µ′10 µ′11

S1 S2 S3 S4 S5

Figure 3.14: Timelines interpreting a sequence of multi-instructions.

p′
K′′−1 · · · p

′
K′ cannot be altered by µk+1. Since µ′K′′ t . . . t µ′K′ ⊆ µk+1 we get the

following equality
JεKσ ·µ′1 · · ·µ′K′ = JεKσ ·µ′1 · · ·µ′K′′−1

and we conclude by remarking that σ · µ′1 · · · µ
′
K′′−1 = σ · µ1 · · · µk .

66



4

Models of Directed Topology

The distinctive feature of true concurrency is the lack of a global clock – Dijkstra
(1968). In particular any action performed by some agent may stop or start during
the execution of an action performed by another agent. Such a framework is said to
be asynchronous. Combinatorial models do not fulfill this requirement because their
very nature imposes a discrete notion of time. Yet one can still argue that physical
time is discrete (cf. Planck time) and anyway, computers are designed to guarantee
atomicity. Nevertheless, combinatorial models remain unable to render the speed ratio
between concurrent agents, unless one accepts a huge number of states. A natural
idea to circumvent the problem is to equip the collection of states of the system with a
topology. Doing so, one has to keep in mind the causality that binds the states of the
system. This constraint is the consequence of a simple fact that is common to every
programming language: reading any source code, the instruction pointer is always
supposed to move from top down to bottom, sometimes jumping back when a loop
is met. Therefore the (topological) space of states should be provided with an extra
structure expressing the causality. Then, while the set of execution traces of a sequential
program is overapproximated by the set of paths on its control flow graph, the set of
execution traces of a parallel program is overapproximated by the set of continuous
paths (on the space of states) that respect causality. What “overapproximation” exactly
means will be thoroughly explained in Section 7.1. Basically, every continuous path
that respects causality (such a path will be said to be directed) is associated with a
sequence of instructions that might not be induced by an execution trace. But conversely
every execution trace is obtained that way. The collection of continuous path which
respects causality should thus be compared to the collection of paths on the control
flow graph of a sequential program. In particular, models should have directed loops
(i.e. a formalization of the causality should allow nonconstant paths that stop where they
begin). This chapter explores and compares several such formalisms. The categorical
properties, and more specifically completeness and cocompleteness, are systematically
studied as they allow one to define the directed counterparts of the geometric realizations
of cubical sets and precubical sets – see Section 2.4.

In Section 4.2, we attempt to axiomatize the minimal requirements for a category
to be a framework for directed topology. In Sections 4.1 and 4.3, we describe the
formalization of directed topology that came in the first place: locally ordered spaces
extend pospaces as smooth manifolds extend Rn. Their category behaves poorly with
respect to abstract constructions algebraic topologists are accustomed to. However, it is
rich enough to provide any reasonable programwith a continuous model. Moreover, the

67



4.1. Partially Ordered Spaces 4. Models of Directed Topology

notion of locally ordered space being fairly rigid, it enjoys somewhat nice properties.
The categorical drawbacks of locally ordered spaces were addressed by Sanjeevi Krish-
nan introducing streams. Indeed he observed that cosheaves behave better than sheaves
when preorders are at stake. Streams are discussed in Section 4.4 then we focus on
d-spaces in Section 4.5, paying special attention to their relation to other frameworks.
Each of them indeed comes with a canonical functor to the category of d-spaces. In
the case of streams, it is actually an adjunction. Many examples are provided, some of
them coming from vector fields.

Before embarking for the realm of directed topology, we remind the reader about
some points of topology and category theory.

Definition 4.0.1. AMoore path (or just path) on a topological space X is a continuous
map δ : [0, r] → X with r ∈ R+. The parameter r is called the shape of the path while
its source ∂-δ and its target ∂+δ are defined as δ(0) and δ(r). A subpath of shape s of
a path δ of shape r is a path of the form δ ◦ θ where θ : [0, s] → [0, r] is nondecreasing
continuous. The map θ needs not to be one-to-one nor onto. GivenMoore paths δ and γ
of shapes r and s such that ∂-γ = ∂+δ, we define the concatenation γ∗δ : [0, r+s] → X
by

γ ∗ δ(t) =
{
δ(t) if t ∈ [0, r]
γ(t − r) if t ∈ [r, r + s]

The concatenation is obviously associative so we define M(X), the (Moore) path
category of X . Its objects are the points of X while its identities are the paths of null
shape. The construction is functorialM : Top→ Cat, it is the prototype of a category
of dipaths (cf. Definition 4.2.18).

Definition 4.0.2. As a matter of notation, the left adjoint R to an inclusion functor
I : A ↪→ B is called the reflection of B in A when it also satisfies R ◦ I = idA .
In particular we write that A is a reflective subcategory of B – see (Borceux, 1994a,
p.118, Section 3.5). By extension, we define the reflect inA of an object or a morphism
of B.

The notion of reflection offers a standardmethod to prove that a category is complete
or cocomplete. Indeed we have

Lemma 4.0.3. Any reflective subcategory of a complete (resp. cocomplete) category
is complete (resp. cocomplete).

Proof. See (Borceux, 1994a, p.118-119, Proposition 3.5.3 and Proposition 3.5.4).

The notion of coreflection is defined the same way from the right adjoint. By duality,
Lemma 4.0.3 holds for coreflective subcategories.

Definition 4.0.4. An embedding is a faithful functor that is also injective on objects.

4.1 Partially Ordered Spaces
The first idea one may have consists of providing topological spaces with partial orders.
We will see however that this notion is too restrictive because it forbids spaces with
directed loops (i.e. nonconstant paths whose starting point and endpoint are equal). It
turns out that this notion was first investigated in the context of functional analysis.
Leopoldo Nachbin (1948a,c,b) has dedicated a series of papers to their study and
gathered his results in a document that remains, as far as I know, the only book entirely
dedicated to pospaces – Nachbin (1965).

68



4.1. Partially Ordered Spaces 4. Models of Directed Topology

Definition 4.1.1. A partially ordered space (or pospace) is a topological space X
together with a partial order v on (the underlying set of) X whose graph

{(a, b) ∈ X × X | a v b}

is a closed subset of X × X . A pospace morphism is an order-preserving continuous
map. Pospaces and their morphisms form the category PoTop.

Remark 4.1.2. The underlying space of a pospace is Hausdorff since its diagonal is
closed as the intersection of the graph of the partial order and the graph of its opposite
– (Nachbin, 1965, p.27, Proposition 2).

Example 4.1.3.
Any poset with the discrete topology. In particular the forgetful functorPoTop→ PoSet
has a left adjoint.
AnyHausdorff spacewith the discrete order. In particular the forgetful functorPoTop→
Haus has a left adjoint.
The directed real line (i.e. R with its standard topology and order).
The sub-pospaces of a pospace (i.e. its subsets with the induced topology and order).
The directed intervals (i.e. the connected sub-pospaces of the directed line) and espe-
cially the directed compact unit segment [0, 1], denoted by ®I, which will be of a great
importance in the sequel.
A more intricate example is given by the nonempty closed subspaces of a metric space,
ordered by inclusion and equipped with the topology induced by the Hausdorff distance
– (Aliprantis and Border, 2006, pp.109-113) or (Beer, 1993, p.85) or (Rockafellar and
Wets, 2004, p.117).

d(K1,K2) = max{d(x1,K2), d(x2,K1) | x1 ∈ K1; x2 ∈ K2}

with d(x,K) = min{d(x, k) | k ∈ K}

Definition 4.1.4. A dipath on a pospace X is a pospacemorphism from some nonempty
directed compact interval [0, r] to X where r ∈ R+ (r is called the domain of γ). If the
domain of a dipath γ is r then its source and its target are respectively γ(0) and γ(r). We
should take care that γ is in particular a pospace morphism and as such, its source and
its target also refer to its domain and its codomain. To avoid confusion we sometimes
say that γ(0) and γ(r) are the starting point and the endpoint of γ. A pospace X is said
to be directed by the dipaths when one has x vX y iff there exists a dipath on X from
x to y. These pospaces form the full subcategory PoTopd ⊆ PoTop.

Example 4.1.5. The set of rational numbers Q inherits a pospace structure from the
directed real line. However the resulting pospace is not directed by dipaths though R is
so.

Theorem 4.1.6. The image of a non-constant dipath is isomorphic to ®I.

Proof. The proof heavily relies on the tight relation between the standard topology of
[0, 1] and its total order, and more precisely on the following two facts. A topological
space that is not reduced to a singleton is said to be separable when it contains a
countable dense subset. A continuum is a compact connected Hausdorff space –
Nadler Jr. (1992). A point x of a connected space X is said to be nonseparating when

69



4.1. Partially Ordered Spaces 4. Models of Directed Topology

X − {x} is still connected. An arc is a continuum with exactly two non-separating
points. The first fact claims that any separable arc is homeomorphic with [0, 1]. A
pospace is said to be linear when its underlying order is so. The second fact claims
that there are exactly two linear pospaces whose underlying space are a given arc, each
of them being actually isomorphic to the opposite of the other. See (Nadler Jr., 1992,
Th.6.17 p.96), and the relation to Suslin’s Problem – (Jech, 2002, pp.38-39), for further
details.

Admitting these assertions the proof becomes easy. Let δ be a pospace morphism
from [0, r] to X . Then img(δ) inherits a pospace structure. Its underlying space is
a continuum as the direct image of a continuum in a Hausdorff space. It is clearly
separable considering the direct image of Q ∩ [0, r] by δ. According to the first claim
the underlying space of img(δ) is homeomorphic to [0, 1]. Furthermore the order
inherited by img(δ) from X is linear because so is [0, r]. Then according to the second
claim the pospace img(δ) is isomorphic to [0, 1].

Theorem 4.1.6 has no obvious counterpart in general topology. A Peano curve
indeed provides a continuous map from [0, 1] onto [0, 1] × [0, 1]. In fact the study of
continuous images of the compact unit segment is a mathematical research subject on
its own – Nikiel et al. (1993) and Nadler Jr. (1992).

Remark 4.1.7. Another consequence of Theorem 4.1.6 is that any pospace morphism
γ : ®I → X such that γ(0) = γ(1) is constant. Therefore a pospace has no directed loop.

Before leaving pospaces we observe some of their categorical properties. We will
prove that PoTop is cocomplete though certain coequalizers may not be preserved by
the forgetful functor. In relation to Chapter 2 we will see that the underlying space of a
realization in PoTop may not be the realization (in Top) of the underlying spaces.

Lemma 4.1.8. The category PoTop is complete.

Proof. Suppose that we are given a nonempty family of pospaces. The underlying
space of the product is the product in Top of the underlying spaces of the elements of
the family. The graph of the product order is the product set of their graphs. Since each
of them is closed, so is the graph of the product order. If we are given two morphisms
of pospaces with the same source and the same target, their equalizer is the partially
ordered subspace of their common source on which they agree.

Example 4.1.9. For n ∈ N, the space Rn with the product order is a pospace.

Cocompleteness of PoTop is obtained by proving that it is a reflective subcategory
of a cocomplete one.

Definition 4.1.10. A preordered space is a Hausdorff space X equipped with a closed
preorder 4. A morphism of preordered spaces is a continuous map that preserves
preorders. The category of preordered spaces is denoted by PreTop.

Remark 4.1.11. The forgetful functor U : PreTop→ Haus has left and right adjoints.
They are respectively given by the discrete preorder (i.e. x 4 y when x = y) and the
chaotic preoreder (i.e. x 4 y for all x and y).

Lemma 4.1.12. The category PreTop is complete and cocomplete and the inclusion
functor PoTop ↪→ PreTop preserves limits.

70



4.1. Partially Ordered Spaces 4. Models of Directed Topology

Proof. The construction of products and equalizers is the same as in the proof of
Lemma 4.1.8 hence we have the completeness and the limits preservation. By Re-
mark 4.1.11 the forgetful functor preserves colimits, so their underlying spaces are
taken in Haus. It remains to describe the preorders. A coproduct of a family of closed
preorders is clearly a closed preorder. The case of coequalizers is a bit more subtle.
Suppose that we are given f , g ∈ PreTop(X,Y ). Therefore we have the coequalizer
diagram in Haus

UX
U f //
Ug
// UY

q // Z

The preorder of the coequalizer in PreTop is the least closed preorder4Z on Z such for
all y, y′ ∈ Y , y 4Y y′ ⇒ q(y) 4Z q(y′). The latter argument would not have been
valid for pospaces since the family of closed partial orders on Z satisfying the earlier
property may be empty while the chaotic preorder matches the requirements.

The cocompleteness of PoTop is a consequence of Lemma 4.1.12 and

Proposition 4.1.13. The full embedding PoTop ↪→ PreTop has a left adjoint.

Proof. We mimic the proof of (Mac Lane, 1998, p.135, Proposition 2). Following
Lemma 4.1.8 and Lemma 4.1.12 we know that PoTop is complete and that the inclusion
functor preserves limits. Given a morphism f ∈ PreTop(X,Y ) whose codomain is
actually a pospace, we have the factorization

X
q
//

f

��

img( f ) �
�

// Y

with img( f ) being a subobject of the pospace Y , therefore a pospace, and q being onto.
The collection of quotients of X is thus a set so the solution set condition is satisfied
and we apply the Freyd adjoint functor theorem (Mac Lane, 1998, p.121, Theorem 2)
to conclude.

Corollary 4.1.14. The category PoTop is cocomplete.

Proof. By Lemma 4.0.3.

Example 4.1.15. The directed open star Stba, with a, b ∈ N, is the colimit in PoTop
of a copies of R- and b copies of R+ over 0, with R- and R+ being understood with the
pospace structure inherited from the directed real line – see Figure 4.1. In particular the
pospaces {0}, R−, R+, and R are isomorphic to St00, St01, St10, and St11. The colimit that
defines a directed open star is preserved by the forgetful functor U : PoTop → Haus.
Another equivalent definition of the directed open stars will be given in Section 6.1
where we will see that they can be indifferently considered as locally ordered spaces –
see Section 4.3, as streams – see Section 4.4, or as d-spaces – see Section 4.5.

Remark 4.1.16. The proof of Proposition 4.1.13 is a bit confusing as the Freyd adjoint
theorem acts like a magic wand. We give a more intuitive approach. Let (X0,40) be
a preordered set. Then consider the quotient in Haus of X0 by the least equivalence
relation that identifies x and y when x 40 y and y 40 x. Denote the Hausdorff quotient
space as X1 and the quotient map as q0 : X0 → X1. Then let 41 be the least closed

71



4.1. Partially Ordered Spaces 4. Models of Directed Topology

...
...i inputs o outputs

Figure 4.1: Directed open stars

preorder on X1 so that q0 induces a morphism of PreTop. The preorder 41 may not be
antisymmetric yet we can iterate the construction

(X0,40)
q0 // · · · qn−1 // (Xn,4n)

qn // · · ·

If λ is a limit ordinal, then Xλ is the colimit in Haus of the preceding diagram, equipped
with 4λ the least closed preorder on Xλ so that all the mapping of the colimit cone
induce morphisms of PreTop. What really matters is that each step of the transfinite
induction identifies some points of X0. It follows that the induction stops, or more
precisely there is an ordinal α beyond which the transfinite sequence is constant. Then
(Xα,4α) is the reflect of (X0,40) in PoTop.

Remark 4.1.17. If the underlying space of a pospace X is exponentiable, then so is
X . Given a pospace Y , the exponential space YX is the set PoTop(X,Y ) equipped
with the pointwise order and the compact-open topology – see the tenth point of
Proposition 2.3.3.

Remark 4.1.18. Let us alter Definition 4.1.1 and require that the underlying space be
compactly generated. By Remark 4.1.2 it is actually an object of CGH. The right
adjoint k : Haus → CGH extends to a right adjoint k : PoTop → PoCGH, indeed a
closed partial order on a space X is still closed in k X since the latter topology is finer
than the former. HencePoCGH is a coreflective subcategory ofPoTop, so it is complete
and cocomplete by the dual of Lemma 4.0.3. In particular PoCGH is Cartesian closed.
If X and Y are two objects of PoCGH, then YX is the set PoCGH(X,Y ) seen as a
subspace of UYUX (in CGH). Then U(YX ) is a closed subspace of UYUX . Indeed a
continuous map f : X → Y that is not a morphism of PoCGH does not preserve the
orders. So there exist x, x ′ ∈ X such that x vX x ′ but f (x) 6vY f (x ′). Since Y is a
pospace, we have an open neighborhood A of f (x) and an open neighborhood B of
f (x ′) such that a 6vY b for all a ∈ A and all b ∈ B. Then{

f ∈ CGH(X,Y )
�� f (x) ∈ A; f (x ′) ∈ B

}
is an open neighborhood of f that does not meet U(YX ). We conclude that U(YX ) is
compactly generated by (Engelking, 1989, p.153, Theorem 3.3.25).

There is an obvious embedding of � in PoTop so we can define the cubical and the
precubical realizations in PoTop. Let us compute a colimit which turns out to be the
realization of the graph with a single vertex and a single arrow (i.e. the 1-dimensional
precubical set K defined by K0 = {0}, K1 = {1}, and Kn = ∅ for n > 2).

Example 4.1.19. Consider the following pair of parallel morphisms being intentionally
vague about the order carried by the unit segment.

{∗}
0 //

1
// [0, 1]

72



4.2. Framework for Directed Topology 4. Models of Directed Topology

First suppose that it is equipped with the standard order and consider a pospace mor-
phism f such that f (0) = f (1). If 0 6 t 6 1 then f (0) vX f (t) vX f (1), therefore
f (t) = f (0) because vX is antisymmetric. So the coequalizer is the singleton. Hence
the forgetful functor does not preserve colimits since the coequalizer in Top is S1 as
the intuition suggests. Therefore it has no right adjoint – (Borceux, 1994a, Prop.3.2.2
p.106). Now suppose that [0, 1] is equipped with the discrete order (i.e. x v y when
x = y). Then for all pospaces X we have PoTop([0, 1], X) = Top([0, 1], X). Hence the
coequalizer is just the circle S1 equipped with the discrete order.

From Example 4.1.19 we conclude that pospaces are too rigid because they do not
allow directed loops. In fact the forgetful functor to Set does not even preserve the
simplest colimits. The remaining of this chapter is dedicated to exploring more supple
formalizations of directed topology. We will need the following definition.

Definition 4.1.20. The full subcategory of PoTop generated by the n-fold products of
directed intervals (cf. Example 4.1.3 and Lemma 4.1.8) is denoted by Cub.

Remark 4.1.21. The category Cub contains both ∅ and all the singletons {x} with
x ∈ R. In addition it has all the finite products and they are preserved by the inclusion
functor Cub ↪→ PoTop. The category Cub also contains all the pushout squares of the
form

B
β′
// D

A

β

OO

γ
// C

γ′

OO

with A, B, C, being directed intervals and img(β) (resp. img(γ)) being a final (resp. ini-
tial) segment of B (resp. C). Such a pushout is called a pasting of intervals. In that
case D is also a directed interval and B (resp. C) is mapped to an initial (resp. final)
segment of D. Every finite product of directed intervals is exponentiable since all the
directed intervals are exponentiable in PoTop – see Remark 4.1.17. As left adjoints,
the endofunctors of the form

X ∈ Cub 7→ I1 × · · · × Ik × X × Ik+1 × · · · × In ∈ Cub

with (I1, . . . , In) being some n-tuple of directed intervals, preserve colimits. The image
of a pasting of intervals by one of the previous endofunctors is called a pasting of
cubes.

4.2 Framework for Directed Topology
The content of this section ismainly extracted from (Haucourt (2012)), yet the exposition
has been greatly simplified. Its purpose is to provide an abstraction that encompasses all
themost widely spread formalizations of directed topology, and to build the fundamental
category functor from it – see Definition 5.2.10. In particular, a generic version
of the van Kampen theorem holds in this context – see Theorem 5.4.1. The first
step of the construction is the dipath category functor, it is done in this section – see
Definition 4.2.18. The abstraction also provides enough features for a reasonable cubical
nerve functor to exist (see Definition 2.2.3 and Theorem 2.2.4). The objects of the
categories we have in mind are topological spaces endowed with an extra structure that

73



4.2. Framework for Directed Topology 4. Models of Directed Topology

PoTop forgetful

��

Cub
0�

//

// I // C
U

** K
F

jj
� � // Top>

Figure 4.2: Framework for directed topology

encodes causality. Of course, their morphisms are the structure preserving continuous
maps. LetK be a cocomplete subcategory ofTop (e.g.Top,CG,CGWH, but preferably
Haus or CGH).

Remark 4.2.1. Any object X of K is, in particular, a topological space. From now
on, and till the end of the section, a K-subspace of X is a topological subspace of X
that actually belongs to K. If K = Haus then any subspace is a K-subspace since any
subspace of a Hausdorff space is again a Hausdorff space. Things are more intricate
whenK = CGH since a subspace of a compactly generated spacemay not be compactly
generated.

Definition 4.2.2. A framework for directed topology overK is given by the diagram
on Figure 4.2 with the following properties.

1. The embedding I strictly preserves both the finite products and the pastings of
cubes (cf. Remark 4.1.21).

2. For all objects (resp. morphisms) X ∈ Cub, the underlying spaces (resp. maps)
of X and I X are the same (i.e. all the paths from Cub to Top on the diagram of
Figure 4.2 induce the same functor).

3. The functor U is faithful, has a left adjoint F, and U ◦ F = idK . Moreover U
induces a bijection between the constant morphisms of C(X,Y ) and the ones of
K(UX,UY ) for all objects X and Y .

4. The functor U reflects K-subspaces: for all objects X of C and all K-subspaces
A ⊆ UX , the full subcategory of C/X of objects α that satisfy img(U(α)) ⊆ A
admits a terminal object A� X . Its source is, by definition, the C-subspace A
of X (note that we use the same notation for A and its underlying space).

5. For all objects X ∈ C the subcategory U−1(U(X)) ⊆ C is small.

If the embedding I is full then the framework is said to be directed. By analogy with
homeomorphisms, which are isomorphisms of topological spaces, an isomorphism of
C is also called a dihomeomorphism.

Remark 4.2.3. Definition 4.2.2 needs some taking apart. The first two axioms claim
that C contains a copy of Cub that respects the constructions one wishes to export in
C. In particular the pastings of cubes in Cub, which are really pushout diagrams that
compose in the strict sense, are sent to pushout diagrams in C which thus also compose
in the strict sense. This property, which is trivially satisfied in practice, simplifies
the definition of the concatenation of dipaths and as well as that of dihomotopies.
Moreover, we have an embedding of � into C from which one can define the nerve
functor (cf. Definition 2.2.3).

74



4.2. Framework for Directed Topology 4. Models of Directed Topology

Remark 4.2.4. According to the embedding I, we write X instead of I(X) for all objects
X of Cub, and for all r ∈ R+, the notation Ir stands for I([0, r]). In particular we have
I0 = I({0}).

The last three axioms are a bit subtler. They formalize the idea that any object of C is
a topological space endowed with an extra structure that is preserved by the morphisms.
With respect to this point of view, the meaning of the third axiom is clear. In particular
it claims that any constant map actually induces a morphism of C. However it does
not ensure that the notion of subspace in C behaves as one would expect. Intuitively
we would like that all the K-subspaces of UX , with X being an object of C, inherit a
C-object structure from the one of X . Without further hypothesis, we might have the
following unpleasant situation: A ⊆ B ⊆ UX is a tower of K-subspaces, A′ and B′ are
the C-object structures induced by X on A and B, while A′′ is the C-object structure
induced on A by B′, and A′ � A′′. This situation is illustrated by Example 4.2.5.

Example 4.2.5. To highlight the meaning of the fourth axiom, we describe a situation
in which all the five axioms but only a weak version of the fourth one are satisfied.
Then we check that the resulting notion of subspace is ill-behaved. Suppose that we
have associated each set S with a partition φS. Let C be the category of pairs (X, P)
with X ∈ Top and P being any partition on S, the underlying set of X , that is finer than
φS. The morphisms of C from (X, P) to (X ′, P′) are the continuous maps such that for
all p ∈ P there exists p′ ∈ P′ such that f (p) ⊆ p′. The partition of X into singletons
is therefore always allowed so the forgetful functor U : C → Top admits a left adjoint
F. The third axiom is satisfied and F ◦ (Cub ↪→ Top) provides an embedding of Cub
in C that satisfies the first two axioms. The fifth axiom is satisfied since the collection
of partitions over a set is a set. Hence all the axioms but the fourth one are satisfied
without making any assumption on the choice function φ. Suppose that φR = {R},
φ[−2, 2] = {[−2, 0[, [0, 2]}, and φ[−1, 1] = {[−1, 1]}. Denote by C the object (R, φR),
and by B the subspace of C whose underlying space is [−2, 2]. The partition associated
with B is the coarsest one P such that

– P is finer that φ[−2, 2] and

– the inclusion [−2, 2] ↪→ R induces a morphism of C (i.e. P is finer that {[−2, 2]}),

in other words it is precisely the partition φ[−2, 2]. Now let A and A′ be the subspaces of
B andC whose underlying spaces are [−1, 1]. Their associated partitions are respectively
{[−1, 0[, [0, 1]} and φ[−1, 1], which proves that A is a subspace of B, B is a subspace
of C, but A � A′ therefore A is not a subspace of C. Intuitively the C-object structure
induced by X ∈ C on A ⊆ UX might be changed by any alteration of X occurring
outside of A. Our counter-example is not very convincing for the choice function φ
has been deliberately settled to thwart the axiom, we will see in Section 8.6 that PoTop
supplies a natural counter-example.

The fourth axiom prevents this from happening. In the statement of Lemma 4.2.6
and Lemma 4.2.7 it is assumed that U : C → K is a functor that satisfy the third and
the fourth axioms.

Lemma 4.2.6. With the previously introduced notation we have A′ � A′′.

Proof. Let α : A′� X , β : B′� X , and α′ : A′′� B′ be the terminal objects given
by the fourth axiom. We have a unique morphism γ : A′ → B′ such that β ◦ γ = α.
In particular we have img(U(γ)) = A ⊆ B hence there exists a unique γ′ : A′ → A′′

75



4.2. Framework for Directed Topology 4. Models of Directed Topology

such that γ = α′ ◦ γ′. We also have img(U(β ◦ α′)) = A hence there exists a unique
γ′′ : A′′→ A′ such that α ◦ γ′′ = β ◦ α′. It follows that γ′ and γ′′ are inverses of each
other.

Lemma 4.2.7. Given a morphism f ∈ C(X,Y ), if img( f ) belongs to K, then f
factorizes in a unique way through img( f ) (i.e. the subspace of Y over img(U f )) as
i f ◦ qf , with U(i f ) = img(U f ) ↪→ Y and U(qf ) being onto.

Proof. The statement readily follows from the fourth axiom.

We actually cast an envious glance at the notion of topological functor – see
(Borceux, 1994b, p.366-371, Section 7.3). Such a functor has extremely strong prop-
erties: it is faithful, it admits both a left adjoint and a right adjoint, which are both full
and faithful, it creates limits and colimits, and actually it is also cotopological! The last
three axioms thus force properties that would be satisfied if U were indeed topological.
For example, we will see that the functor that forgets the direction of a d-space is
topological – see Section 4.5. On the contrary, the forgetful functor U : PoTop→ Top
is not (for it has no right adjoint).

Example 4.2.8. In the case that the embedding I is given by Remark 4.1.21, the
frameworks PoTop and PoCGH are directed. Note that one can also consider the
embedding that sends an object X of Cub to FUX (i.e. the pospace obtained by
replacing the partial order of X by the discrete one). The resulting framework is not
directed anymore. The frameworks Top, Haus, and their convenient subcategories, are
not directed. So frameworks for directed topology might not be directed!

Now we build the dipath category functor. The singleton {0} is a representative
of the terminal object of Cub, hence (by the first axiom of Definition 4.2.2) I0 is a
representative of the terminal object of C. Let X be an object of C.
Lemma 4.2.9. In any framework for directed topology we have F({0}) � I0.

Proof. The terminal object is the product of the empty diagram. Hence the object I0
is terminal in C by the first axiom of Definition 4.2.2. From the second axiom and the
third axioms we deduce that the underlying spaces of I0 and F({0}) are {0}. Then id{0}
is a constant morphism hence C(I0, F({0})) is not empty by the third axiom. Since I0 is
terminal, none of the homsets C(X, F({0})) is empty, then all the homsets C(X, F({0}))
are singletons because U is faithful and U ◦ F = idK by the third axiom.

Definition 4.2.10. The points of X are the elements of the set C(I0, X).
Remark 4.2.11. By Lemma 4.2.9 we can suppose that F({0}) = I0. Then as a conse-
quence of the adjunction F a U, we have the following bijection and Definition 4.2.10
matches the intuition.

C(I0, X) � K({0},UX)
Given t ∈ [0, r] be, there is a unique element of Cub({0}, [0, r]) that sends 0 to t. The
image of this morphism by I is still denoted by t.

Definition 4.2.12. The dipaths of X are the elements of the set⋃
r ∈R+

C(Ir, X)

Given δ ∈ C(Ir, X), the domain of δ is r , its source (also called starting point) ∂-δ and
its target (also called end point) ∂+δ are respectively δ ◦ 0 and δ ◦ r .

76



4.2. Framework for Directed Topology 4. Models of Directed Topology

X Ir+s+t

Ir+s

γ ·δ

OO

Ir+s
. �

==

Is+t
+r

aa

Ir
0�

@@

δ

22

Is

+r

^^

γ

ll

Ir
0�

@@

Is
. �

==

+r

aa

It
+s

^^

I0
0�

@@

+r

^^

I0

+r

^^

. �

==

I0

+s

aa

0�

@@

Figure 4.3: Concatenation of dipaths in a framework

Lemma 4.2.13. Any subpath (cf. Definition 4.0.1) of a dipath is a dipath.

Proof. Let δ be a dipath. With the notation of Definition 4.0.1 the mapping θ is a
morphism of Cub – see (cf. Remark 4.1.21). Hence γ ◦ Iθ is a morphism C that is a
dipath.

Remark 4.2.14. In the case that we consider the directed framework PoTop, Defini-
tion 4.1.4 and Definition 4.2.12 coincide. On the contrary if we consider the undirected
version of PoTop (cf. Example 4.2.8), then the dipaths in the sense of Definition 4.2.12
are merely the (continuous) paths.

Let δ and γ be dipaths on X of domains r and s such that ∂-γ = ∂+δ. Due to the
way we have defined the directed paths and the fact that I strictly preserves the pasting
of cubes, the outer shape of the left diagram on Figure 4.3 is strictly commutative
(cf. Remark 4.2.3). From the first axiom of Definition 4.2.2, we have a unique dipath
γ · δ on X that makes the left diagram on Figure 4.3 commute. That diagram is thus a
pushout square.

Definition 4.2.15. The dipath γ · δ is called the concatenation of δ followed by γ.

Lemma 4.2.16. The concatenation of dipaths is associative.

Proof. The three squares of the right diagram on Figure 4.3 are pushout squares. They
compose in the strict sense by Remark 4.2.3.

Remark 4.2.17. With the notation of Definition 4.2.12, we have ∂+δ · δ = δ = δ · ∂-δ
for all dipaths δ on X – see Figure 4.4.

Definition 4.2.18. Denote by PX the category of dipaths of X . Its objects and
morphisms are the points and the dipaths of X (Definition 4.2.10 and Definition 4.2.12),
the composition is the concatenation of dipaths (Definition 4.2.15) while the identities
are given by Remark 4.2.17. The construction easily extends to the dipath category
functor P : C → Cat, a routine verification indeed proves that for all morphisms
f ∈ C(X,Y ) the post-composition map f ◦ _ induces a functor from PX to PY .

Given a object X of C, an open subspace of X is a subspace A of X (in the sense
of Definition 4.2.2) such that U A is an open subset of UX . An open covering of X is a
collectionU of open subspaces of X such that {U A | A ∈ U} covers UX . An element
α ∈ C(X,Y ) is called an inclusion when X is a subspace of Y and U(α) is the inclusion

77



4.2. Framework for Directed Topology 4. Models of Directed Topology

X X

Ir

∂+δ ·δ=δ

OO

Ir

γ ·∂-γ=γ

OO

Ir

δ

22

id
??

I0

+r

__

∂+δ

ll

I0

∂-γ

22

+r

??

Ir

id
__

γ

ll

I0

id

??

+r

__

I0

+r

??

id

__

Figure 4.4: Identities of the category of dipaths of X

X0 //

��

X1

��

PX0 //

��

PX1

��

[0, 1] // X ′

X2 // X PX2 // PX ∅ //

OO

[2, 3]

OO

Figure 4.5: Squares of inclusions

of UX into UY . In this case the notation int(UX) stands for the topological interior of
U(X) seen as a subset of U(Y ) – see Definition 2.1.3. Then we have

Theorem 4.2.19 (Seifert - van Kampen for the dipath categories).
Let X be an object of C and X1, X2 be subspaces of X such that {int(UX1), int(UX2)} is
a covering of UX . Denote by X0 the subspace of X on UX1 ∩UX2. The middle square
on Figure 4.5 is a pushout square of Cat.

Proof. The inclusions of subspaces provide the commutative square on the left hand
side of Figure 4.5, the middle one is obtained as its image under P. Let fi : PXi → C,
for i ∈ {1, 2}, be functors to a (small) category C. Any point x ∈ X belongs to
UX1 ∪UX2 so we define g(x) as f1(x) or f2(x) accordingly: both definitions match on
UX1 ∩ UX2. Given a dipath γ : [0, r] → X , the subsets γ -1(int(UXi)), for i ∈ {1, 2},
form an open covering of the compact space [0, r]. Let ε be a Lebesgue number of the
covering (i.e. any compact interval of length at most ε is contained in some element
of the covering). Then let 0 = a0 < · · · < an = r be such that ak − ak−1 < ε. The
restriction of γ to [ak−1, ak] is a dipath of Xi for some i ∈ {1, 2}. So we define g(γ) as
the composite fin ◦ γ |[an−1,an] · · · fi1 ◦ γ |[a0,a1] with ik ∈ {1, 2} depending on whether
f ([ak−1, ak]) is included in int(UX1) or int(UX2). It might happen that γ |[ak−1,ak ] is
both a dipath on X1 and a dipath on X2. In that case it is a dipath on X0 and both
definitions coincide (we implicitly refer to the definition of subspace given by the fourth
axiom of Definition 4.2.2). The other issue to address is that our construction seems to
depend on the sequence 0 = a0 < · · · < an = r . If 0 = b0 < · · · < bm = r is another
such sequence then consider 0 = c0 < · · · < cp = r the strictly increasing enumeration
of the union {a0 < · · · < an} ∪ {b0 < · · · < bm}. By associativity we have

fin ◦ γ |[cp−1,cp ] · · · fi1 ◦ γ |[c0,c1] =

{
fin ◦ γ |[an,an−1] · · · fi1 ◦ γ |[a1,a0]
fin ◦ γ |[bm,bm−1] · · · fi1 ◦ γ |[b1,b0]

78



4.3. Locally Ordered Spaces 4. Models of Directed Topology

D

©­­­­­­­­­­­«

X

Ir+s

γ ·δ
OO

Ir

ir+s0,r
@@

δ

22

Is

ir+sr,s
^^

γ

ll

I0
0

@@
r

^^

ª®®®®®®®®®®®¬
=

D(X)

I ′r+s

D(γ ·δ)
OO

I ′r

i
′r+s
0,r

??

D(δ)

22

I ′s

i
′r+s
r,s

__

D(γ)

ll

I ′0
0

??

r

__

Figure 4.6: Preserving concatenation

Remark 4.2.20. Let X be the sub-pospace of the directed line over [0, 1] ∪ [2, 3]. The
pospace X ′ given by the pushout square on the right hand side of Figure 4.5 (which is
actually a coproduct since it is taken over the initial object of PoTop) is not isomorphic
to X . Indeed one has U(X) = U(X ′) = [0, 1] ∪ [2, 3] yet 1 vX 2 while 1 6vX′ 2.

Remark 4.2.21. Given a point x of a pospace X , we have PX(x, x) � (R+,+, 0) since
all the elements of PX(x, x) are constant dipaths (cf. Remark 4.1.7) and concatenation
just stretches out the domain of definition of the mappings.

Definition 4.2.22. Amorphism of frameworks for directed topology from C to C′ (over
K) is a functor D : C → C′ satisfying U = U ′ ◦ D, F ′ = D ◦ F, and I ′ = D ◦ I.

Definition 4.2.22 will be proven useful in Section 5.3, as an appetizer consider
x, r, s ∈ R+ such that x + r 6 s. The mapping t ∈ [0, r] 7→ x + t ∈ [0, s] induces a
morphism of Cub whose images by I and I ′ are denoted by isx,r and i

′s
x,r . Since D is

a morphism of frameworks, we have D(isx,r ) = i
′s
x,r hence we have the diagrammatic

equality pictured on Figure 4.6. From Definition 4.2.15 it follows that D(γ ∗ δ) =
D(γ) ∗ D(δ). Hence we have defined a functor αX from PXC to PDXC′ whose object
part is an identity and which sends a path δ on X to the path D(δ) on DX .

Lemma 4.2.23. The collection of functors αX for X running through the collection of
objects of C forms a natural transformation from PC to PC′ . Moreover the functor αX
is an identity if and only if for all r ∈ R+ we have C(Ir, X) = C′(I ′r,DX).

Proof. The statement readily follows from Definition 4.2.18.

The remainder of the chapter provides several examples of frameworks for directed
topology and compares them both from the mathematical and computer science points
of view.

4.3 Locally Ordered Spaces
We have noticed that the directed circle cannot be modeled as a pospace. In order
to take the semantics of such programs with loops into account, one has to overcome
this limitation. A natural idea is to imitate the general philosophy of manifolds and
define the locally ordered spaces as “patchworks” of pospaces. This approach has been
originally proposed by Fajstrup et al. (2006). The mathematical gadgets that naturally
crosses one’s mind in this kind of situation are the sheaves – see (Pedicchio et al., 2003,

79



4.3. Locally Ordered Spaces 4. Models of Directed Topology

Chap.VII) for an introduction. However we have to deal with the hindrance that “being
partially ordered in a neighbourhood of a given point” is not a local notion: one may
have no dipath from x to y in a given open set but having one such dipath in a larger
open subset (e.g. consider an open proper arc of the circle and the anticlockwise paths
on it). We will need to enforce this property. The definition of local pospaces given
in this section slightly differs from the one found in Fajstrup et al. (2006). In fact they
are not logically equivalent. In analogy with manifolds the local pospaces are defined
as equivalence classes of ordered atlases, so we will have to check that our notion of
ordered atlas is well-behaved in this respect.

Definition 4.3.1. Let X be a Hausdorff space. An (ordered) chart on X is a pospace
U whose underlying space SU is an open subset of X . An (ordered) atlas on X is
a collection of ordered charts U on X whose underlying spaces form a basis of the
topology of X and such that for all U,V ∈ U for all x ∈ U ∩V there exists W ∈ U such
that x ∈ W ⊆ U ∩ V and

vU |W = vW = vV |W
with vU |W standing for the relation whose graph is (W ×W) ∩ vU .

Since there is no possible confusion with the usual notion of atlas on a differential
manifold, we will just write “atlas” instead of “ordered atlas”. In other words Defini-
tion 4.3.1 only requires that for all points x, two charts of a given atlas that both contain
x match over a smaller chart containing x.

Remark 4.3.2. LetU be a collection of charts whose underlying spaces form an open
cover of X and such that for all x ∈ X , all U0,U1 ∈ C both containing x, there exists an
open neighborhoodW of x inU0∩U1 such that bothU0 andU1 induce the same pospace
structure onW . Then the collection of all open subpospaces of all the charts inU forms
an atlas in the sense of Definition 4.3.1. This should be compared to Lemma 4.3.9.

As we shall see, an atlas might contain two globally incompatible ordered charts
on the same open subset. In particular writing U ⊆ U ′ for U,U ′ ∈ U we mean that
the underlying space of U is included in the one of U ′ without taking the compatibility
of their partial orders into account. Therefore U ∩ U ′ refers to the intersection of the
underlying subspaces while U ∧ U ′ refers to U ∩ U ′ equipped with the partial order
vU ∩ vU′ and thus forms a pospace.

Lemma 4.3.3. Let U1, . . . ,Un be charts of an atlas U and x ∈ U1 ∩ · · · ∩ Un. There
exists W ∈ U such that x ∈ W ⊆ U1 ∩ · · · ∩Un and vUk |W=vW for all k ∈ {1, . . . , n}.

Proof. By induction on n > 1.

Lemma 4.3.4. IfU is an atlas then so is the following collection of pospaces.

{U0 ∧ · · · ∧Un | n ∈ N; Uk ∈ U for all k = 1, . . . , n}

Proof. Given U0 ∧ · · · ∧Up and V0 ∧ · · · ∧ Vq we have, by Lemma 4.3.3, U ′ and V ′ in
U such that for all i and j

vU′=vUi |U′ and vV ′=vVj |V ′

and then we have W ∈ U included in U ′ ∩ V ′ such that

vW=vU′ |W=vV ′ |W

80



4.3. Locally Ordered Spaces 4. Models of Directed Topology

Lemma 4.3.5. For all points x of a chart U of an atlasU, and all neighborhoods V of
x, there exists U ′ ∈ U such that x ∈ U ′ ⊆ V and vU′=vU |U′ .

Proof. Since the underlying spaces of U form a basis of topology, we have some
U ′′ ∈ U such that U ′′ ⊆ V ∩U. The expected U ′ is then given by Definition 4.3.1.

Definition 4.3.6. Two atlases on the same space are compatible when their union is
still an atlas.

Lemma 4.3.7. The atlases U and V are compatible iff for all U ∈ U for all x ∈ U
there exists V ∈ V such that x ∈ V ⊆ U and vV=vU |V .

Proof. Suppose that U and V are compatible. Since V induces a basis of topology
there is V ′ ∈ V such that x ∈ V ′ ⊆ U. By hypothesis of compatibility we have
W ∈ U ∪V such that x ∈ W ⊆ V ′ ∩U and

vW=vV ′ |W=vU |W

If W ∈ V then take V = W otherwise apply Lemma 4.3.5 to obtain V ′′ ∈ V such that
x ∈ V ′′ ⊆ W and vV ′′=vV ′ |V ′′ . Then take V = V ′′ since

vV ′ |V ′′=vV ′ |W∩V ′′=vU |W∩V ′′=vU |V ′′

Conversely, givenU ∈ U, V ∈ V, and x ∈ U∩V there isV ′ ∈ V such that x ∈ V ′ ⊆ U
and vV ′=vU |V ′ . Moreover there exists V ′′ ∈ V such that x ∈ V ′′ ⊆ V ∩ V ′ and
vV |V ′′=vV ′′=vV ′ |V ′′=vU |V ′∩V ′′=vU |V ′′ soU andV are equivalent.

Lemma 4.3.8. The notion of compatibility induces an equivalence relation over the
collection of atlases sharing the same underlying space.

Proof. Symmetry and reflexivity are obvious, transitivity derives from Lemma 4.3.7.

Lemma 4.3.9. The downward closure ↓ U of an atlasU is an atlas.

↓ U = {( V , vU |V ) | V open ; U ∈ U ; V ⊆ U}

Proof. Let x be in the intersection of two ordered charts V and V ′ of the downward
closure and suppose that their orders are induced by the charts U and U ′ of U. Since
the underlying spaces of the elements of U form a basis of the topology, we have
U ′′ ∈ U such that x ∈ U ′′ ⊆ V ∩ V ′. From Lemma 4.3.3 we obtain W ∈ U such that
x ∈ W ⊆ U ∩ U ′ ∩ U ′′ and vW=vU |W=vU |V∩W=vV |W . We conclude by remarking
that the same holds for U ′ and V ′ instead of U and V .

Lemma 4.3.10. The union of all the atlases of a compatibility class is an atlas.

Proof. Let U be the union. Given V1,V2 ∈ U and x ∈ V1 ∩ V2 there are compatible
atlasesV1 andV2 such thatV1 ∈ V1 andV2 ∈ V2. Therefore we haveW ∈ V1∪V2 ⊆ U
such that x ∈ W ⊆ V1 ∩ V2 and vW=vV1 |W=vV2 |W . SoU is an atlas.

Remark 4.3.11. The maximum atlasU is stable under ∧ (Lemma 4.3.4) and equal to
its downward closure (Lemma 4.3.9).

Definition 4.3.12. An atlasmorphism fromU toV is amap f (between the underlying
sets of U and V) such that for all x ∈ X and all V ∈ V containing f (x), there exists
U ∈ U containing x such that f induces a pospace morphism from U to V .

81



4.3. Locally Ordered Spaces 4. Models of Directed Topology

Remark 4.3.13. By Definition 4.3.12, a morphism of atlases is necessarily continuous
because the underlying spaces of the charts of U (resp. V) induces a basis of the
underlying topology ofU (resp.V).

Definition 4.3.12 can be rephrased in a seemingly weaker form.

Lemma 4.3.14. A mapping is an atlas morphism iff for all x ∈ dom f there exists a
directed chart U ∈ U and a directed chart V ∈ V such that x ∈ U and f induces a
pospace morphism from U to V (implicitly f (U) ⊆ V).

Proof. Let V ′ ∈ V containing f (x), and U ∈ U, V ∈ V such that x ∈ U and f induces
a pospace morphism from U to V . Since V is an atlas it contains an ordered chart
V ′′ ⊆ V ∩ V ′ whose partial order both coincide with the partial orders of V and V ′.
Applying Lemma 4.3.5 it comes U ′ ∈ U that is included in U ∩ f -1(V ′′) and whose
partial order coincide with the one of U. Therefore f induces a pospace morphism
from U ′ to V ′.

Lemma 4.3.15. Let f be a continuous map. Let U and U ′ (resp. V and V ′) be
equivalent atlases on dom f (resp. codom f ). Then f : U → V is an atlas morphism
iff f : U ′→V ′ is so.

Proof. By Lemma 4.3.7.

Denote by SU the underlying space of an ordered chart U ∈ U (cf. Definition 4.3.1)
and let v be the intersection of all the partial orders associated with some element ofU
whose underlying space is SU . The space SU equipped with v forms a pospace denoted
by Core(U). Then define Core(U) as the collection of pospaces {Core(U) | U ∈ U}.

Open question 4.3.16. Is Core(U) an atlas? What ifU is the maximal atlas?

These preliminaries led us to the central notion of this section.

Definition 4.3.17. A locally ordered space (or local pospace) is a Hausdorff space
together with an equivalence class of directed atlases. A local pospace morphism is
an atlas morphism (this definition is made sound by Lemma 4.3.15). These data define
the category LpoTop of local pospaces.

Remark 4.3.18. Given an atlasU on a space X and a subspace Y of X , the collection
of sub-pospaces of the form U ∩ Y with U ∈ U, is an atlas on Y . The inclusion map
Y ↪→ X thus becomes a local pospace morphism and the forgetful functor U satisfies
the fourth axiom of Definition 4.2.2. In this context, Y is a sub local pospace of X .

Remark 4.3.19. By Definition 4.3.12, being a local pospace morphism is a local
property. As a consequence, for all local pospaces X and Y , the functor LpoTop(_,Y )
defined over the locale of open subsets of X is a sheaf (cf. (Mac Lane and Moerdijk,
1994, p.65) or (Pedicchio et al., 2003, p.316)). In other words it satisfies the gluing
condition: the following diagram is an equalizer in Set, where U is an open subset of
(the underlying space of) X , and V and W range through a given open cover C of U.

LpoTop(U,Y ) →
∏
V ∈C

LpoTop(V,Y ) ⇒
∏

(V,W )∈C×C
LpoTop(V ∩W,Y )

The arrows on the preceding diagram should be understood as follows. Given V ⊆ U,
the leftmost arrow is the precomposition by the inclusion map V ↪→ U. Such a map is

82



4.3. Locally Ordered Spaces 4. Models of Directed Topology

called a restriction. Moreover, given an ordered pair (V,W) of open subsets of U, we
have two restrictions according to V and W (i.e. the first and the second components of
the ordered pair).

LpoTop(V,Y ) → LpoTop(V ∩W,Y ) ← LpoTop(W,Y )

The product of all the first (resp. second) components provide the first (resp. second)
arrow. In more concrete terms, it says that one obtains a local pospace morphism over
U from any family of local pospace morphisms defined over the elements of an open
cover of U, provided that any two of them agree on the intersection of their domains of
definition.

Remark 4.3.20. Given a Hausdorff space X , the collection of the discrete pospaces on
the open subspaces of X is an atlas. The resulting local pospace is said to be discrete. In
particular the forgetful functor U : LpoTop→ Haus admits a left adjoint and satisfies
the third axiom of Definition 4.2.2.

Remark 4.3.21. The collection of ordered charts induced by a pospace on its open
subsets is an atlas, and any pospace morphism gives rise to a morphism between the
corresponding atlases. These data induce a functor

A : PoTop→ LpoTop

which is neither full nor injective on objects. Indeed let X be the subpospace of R over
[0, 1]∪[2, 3]. The homeomorphism from [0, 1]∪[2, 3] to itself that swaps the connected
components induces an endomorphism of X in LpoTop, but not in PoTop. Moreover if
we let X ′ be the coproduct in PoTop of [0, 1] and [2, 3], then X and X ′ have the same
image under the inclusion functor yet they are not isomorphic in PoTop. As a matter of
notation A stands for “atlas”.

Definition 4.3.22. The local pospace induced by a pospace X is, by definition, its image
under A.

As an immediate consequence of Lemma 4.3.7 we have

Proposition 4.3.23. Two pospaces sharing their underlying space X induce the same
local pospace iff every point of X admits an open neighborhood on which both partial
orders coincide. As a consequence, a local pospace lies in the image of the inclusion
functor iff its greatest atlas contains an ordered chart supported by its underlying space.

Example 4.3.24. The directed real line in LpoTop is the local pospace induced by the
directed real line in PoTop (cf. Example 4.1.3 and Definition 4.3.22). The following
collections of ordered charts are equivalent atlases over R.

1. {(I,6) | I open interval of R},

2. {(U,6) | U open subset of R},

3. {(U, vU ) | U open subset of R} where x vU y stands for x 6 y and [x, y] ⊆ U,

4. {(U, v′U ) | U open subset of R} where x v′U y is any extension of vU .

The first one naturally comes to mind. The second one is induced by the pospace R. In
the same fashion, the third one is provided by coproducts (in PoTop) of directed open
intervals. The last atlas is the greatest one (cf. Lemma 4.3.10), note that it contains
charts which have the same underlying space and which are yet not globally compatible.

83



4.3. Locally Ordered Spaces 4. Models of Directed Topology

Proposition 4.3.25. If X is a pospace and δ is a dipath on AX starting at x and ending
at x ′, then x vX x ′.

Proof. Suppose that the domain of δ is r . The collectionV of open sub pospaces of X
is an atlas of AX . In particular we have vX |V=vV for all V ∈ V. By Definition 4.3.12
we have a coveringU of [0, r] by charts of Ir such that for allU ∈ U there existsV ∈ V
such that δ induces a pospace morphism from U to V . Given a sequence

0 = t0 < · · · < tn = r

such that tk − tk−1 is strictly less than the Lebesgue number of the covering U, we
have for all k ∈ {1, . . . , n}, a chart Vk ∈ V such that δ(tk−1) vVk

δ(tk). Since we have
vX |Vk

=vVk
for all k ∈ {1, . . . , n} we actually have x = δ(0) vX δ(r) = x ′.

Corollary 4.3.26. Let X be a pospace such that x vX x ′ implies the existence of a
dipath on X (cf. Definition 4.1.4) from x to x ′. Then for all pospaces Y we have

LpoTop(AX, AY ) = PoTop(X,Y )

Proof. Let f be a local pospace morphism from AX to AY and suppose that we have
x vX x ′. If γ be a dipath on X from x to x ′ then f ◦ A(γ) is a dipath on AY from f (x)
to f (x ′). From Proposition 4.3.25 it comes f (x) vY f (x ′) so f is actually a pospace
morphism.

As an immediate consequence of Corollary 4.3.26 we have

Lemma 4.3.27. A dipath δ on a local pospace X is constant iff its extremities are equal
and there exists an ordered chart of some atlas of X that contains the image of δ.

Proof. If U is a chart as in the statement of the lemma, then δ is a dipath on U hence
a local pospace morphism. By Corollary 4.3.26 it is also a pospace morphism and
therefore it is constant.

Lemma 4.3.28. The category LpoTop is a directed framework for directed topology.

Proof. The third and fourth axioms of Definition 4.2.2 are given by Remark 4.3.20
and Remark 4.3.18. The fifth one is obvious and the embedding of Cub in LpoTop
is provided by the composite of Cub ↪→ PoTop (cf. Remark 4.1.21) followed by the
functor A (cf. Remark 4.3.21). The resulting functor is full by Corollary 4.3.26.

Example 4.3.29. The example that motivates the notion of local pospace is the directed
circle which we now describe by exporting the local pospace structure of the directed
line to S1 through the exponential map t ∈ R 7→ eit ∈ S1. Indeed all the statements
given in this example are mainly due to the fact that the exponential map is the universal
covering of S1 (Hatcher, 2002, Chap.1) (i.e. any continuous map from an interval of R
to S1 can be factored through the exponential map in a unique way up to a translation by
2π). An arc is a connected proper subspace of S1. Any arc is the image of some interval
of R under the exponential map. Then we have the following collection of compatible
atlases on S1, the last of which being the greatest one.

1. {(A,6) | A open arc} where 6 is the order induced by R and the restriction of
the exponential map to an open subinterval of {t ∈ R | eit ∈ A} of length at most
2π,

84



4.3. Locally Ordered Spaces 4. Models of Directed Topology

2. {(U, vU ) | U proper open subset of S1} where x vU y means that the anticlock-
wise compact arc from x to y is included in U,

3. {(U, v′U ) | U proper open subset of S1} where v′U is any extension of the partial
order vU .

We have thus defined a local pospace structure on S1 which is called the directed circle.
Its directed paths are indeed the paths δ on S1 that can be written as δ = eiγ where γ is
a dipath on R. In fact it can be obtained as the following coequalizer in LpoTop thus
addressing the issue we have met in PoTop – see Remark 4.1.7.

{∗}
0 //
1
// [0, 1]

It is worth noticing that no ordered chart of the greatest atlas is supported by S1 hence
the directed circle does not arise from a pospace (cf. Proposition 4.3.23). However the
undirected circle (i.e. the discrete pospace over S1) induces a local pospace over the
circle. We insist on this dummy example to emphasize the difference between the loops
in algebraic topology and the diloops.

Remark 4.3.30. Example 4.3.29 offers an opportunity to compare our notion of local
pospace to the original one. An original atlas is a Hausdorff space X together with a
collection of pospaces U whose underlying spaces form an open cover of X and such
that every point x ∈ X comes with a pospace Wx such that

– the underlying space of Wx is a neighborhood of x, and

– given any U ∈ U containing x, the pospaces induced on U ∩Wx by U and Wx

coincide.

An original local pospace is an equivalence class of original atlases, both of them being
equivalent when their union is again an original atlas. As so often in Mathematics,
the problem arises from quantifier ordering. Given a point x ∈ X , the pospace Wx

only depends on x. We claim that it should not be so. For example, the second atlas
described on the above list is not an atlas in the original sense. Indeed it contains
open dense subsets of arbitrary low nonzero measure (i.e. the accumulated length of its
connected components). Let x be any point of S1, its associated pospace Wx contains
a neighborhood A of x which is a closed arc. Then there exists an open dense subset
D of S1 which contains x and whose measure is strictly less than the length of A. Let
a0 and a1 be the extremities of A with a0 coming before a1 in the partial order on Wx .
Then a0 and a1 are not comparable in D because A * D for measure consideration.

Starting from that, one may ask how annoying is that situation. We might as
well consider such an atlas as irrelevant. Then let us observe that the identity map
on S1 induces an isomorphism between the first and the second atlases on the list of
Example 4.3.29. In fact, given an atlas in the original sense, we obtain an atlas in the
sense of Definition 4.3.1 by gathering, for all x ∈ X , all the open sub-pospaces of Wx

containing x (cf. Remark 4.3.2). In categorical terms the category of original atlases is
a full subcategory of the category of atlases in the sense of Definition 4.3.1. The issue
of whether the full inclusion is an equivalence, which amounts to have an original atlas
in each equivalence classes (cf. Lemma 4.3.8), is open.

We advocate shifting to the new formalism for, at least, the following three reasons.
First, the original notion of atlas requires a mapping, namely the one that associates

85



4.3. Locally Ordered Spaces 4. Models of Directed Topology

each point with a pospace, besides the collection of charts, whereas the latter should
be, in the author point of view, intrinsic. Second, the new definition is better suited
to the analogy with manifolds. Indeed, a collection of charts forms a manifold when
the charts are compatible two-by-two. Finally, it is also better suited to local orders
arising from a given class of paths of a space, that is to say when for all charts U of the
atlasU, we write x vU y when there exists a path from x to y whose image is wholly
contained in U, and which belongs to the distinguished class. Such local pospaces can
be met when one tries to realize a precubical. They also naturally arise when the class
of distinguished paths consists of the smooth curves γ on a manifold M with vector
fields f1, . . . , fn such that for all t ∈ dom γ the vector Ûγ(t) is a linear combination of
vectors f1(t), . . . , fn(t)with non-negative coefficients. Note that the directed circle falls
into this range of examples.

Corollary 4.3.26 and the definition of the category PoTopd (cf. Definition 4.1.4)
suggest to introduce the following class of local pospaces.

Definition 4.3.31. A local pospace X is said to by directed by the dipaths when it has
an atlas whose charts are directed by the dipaths. These local pospaces form the full
subcategory LpoTopd ⊆ LpoTop.

Remark 4.3.32. As a consequence of Lemma 4.3.9, an ordered chartU of the maximal
atlasU satisfies

∀U ′ ∈ U U ⊆ U ′ ⇒ vU=vU′ |U
iff U is the only element of U whose underlying space is SU . In particular, if the
subcollection of charts of U satisfying this property induces a basis of the topology,
then it is an atlas. It is the case in Example 4.3.24 and Example 4.3.29 considering
the ordered charts with connected underlying spaces. If the underlying space is locally
connected (i.e. its connected components are open), then given an ordered chart U of
some atlas U we write x v′ y when x vU y and x, y belong to the same connected
component. Then SU equipped with v′ is a pospace that can be added to U so as to
obtain a larger atlas. One can even go further considering the map q identifying points
that belong to the same connected component. Then any pospace structure on the set
of connected components of U (i.e. the codomain of q) can be lifted to an alternative
closed partial order on SU . The resulting pospace can also be added to U so as to
obtain a larger atlas. As a consequence, when the underlying space of a local pospace
is locally connected, if U is the only ordered chart over SU in the maximal atlas, then
SU is connected.

We leave the topological aspects of local pospaces and now focus on the categorical
properties of LpoTop.

Lemma 4.3.33. The category LpoTop is finitely complete and has all coproducts.

Proof. The equalizer of two parallel local pospace morphisms f and g is

{x ∈ dom f | f (g) = g(x)}

equipped with the induced local pospace structure. The product of two local pospaces is
carried by the product of the underlying topological spaces equipped with the following
atlas

{U × V | U ∈ U; V ∈ V}
whereU andV are atlases and U ×V is the product in PoTop. The coproduct is given
by the coproducts of the underlying spaces together with the union of the atlases.

86



4.3. Locally Ordered Spaces 4. Models of Directed Topology

Proposition 4.3.34. Let p be a point of the local pospace X and γ be a dipath on X .
Then γ -1({p}) is a finite union of disjoint compact intervals.

Proof. From basic topological arguments the connected components of γ -1({p}) form
a family of disjoint compact intervals. Define A as the collection of their middle points.
Let t, t ′ ∈ A be satisfying t 6 t ′. Since γ is a local pospace morphism there is an
ordered chart U containing t and an ordered chart V containing p such that γ(U) ⊆ V .
If t ′ ∈ U then by Lemma 4.3.27 the restriction of γ to [t, t ′] is constant. In particular t
and t ′ belong to the same connected component of γ -1({p}), hence t = t ′ because both
are the middle of this connected component. Thus A is a subset of a compact space
without any accumulating point, so it is finite.

Example 4.3.35. The following diagram is a coequalizer, with pr2 being the second
projection

S1
z 7→(z,0) //

z 7→(1,0)
// S1 × R+

pr2 // R+

Let f be a local pospace morphism defined over S1 × R+ such that f (z, 0) = f (1, 0) for
all z ∈ S1. Consider X = {x ∈ R+ | ∀z ∈ S1 ∀t ∈ [0, x], f (z, t) = f (1, t)}. Then X is a
nonempty (because it contains 0) subset of the connected space R+. First remark that X
is closed since the mapping f can be seen as a continuous map from R+ to (codom f )S1 .
For the same reason, if x ∈ X and V an ordered chart of codom f that contains x, then
x admits a neighborhood U whose image under f is included in V . By Lemma 4.3.27
we deduce that for all t ∈ U the function f (t) ∈ (codom f )S1 is constant. Therefore X
is open, and thus X = R+. In particular the forgetful functor LpoTop→ Haus does not
preserve coequalizers.

Remark 4.3.36. Example 4.3.35 is related to the realization of cubical sets in LpoTop.
In the spirit of Example 2.4.4 let us start with the square �2. Its LpoTop-realization is
[0, 1]2. We add the relation

K(δ1
0,0)(s) = K(δ1

0,1)(s) [rel. 1]

which identifies two opposite edges of the square, the vertical ones say. The resulting
cubical set is denoted by C (which stands for “cylinder”). As one can expect, the
LpoTop-realization of C is S1 × [0, 1] (instead of S1 × R+). Then we add another
relation

K(δ1
1,0)(s) = K(σ0

0 δ
0
0,0δ

1
1,0)(s) [rel. 2]

which identifies the lower edge of the square with a point (more precisely the lower
left corner of the square). Intuitively we have created a vortex and denote the resulting
cubical set by D (which stands for “disk”). In terms ofLpoTop-realization, the subspace
S1 × {0} of S1 × [0, 1] is identified with a point. In analogy with what we have seen
before, the resulting local pospace is [0, 1] (instead of R+) while the realization in Top
is homeomorphic to the unit compact disk. Furthermore denote by S (which sounds
like “sphere”) the cubical set obtained by adding yet another relation

K(δ1
1,1)(s) = K(σ0

0 δ
0
0,1δ

1
1,1)(s) [rel. 3]

then the LpoTop-realization of S is again [0, 1] while its Top-realization is S2.

Definition 4.3.37. A vortex is a point any neighborhood of which contains a noncon-
stant directed loop.

87



4.3. Locally Ordered Spaces 4. Models of Directed Topology

An immediate consequence of Lemma 4.3.27 is

Corollary 4.3.38. A locally ordered space has no vortex.

Example 4.3.39. We deduce from Corollary 4.3.38 that the complex plane C cannot
be provided with a local pospace structure whose dipaths would be

{ρ(t) · eiθ(t) | r > 0 ; θ : [0, r] → R ; ρ : [0, r] → R+ ; ρ, θ nondecreasing}

since the origin would then be a vortex.

Remark 4.3.40. Another consequence of Corollary 4.3.38 is that LpoTop lacks some
infinite products. Consider indeed a family of copies of the directed circle indexed by
N. If the product exists then its underlying space is the topological product of countably
many copies of the circle because the forgetful functor to Haus has a left adjoint. Then
for each n consider the directed path γn defined over [0, 2π] by

γn(t) = eint .

There is a directed path δ over the product such that prn ◦ δ = γn for all n. Given any
open interval J of [0, 2π] there exists n such that prn(δ(J)) = S1. A basis of the product
topology is given by the products ∏

n∈N
Un

of the families (Un)n∈N of nonempty open subsets of S1 only finitely many members
of which differ from S1. If this product of local pospaces exists, then all its points are
vortices, which is a contradiction.

A careful readingwill convince the reader that the arguments given in Remark 4.3.40
are still valid when one replaces the infinite family of copies of S1 by any infinite family
of local pospaces whose members contain a directed loop. Therefore we have

Proposition 4.3.41. If a family of local pospaces has infinitely many terms containing
a non constant directed loop, then its product in LpoTop does not exist.

In fact we have

Proposition 4.3.42. The product of a family of local pospaces exists iff all its members
but finitely many ones are pospaces (i.e. of the form AX for some pospace X).

Proof. An atlas is given by products in PoTop of families of ordered charts.

Cocompleteness of LpoTop is still an open problem.

Example 4.3.43. Consider the following diagram of local pospaces

T0 ↪→ T1 ↪→ · · · ↪→ Tn ↪→ Tn+1 ↪→ · · ·

with Tn denoting the n-fold Cartesian product of S1. The colimit in Haus of the
underlying spaces is the product of sets ∏

N

S1

endowed with the topology a basis of which is given by all the products of the families
(Un)n∈N of nonempty open proper subsets of S1. Each of them is equipped with the
product order, thus providing the atlas.

88



4.4. Streams 4. Models of Directed Topology

Remark 4.3.36 suffices to convince us that LpoTop is not a good framework to
realize cubical sets in. However it could be a convenient one if we restrict to precubical
sets. Indeed it is proven in (Fajstrup et al., 2006, Section 6) that one has a realization
functor in LpoTop defined over the full subcategory of non-self-linked precubical sets
(i.e. any face y of any cube x, can be written as y = K(ω)(x) for a unique morphism ω
of�+). This restriction is required in order to ensure that the face ordering (i.e. y <F x
when y = K(ω)(x) for some morphism ω of �+) has nice properties. In particular
the face ordering is used to provide the topological realization of a non-self-linked
precubical set with a local partial order in the sense of (Fajstrup et al., 2006, Definition
3.4). Unlike atlases, the local partial orders are not required to be carried by a basis of
the topology.

Let K be a precubical set and |K | be its topological realization. For all cubes
x ∈ K , we have a continuous map φx : [0, 1]dim x → |K | whose restriction to ]0, 1[n is
a homeomorphism on its image. We define D as the least collection of paths on |K |
that is stable under concatenation and contains all the paths of the form φx ◦ δ with
δ ∈ PoTop([a, b], [0, 1]dim x). For all open subsets U of |K |, we write x 4U y when
there exists a path δ ∈ D from x to y whose image is contained in U.

Conjecture 4.3.44 (Unpublished). Let K be a precubical set.

– For all open subsetsU of |K |, the relation4U is closed (i.e. (U,4U ) is a preordered
space – see Definition 4.1.10)

– The collection B of open subsets U such that 4U is antisymmetric (i.e. (U,4U )
is a pospace – see Definition 4.1.1) forms a basis of the topology.

– The collection U = {(U,4U ) | U ∈ B} is an atlas on |K |, the topological
realization of K .

– The set of dipaths on (|K |,U) is D and all the charts of U are directed by the
dipaths – see Definition 4.1.4

– The LpoTop-realization of K is (|K |,U) – see Definition 2.2.1.

To recap, the category of local pospaces is finitely complete and contains all the co-
products. However it is not complete and we conjecture that it is not cocomplete either.
Anyway, some of its existing colimits do not fit with the colimit of the underlying spaces.
These unpleasant features are related to the fact that local pospaces have no vortex. How-
ever, as shown by the introduction of Section 6.4 and Definition 7.1.2, local pospaces
are sufficiently supple to model any parallel automaton. Moreover their fundamental
categories (cf. Definition 5.2.10) enjoy nice properties (cf. Proposition 5.2.13).

4.4 Streams
From a computer science point of view, local pospaces are satisfactory as they are
sufficiently supple to model any parallel automata. Nevertheless, the category LpoTop
is really ill-behaved with regard to algebraic directed topology. Indeed the properties
of the geometric realization of cubical sets (Chapter 2) heavily rely on the nature of the
aimed category. As local pospaces, streams are intended to formalize “local causality”.
However, the notion of local pospace is based on the assumption that causality on an
open set imposes causality on its open subsets. In this context, causality is represented
by partial orders. On the contrary, the notion of stream arises from the assumption that

89



4.4. Streams 4. Models of Directed Topology

causality on some open subset U should be the sum of the causalities carried by the
elements of any open cover of U. This approach fits better with transitivity (cf. bad
behaviour of colimits in LpoTop – see Example 4.3.35). Also note that in the definition
of stream the constraint of working with pospaces is relaxed. Given P a family of
preordered sets we denote by ∨

P

the least preorder (on the union of the underlying sets of the elements of P) containing
all the binary relations associated with the elements of P. For the sake of compatibility
with pospaces and local pospaces, we suppose that the underlying space of a stream is
Hausdorff. The streams were introduced by S. Krishnan (2006).

Definition 4.4.1 (Krishnan (2009)). A circulation on a topological space is a mapping
that associates any open subset W with a preorder relation 4W on it and such that the
following holds for allU open covers of W

4W=
∨
{4U | U ∈ U}

A stream is a Hausdorff space together with a circulation.

Remark 4.4.2. Given two open subsets U and U ′ of a stream X such that U ⊆ U ′, we
have 4X

U⊆4X
U′ because the following relation holds by Definition 4.4.1.

4X
U′ = 4X

U ∨ 4X
U′

Remark 4.4.3. Let U be an open subset of a stream X , and suppose that U can be
written as the disjoint union of two open sets U0 and U1. Then an element of U0 and an
element of U1 are not comparable with respect to 4X

U .

Example 4.4.4. The third directed atlas described in Example 4.3.24 is actually a
direction while the second one is not by Remark 4.4.3. In particular, any interval of
R can be provided with a stream structure assigning to each of its open subsets W
the following partial order: for w and w′ in W write w 4W w′ when w 6 w′ and
[w,w′] ⊆ W . It is referred to as the standard stream on the interval. The standard
stream structure on [0, 1] (resp. R) is the directed unit interval of Strm (resp. directed
line of Strm). Following Definition 4.2.12, the dipaths on a stream X are defined as
the morphisms from some standard stream [0, r] to X , for r ∈ R+.

Example 4.4.5. The second directed atlas described in Example 4.3.29 can be extended
to a circulation by associating S1 to the chaotic preorder (i.e. the one such that any point
is related to all the others).

Definition 4.4.6. A streammorphism from X toY is is a map f (between the underly-
ing sets of X and Y ) such that for all x ∈ X and all V open subset of Y containing f (x),
there exists U open subset of X containing x such that f induces a preorder morphism
from (U,4X

U ) to (V,4Y
V ).

It follows from Definition 4.4.6 that stream morphisms compose. The category of
streams is denoted by Strm.

Remark 4.4.7. Definition 4.4.6 and Definition 4.3.12 are formally similar. In fact they
only differ in the axioms that express local causality (i.e. directed atlases vs circulations).
In particular, being a stream morphism is a local property so Remark 4.3.19 remains

90



4.4. Streams 4. Models of Directed Topology

valid writing “stream” instead of “local pospace”. Nevertheless, Lemma 4.3.14 does
not hold for stream morphisms. As a counter-example, consider the circulation on the
directed circle described in Example 4.4.5. Indeed, it is clear that all continuous maps
from the circle to itself preserve the chaotic preorder but many of them are not stream
morphisms.

The forgetful functor U from Strm to Haus admits a left adjoint provided by the
discrete relation on every open subset. It also admits a right adjoint by associating any
topological space with its greatest stream structure, yet this structure cannot be easily
described (cf. Krishnan (2009)). The category of streams enjoys many nice properties,
in particular it is complete. However the products in Strm are not straightforward
and require one to weaken the notion of stream. We still follow the terminology of
(Krishnan (2009)) calling precirculation a mapping that sends any open subset W of
a Hausdorff space X to a preorder relation 4W on W . In addition, this mapping is
required to preserve inclusion in the following sense: for all open subsets W1,W2 of
X such that W1 ⊆ W2, we have 4W1⊆4W2 . As suggested by the terminology, any
circulation is a precirculation – see Remark 4.4.2. A prestream is a Hausdorff space
together with a precirculation. The prestream morphisms are defined as the stream
morphisms. Prestreams and their morphisms form the category pStrm and there is
a full inclusion Strm → pStrm. The forgetful functor pStrm → Haus admits both
a left adjoint (defined as for streams) and a right one. The latter assigns the chaotic
preorder to each open subset. We write 4X to denote the precirculation of a prestream
X . Given two precirculations 4 and 4′ on the same Hausdorff space, one says that 4
is contained in 4′ (or that 4 is less that 4′) when 4W⊆4′W for all open subsets W .
The cosheafification1 of a prestream X is defined, for all open subsets W , by the least
preorder onW that contains all the preorders4W with4 ranging through the collection
of all circulations contained in 4X . By a slight abuse of language, one may say that a
prestream X is less that a prestream X ′ when so are their corresponding precirculations.
Then in an abstract way, the cosheafification of a prestream X , denoted by cosh X , is the
greatest stream contained in X . As one can imagine, the cosheafification construction
induces a right adjoint to the inclusion pStrm → Strm. In particular the following
commutative diagram provides the right adjoint to the forgetful functor Strm→ Haus
as a composite of right adjoints.

Haus

Strm

U

::

// pStrm

U

OO

Furthermore the product of a family of streams is given by the cosheafification of its
product in pStrm (cf. Krishnan (2009)). In other words the cosheafification functor
pStrm → Strm preserves products. Yet, the product of a family of streams in pStrm
almost always differ from its product in Strm.

Remark 4.4.8. As pointed out in Krishnan (2009), most of the constructions in Strm
are in fact performed in pStrm and then sent to Strm via the cosheafification functor.
For example, given a pospace X , one can naively define the mapping that associates
each open subset of X with the restriction vX |U of the partial order of X to U. Doing
so one has indeed a full embedding I : PoTop ↪→ pStrm, nevertheless I X might fail to

1The terminology is due to Krishnan (2009). It is motivated by the fact that the mapping 4 preserves
suprema. Hence it can be seen as a cosheaf over the locale of open subsets of the underlying space.

91



4.4. Streams 4. Models of Directed Topology

be a circulation. As a counterexample consider any non trivial pospace X (i.e. which
contains at least two distinct points x and x ′ such that x vX x ′). Since the underlying
space of a pospace is Hausdorff (cf. Remark 4.1.2) there exist open subsets U and U ′

of X such that x ∈ U, x ′ ∈ U ′, and U ∩ U ′ = ∅. Therefore we have x vX |U∪U′ x ′

and by Remark 4.4.2, I X is not a stream. We have actually proven that I X is a
stream iff the partial order of X is discrete. In particular given two pospaces X and Y ,
Strm(cosh I X, cosh IY ) may differ from PoTop(X,Y ).

Example 4.4.9. Consider the directed line R as a pospace, the cosheafification of IR is
the stream described in Example 4.4.4.

Remark 4.4.10. Finding a canonical functor from LpoTop to pStrm is not so simple
because an atlas U may not be a precirculation and even if it is so, there can be an
equivalent (but different) atlas that is not. In particular we have seen that if an atlas over
a Hausdorff space X contains a chart over X then it derives from a pospace. Given a
local pospace X one can consider its greatest atlas (cf.Lemma 4.3.10) and then associate
every open subset with the preorder generated by all the charts contained in it.

Among all streams, some of which being rather tricky, the following ones are especially
well-behaved.

Definition 4.4.11. In the light of Definition 4.1.4, a stream X is said to be directed by
dipaths or filled when for all open subsets W ⊆ X one has w 4W w′ if and only if
there is a dipath on W from w to w′. The full subcategory of streams that are directed
by the dipaths is denoted by Strmd. It will play an important role in the comparison
with the category of d-spaces.

Remark 4.4.12. A stream X is directed by the dipaths iff the condition

w 4X
W w′⇔ there exists a dipath on W from w to w′

is satisfied for all the elements W of some basis of the topology of UX .

The category Strm is actually cocomplete (Krishnan, 2009, p.446), and provided we
pay some attention to the notion of substream (Krishnan, 2009, p.455, Definition 3.2.6),
it is a framework for directed topology. Therefore we can define, for all cubical sets
K , the realization �K �Strm of the cubical set K in Strm. Since the forgetful functor
U : Strm→ Haus has both left and a right adjoint, the underlying space of �K�Strm is
|K |Haus.

Example 4.4.13. We recall the cubical set described in Remark 4.3.36. It is generated
by a single square �2 and the relations

K(δ1
0,0)(s) = K(δ1

0,1)(s) and K(δ1
1,0)(s) = K(σ0

0 δ
0
0,0δ

1
1,0)(s)

The Strm-realization �K �Strm of the cubical set K can be described as follows. Its
underlying space is the compact unit disk D := {z ∈ C | |z | 6 1}. Then we guess that
a dipath of �K �Strm is a path on D of the form t ∈ [0, r] → ρ(t)eiθ(t)∈C with ρ and
θ being nondecreasing continuous paths on R+ and [0, 1]. The circulation of �K�Strm
is therefore the cosheafification of the precirculation which associates an open subset
U ⊆ D with the preorder{

(z, z′) ∈ C × C
�� there exists a dipath δ from z to z′ s.t. img(δ) ⊆ U

}
92



4.5. D-spaces 4. Models of Directed Topology

If we add the relation K(δ1
1,1)(s) = K(σ0

0 δ
0
0,1δ

1
1,1)(s), then the underlying space of

�K�Strm is the Riemann sphere S2 identified with C∪ {∞}, the dipaths being defined as
above except that ρ is allowed to take its values in R+∪ {∞}. Remark that the preceding
realizations actually belong to Strmd.

Apart from the fact that cosheafification is unavoidable when one deals with streams,
the category Strm is a nice context for directed topology. Yet we will see in Section 4.5
that for our purpose, Strmd is even more convenient than Strm. One can even work
in a full sub-category of Strmd that is Cartesian closed as shown in Goubault-Larrecq
(2014).

4.5 D-spaces
As control flow graphs for sequential programs (cf. the second section of Introduction),
the topological model of a parallel program is supposed to be an overapproximation
of its collection of execution traces. To every such trace indeed corresponds a dipath
on the model. It is therefore tempting to focus on dipaths and define a framework in
which they would be the primary datum instead of being the by-product of some (local)
(pre)order. There is also a mathematical argument that pleads for such an approach:
the category Cub as well as all the realizations in PoTop, LpoTop, and Strm seem
to belong to PoTopd (cf. Definition 4.1.4), LpoTopd (cf. Definition 4.3.31), and Strmd

(cf. Definition 4.4.11) respectively.
In the belief that the notion of dipath should be primary, Marco Grandis has come

to introduce the d-spaces – Grandis (2003, 2009). This approach leads to a formalism
that is much more tractable and intuitive than the preceding ones. However, being
much more supple it embraces many pathological specimens. So we will strengthen
the axioms of the original definition to match our needs. As for local pospaces and
streams, we suppose that the underlying space of a d-space is Hausdorff.

We slightly differ from the definition of (Grandis, 2003, p.284) in that we allow
paths to be defined on any non empty compact interval (including singletons) instead
of just [0, 1]. As one can imagine, it does not make any significant difference but fits
better with Definition 4.2.15.

Definition 4.5.1. A d-space consists of a Hausdorff space X together with a set dX of
Moore paths (the d-paths) such that

1. Every constant path is a d-path.

2. Any subpath of a d-path path is a d-path.

3. The concatenation of two d-paths is a d-path.

The set dX is called the direction. A d-space morphism f : X → Y , also called d-map,
is a direction preserving continuous map (i.e. f ◦ dX ⊆ dY ). The d-spaces and d-maps
form the category dTop as defined by Marco Grandis (2003). Following the notation
introduced in Section 4.2, Ir refers to the compact interval [0, r] together with all the
nondecreasing continuous paths on it. The next lemma states that the notion of d-path
is in line with the notion of dipath (cf. Definition 4.2.12).

Lemma 4.5.2. Given a d-space X , we have

dTop(Ir, X) =
{
δ ∈ dX

�� δ is defined over [0, r]
}

93



4.5. D-spaces 4. Models of Directed Topology

Proof. Let δ be in dTop(Ir, X). The mapping id[0,r] is, by definition, a d-path of
Ir . Therefore the direction preserving map δ (seen as δ ◦ id[ 0, r]) belongs to dX .
Conversely, let δ be an element of dX defined over [0, r] and let γ be a nondecreasing
continuous map on [0, r]. Then δ ◦ γ is a subpath of δ which belongs to dX by the third
axiom of Definition 4.5.1. Therefore δ preserves directions.

Remark 4.5.3. The collection of constant paths and the collection of all paths form two
directions on any Hausdorff space X . The resulting d-spaces are respectively called the
discrete and the chaotic d-spaces on X , and they induce the left adjoint and the right
adjoint to the forgetful functor U : dTop→ Haus which is faithful.

Lemma 4.5.4. Let X be a topological space. The collection of directions (resp. filled
directions) on X is a complete lattice. In particular given a family P of paths on X there
is a least direction (resp. filled direction) on X containing P.

Proof. The intersection of all (filled) directions containing P is still a (filled) direction.

Corollary 4.5.5. The category of d-spaces is complete and cocomplete.

Proof. By Remark 4.5.3 the underlying spaces of limits and colimits are computed
in Haus. The direction is then generated by the obvious collection of paths – see
Lemma 4.5.4.

Remark 4.5.6. The forgetful functor over dTop has both a left and a right adjoint
(cf. Remark 4.5.3) so it preserves limits and colimits. As a consequence, the underlying
space of the d-space realization of any cubical set is its geometric realization.

Remark 4.5.7. Given a framework for directed topology (C,U, I) we deduce from
Definition 4.2.12, Lemma 4.2.13, and Definition 4.2.15 that any object of C equipped
with its dipaths is a d-space. So we have mapped every object of C to an object of
dTop. This mapping is functorial by Definition 4.2.18. Conversely, one easily checks
that dTop is a framework for directed topology. In some sense, dTop contains a copy
of any framework for directed topology.

Remark 4.5.8. Given a d-space X and a topological subspace Y of UX , the collection
of d-paths of X whose images lie in Y forms a direction on Y . The d-spaces obtained
this way prove that the forgetful functor U : dTop → Haus satisfies the fourth axiom
of Definition 4.2.2. They are the d-subspaces of X .

Example 4.5.9. The canonical functor I from PoTop to dTop sends any pospace X to
the d-space on UX (i.e. the underlying space of X) whose direction is the collection of
dipaths on X . Note that if the underlying space of X is totally disconnected (e.g.Priestley
spaces (Davey and Priestley, 2002, p.258)) then the d-space I X is discrete regardless
of the partial order on X . However the composite Cub ↪→ PoTop → dTop is a full
embedding that preserves pastings of cubes (cf. Remark 4.1.21). The category dTop is
actually a directed framework for directed topology. Note that the same construction
applies to LpoTop.

We are going to exhibit a full subcategory of dTop that is isomorphic to Strmd.

94



4.5. D-spaces 4. Models of Directed Topology

Remark 4.5.10. As noted by Sanjeevi Krishnan (2009), d-spaces and streams are
related by a pair of adjoint functors S a D

Strm
D // dTop
S
oo

Given a stream X the collection of d-paths of the d-space DX is⋃
r ∈R+

Strm(Ir, X)

with Ir being the interval [0, r] equipped with its standard stream structure. Conversely,
given a d-space X the circulation of the stream SX is

U open subset 7→ {(x, y) ∈ U ×U | ∃δ ∈ dX; ∂-δ = x; ∂+δ = y; img(δ) ⊆ U}

Denoting by U both forgetful functors Strm → Top and dTop → Top and by η
and ε the unit and the counit of the adjunction, the following holds for all streams
(resp. d-spaces) X

U(ηX ) = idX and U(εX ) = idX

Remark 4.5.11. The composite of the functor LpoTop → dTop described in Exam-
ple 4.5.9 followed by S provides a natural way to embed Cub into Strm.

Proposition 4.5.12. D ◦ S ◦ D = D and S ◦ D ◦ S = S

Proof. Let X be a stream. The underlying map of
(
D ∗ εX

)
: DSD(X) → D(X) is idUX

so any d-path on DSD(X) is a d-path on D(X). Conversely, let δ be a d-path on D(X) and
W be an open subset of X . Suppose that t 6 t ′ with t, t ′ ∈ dom δ and [t, t ′] ⊆ δ−1(W).
Consider a subpath δ ◦ θ of δ with θ : [0, 1] → [t, t ′] being nondecreasing, continuous,
and surjective. Then δ◦θ is a d-path of D(X) satisfying img(δ ◦ θ) ⊆ W , δ◦θ(0) = δ(t)
and δ ◦ θ(1) = δ(t ′), hence by definition δ(t) 4SD(X)

W δ(t ′). It follows that δ is a d-path
on DSD(X).

Let X be a d-space and let W be an open subset of UX , the underlying map of(
S ∗ ηX

)
: S(X) → SDS(X) is idX so w 4S(X)

W w′ implies that w 4SDS(X)
W w′ for all

w,w′ ∈ W . Conversely, if w 4SDS(X)
W w′ then we have a d-path γ of DS(X) such that

img(γ) ⊆ W , ∂-γ = w and ∂+γ = w′. In particular γ is a stream morphism so we have
w = ∂-γ 4S(X)

W ∂+γ = w′.

Remark 4.5.13. It is worth noticing that neither D nor S are full. First we treat
the case of D by considering the set of rational numbers Q equipped with the stream
structure inherited from the real line R. The elements of Strm(Q,Q) consist of the
continuous nondecreasing maps from Q to Q while dTop(D(Q),D(Q)) contains all the
continuous maps from Q to Q since the only directed paths on Q are the constant
ones. We come to the case of S. Borrowing the example from (Krishnan, 2009, p.459,
Example 4.3), we define a staircase on R2 as a mapping γ : I → R2 that can be
written as a finite concatenation γn · · · γ1 with pr0 ◦ γk or pr1 ◦ γk being constant for
all k ∈ {1, . . . , n} (pr0 and pr1 being the projections R2 → R). The direction generated
by the staircases turns the plane R2 into a d-space denoted by X . One observes that the
map f : (x, y) ∈ R2 7→ (x + y, x + y) ∈ R2 belongs to Strm(SX, SX) since SX is the
plane R2 with the stream structure induced by the standard order, but it does not belong
to dTop(X, X) since it does not preserve the staircases.

95



4.5. D-spaces 4. Models of Directed Topology

In spite of Remark 4.5.13 the functors S and D are almost inverse isomorphisms.
First note that, as a consequence of Proposition 4.5.12, a stream (resp. a d-space)
X can be written as SY (resp. DY ) for some d-space (resp. stream) Y iff X = SDX
(resp. X = DSX). Then write D(Strm) and S(dTop) for the full subcategories of dTop
and Strm whose collections of objects are respectively{

D(X)
�� X object of Strm

}
and

{
S(X)

�� X object of dTop
}

Definition 4.5.14. A pseudo d-path is a path γ such that for all open subsets U, and
all [t, t ′] ⊆ γ -1(U) with t 6 t ′, there exists δ ∈ dX such that ∂-δ = γ(t), ∂+δ = γ(t ′),
and img(δ) ⊆ U. A d-space is said to be filled when all its pseudo d-paths are d-paths.
We denote the full subcategory of filled d-spaces by dTopf.

The fact that a d-space is filled has numerous consequences.

Proposition 4.5.15. Given a filled d-space X , the collection of d-paths whose codomain
is a given compact interval [0, r] is a closed subset of X [0,r] – equipped with the compact
open topology.

Example 4.5.16. The collection of staircases of the plane (i.e. paths obtained as a finite
concatenation of vertical and horizontal paths – see Remark 4.5.13) provides R2 with a
direction which is not filled, but the least filled direction that contains it is the collection
of all nondecreasing paths.

Remark 4.5.17. One can check that dTopf is a directed framework for directed topology
(cf.Definition 4.2.2) and that the dTopf-realization (cf.Definition 2.2.1) behaves nicely,
see Example 4.5.18.

Example 4.5.18. Consider the unit square [0, 1]2 with all the nondecreasing paths as
direction. Then identify the points (0, t) and (1, t) for all t ∈ [0, 1], as well as all the
points of the lower edge [0, 1] × {0} with the origin. The resulting colimit exists in both
dTop and dTopf – see Corollary 4.5.5 and Theorem 4.5.21. In the latter case it is, up
to isomorphism, the compact unit disk{

z ∈ C
�� |z | 6 1

}
endowed with the direction{

ρ · eiθ
�� ρ : [0, r] → [0, 1] and θ : [0, r] → R nondecreasing continuous maps

}
In the former case the direction is restricted to the paths such that for all segments s from
the origin to the border of the disk, δ -1(s) has finitely many connected components. In
particular the path t ∈ [0, 1] 7→ t · e i2π

t is directed in the latter case, not in the former
one – see Figure 4.7. Letting ρ take its values in R+ instead of [0, 1] we recognize the
direction over C introduced in Example 4.3.39. The resulting (filled) d-space is called
the directed complex plane. Adding to C a point at infinity ∞ and letting ρ take its
values in R+ ∪ {∞}, we obtain the directed Riemann sphere . As in Example 4.5.16,
the direction generated by the paths of the form t 7→ ρeit and t 7→ teiθ with ρ and θ
constants ranging through R+ and R, is strictly contained in the directed complex plane
(resp. the directed Riemann sphere). Moreover the collection of d-paths of the complex
plane (resp. the directed Riemann sphere) that crosses R+ (resp. R+∪{∞}) finitely many
times is strictly between the two other ones.

The previous construction is of course motivated by the realization of the cubical
set described in Example 4.4.13. We observe that one might have �K�dTop��K�dTopf
even in a simple situation.

96



4.5. D-spaces 4. Models of Directed Topology

Figure 4.7: The downward spiral

Figure 4.8: The directed circle

Remark 4.5.19. Example 4.5.18 reveals that the realization of cubical sets in dTopf
is closer to the intuition than its counterpart in dTop. Yet, following his original
definition Marco Grandis defines the directed homology and explores its relation to
noncommutative geometry – see (Grandis, 2009, Chap.2), which seems to be impossible
with filled d-spaces.

Example 4.5.20. The circle S1 = {eiθ | 0 ≤ θ < 2π} inherits a filled d-space structure
from the one described in Example 4.5.18 (i.e. the d-paths can be written as p(t) = eiθ(t)

for some nondecreasing function θ from some compact interval to R), see Figure 4.8.
Note that �K�dTop��K�dTopf with K being the precubical set with a single vertex and a
single arrow.

The next theorem highlights the importance of filled d-spaces and streams that are
directed by the dipaths. More generally, the notion of pospaces directed by the dipaths
(cf. Definition 4.1.4) has been extended to locally ordered spaces (cf. Definition 4.3.31)
and streams (cf.Definition 4.4.11 and Remark 4.4.12). Theorem 4.5.21 thus establishes,
through the fact that any object of a framework for directed topology can be seen as a
d-space (cf. Remark 4.5.7), a link between the mathematical objects that are directed by
the dipaths (e.g. (local) pospaces and streams) and their counterparts in the framework
for directed topology dTopf. It can also be seen as a characterization of those d-spaces
whose direction is locally generated.

Theorem 4.5.21 (Haucourt (2012), see Figure 4.9). The categories dTopf and Strmd

are respectively D(Strm) and S(dTop). Moreover the functors S and D induce a pair
of (mutually) inverse functors between them. Furthermore dTopf (resp. Strmd) is a
complete and cocomplete mono and epi reflective (resp. coreflective) subcategory of
dTop (resp. Strm).

97



4.5. D-spaces 4. Models of Directed Topology

Strm

corefl

��

D //
> dTop
S

oo

refl

��
Strmd

a

D //
�

⊆

OO

D //
dTopf

S
oo

⊆

OO

a

Figure 4.9: Relating streams and d-spaces

Proof. See (Haucourt, 2012, Sect.5). In particular, Strmd and dTopf are the codomains
of the functors S and D. Thus we have, by corestriction, two functors S′ : dTop →
Strmd and D′ : Strm → dTopf. Denote by S- and D- the inverses of the functors
induced by S and D. Then the reflection and the coreflection are given by S- ◦ S′ and
D- ◦ D′.

Remark 4.5.22. Remark 4.5.3, Lemma 4.5.4, and Remark 4.5.6 remain valid for filled
d-spaces.

We compare the geometric realizations of cubical sets in dTop, dTopf, Strm, and
Strmd.

Corollary 4.5.23. For all cubical sets K we have
D-1 (�K�dTopf

)
=�K�Strmd and S-1 ( �K�Strmd

)
=�K�dTopf .

Proof. The functors S-1 and D-1 are inverse of each other by Theorem 4.5.21.

Corollary 4.5.24. For all cubical sets K we have �K�Strmd=�K�Strm.

Proof. By Theorem 4.5.21 the inclusion functor I : Strmd ↪→ Strm has a right adjoint,
hence it preserves colimits and we have �K�Strmd= I(�K�Strmd ) =�K�Strm.

Corollary 4.5.25.
For all cubical sets K , we have S(�K�dTop) =�K�Strm and D(�K�Strm) =�K�dTopf .

Proof. The first equality immediately comes from the fact S preserves colimits (as a
left adjoint) and the n-dimensional directed cube in dTop is sent to its counterpart in
Strm. By Corollary 4.5.23 and Corollary 4.5.24 we have

�K�dTopf= D(�K�Strmd ) = D(�K�Strm) .

Corollary 4.5.26. For all cubical sets K , we have �K�dTopf=�K�dTop if and only if
�K�dTop∈ dTopf .

Proof. We have S(�K�dTop) =�K�Strm by Corollary 4.5.25. If �K�dTop∈ dTopf then by
Theorem 4.5.21 we deduce that �K�dTop= D(�K�Strm). By Corollary 4.5.25 it comes

�K�dTop= D(�K�Strm) =�K�dTopf .

98



4.5. D-spaces 4. Models of Directed Topology

We claim that the difference between �K�dTop and �K�dTopf that one may observe is
entirely due to vortices (cf. Example 4.5.18). From Corollary 4.3.38, it is thus natural
to extend Conjecture 4.3.44 as follows.

Conjecture 4.5.27. For all precubical sets K , we have

I(�K�LpoTop) ��K�dTop��K�dTopf

with I : LpoTop ↪→ dTop being the “inclusion” functor described in Example 4.5.9.

A special instance of Conjecture 4.5.27 is given by Proposition 6.1.7. The next definition
is borrowed from (Fahrenberg and Raußen, 2007, p.20, Definition 4.3).

Definition 4.5.28. A reparametrization is a non-decreasing continuous map of a
compact interval onto another. A reparametrization might not be one-to-one but it is
surjective. By extension a reparametrization of a Moore path γ is a composite of the
form γ ◦ θ where θ is a reparametrization. A d-space is said to be saturated when any
path on its underlying space is a d-path as soon as it admits a reparametrization that is
a d-path.

The relevance of saturated d-spaces appears when one studies the compact-open
topology over the set of d-paths of a d-space, and then defines the notion of trace space –
see Raußen (2009b) and Section 5.6. It is actually not so easy to exhibit a nonsaturated
d-space. The examplewe provide heavily relies on results from (Fahrenberg andRaußen
(2007)).

Example 4.5.29. An interval [a, b] with a < b is a stop-interval of a path γ when the
restriction of γ to [a, b] is constant and [a, b] is maximal with this property. A stop-value
of γ is an element v of its codomain such that the interior of γ -1({v}) is nonempty. As a
consequence of (Fahrenberg and Raußen, 2007, Lemma 2.10 and Corollary 4.11), any
countable subset ofR2 on which the order induced byR2 is total, is the set of stop-values
of some increasing path on R2. Then take R2 as underlying space and say an increasing
path on R2 is directed when its set of stop-values is dense in its image. The resulting
directed space is not saturated.

The pathology described in Example 4.5.29 never happens in with filled d-spaces:

Lemma 4.5.30. Any filled d-space is saturated.

Proof. Suppose that γ ◦ θ is directed and let U be an open set such that γ([t, t ′]) ⊆ U.
Since θ is a reparametrization, there is s, s′ such that θ(s) = t and θ(s′) = t ′, and
therefore θ([s, s′]) = [t, t ′]. The restriction of the directed path γ ◦ θ to [s, s′] is thus
directed and (has its image) contained in U.

The converse is false as shown by the example of increasing staircase paths on R2.
I also wanted to mention the approach of Hirschowitz et al. (2013) which defines an
alternative notion of saturation and thus provides a full subcategory of dTop which
rules out many of its pathologies but enjoys its “good” properties.

Another important feature of the d-spaces that one meets in nature (cf. Proposi-
tion 4.5.34) is the following.

99



4.5. D-spaces 4. Models of Directed Topology

Name Objects Reference
dTop d-spaces Definition 4.5.1
dTopf filled d-spaces Definition 4.5.14
dTops saturated d-spaces Definition 4.5.28
dTopc complete d-spaces Definition 4.5.31
dTopcf complete filled d-spaces Definition 4.5.31

Figure 4.10: Full subcategories of dTop

Definition 4.5.31. A d-space X is said to be complete when for all d-maps δ : R→ X ,
if both following limits exist then δ extends to a d-map δ : R ∪ {-∞, +∞} → X .

lim
t→−∞

δ(t) and lim
t→+∞

δ(t)

We denote by dTopc (resp. dTopcf) the full subcategory of dTop (resp. dTopf) whose
objects are complete.

Remark 4.5.32. The staircases of the plane Remark 4.5.13 do not form a complete
d-space (e.g. consider an infinite staircase whose nth step is of size 1

2n ).

One easily checks that Lemma 4.5.4 is still valid for complete (resp. complete filled)
directions so dTopf and dTopcf are both complete and cocomplete.

Example 4.5.33. The embedding of Cub into dTop (cf. Example 4.5.9) is actually an
embedding in dTopcf which is indeed a directed framework for directed topology.

The list of full subcategories of dTop we have introduced so far is summarized in
Figure 4.5. The rest of this section is a list of remarks that advocate the use of dTopcf
as a reasonable model of directed topology, although all its interesting objects come
from PoTopd, LpoTopd, or Strmd. The next result sharpens Example 4.5.9 in which
the functor I : LpoTop→ dTop is defined.

Proposition 4.5.34. The collection of dipaths of a local pospace induces a complete
filled d-space.

Proof. Suppose that δ is a local pospace morphism from the directed line to X and
that x, the limit of δ at +∞, exists. Let U be a chart containing x, there exists t0 such
that δ([t0,+∞[) ⊆ U. Since U is a pospace, x is actually the least upper bound of
δ([t0,+∞[) – see (Nachbin, 1965, p.26, Proposition 1). Therefore δ extends to a local
pospacemorphisms defined overR∪{−∞,+∞}. Let γ be a pseudo d-path of I X (i.e. the
d-space induced by X) and consider t ∈ dom γ. Let U be a chart of X containing γ(t),
and let J be an open interval of dom γ containing t and such that γ(J) ⊆ U. Given
t ′, t ′′ ∈ J there exists a dipath on X from γ(t ′) to γ(t ′′) whose image is contained in
U because γ is a pseudo d-path, hence γ(t ′) vU γ(t ′′). Therefore γ is a local pospace
morphism that is to say a d-path on I X .

Remark 4.5.35. Let δ : R+ → X be a morphism of filled d-spaces whose limit at +∞
exists and denote it by x. Also suppose that x admits a neighborhood from any point of
which x can be reached along a directed path. Then δ extends to a d-space morphism
δ : R ∪ {+∞} → X . This is precisely the situation that we have met in Example 4.5.18.

100



4.5. D-spaces 4. Models of Directed Topology

Remark 4.5.36. The complete d-spaces (cf. Definition 4.5.31) are also better adapted
to d-spaces extensions. Suppose that one is given two d-spaces X and Y such that
UX ⊆ UY and dY is the least direction that contains dX and makes the inclusion
UX ↪→ UY a d-map. Then one has

dY = dX ∪ {constant paths on UY } .

In this setting the only d-paths starting from or arriving at UY \ UX are the constant
ones. The same remark applies if we work with filled d-spaces instead. On the contrary
if we consider complete d-spaces, then any path from a point of X to a point of Y
whose strict initial segments are d-paths, is a d-path itself. From this point of view,
the direction of a d-space extension should (and will unless otherwise stated) at least
contains all the paths from a point of X (resp. Y ) to a point of Y (resp. X) whose proper
initial (resp. final) segments are d-paths.

Among the plethora of extensions of a topological space, the compactifications
(i.e. the compact extensions in which the space is dense (Kelley, 1955, p.151)) are of
special interest.

Definition 4.5.37. A compactification of a complete d-space X is a complete compact
d-space Y such that UX is dense in UY and the direction on Y is the least complete one
that makes the inclusion X ↪→ Y a d-space morphism.

Example 4.5.38. Following Definition 4.5.37, the directed compact unit interval and
the directed circle are two compactifications of the directed open unit interval.

Example 4.5.39. There are many ways to compactify a topological space. The Stone-
Čech compactification is one of the most familiar to category theorists because it can
be defined as the left adjoint β to the inclusion functor CHaus ↪→ Top (Borceux,
1994a, p.113, 3.3.9c) or (Johnstone, 1982, p.131). Indeed the celebrated Tychonoff
theorem (Kelley, 1955, p.143) precisely states that CHaus ↪→ Top preserves products.
It also preserves equalizers since any closed subspace of a compact Hausdorff space is
compact Hausdorff. In a more explicit way, if we denote by C∗(X) the set of bounded
real-valued functions defined over X , and by I f the closure of img( f ) for each such f ,
then we have the evaluation map at X

evX : x ∈ X 7→ ( f (x)) f ∈C∗(X) ∈
∏

f ∈C∗(X)
I f ,

and βX is the closure of the image of evX while the unit of the adjunction at X is
the induced map X → βX . The latter is an embedding (i.e. a homeomorphism on its
image) iff X is a Tychonoff space (i.e. the singletons are closed and for all closed subsets
C and all x ∈ X \ C there exists f ∈ C∗(X) such that f (C) = 1 and f (x) = 0).

Remark 4.5.40. The Stone-Čech theorem (Kelley, 1955, p.153) states that if X is a
Tychonoff space, then any continuous map from X to some compact Hausdorff space
can be extended to βX . As a consequence β(]0, 1[) is not homeomorphic with [0, 1]
because no bounded function oscillating at the boundary (e.g. t 7→ 1

t(1−t) ) admits a
continuous extension over [0, 1]. In fact the cardinalities of the underlying sets of βR
and βR \ R are 22ℵ0 (Willard, 1970, p.141).

Example 4.5.41. One of the most common and intuitive compactifications is the
Alexandroff one (Kelley, 1955, p.150). Given a space X , it consists of adding a

101



4.5. D-spaces 4. Models of Directed Topology

point at infinity. Formally we denote the additional point by ∞ and define the open
subsets of X ∪ {∞} as the subsets that are open in X or equal to the complement of
some closed compact subset of X . Note in particular that if X is compact, then ∞ is
isolated. Then it is a well know fact that X ∪ {∞} is Hausdorff iff X is locally compact
and Hausdorff (Kelley, 1955, p.150).

Definition 4.5.42. A continuous map f : X → Y is said to be continuous at infinity
when there exists y ∈ Y such that for all neighborhoods W of y there exists a closed
compact subset K of X such that f (X \ K) ⊆ W .

Note that if X is compactHausdorff then anymap defined over X is continuous at infinity.
Also note that if Y is not Hausdorff, there might be several possible y satisfying the
requirement of Definition 4.5.42. We denote by Haus∞ the subcategory of Haus whose
morphisms are continuous at infinity, the embedding CHaus ↪→ Haus∞ admits a left
adjoint α as which is defined as follows:

– if X is compact then αX = X ,

– otherwise αX is the Alexandroff compactification of X .

Example 4.5.43. The underlying space of the Alexandroff compactification of Rn is
Sn+1. While the topology of Rn ∪ {∞} is easily understood, its direction is much
more intricate. In particular∞ is its unique vortex (cf. Definition 4.3.37) and therefore
R2 ∪ {∞} it is not isomorphic to the directed Riemann sphere described in Exam-
ple 4.4.13.

A refinement of the Alexandroff compactification will be described in Section 6.1 to
state Theorem 6.1.20 and Theorem 6.1.42.

In the remaining of the section, we establish a relation between vector fields and
directions. Many of the d-spaces we have seen so far are indeed carried by smooth
manifolds (i.e. the ones with C∞ transition maps) instead of mere topological spaces.
The directions of these specimens derive from vectors fields in a way that we subse-
quently describe. Once again we will notice that the complete filled d-spaces fit better
with examples in nature. Informally speaking, something is said to be smooth when
derivation operators can be applied to it as many times as one wishes. Following
(Bishop and Goldberg, 1980, p.43, Section 1.5) we define a smooth curve as a map of
an interval of real numbers into a smooth manifold such that there is an extension to
an open interval which is a smooth map. Since we only consider smooth manifolds
and smooth maps between them we omit the adjective “smooth”. On the contrary we
write “continuous map” to stress that the map is merely continuous but not necessarily
smooth or even derivative. In particular we keep the word “path” to mean continuous
path. On the contrary the word “curve” always refers to a smooth map. The tangent
bundle of an n-dimensionalmanifoldM is the 2n-dimensional manifold which gathers
all the tangent spaces TxM with x ranging throughM. It comes with the canonical
map p : TM →M. As suggested by its name, the tangent bundle is a vector bundle
– see (Lang, 1999, Chapter III). A vector field onM is defined as a section of p (i.e. a
map s :M → TM such that p ◦ s = id). The mapping s thus associates to every point
x ofM a vector s(x) that is tangent toM at x. These vectors can be seen as arrows
therefore providing a direction. This intuition is made formal by a classical theorem
which claims that for every point x0 ∈ M and every sufficiently small ε > 0 there exists
a unique curve γ :] − ε,+ε[→ M such that γ(0) = x0 and

∂γ

∂t
(t) = s(γ(t))

102



4.5. D-spaces 4. Models of Directed Topology

for all t ∈] − ε,+ε[ (Lang, 1999, Chapter IV). Such a curve is said to be integral. It is
then natural to consider the collection of curves on compact intervals as the generating
set of a d-space overM. The structure of the latter d-space is rather poor since any
point ofM is visited by a unique maximal integral curve (i.e. that cannot be extended
anymore). Their images form a partition ofM so two d-paths that can be appendedmust
lie on the image of the same maximal integral curve. Things become more interesting
if one allows several vector fields s1, . . . , sk to generate the direction. Within the spirit
of considering, for all point x ∈ M, the set

Fx :=
{ k∑
i=1

λi · si(x)
�� λi > 0 for i = 1, . . . , k

}
as the forward cone ofM at x, we have

Definition 4.5.44. A curve γ is said to be forward (with respect to s1, . . . , sk) when its
derivative at time t belongs to Fγ(t) for all t ∈ dom γ:

∂γ

∂t
(t) ∈ Fγ(t)

The d-space generated by the vector fields s1, . . . , sn on the manifold M is the least
direction onM that contains all the forward curves, it is denoted by dMs with s being
understood as the set {s1, . . . , sk}. The closure can also be taken in the lattice of filled
(resp. complete, complete filled) directions, in that case the notation is changed into
dM f

s , dMc
s , or dMc f

s accordingly.

Remark 4.5.45. In particular if s and s′ are two sets of vectors fields onM we can
consider dM∗s ∨ dM∗s′ with the upper bound being taken in the lattice according to
what is put instead of ∗. We have the obvious fact that dM∗s ∨ dM∗s′ ⊆ dM∗s∪s′ but
the converse inclusion might not be satisfied.

Let us revisit some examples.

Example 4.5.46. The unit circle (embedded in R2) together with the vector field that
associates each point (x, y) with the vector (−y, x) generates the directed circle.

Example 4.5.47. Consider the Euclidean planeM with its standard manifold structure
and the constant vector fields sv and sh (which stands for “vertical” and ”horizontal”)
that associates each point of the plan with the vectors (1, 0) and (0, 1) respectively.
The maximal integral curves related to sv and sh are respectively the mappings t ∈
R 7→ (t, 0) ∈ R2 and t ∈ R 7→ (0, t) ∈ R2. The direction dM f

sv,sh is the set of
all nondecreasing paths while the elements of dMsv,sh are the subpaths of the finite
concatenations of nondecreasing curves. Moreover we have

dM f
sv,sh = dM f

sv ∨ dM f
sh but dMsv,sh , dMsv ∨ dMsh

since dMsv ∨ dMsh is the set of staircases of the plane (cf. Remark 4.5.13) and any
pseudo d-path on dM f

sv ∨ dM f
sh is order preserving (with respect to the product order

of R2).

Example 4.5.48. The Euclidean planeM can also be equipped with the vector fields
sa and sr (which stands for “attract” and “rotate”) that associate the point (x, y) with
the vectors (−x,−y) and (−y, x). The d-paths of dM f

sa,sr are the paths of the form
t 7→ ρ(t)eiθ(t) for all mappings ρ and θ such that

103



4.5. D-spaces 4. Models of Directed Topology

– θ, ρ are nondecreasing paths (on R) defined over a compact interval, and

– ρ(t) > 0 for all t of its domain of definition.

We point out that the only d-paths of dM f
sa,sr going through the origin are the constant

ones. Consequently the d-space dM f
sa,sr is isomorphic (in dTop) to the disjoint union

of the origin and the directed cylinder

{0} t S1 × R

This is due to the fact that the origin is a singular point for both vector fields (i.e. sa(0) =
sr (0) = 0). In order to obtain the full fledged directed complex plane one has to consider
the filled complete direction dMc f

sa,sr .

Conjecture 4.5.49. Given a set of vector fields {s1, . . . , sk} on a manifold M of
dimension n > k such that for all x ∈ M at least one of the vectors {s1(x), . . . , sk(x)}
is nonzero, M admits a directed atlas U (in the sense of Definition 4.3.1) such that
for all U ∈ U one has x vU x ′ iff there exists a forward curve from x to x ′ whose
image is contained inU. Moreover the resulting local pospace is directed by the dipaths
(cf. Definition 4.1.4).

Example 4.5.50. A set of vector fields {s1, . . . , sn} over a smooth manifold M is
called a parallelization (ofM) (Bishop and Goldberg, 1980, p.160) when for all points
p ∈ M, the set {s1(x), . . . , sn(x)} forms a vector basis of the tangent space TxM. In
this case the manifold M is said to be parallelizable (Bishop and Goldberg, 1980,
p.160, Appendix 3B) or (Conlon, 2008, p.97, Definition 3.3.10). A manifold admits
at most one parallelization up to isomorphism. More precisely, the frame bundle of
M gathers all the groups of automorphisms of the tangent spaces TxM, for x ∈ M,
in a single manifold denoted by GL(M). As any bundle, it comes with a canonical
smooth projection f : GL(M) → M. Given g a section of it (i.e. a smooth map
that sends x ∈ M to some automorphism of TxM) and a vector field s over M, we
can define the vector field g · s by (g · si)(x) = g(x)(si(x)) for all x ∈ M. Then
one proves that GL(M) transitively acts on the set of framings ofM in the following
sense: given a section g of the frame bundle and a framing {s1, . . . , sn} ofM, the set
g · {s1, . . . , sn} = {g · s1, . . . , g · sn} is another parallelization ofM and all of them can
be recovered that way. As a consequence, the d-space dM∗s is uniquely defined up to
isomorphism and we write d∗M whenM is a parallelizable manifold directed by some
of its parallelizations. In the same fashion all the local pospaces induced by framings
(cf. Conjecture 4.5.49) are isomorphic, thus we denote by LM their isomorphism class
in LpoTop.

Conjecture 4.5.51. Given a parallelizable manifoldM, we denote by IM the d-space
obtained as in Example 4.5.9 from the local pospace LM. For all parallelizable
manifoldsM, we have

IM � dMc f

Example 4.5.52. Every Lie group is parallelizable (cf. (Bishop and Goldberg, 1980,
p.161)) thus providing a very broad class of examples among which one finds R and
S1, not to mention S3 and S7 which are, together with S0 � {±1} and S1, the only
parallelizable spheres (Bishop and Goldberg, 1980, p.5, Theorem 1.2.13).

Remark 4.5.53. The notion of vector field is related to the control flow structures of
Paml programs – see Remark 3.4.5.

104



4.6. Other Formalisms 4. Models of Directed Topology

4.6 Other Formalisms
This section gathers all the other approaches of directed topology I’m aware of. All of
them are more or less related to ideas and tools from model category theory (Quillen
(1967); Hovey (1999)).

As an alternative to framework for directed topology (Grandis, 2009, p.98) defines
a “good topological setting” for directed topology as a (non-reversible) dIP1-category
with all limits and colimits, together with a forgetful strict dI1-functor to Top that
admits a right adjoint. As for our frameworks for directed topology the underlying idea
is that the compact unit interval with its standard order should play in directed algebraic
topology the same role as the compact unit segment plays in algebraic topology. The
general principles of (Grandis (2009)) ruled out PoTop and LpoTop since the forgetful
functor does not preserve colimits. Note that (Grandis (2009)) refers to the “precircu-
lations” of Krishnan (2009) as “locally preordered spaces”.

By analogywithGrothendieck’s homotopy hypothesis, which says that∞-groupoids
(i.e. (∞, 0)-categories) are spaces, it was suggested that (∞, 1)-categories correspond
to directed topology, see (Porter (2015)) for details. The former being notoriously
related to topologically enriched categories, it is natural to consider them as potential
models for “directed homotopy types”, a notion that is not well-defined yet. In the
early nineties Philippe Gaucher thus introduced and thoroughly studied the notion of
flow which is, roughly speaking, a graph G in which the sets of parallel arrows (i.e. the
ones that have the same source and the same target) are equipped with a topology.
Then Gaucher (2003) exhibits a model structure over the category of flows and Gaucher
(2008) provides the CCS process algebra with a model category structure whose weak
equivalences are tightly related to bisimulations. Going further Gaucher (2010a,b)
studies higher dimensional automata/transition systems from a directed topology point
of view.

Worytkiewicz (2010) has also defined a model structure from the (small) subcate-
gory of pospaces whose objects are the hypercubes (i.e. n-fold products of the compact
unit interval) and themorphisms are the faces inclusion and the projections (i.e. the copy
of � in PoTop). His construction is based on rather advanced tools from model cate-
gory theory: sheaves, completion, and localization –May and Ponto (2010); Hirschhorn
(2003).

Yet another approach has been proposed by Fajstrup and Rosický (2008) in order to
obtain a locally presentable category. Indeed they prove that if the functorU : C → Set
induces a topological fibre-small category (i.e. for all set S the collection of objects X of
C satisfying UX = S is a set) and I is a small full subcategory of C, then the category
of I-generated objects form a locally presentable category which is coreflective in C
and admits I as a dense subcategory. The result is then applied to dTop and its full
subcategory of directed hypercubes.

The last two works are motivated by the idea that the directed hypercubes (no matter
which category they are seen as an object of) are the building blocks of the topological
models of concurrency. While K. Worytkiewicz has applied an extension method that
generates a model category from a small one, L. Fajstrup and J. Rosický have restricted
a large (and rather “wild”) category to a more reasonable one. Yet both are, in some

105



4.6. Other Formalisms 4. Models of Directed Topology

sense, built from hypercubes. Choosing the (pre)cubical sets as combinatorial models
for directed topology or concurrency is motivated by the same idea (cf. Pratt (1991) and
Chapter 2).

106



5

The Fundamental Category

The fundamental category is to algebraic directed topology as the fundamental groupoid
is to algebraic topology. The construction applies to any framework for directed topol-
ogy (cf. Definition 4.2.2). The standard notion of homotopy of paths together with its
basic properties are recalled in Section 5.1 while the notion of alternating homotopy
(cf. Definition 5.2.5) and the related fundamental category construction are detailed in
Section 5.2. The fundamental category of an object is compared to the fundamental
category of its image under a framework morphism in Section 5.3. Special attention is
paid to the realizations of cubical sets. In Section 5.4, we state and prove the directed
counterpart of the standard Seifert-van Kampen theorem (Brown, 2006, p.240) in the
context of a framework for directed topology. The main application is the computation
of the fundamental category of the directed circle. In Section 5.5 we fix a framework
for directed topology and compare the enveloping groupoids of the fundamental cate-
gories of its objects to the fundamental groupoids of their underlying spaces. A fleeting
glimpse at Martin Raußen’s trace space theory is given in Section 5.6. The associated
construction endows the homsets of certain fundamental categories with a topology and
computes its homotopy type.

5.1 Homotopies of Paths and 2-Categories
Let γ and δ be two paths on some space X and defined over a compact interval [0, r]
with r > 0 (i.e. both are of shape r – see Definition 4.0.1), and sharing the same source
and the same target.

Definition 5.1.1. A homotopy h from γ to δ is a continuous map defined over [0, r] ×
[0, q] (for some q > 0 the shape of the homotopy) such that

h(0, s) = ∂-(γ) and h(r, s) = ∂+(γ) for all s ∈ [0, q]

and
h(t, 0) = γ(t) and h(t, q) = δ(t) for all t ∈ [0, r]

A homotopy of paths can be viewed as a “tile” – seeFigure 5.1. Note that there is an
obvious homotopy h from a path γ to itself: just put h(t, s) = γ(t). Such a homotopy is
said to be constant and denoted by γ without any reference to q. Also note that if h is
a homotopy from γ to δ and f is a map then f ◦ h is a homotopy from f ◦ γ to f ◦ δ.
Homotopies can be vertically composed or “piled up” as illustrated on Figure 5.2.

107



5.1. Homotopies of Paths and 2-Categories 5. The Fundamental Category

γ

δ

h

Figure 5.1: Homotopy of paths as “tile”

γ
h

ξ

δ
g

γ

δ

g ∗ h

Figure 5.2: Piled up homotopies

Lemma 5.1.2. If h and g are homotopies of shapes q and q′ from γ to ξ and from
ξ to δ, then γ, ξ and δ have the same shape r and the mapping g ∗ h defined over
[0, r] × [0, q + q′] by g ∗ h(t, s) = h(t, s) if 0 6 s 6 q; g(t, s − q) if q 6 s 6 q + q′ is a
homotopy from γ to δ.

Homotopies can also be horizontally composed or “juxtaposed” as illustrated on Fig-
ure 5.3.

Lemma 5.1.3. If h and h′ are homotopies of the same shape q from γ to δ and from γ′

to δ′with ∂+(γ) = ∂-(γ′), then the followingmapping h′ ·h defined over [0, r+r ′]×[0, q]
by h′ · h(t, s) := h(t, s) if 0 6 t 6 r; h′(t, s) if r 6 t 6 r + r ′ is a homotopy from γ′ · γ
to δ′ · δ.

Remark 5.1.4. The usual Godement exchange law applies: it doesn’t matter if we put
homotopies side-by-side or stack them up first, the resulting homotopy is the same.
Formally, if we have the situation depicted on Figure 5.4 then we have

(g′ ∗ h′) · (g ∗ h) = (g′ · g) ∗ (h′ · h)

Remark 5.1.5. Homotopies and natural transformations enjoy constructions satisfying
similar rules. These analogies are related to the concept of 2-categories – see (Mac
Lane, 1998, p.272) or (Borceux, 1994a, p.281), the standard example of which being
provided by categories, functors, and natural transformations – see Figure 5.5.

γ

δ

h
γ′

δ′

h′

γ′ · γ

δ′ · δ
h′ · h

Figure 5.3: Juxtaposed homotopies

108



5.2. Generic Construction 5. The Fundamental Category

γ
h

ξ

δ
g

γ′
h′
ξ ′

δ′

g′

Figure 5.4: Godement exchange law

Directed Topology Category theory
point category
path functor
homotopy natural transformation
path concatenation composition of functors
“piled up” homotopies composition of natural transformations
“juxtaposed” homotopies juxtaposition of natural transformations

Figure 5.5: Homotopies of paths vs natural transformations

5.2 Generic Construction
In this section, which heavily leans on Section 4.2, we describe the construction of
the fundamental category functor over C, a given framework for directed topology. In
particular we have the forgetful functor U : C → K with K being some subcategory
of Top – see the introduction of Section 4.2, and the embedding I : Cub ↪→ C
(cf. Figure 4.2). Following Remark 4.2.4 we write Ir instead of I([0, r]) for all r > 0.
Let X be an object of C. The category PX of dipaths on X is given by Definition 4.2.18.

Definition 5.2.1. Let γ and δ be two dipaths on X , a dihomotopy from γ to δ is a
morphism from h : Ir × Iq → X such that U(h) is a homotopy from U(γ) to U(δ) in
the sense of Definition 5.1.1. In particular both γ and δ have to be defined on the same
object Ir .

Remark 5.2.2. As a consequence of Theorem 4.1.6 any dihomotopy on a pospace is
not far from being an isotopy (i.e. a homotopy whose intermediate mappings h(_, x) are
topological embeddings).

Remark 5.2.3. Let h and h′ be two dihomotopies respectively defined over Ir × Iq
and Ir′ × Iq′ . If r = r ′ and h(_, q) = h′(_, 0) (resp. q = q′ and h(r, _) = h′(0, _)) then
by the first axiom of Definition 4.2.2 we can define the vertical composition h′ ∗ h
(resp. horizontal composition h′ · h) by pasting their domains of definition. By the
third axiom of Definition 4.2.2, the constructions h′ ∗ h and h′ · h are characterized by

U(h′ ∗ h) = U(h′) ∗U(h) and U(h′ · h) = U(h′) ·U(h)

the right hand terms being given by Lemma 5.1.2 and Lemma 5.1.3. The Godement
exchange law (cf. Remark 5.1.4) is still valid.

Remark 5.2.4. By contrast with usual homotopies hop : (t, x) 7→ h(t,−x) might not be
a dihomotopy even if h is so.

109



5.2. Generic Construction 5. The Fundamental Category

h1 h2

h1 id

id h2

∗∗

h1 · id

id · h2

Figure 5.6: Swapping horizontal for vertical composition

Definition 5.2.5. The homotopy h is said to be an antidihomotopy when hop is a
dihomotopy. An alternating homotopy is a finite concatenation (i.e. finite sequence
of vertical compositions) of dihomotopies and antidihomotopies. Two directed paths
related by an alternating homotopy are said to be dihomotopic.

Remark 5.2.6. Let h = hn · . . . · h1 be a finite sequence of horizontal compositions
of homotopies and antidihomotopies forming a homotopy between the dipaths γ and
δ. There exist an alternating homotopy between γ and δ. This is a consequence of the
Godement exchange law – see Figure 5.6.

Intuitively two dipaths sharing their extremities should be declared “equivalent”
when there is an alternating homotopy between them. However, as set theoretic map-
pings, the domains of definition of two such dipaths may differ. However, the first
axiom of Definition 4.2.2 guarantees that any reparametrization (cf. Definition 4.5.28)
from [0, r] to [0, r ′] induces a morphism from Ir to Ir′ , so we write γ ∼ δ when there
exist two reparametrizations θ and θ ′ of (the domains of definition of) γ and δ such that
there is an alternating homotopy between γ ◦ θ and δ ◦ θ ′. In particular both θ and θ ′
have to be defined on the same compact segment.

Example 5.2.7. For example two dipaths on [0, 1]n sharing their extremities are diho-
motopic.

Proposition 5.2.8. The relation ∼ is a congruence over PX in the sense of (Mac Lane,
1998, p.52).

Proof. First ∼ is reflexive considering the trivial dihomotopy. Then note that a homo-
topy is alternating iff its opposite is so. Therefore ∼ is symmetric. By definition of an
alternating homotopy, the relation ∼ is transitive. As a consequence of Remark 5.2.6,
it is a congruence.

Remark 5.2.9. A weak dihomotopy is a homotopy whose intermediate paths are di-
rected. It was introduced in (Raußen (2000)) relaxing the definition from (Fajstrup et al.
(1999)) which demanded that all intermediate dipaths be inextendible. In particular, a
map h is a weak dihomotopy if and only if the map hop is so. Two dipaths are said to be

110



5.2. Generic Construction 5. The Fundamental Category

weakly dihomotopic when there exists a weak dihomotopy between them. However,
weakly dihomotopic paths may not be dihomotopic. As a counter-example consider
the unit sphere S2 partially ordered by p v q when both p and q lies on the same
meridian and q is northernmost (Raußen, 2003, p.260). Yet, L. Fajstrup has proven
that both notions coincide for local pospace realizations of geometric precubical sets
(Fajstrup, 2005, Theorem 5.7). Later on, S. Krishnan has extended this result to all
quadrangulable streams (Krishnan, 2013, Theorem 8.13).

Definition 5.2.10. The relation ∼ is called the homotopy congruence over X and the
fundamental category of X , denote it by −→π1X , is the quotient

PX/∼

and we denote by −→qX the quotient functor from PX to −→π1X . The notation does not refer
to the category C when the context leaves no ambiguity1.

Lemma 5.2.11. The construction of Definition 5.2.10 is functorial and the collection
−→q of all functors −→qX forms a natural transformation from P to −→π1.

Proof. Let γ and δ be directed paths on X , f : X → Y be a morphism of the framework
C, and h = hn ∗ · · · ∗ h1 be an alternating homotopy between γ and δ (with each hk
being a dihomotopy or an antidihomotopy). Then f ◦ h = ( f ◦ hn) ∗ · · · ∗ ( f ◦ h1) is
an alternating homotopy between f ◦ γ and f ◦ δ. By definition of −→π1 and P, for all
morphisms f : X → Y and all dipaths γ on X (i.e. all morphisms of PX) we have

(qY ◦ P f )(γ) = qY ( f ◦ γ) = [ f ◦ γ] = −→π1 f ([γ]) = (−→π1 f ◦ qX )(γ)

Mimicking (Brown, 2006, Section 6.4.4, p.222) we obtain

Lemma 5.2.12. The fundamental category preserves binary products.

The fundamental category of a local pospace enjoys a nice property.

Proposition 5.2.13. The dihomotopy class of a nonconstant directed loop on a local
pospace is nonzero. In particular, the fundamental category of a local pospace has no
nilpotent element.

Proof. Otherwise there would be a directed homotopy an extremity of which being a
constant path, so the local pospace would contain a vortex, which would contradict
Corollary 4.3.38.

We provide some examples.

Example 5.2.14. The real line R can be equipped with the standard direction (i.e. only
nondecreasing paths are directed), the discrete one (i.e. no path is directed but the
constant ones), and the chaotic one (i.e. all paths are directed). The corresponding
fundamental categories are the posets (R,6) and (R,=) in the first two cases, and the
total equivalence relation over R in the last one.

Example 5.2.15. If we consider the framework Top, then −→π1 is the usual fundamental
groupoid functor – see (Brown, 2006, Section 6.2, pp. 207–215).

1We write PXC and −→π1XC to insist on the underlying framework for directed topology is C.

111



5.3. Comparison 5. The Fundamental Category

Example 5.2.16. The fundamental category of the directed complex plane C (cf. Ex-
ample 4.5.18) can be described as follows: its objects are the complex numbers and its
morphisms are{

(z0, n, z1)
�� z0 , 0 ; |z0 | 6 |z1 | ; n ∈ N

}
∪

{
(0,⊥, z)

�� z ∈ C
}

with the convention that ⊥ + n = n + ⊥ = ⊥ for all n ∈ N ∪ {⊥}. By definition the
source and the target of (z0, n, z1) are z0 and z1. Given x ∈ C\{0} we define µ(z) := z

|z |

and x
z0z1 as the anticlockwise arc from µ(z0) to µ(z1) for any z0, z1 ∈ C\{0}. The

composition is defined by

(z1,m, z2) ◦ (z0, n, z1) =
{
(z0, n + m, z2) if x

z0z1 ∪
x

z1z2 , S1

(z0, n + m + 1, z2) if x
z0z1 ∪

x
z1z2 = S1

Note that if z, z′, or z′′ is 0, then n or m is ⊥, and therefore n+m = n+m+ 1 = ⊥. The
fundamental category of the directed Riemann sphere follows, adding a point at infinity
∞ and the morphisms (z,⊥,∞) for all complex numbers z.

Remark 5.2.17. Consider S1 as a d-subspace of C. Then any dipath on C whose
extremities lie in S1 entirely lies in it. Consequently, if h : [0, r] × [0, q] → C is an
alternating homotopy such that h(0, _) and h(r, _) lie in S1, then the whole image of h is
actually contained in S1. Two dipaths with their extremities in S1 that are dihomotopic
in C, are therefore dihomotopic in S1. In particular −→π1S1 is the full subcategory of −→π1C
whose set of objects is S1. The fact is radically different from the classical case.

Example 5.2.18. As we have seen in Example 4.5.52, any Lie group G has a canonical
direction. It is therefore natural to wonder what its fundamental category looks like.
The special case of the unit circle has been treated in Remark 5.2.17. Since the product
of two Lie groups is a Lie group (the underlying manifold being the product of their
underlying manifolds while the group structure is the same as for usual groups) it is
natural to restrict our attention to irreducible Lie groups (i.e. the ones that are not
trivial and that cannot be written as the product of two non trivial Lie groups). If
Conjecture 4.5.49 and Conjecture 4.5.51 are satisfied then the canonical direction of a
Lie group derives from a local pospace. Then from Proposition 5.2.13 we know that
its fundamental category has no nilpotent element. The spheres S1, S3 and S7 are
known to be the only parallelizable spheres (cf. Example 4.5.52), each of them inherits
a parallelization from its Lie group structure which is provided by complex numbers,
quaternions, and octonions of magnitude 1.

Conjecture 5.2.19. For all x, we have −→π1S1(x, x) � −→π1S3(x, x) � −→π1S7(x, x) � N.

Wewould like to generalize Conjecture 5.2.19 to all irreducible compact Lie groups.
However, as an example of a connected compact Lie group whose fundamental group
is Z2, the special orthogonal group SO(n) (for n > 3) is worth a close examination.

5.3 Comparison
The genericity of the construction described in Section 5.2 allow us to compare fun-
damental categories through morphisms of frameworks for directed topology – see
Definition 4.2.22. Let D be such a morphism from (C,U) and (C′,U ′) and X be an
object of C. Given r, q ∈ R+ we have

D(Ir × Iq) = D ◦ I([0, r] × [0, q]) = I ′([0, r] × [0, q]) = I ′r × I ′q

112



5.3. Comparison 5. The Fundamental Category

The first and the last equalities hold because both I and I ′ preserves binary Cartesian
products (cf. Definition 4.2.2). The middle equality derives from the fact that D is
a morphism of frameworks. In particular, if h is a directed homotopy on X from γ
to δ, then D(h) is a directed homotopy on DX from D(γ) to D(δ). The same holds
for antidihomotopies. Therefore γ ∼ δ implies D(γ) ∼ D(δ), with ∼ denoting the
homotopy congruence over X or DX accordingly. Consequently we have a functor
βX : −→π1XC → −→π1DXC′ whose object part is an identity, the morphism part being given
by

βX
(
[δ]

)
=

[
D(δ)

]
where [δ] and [D(δ)] are the dihomotopy classes of the directed paths δ and D(δ).
Lemma 5.3.1. The functors βX for X running through the collection of objects of
C form a natural transformation from −→π1C to −→π1C′ . Moreover the functor βX is an
isomorphism if and only if for all directed paths δ′1 and δ

′
2 on DX such that δ′1 ∼DX δ′2

there exist two directed paths δ1 and δ2 on X such that D(δ1) ∼DX δ′1, D(δ2) ∼DX δ′2
and δ1 ∼X δ2.

Proof. From the description of the morphism part of the functor βX .

Corollary 5.3.2. Given r and ρ in R+, the maps Ar and Br,ρ are defined as below.

C(Ir, X) Ar // C′(I ′r,D(X)) C(Ir × Iρ, X)
Br,ρ // C′(I ′r × I ′ρ,D(X))

δ
� // D(δ) h � // D(h)

Assuming that the maps Ar are bijective and that the maps Br,ρ are surjective, we have
PX � PDX and −→π1X � −→π1DX .

Proof. As an immediate consequence of the Lemmas 4.2.23 and 5.3.1.

Corollary 5.3.3. Suppose that D admits a left adjoint S and denote the unit by η. Also
suppose that for all r, q ∈ R+ we have

ηI ′r = idI ′r and S(I ′r ) = Ir and S(I ′r × I ′q) = Ir × Iq

Then the natural transformations α : PXC → PDXC and β : −→π1XC → −→π1DXC are
isomorphisms.

Proof. The mappings below are bijections because S is left adjoint to D.

C[S(I ′r ), X] // C′[I ′r,D(X)] C[S(I ′r × I ′ρ), X] // C′[I ′r × I ′ρ,D(X)]

δ
� // D(δ) ◦ ηI ′r h � // D(h) ◦ ηI ′r×I ′ρ

In addition we have

C′[I ′r,D(X)] = C[S(I ′r ), X] = C[Ir, X]

and

C′[I ′r × I ′ρ,D(X)] = C[S(I ′r × I ′ρ), X] = C[Ir × Iρ, X]
then we conclude applying Corollary 5.3.2 (with ηI ′r = idI ′r ) and Lemma 5.3.42 which
gives ηI ′r×I ′ρ = ηI ′r × ηI ′ρ = idI ′r×I ′ρ .

2I explicitly provide the statement and its proof for I could not find them anywhere in the “classics” of
Category Theory.

113



5.3. Comparison 5. The Fundamental Category

Lemma 5.3.4. Let F a U : A
U //
oo

F
B be an adjunction and let B, B′ be two objects

of B such that F(B × B′) = FB × FB′, then ηB×B′ = ηB × ηB′ .

The proof of Lemma 5.3.4 relies on basic facts about adjunction that can be found in
Borceux (1994a). Let η and ε be the unit and the counit, it suffices to check that{

ηB ◦ ΠB = ΠUFB ◦ ηB×B′
ηB′ ◦ ΠB = ΠUFB′ ◦ ηB×B′

Taking the equality F(B × B′) = FB × FB′ into account, the following maps are
bijections

A[FB × FB′, FB] // B[B × B′,UFB]oo

γ
� // U(γ) ◦ ηB×B′

εFB ◦ F(δ) δ
�oo

Moreover εFB ◦ F(ηB) = idFB hence we have

εFB ◦ F(ηB ◦ ΠB) =
(
εFB ◦ F(ηB)

)
◦ F(ΠB) = F(ΠB) = ΠFB ,

the last equality holds because F preserves the product B×B′. ThusU(ΠFB) ◦ηB×B′ =
ηB ◦ΠB. As a right adjoint, U preserves products hence U(ΠFB) = ΠUFB and we have
ηB ◦ ΠB = ΠUFB ◦ ηB×B′ .

Remark 5.3.5. In most of practical cases, the extra hypotheses of Corollary 5.3.3 about
the adjunction are obviously satisfied. It suffices, for example, that S be a morphism of
frameworks and ηI ′r = idI ′r .

As we shall see, there might be objects X ′ of C′ such that −→π1X ′ � −→π1SX ′. However, if
D ◦ S(X ′) = X ′ then −→π1SX ′ = −→π1DSX ′ = −→π1X ′.

We apply the previous results together with facts about streams and d-spaces from
Chapter 4 to compare their fundamental categories.

Corollary 5.3.6. For all streams X , we have −→π1X = −→π1DX .

Proof. We have seen that D is right adjoint to S (cf. Remark 4.5.10). We check that S
preserves binary products and we conclude applying Corollary 5.3.3.

Corollary 5.3.7. For all d-space X , if there exists a stream X ′ such that D(X ′) = X
then −→π1SX = −→π1X .

Proof. By Proposition 4.5.12 we have DSDX ′ = DX ′ and by Corollary 5.3.6 we have
−→π1DSDX ′ = −→π1SDX ′.

Corollary 5.3.8. Given a cubical set K the fundamental categories of the following
realizations are isomorphic D(�K�Strm), �K�Strm, �K�Strmd , S(�K�dTopf ) and �K�dTopf .

Proof.

−→π1D(�K�Strm) = −→π1�K�Strm by Corollary 5.3.6
−→π1�K�Strm = −→π1�K�Strmd by Corollary 4.5.24
−→π1�K�Strmd = −→π1S(�K�dTopf ) by Corollary 4.5.23

−→π1S(�K�dTopf ) = −→π1�K�dTopf by Corollary 5.3.7

114



5.4. The Seifert - van Kampen Theorem 5. The Fundamental Category

Figure 5.7: A dihomotopy from a directed path to a pseudo-directed path

Remark 5.3.9. The “downward spiral” (cf. Figure 4.7) illustrates the fact that if K is the
cubical set described in Example 4.5.18, then the canonical map �K�dTop↪→�K�dTopf
is not an isomorphism. However the following map induces a dihomotopy from t ∈
[0, 1] 7→ t to the “downward spiral” in �K�dTopf .

h : (t, s) ∈ [0, 1]2 7→ t · es ·
i2π(1−t )

t ∈ C

Then we observe that h(_ , 0) is a d-path though all the other intermediate paths h(_ , s)
for s > 0 are just pseudo d-paths (cf. Definition 4.5.14). The intermediate paths
corresponding to parameters s ∈ {0.5, 02, 0.05, 0.01} are shown on Figure 5.7. In fact
we have −→π1�K�dTopf �

−→π1�K�dTop.

In the same vein as Conjecture 4.5.27, we expect that the fundamental categories of
precubical set realizations behave well.

Conjecture 5.3.10. For all precubical sets K , we have the following equality.

{dipaths on �K�dTop} = {dipaths on �K�Strm} = {dipaths on �K�LpoTop}

The latter actually extends to an equality between fundamental categories.
−→π1�K�dTop =

−→π1�K�Strm =
−→π1�K�LpoTop

Remark 5.3.11. Note that if �K�dTop=�K�dTopf then by Corollary 4.5.25 and S a D we
have

dTop(Ir, �K�dTop) = dTop(Ir,D(�K�Strm)) = Strm(S(Ir ), �K�Strm) ,

and also by Corollary 5.3.6
−→π1�K�dTop �

−→π1(D(�K�Strm)) � −→π1�K�Strm .

5.4 A Computation Tool:
The Seifert - van Kampen Theorem

The next result provides a tool for computing fundamental categories. An element
α of C(X,Y ) is called an inclusion when U(X) is a subspace of U(Y ) (in the sense

115



5.4. The Seifert - van Kampen Theorem 5. The Fundamental Category

of Remark 4.2.1) and U(α) is the corresponding inclusion. In this case the notation
int(UX) stands for the topological interior of U(X) seen as a subset of U(Y ). Then we
have the generic form of the van Kampen theorem.

Theorem 5.4.1 (Seifert - van Kampen).
The functors P and −→π1 send any square of inclusions of C such that int(UX1) and
int(UX2) cover U(X) and U(X0) = U(X1) ∩U(X2) to pushout squares of Cat.

X0 //

��

X1

��

PX0 //

��

PX1

��

−→π1X0 //

��

−→π1X1

��
X2 // X PX2 // PX −→π1X2 // −→π1X

Proof. Provided we pay some attention to the details pointed out below, it suffices to
mimic the proof of the classical van Kampen theorem for groupoids given in (Higgins,
1971, Chapter 17) and (Brown, 2006, Section 6.7). Compactness actually remains the
cornerstone of the argument.

First we need that for all γ ∈ C[Ir, X], all h ∈ C[Iρ × Iq, X], all closed intervals
ι ⊆ [0, r] and all closed rectangles ι1 × ι2 ⊆ [0, ρ] × [0, s], the restriction of α to ι
and the restriction of h to ι1 × ι2 induce morphisms of C. Writing these restrictions
as the following composites, it is an immediate consequence of the first axiom of
Definition 4.2.2.

α |ι = ι ↪→ [0, r]
α−→ X h|ι1×ι2 = ι1 × ι2 ↪→ [0, ρ] × [0, s]

h−→ X

The classical proof also uses the fact that any two paths on a rectangle sharing the same
extremities are homotopic. Our context requires a similar result involving increasing
paths and alternating homotopies. Given α and β two continuous increasing maps from
[0, r] to some rectangle R = [0, a] × [0, b] such that α(0) = β(0) and α(r) = β(r),
we remark that the map γ from [0, r] to R defined by γ(t) = max(α(t), β(t)) is still
continuous and increasing. It follows that the map h from [0, r] × [0, 1] to R defined by

h(t, s) := (1 − s) · α(t) + s · γ(t) = α(t) + s · (γ(t) − α(t))

is continuous and increasing with respect to the product order on R. Therefore, in
virtue of the first axiom of Definition 4.2.2, the map h induces a morphism of C.
Consequently, it is a dihomotopy from α to γ. In the same way, we obtain a dihomotopy
from β to γ, thus providing the alternating homotopy.

Remark 5.4.2. We insist that weak dihomotopies (cf. Remark 5.2.9) cannot be substi-
tuted for alternating homotopies in the proof of Theorem 5.4.1. The last part implicitly
relies on the fact that the domain of definition of an alternating homotopy h can be
divided into rectangles on which either the restriction of h or that of hop is a morphism
of C, which might fail for weak dihomotopies.

Theorem 5.4.1 can be summarized by the commutative cube in Figure 5.8, whose upper
and lower faces are pushout squares.

Example 5.4.3. Following Brown (2006) we use the complex number notation and
cover the directed circle with S1\{i} and S1\{−i} to compute its fundamental category.
The result has already been given in Remark 5.2.17.

116



5.5. Enveloping Groupoids vs Fundamental Groupoids 5. The Fundamental Category

PX1

((

��

PX0

((

33

��

PX

��

PX2

33

��

−→π1X1

''−→π1X0

''

33

−→π1X

−→π1X2

33

Figure 5.8: The Directed Seifert-van Kampen Theorem.

In the frameworkTopTheorem 5.4.1 amounts to the classical van Kampen Theorem
for fundamental groupoids. It actually admits a much stronger (and useful) form estab-
lished in (Brown, 2006, Chap.9). This generalization applies to adjunction spaces and
its statement involves the notion of homotopy equivalence of groupoids. Unfortunately,
no directed counterpart of the latter notion has been found yet – see also Section 10.2 for
a discussion around what the notion of directed homotopy equivalence should satisfy.

5.5 Enveloping Groupoids vs Fundamental Groupoids
The inclusion functor Grd ↪→ Cat has a left adjoint G which is obtained by providing
all the morphisms of a given small category with an inverse. The construction is
an instance of category of fractions/localization – see (Gabriel and Zisman, 1967,
Chap.1), (Borceux, 1994a, Chap.5). The groupoid G(C) is called the enveloping
groupoid (or groupoid hull) of the category C. Given an object X of a framework
for directed topology one may ask whether the enveloping groupoid of its fundamental
category G(−→π1X) matches the fundamental groupoid of its underlying space Π1(UX),
in other words

G(−→π1X) � Π1(UX) (5.1)

Even more accurately, the universal property of enveloping groupoids gives a collection
of groupoid morphisms gX : G ◦ −→π1(X) → Π1◦U(X) which actually forms a natural
transformation from G ◦ −→π1 to Π1 ◦ U. Then we would like to know when gX is an
isomorphism.

One easily finds counterexamples (e.g. R seen as a pospace with the discrete order)
but we also note that the result holds for the directed versions of R, S1, C, the Riemann
sphere Σ, and �G� for any graph G. Moreover, during his internship, Rémi Géraud
(2012) sketched a proof assuming that X is the directed realization of a geometric
precubical set – see Fajstrup (2005). The fact that Relation 5.1 holds for the directed
complex plane lets us think that it could actually hold for many directed geometric
realizations of cubical sets, maybe all of them. To put it another way, we would like to
know whether the outer shape of the diagram on Figure 5.9 (where |_| and �_� should be
understood as the geometric and the filled d-space realization functors) is commutative
(note that the left-hand triangle on Figure 5.9 commutes by Remark 4.5.22).

117



5.6. Trace Spaces 5. The Fundamental Category

dTopf

U

��

−→π1 //
G◦−→π1

((
−→π1◦U

22

Cat
G

""
g

��CSet

�_�
;;

| _ |
))

Grd

Top
Π1

66

Figure 5.9: Enveloping groupoid vs fundamental groupoid

Remark 5.5.1. If Conjecture 5.2.19 is true, then both S3 and S7 provide nontrivial
counterexamples to Relation 5.1. Moreover, if the latter holds for all realizations of
cubical sets, then the directions associated with S3 and S7 are nontrivial example of
d-spaces that cannot be realized as cubical sets (though one can obtain their underlying
spaces that way).

In particular for all cubical sets K , Relation 5.1 is satisfied for X =�K�dTopf iff it is
satisfied for X =�K�Strmd (cf. Corollary 5.3.6 and Corollary 5.3.7). Provided Conjec-
ture 4.3.44 turns out to be true, we could have also substituted local pospaces for filled
d-spaces (resp. filled streams) in the statement of the problem – see Definition 4.4.11
and Definition 4.5.14. We also remark that if X1, . . . , Xn satisfy Relation 5.1, then
so does their Cartesian product X1 × . . . × Xn because the functors U, G, Π1, and −→π1
preserve binary products. As a consequence Relation 5.1 holds for any tensor product
of graphs. Pushing this further, we expect the following is true.

Conjecture 5.5.2. For all isothetic regions X (cf. Definition 6.2.1) seen as local
pospaces, we have the following isomorphism.

G(−→π1X) � Π1(UX)

From a computer scientist point of view, the matter raised in this section is related
to the notion of reversible computation – Krivine (2006); Danos et al. (2007); Krivine
(2012); Cristescu et al. (2013). For a programming language implementing it, the
instruction pointer is allowed, under some circumstances, to go backward so that the
system state can be restored as it was before the execution of an instruction. In this
context, if the execution traces are organized into a category whose objects are the
system states, then it is a groupoid. However this groupoid is polarized in the sense that
it is generated by a collection of morphisms any element of which being either seen as
forward (or positive say) or backward (negative). As a consequence, it is still possible
to say whether a computation is progressing or regressing. This feature is especially
interesting as a systemic way to prevent concurrent programs from deadlocks.

5.6 Trace Spaces
The set of directed paths P(X) on the geometric model X of a program P is aimed to be
a rather sharp overapproximation of its set of execution traces. In particular P(X) comes
equipped with the compact open topology – Kelley (1955), and it is therefore natural
to study it as a topological space. Martin Raußen has dedicated a series of papers to

118



5.6. Trace Spaces 5. The Fundamental Category

this question. In first, the directed paths are reduced to traces (i.e. considered up to
reparametrization) thus giving rise to the so-called trace space T(X) – see Fahrenberg
and Raußen (2007); Raußen (2007, 2009a). Then Raußen (2009b) has proven that the
trace space of a precubical complex has the homotopy type of a CW-complex (though
it is obtained as the quotient of some function space). The trace of a path can thus be
understood as a parameter and therefore the trace spaceT(X) as a moduli space of P(X).
More applications, descriptions, and effective computations can be found in Raußen
(2010, 2012b,a); Fajstrup et al. (2012). Note in particular that the fundamental category
−→π1X can be completely recovered from T(X). The homsets of the fundamental category
−→π1X(x, y) are indeed in bijection with the (arc-)connected components of T(X)[x, y].
The last chapter of the book (Fajstrup et al. (2016)) is dedicated to trace spaces.

119



6

Isothetic Regions

This chapter is dedicated to a special class C of directed topological models that enjoys
the following crucial properties:

– it is broad enough to model all parallel automata (cf. Definition 1.1.7),

– it is simple enough to be handled by computers, and

– all its members can be indifferently seen as local pospaces, streams, or d-spaces.

From a theoretical point of view, the parallel automata are strongly related to the tensor
products of graphs in the category of precubical sets, hence to special instances of
higher dimensional automata.

The second point means that C is stable under all the operations one may need
to model concurrency. These operations are furthermore implemented in an OCaml
library.

An element of C can be seen as an object of several frameworks for directed topol-
ogy (cf.Definition 4.2.2). As we have defined the fundamental category functor for any
such framework (cf. Definition 5.2.10), it is natural to ask whether switching to another
framework alters the fundamental category of an object of C. The answer to this last
point is ‘No’.

Mathematically speaking, the class C can be described as follows. One starts
with |G | the topological realization of a given graph G. The graph G is supposed to
be so that the finite unions of connected components of |G | form a Boolean algebra
(cf. Section 6.1). All it takes for this property to be satisfied is for G to be finite (e.g. a
disjoint union of finitely many control flow graphs). A block of dimension n ∈ N is
a n-fold product of connected subsets of |G | and the n-dimensional elements of C are
the finite union of blocks (cf. Section 6.4). So any isothetic region of dimension n
can be seen as a (likely infinite) set of points of |G |n (i.e. words of length n over the
alphabet |G |) or as a finite family of blocks (i.e. words of length n over the alphabet
of connected subsets of |G |). The second point of view is not canonical because
different families of blocks can cover the same isothetic region. The abstract context
for relating both approaches is described in Section 6.2. Following these points of view
we note that the product of two blocks of dimensions n and m is a block of dimension
n + m which canonically corresponds to the concatenation of the words that represent
them. By extension, the latter remark applies to isothetic regions seen as languages
(cf. Section 6.3).

120



6.1. The Directed Geometric Realization of a Graph 6. Isothetic Regions

Following (Mac Lane, 1998, p.48-51), all the graphs under consideration are di-
rected andmay have several arrows from a vertex to another. Directed graph realizations
are thoroughly studied in Section 6.1. We state and prove Theorems 6.1.20 and 6.1.42
which characterize the graphs whose realizations will be handled in the rest of the
chapter. Any finite graph matches the requirements. In Section 6.3, we introduce
some notation related to sets of words whose elements all have the same length, the
so-called homogeneous languages (cf.Definition 6.3.1). In Section 6.2, we explain how
block coverings, seen as homogeneous languages, are related to isothetic regions by an
isomorphism of Boolean algebras. Additional operators on the Boolean algebra of iso-
thetic regions encode the topology and the direction naturally held by any such isothetic
region. They are described in Section 6.4. We exploits the concepts introduced in the
preceding sections to define the continuous models of Paml programs in Section 7.1.
The content of Section 6.5 is more exploratory, its purpose is to equip every isothetic
region with quantitative structures, namely a metric and a measure.

6.1 The Directed Geometric Realization of a Graph
We study the realizations of graphs as their collections of connected components will
be used as alphabets to define the isothetic regions in Section 6.4. A graph can be un-
derstood as a 1-dimensional precubical set so the category Grph is a full subcategory
of pCSet. In particular one can restrict the realization functors defined over pCSet to
Grph (cf. Section 2.4). In this section, we provide a simple explicit description of the
directed realization of any graph, from which we easily determine its group of auto-
morphisms. We also introduce a special class of graph (cf. Definition 6.1.43) whose
members are associated with Boolean structures. They will play a crucial role in the se-
quel, mostly because the model of a parallel program P1 | · · · |Pn is actually a subobject
of �G1 ⊗ · · · ⊗ Gn� where each Gi is the control flow graph of Pi (cf. Section 7.1). The
notation �_� refer to the realization (cf. Section 2.2) in some of the categories described
in Chapter 4.

Let G be a graph and v be one of its vertices. An arrow α is said to be v-ingoing
(resp. v-outgoing) when ∂+α = v (resp. ∂-α = v), it is said to be v-adjacent when it is
v-ingoing or v-outgoing. A vertex v′ is a neighbor of v when v , v′ and there exists
an arrow that is adjacent to both v and v′. The degree of a vertex v is

deg(v) = #{v-ingoing} + #{v-outgoing}

A subgraph G′ of G is a subset A′ of the set of arrows of G together with a subset
V ′ of the set of vertices of G such that the extremities of any element of A′ belong to
V ′. A subgraph G′ of G is said to be full when it contains any arrow of G which is
adjacent to some vertex of G′. The neighborhood of a vertex v is the full subgraph
of G containing v and all its neighbors. Then deg(v) = 2 iff the neighborhood of v
is isomorphic to one of the graphs on Figure 6.1. The LpoTop-realization of a graph
G : A ⇒ V exists by (Fajstrup et al., 2006, p.262, Theorem 6.23) and its underlying
space is the geometric realization of G. We describe it extensively. The underlying
set of �G�LpoTop is the disjoint union of V and A×]0, 1[. A basis B of the topology of
|G | (i.e. the underlying space) is given by the open subsets {α} × U with U being an
open interval of ]0, 1[ and α ∈ A; and {v} ∪ v+ε ∪ v−ε with v+ε (resp. v−ε ) being the union
of α×]0, ε[ (resp. α×]1 − ε, 1[) for all α ∈ A such that ∂-α = v (resp. ∂+α = v) and
0 < ε < 1

2 . As a consequence we have the next two lemmas.

121



6.1. The Directed Geometric Realization of a Graph 6. Isothetic Regions

Figure 6.1: The neighborhoods of a vertex of degree 2

Lemma 6.1.1. The geometric realization of a graph is locally connected and locally
simply connected.

Lemma 6.1.2. The geometric realization of a graph is locally compact iff the degrees
of its vertices are finite.

The open subsets of the first kind (i.e. {α}×U) inherits their pospace structure from
the open interval U while the open subsets of the second kind (i.e. {v} ∪ v+ε ∪ v−ε ) are
(up to isomorphism) the open stars Stoi with i = #{v-ingoing} and o = #{v-outgoing}
(cf. Example 4.1.15 and Figure 4.1). The partial order v on {v} ∪ v+ε ∪ v−ε is indeed
determined by the following constraints:

– v−ε @ {v} @ v+ε

– v±ε inherits from the total order of R

Remark 6.1.3. The numerical constraint ε < 1
2 ensures that two “branches” of the

chart {v} ∪ v+ε ∪ v−ε do not intersect unless they are equal. The problematic case arises
when the arrow α is a loop since the chart then contains the set {α} × (]0, ε[∪]1− ε, 1[)
and (α, t ′) @ (α, t) for t ∈]0, ε[ and t ∈]1 − ε, 1[.
Remark 6.1.4. The geometric realization of a graph G is metrizable, in fact one can
easily describe a metric of |G | that induces its topology (Bridson and Haefliger, 1999,
p.6, Section 1.9).

Each element of the basis B is thus equipped with a closed partial order thus providing
an atlas A over |G | (cf. Definition 4.3.1).

Remark 6.1.5. Any point x of the underlying space |G | has a basis of neighborhoods all
the elements of which are isomorphic to the colimit (in Top) of n copies of R+ sharing
their origin. If the point x belongs to V then n = deg(x) otherwise n = 2. Note that a
point is isolated iff its degree is null. Also note that n may be an infinite cardinal. The
cardinal n is the degree of the point x ∈ |G |.
Remark 6.1.6. There is a canonical bijection between the connected components of G
and the ones of |G |.

The local pospace �G�LpoTop induces a d-space I(�G�LpoTop) (cf. Example 4.5.9)
whose direction is generated by the paths pα : t ∈ [0, 1] 7→ (α, t) if 0 < t < 1; ∂-α if
t = 0; and ∂+α if t = 1. The following result is implicitly used to avoid the subscript
that indicates in which category the realization of a graph is considered.

Proposition 6.1.7 (Haucourt (2012)). Given any graph G, the following d-spaces are
isomorphic:

�G�dTop��G�dTopf��G�dTopc��G�dTopcf� I(�G�LpoTop)

In addition, for all directed paths δ and all connected subsets C of �G�, the inverse
image δ -1(C) has finitely many connected components.

122



6.1. The Directed Geometric Realization of a Graph 6. Isothetic Regions

v

α

Figure 6.2: The loop graph

name of G |G | Characterization
point {0} the degree of some vertex is 0
segment [0,1] there are two vertices of degree 1
half-line R+ there is one vertex of degree 1
line R all the vertices have degree 2 and G is infinite
circle S1 all the vertices have degree 2 and G is finite

Figure 6.3: Classification of the linear graphs

Proof. See Haucourt (2012).

Lemma 6.1.8. The realization functors described in Proposition 6.1.7 reflect the iso-
morphisms.

Proof. Given a graph morphism f with domain G, the morphism � f � is defined by
� f� (v) = v for all vertices of G, and by � f� (α, t) = ( f (α), t) for all arrows of G and all
t ∈]0, 1[. This setting holds regardless of the category in which the graph is realized.
Suppose that � f � is an isomorphism, in particular it is a bijection. By construction of
� f� the morphism f induces both a bijection between the sets of vertices and a bijection
between the sets of arrows. In other words it is an isomorphism of graphs.

Example 6.1.9. For example, the directed circle is obtained by considering the graph
with a single vertex and a single arrow.

We recall that |G | denotes the topological realization of the graph G and introduce
a structure that will be of crucial importance in the sequel. In particular the static
analyzer ALCOOL is based on it.

Remark 6.1.10. The topological realization of a graph G is locally compact iff all
its vertices have finitely many adjacent arrows. Following the description of |G |, a
neighborhood of a vertex v should indeed contain {v} ∪ v+ε ∪ v−ε for some ε > 0, and
therefore it cannot be compact if v has infinitely many adjacent arrows. Conversely, if
v has finitely many adjacent arrows then the closure of {v} ∪ v+ε ∪ v−ε is compact.

The next result can be seen as a generalization of the well-known fact that |G |
is compact iff G is finite. In some sense, it characterizes the graphs that could be
considered as finite regardless of the direction. A connected graph is said to be linear
when the degree of any of its vertices is at most 2. A classification of linear graphs is
given by Figure 6.3. We will also need the notion of Freudenthal extension which we
now explain, see also (Porter, 1995, p.130-136). For any topological space X , denote
the collection of closed compact subspaces of X by K(X). If K0 and K1 are closed
compact subspaces of X with K0 ⊆ K1, andC1 is a connected component of X \K1, then
there exists a unique connected component C0 of X \ K0 such that C1 ⊆ C0. Therefore

123



6.1. The Directed Geometric Realization of a Graph 6. Isothetic Regions

we have a natural mapping from the collection of connected components of X \ K1 to
the connected components of X \ K0.

Definition 6.1.11. The resulting diagram admits a limit in Set whose elements are
called the ends of X . They correspond to the order-reversing maps e from K(X) to the
collection of subspaces of X such that e(K) is a connected component of X \ K . The
collection of ends of X is denoted by EX .

The set X tEX is equipped with the topology whose open subsets are those U such
that U \ EX is open in X and for all ends e ∈ U, there exists some K ∈ K(X) such that
e(K) ⊆ U.

Definition 6.1.12. The preceding topological space is denoted by FX and called the
Freudenthal extension of X . In the case where FX is actually compact, it is called the
Freudenthal compactification of X .

Remark 6.1.13. According to Definition 6.1.12, (X \K)∪EX is a neighborhood of EX
for all closed compact sets K of X . This is the main reason why K(X) only contains
closed compact subsets instead of all of them. However we will mainly consider
Hausdorff spaces, in which any compact subset is necessarily closed.

Remark 6.1.14. Assuming that e is an end of X , the closure (in X) of e(K) is not
compact. Otherwise we would have e(K ∪ clo(e(K))) ⊆ e(K) ⊆ clo(e(K)) because e is
order reversing. But we would also have e(K ∪ clo(e(K))) ⊆ X \ clo(e(K)) by definition
of an end. As a consequence, if the connected components of X are compact, then
EX = ∅ and FX = X . In particular the Freudenthal extension of a topological space
may not be compact, yet the construction nicely behaves for a large class of topological
spaces.

Example 6.1.15. The Freudenthal extension of a locally compact Hausdorff space in
which the complement of any compact subset is connected is its Alexandroff compact-
ification.

Definition 6.1.16. (Steen and Seebach, 1996, p.21) A space X is said to be σ-locally
compactwhen there exists a ⊆-nondecreasing sequence (Kn)n∈N of compact Hausdorff
subspaces of X such that

X =
⋃↑

int(Kn)

According to Definition 6.1.16 a σ-locally compact space is Hausdorff.

Definition 6.1.17. A generalized continuum is a σ-locally compact, connected, and
locally connected space.

Lemma 6.1.18. The Freudenthal extension of a generalized continuum is compact.

Lemma 6.1.19. Freudenthal extension preserves the disjoint unions.

Theorem 6.1.20 (Haucourt and Ninin). Given a graph G the following are equivalent.

1. The collection of finite unions of connected subsets of |G |, denoted by R |G | in
the proof of this theorem, induces a Boolean subalgebra of Pow(|G |).

124



6.1. The Directed Geometric Realization of a Graph 6. Isothetic Regions

2. The graphG has finitely many connected components, all its vertices have finitely
many adjacent arrows, and the degree of almost all1 its vertices is 2. In other
words the following sum is finite.∑

v vertex
|deg(v) − 2| + #{connected components}

3. The graph G can be obtained as a coequalizer of D⇒ L with D being finite and
discrete, and L being a finite disjoint union of points, segments, and half-lines.

4. The Freudenthal extension of |G | is homeomorphic with the geometric realization
of some finite graph.

When the preceding statements are satisfied, the number of ends of |G | is the number
of half-lines appearing in L.

Proof. We prove that the first assertion implies the second one. If G has infinitely many
connected components then R |G | has no greatest element. From now on suppose that
G is connected.

Suppose some vertex v has infinitely many adjacent arrows and let S ⊆ |G | be an
open star centered in v. If |G | \ S has infinitely many connected components, then S
is a connected subset of |G | whose complement does not belong to R |G | . Otherwise
(|G | \ S) ∪ {v} is a finite union of connected components of |G | whose complement,
which is the union of infinitely many pairwise disjoint segments, does not belong to
R |G | .

Suppose that there are infinitely many vertices whose number of adjacent arrows is
not 2 and let T be a covering tree of G (i.e. a connected subgraph of G containing all the
vertices of G such that T loses its connectedness if one removes a single arrow from it).
The set theoretic difference |G | − |T | is thus a disconnected union of segments B×]0, 1[
with B being a set of arrows of G. If B is infinite then we have a connected component
of |G | whose complement in |G | does not belong to R |G | . Assume that B is finite. It
follows that all the vertices v but finitely many ones have the same neighborhood in
T than in G. In particular T has infinitely many vertices whose number of adjacent
arrows is not 2. From a general fact about trees we deduce that T has infinitely many
vertices whose number of adjacent arrows is at least 3. By an easy induction we build
a linear subgraph L of T containing infinitely many vertices with (at least) 3 adjacent
arrows. The subgraph L ⊆ T is connected and |T | − |L | has infinitely many connected
components (at least one for each vertex of L with at least 3 neighbors in T). We note
that any connected component of |G | − |L | is actually obtained as the union of con-
nected components of |T | − |L | related by “bridges”, that is to say B′×]0, 1[ for a subset
B′ ⊆ B. As B was assumed to be finite |G | − |L | has infinitely many connected compo-
nents. Whether B is finite or not, the collectionR |G | is not a Boolean subalgebra of 2 |G | .

Conversely, since G has finitely many connected components, the collection R |G |
is a sub Boolean algebra of 2 |G | iff R |C | is a sub Boolean algebra of 2 |C | for all the
connected components of G. We can thus suppose that G is connected. We write |G |
as D ∪ Dc with

D = {x ∈ |G | | x admits a neighborhood that is not isomorphic to R}

1that is to say all but finitely many ones

125



6.1. The Directed Geometric Realization of a Graph 6. Isothetic Regions

First remark that D is a discrete subspace of |G |. Also, an element of |G | belongs
to D iff its degree is not 2. Therefore, by hypothesis, D is finite. Because G is a
connected graph, its realization |G | is a connected space. On the contrary Dc (i.e. the
complement of D in |G |) is a disconnected union of copies of R (in fact ]0, 1[ according
to our description of |G |). Let us consider their boundaries in |G |. If one of them has an
empty boundary, then it is both open and closed, and disconnected from its complement
in |G |. Therefore |G | � R. Suppose now that the boundary of any connected component
of Dc contains at least one element. This element belongs to D. For each v ∈ D and
each connected component C of Dc whose boundary contains v, the degree of v is
augmented by at least 1 (if C ∪ {v} � R+) and at most 2 (if C ∪ {v} � S1). Hence Dc

has finitely many connected components, let us say C1, . . . ,Cn. In order to conclude,
remark that a finite union of connected components of |G | can be written as a disjoint
union

D′ ∪ X1 ∪ · · · ∪ Xn

where D′ ⊆ D and Xk is a finite union of intervals of Ck .

Suppose that the second point is satisfied. Then consider the graph G′ obtained
from G as follows: G and G′ have the same set of isolated vertices (i.e. those with null
degree), they share their set of arrows and we have ∂-α′ = ∂+α in G′ iff the same holds
in G and deg ∂+α = 2 (in G). As a consequence the degree of a vertex in G′ does not
exceed 2 so G′ is a disjoint union of linear graphs. In particular we have a canonical
morphism from G′ to G which is entirely defined by the fact that it is the identity map
on arrows and vertex of zero degree. Moreover the number of connected components
of G′ is finite because it is less than

#
{
linear connected components of G

}
+

∑
v vertex s.t.

degG (v) , 2

degG(v) .

Some connected component of G′ may be a circle or a line, yet both can be obtained as
the coequalizer of the form {0, 1} ⇒ L ′′ with L ′′ being a segment in the former case,
and the disjoint union of two half lines in the latter.

Conversely, consider a graph G obtained as the coequalizer of f and g as in the third
assertion. The coequalizer morphism induces a map from the connected components
of L ′ onto the connected components of G so there are finitely many of them. So the
vertices of G are the classes of the least equivalence relation over the vertices of L ′ that
contains {

( f (x), g(x))
�� x vertex of L ′

}
Since D is finite there are finitely many classes that are not reduced to a singleton (hence
G has finitely many vertices whose degree differs from 2), and each class is finite (hence
the degree of each vertex of G is finite).

Suppose that some (and then all) of the first three statements is (are) satisfied. From
Lemma 6.1.2 we know that |G | is locally compact. As a left adjoint, the realization
functor preserves the coequalizer given by the third statement so any copy of the half-
line in L gives rise to a copy of R+. Let n be the number of copies of the half-line in L.
Given k ∈ N consider Gk the coequalizer of D ⇒ Lk with Lk being obtained from L
by keeping the k-length initial or final segment of every half-line of K . Then

|G0 | ⊂ · · · ⊂ |Gk | ⊂ |Gk+1 | ⊂ · · ·
forms an exhaustion2 of |G |, and for k sufficiently large, |G | \ |Gk | is homeomorphic

2a ⊂-increasing family of compact subsets that covers the whole space

126



6.1. The Directed Geometric Realization of a Graph 6. Isothetic Regions

. . .. . .

. . .. . .

...
...

...
...

...
...

...

...
...

...
...

...
...

...

Figure 6.4: The infinite grid.

with n copies of the real line R. It follows that for k sufficiently large, the Freudenthal
extension of |G | is homeomorphic with |Gk |.

Suppose that the fourth statement is satisfied. Let φ be some embedding of |G | in
|G′ | � F|G |withG′ a finite graph. FollowingRemark 6.1.5 one has deg(x) = deg(φ(x))
so the degrees of all the points of |G | (and thus all the vertices of G) are finite. Moreover
φ induces an embedding of the discrete subspace {x ∈ |G | | deg(x) , 2} into the discrete
subspace {x ∈ |G′ | | deg(x) , 2}which is finite. ThereforeG has finitely many vertices
with a degree that differs from 2. By Lemma 6.1.19 we conclude that |G | (and therefore
G) has finitely many connected components.

Remark 6.1.21.
Any graph satisfying one of the assertions of Theorem 6.1.20 is countable.

Remark 6.1.22. Following Definition 6.1.12, if G satisfies one of the assertions of
Theorem 6.1.20, F|G | is called the Freudenthal compactification of |G |.

Example 6.1.23. The infinite grid is the graph G depicted on Figure 6.4. Formally,
its set of vertices is Z × {0, 1} with one arrow from (a, b) to (c, d) iff a 6 c, b 6 d, and
(c − a) + (d − b) = 1. Its geometric realization can be embedded into the plane.

|G | �
⋃
n∈Z

(
R × {n} ∪ {n} × R

)
⊆ R2

As a consequence of Example 6.1.15, the Freudenthal extension of the (geometric
realization of the) infinite grid is compact and has a single end. It is not locally simply
connected since no neighborhood of∞ is simply connected. Hence by Lemma 6.1.1, it
cannot be the realization of a graph.

Example 6.1.24. The infinite comb is the graph G depicted on Figure 6.5. Formally,
its set of vertices is Z × {0, 1} with one arrow from (n, 0) to (n + 1, 0) (resp. (n, 1)) for
all n ∈ Z. Its geometric realization can be embedded into the plane.

|G | �

(
R × {0} ∪

⋃
n∈Z
{n} × [0, 1]

)
⊆ R2

The Freudenthal extension of its geometric realization is compact and has two ends.
However it is not homeomorphic to the geometric realization of a graph. Indeed an
open star S (with at least 3 branches) contains at most one point p such that V − {p}

127



6.1. The Directed Geometric Realization of a Graph 6. Isothetic Regions

. . .. . .

Figure 6.5: The infinite comb

· · ·
v

· · ·α α′

two neighbors

v

α

α′

one neighbor

v

α = α′

no neighbor

Figure 6.6: Vertices v with a single outgoing arrow and a single ingoing arrow

has at least 3 connected components. Hence no neighbourhood of an end of F(|G |) is
homeomorphic to an open star.

Remark 6.1.25. Concerning the third point of the Theorem 6.1.20, note that the
finiteness hypothesis on D cannot be dropped. Consider indeed the case where D is
the set of vertices of a line L. Then let the first morphism of the coequalizer diagram
be the inclusion of D in L while the second one sends all the elements of D to a single
point. The coequalizer is a graph with a single vertex and infinitely many arrows.

The next definition and the remaining of this section are related to the notion of
systems of weak isomorphisms (cf.Definition 8.2.4). Intuitively, we want to discard the
vertices of a graph around which there is no branching. In the directed topology realm,
the open stars (cf. Example 4.1.15) provide the prototypical examples of branchings,
except for St11 which is isomorphic to R. The definition below should be understood
with Figure 6.1 in mind.

Definition 6.1.26. The branching degree degb(v) of a vertex v is defined as

|#{v-ingoing arrows} − 1| + |#{v-outgoing arrows} − 1|

The branching degree of a graph is the sum of the branching degrees of all its vertices.
A vertex is said to be expandable when it has at least one neighbor and its branching
degree is null – see Figure 6.6.

Taking the direction into account, we sharpen the classification of linear graphs
given by Figure 6.3.

Definition 6.1.27. The n-cycle, for n > 1, is the graph whose vertices are {0, . . . , n−1}
with an arrow from k to k + 1 modulo n, a graph that is isomorphic to some n-circle
with n > 1 is said to be cyclic. Then a finite connected graph is cyclic iff the branching
degrees of all its vertices are null. When the context is clear, the following graph is
denoted by Z

. . .. . .

A graph that is isomorphic to some connected subgraph of Z is called a chain. A chain
is said to be proper when it not isomorphic to Z.

128



6.1. The Directed Geometric Realization of a Graph 6. Isothetic Regions

Remark 6.1.28. The set of nonexpandable vertices with null branching degree in a
graph G is (up to the obvious bijection) the set of connected components of G that are
isomorphic to the 1-cycle.

Remark 6.1.29. Any chain (resp. cycle) is a point, a segment, a half-line or a line
(resp. a circle) yet the converse is false (e.g. Figure 6.1). Note that Z is the only
connected infinite graph all the vertices of which are expandable.

As suggested by the terminology we are going to remove all the expandable vertices
from a connected graph G yet preserving the “branching structure” of the graph. Let
Expnd(G) be the full subgraph of G containing all its expandable vertices.

Remark 6.1.30. The graph Expnd(G) is a disjoint union of chains and cycles. The
cycles, and the chains of Expnd(G) that are isomorphic to Z, are connected components
of G.

FollowingRemark 6.1.30we should think of the finite chains of Expnd(G) as bridges
between the non expandable vertices of G. However we also have to care for the cycles
and the infinite chains.

Definition 6.1.31. The reduced graph of a connected graph G, denoted by red(G), is
defined as follows:

– red(Z) � {· → ·} and the reduced graph of any cycle is the 1-cycle,

– if G is neither cyclic nor isomorphic to Z, then any connected component C of
Expnd(G) is either a finite chain, N, or Nop. Then red(G) is defined as follows:
for all connected components C of Expnd(G),

- if C � N (resp. C � Nop) then remove3 from G all the vertices appearing
in C but the first (resp. last) one.

- if C is a finite chain, there is a unique arrow from some (necessarily unique)
vertex C− of G to the first element of C and a unique arrow from the last
element of C to some (necessarily unique) vertex C+ of G. Then remove
from G all the vertices appearing in C and add an arrow from C− to C+.

By extension, is G is not connected, then red(G) is the disjoint union of its reduced
connected components.

Example 6.1.32. The reduced graph of a chain is a point iff the chain is a point.
Otherwise it is {· → ·}. Also note that red(∅) = ∅.

Example 6.1.33. The infinite zigzag

· · · · · ·

is connected, the degree of all is vertices are 2, and its geometric realization is R. Then
it matches the statements of Theorem 6.1.20. However, from a directed point of view it
would not be wise to consider it as “almost finite”.

3 Note that removing a vertex from a graph implies that all the adjacent arrows are also removed.

129



6.1. The Directed Geometric Realization of a Graph 6. Isothetic Regions

We provide an alternative description of the reduced graph, based on the directed
geometric realization, which explains the construction. Given the disjoint sets a and b
define Gb

a as the connected graph whose arrows are{
(k, 0)

�� k ∈ a
}
∪ {(0, k) | k ∈ b}

where 0 neither belongs to a nor b. The directed open star Stba is defined as �Gb
a�\(a∪b)

(compare with the definition given in Section 4.3). The following two results are easy
yet they are the cornerstones to determine the isomorphisms between open stars.

Lemma 6.1.34. The open star Stba has a least (resp. greatest) element iff a is empty
(resp. b is empty)

Lemma 6.1.35. Given x ∈ Stba t.f.a.e.

1. Stba \ {x} is a disjoint sum of copies of R

2. all the open connected neighborhoods of x are isomorphic to Stba

Lemma 6.1.36. If a (resp. b) is not a singleton then 0 is the unique point of Stba
satisfying the properties 1) and 2) of Lemma 6.1.35. It is referred to as the node of the
star.

Proposition 6.1.37. The open stars Stba and Stb
′

a′ are isomorphic iff a � a′ and b � b′.
Moreover if one (at least) of the sets a and b is not a singleton then

Aut (Stba) � (Aut R)a∪b o
(
Sa ×Sb

)
otherwise both a and b are singletons and

Aut (Stba) � Aut R � {nondecreasing mappings from R onto R}

Proof. Let Φ be an isomorphism from Stba to Stb
′

a′ . If a and b are singletons then, for
any t ∈ R, R \ {t} has exactly two connected components. Counting the connected
components ofΦ(Stba) \ {Φ(t)}, we deduce that (#a′, #b′) is either (0, 2), (2, 0), or (1, 1).
From Lemma 6.1.34 we conclude that (#a′, #b′) = (1, 1). Otherwise Lemma 6.1.36
applies and Φ(0) = 0. As a consequence Φ induces a d-space isomorphism Φ′ between
the disjoint sums (a ∪ b) ×R and (a′ ∪ b′) ×R. It follows that a ∪ b � a′ ∪ b′ and there
is a permutation σ ∈ Sa∪b and a collection { fk | k ∈ a∪ b} of d-space automorphisms
of R such that Φ′(k, t) = (σ(k), fσ(k)(t)). Moreover for k ∈ a, Φ(({k} × R) ∪ {0})
is a d-subspace of Stb

′
a′ which is isomorphic to R+. Since Φ preserves nodes we have

Φ({k} × R) = {k ′} × R for some k ′ ∈ a′. Then we have a one-to-one mapping from a
to a′. Repeating the proof with Φ−1 instead of Φ we deduce that a � a′ and σ(a) = a′.
In the same way, we obtain that b � b′ and σ(b) = b′.

If a and b are finite we write St#b#a instead of Stba. The following result is obvious
from the description of �G�.

Lemma 6.1.38. Let x be a point of �G � for some graph G. There exists an open
connected neighborhood of x that is isomorphic to an open star, moreover two such
neighborhoods are isomorphic.

Definition 6.1.39. As a consequence of Proposition 6.1.37 and Lemma 6.1.38 we
define the type of a point x ∈�G� as the pair (a, b) such that some neighborhood of x is
isomorphic to Stba.

130



6.1. The Directed Geometric Realization of a Graph 6. Isothetic Regions

The next result provides an alternative definition of the reduced graph in terms of
directed geometric realization.

Proposition 6.1.40. Given a graph G we have a partition �G�= D ∪ Dc where

D = {x ∈�G� | type of x is not (1, 1)}

Then D is a discrete subspace of �G� and �G�\D is a disjoint union of connected
components which are all isomorphic to the d-spacesR orS1. We denote the topological
closure of X ⊆�G� endowed with the inherited d-space structure by clo(X). The graph
red(G) can be described as below. Its vertices are

– all the elements of D, plus

– all the connected components C of �G�\D such that clo(C) is isomorphic to one
of the d-spaces S1, R+, and R-, plus

– two copies of each connected component C of �G � \D such that clo(C) is
isomorphic to the d-space R.

Its arrows are all the connected components of �G�\D. Given such a component C:

– if clo(C) � S1 then its source and its target are C itself.

– if clo(C) � R+ (resp. R-) then its source (resp. target) is the unique element of the
boundary of clo(C); the target (resp. source) is C itself.

– if clo(C) � R then its source and its target are the two vertices associated with C.
A choice has to be made here which anyway does not change the resulting graph,
up to isomorphism.

Proof. Suppose that the type of x, denoted by (a, b), differs from (1, 1). ByLemma6.1.38
we have an open connected neighborhood U of x that is isomorphic to Stba. Since the
type of x is not (1, 1) then all points of U but x have type (1, 1). So x is isolated in D.
Suppose D , ∅. Then any connected component of �G� \D can be written as

n⋃
j=1
{αj} × [0, 1] \ {∂-α1, ∂

+αn}

with α1, . . . , αn an acyclic path on the graph G, and ∂-α1 and ∂+αn in D. All sources
and targets of the arrows α1, . . . , αn but ∂-α1 and ∂+αn have a single predecessor and a
single successor (otherwise their type in �G� would not be (1, 1)). In other words they
are expandable.

Corollary 6.1.41. Let G be a connected graph. If G is not circular then

Aut �G� � (Aut R)n o Aut
(
red(G)

)
with n being the number of arrows of red(G).

Proof. From Proposition 6.1.40 we know that any automorphism of �G� induces an
automorphism of red(G). In particular it induces a bijection from the set of arrows
of red(G) to itself, these arrows being precisely the connected components of �G�\D.
Since G is connected and noncircular, they are all isomorphic to R.

131



6.1. The Directed Geometric Realization of a Graph 6. Isothetic Regions

Still following (Haucourt and Ninin (2014)), we refine Theorem 6.1.20 assuming
that the directed Freudenthal extension is understood in dTopc – see Remark 4.5.36.
Also remember that the directed realization of graphs is indifferently defined in most
full subcategories of dTop – see Proposition 6.1.7 so we write �G� without subscript.

Theorem 6.1.42. Given a graph G the following are equivalent.

1. The reduced graph of G is finite.

2. The graph G has finitely many connected components, all its vertices have a finite
branching degree, and all its vertices but finitely many ones are expandable. In
other words the following sum is finite∑

v vertex
degb(v) + #{connected components}

3. The graph G is the amalgamated sum of finitely many proper chains over a finite
discrete graph.

4. The directed Freudenthal extension of �G� is isomorphic to the directed geometric
realization of some finite graph.

When the preceding statements are satisfied we have

F�G� ��red(G)�

and the number of ends of �G� is the number of proper chains mentioned in the third
statement that are isomorphic to N or Nop.

Proof. The reformulation of the second claim is a consequence of Remark 6.1.28 and
the second statement readily derives from the first one and Definition 6.1.31.

Suppose that the second assertion is satisfied. Then red(G) has finitely many
connected components so we can suppose that G is connected by Definition 6.1.31.
Each connected component of Expnd(G) increases the branching degree of the graph
by 1, so there are finitely many of them. By Definition 6.1.31 red(G) is thus finite.

Suppose that the third statement holds. Then note that the number of connected
components ofG is bounded by the number of proper chains, and also that the branching
degree of the graph is bounded by the cardinal of the finite discrete graph.

Following the construction described in Definition 6.1.31, the first statement implies
the third one.

Suppose that the fourth assertion is true. From the embedding

�G�↪→ F�G� ��G′�

we deduce that �G� has finitely many connected components, all the points of �G� have
type (a, b) with finite a, b, and all but finitely many of them have type other than (1, 1).
In other words the second statement is satisfied.

Conversely,U(�red(G)�) � |red(G)|which is compact since red(G) is finite (because
G matches Theorem 6.1.42). We can suppose that G is connected and then describe a
directed embedding Φ :�G�→�red(G)� whose image is dense. First put Φ(v) = v and
Φ(α, t) = (α, t) for all nonexpandable vertices v and all arrows α whose extremities are
not expandable. Then let E ∈ Expnd(G). If E is finite with set of vertices {v0, . . . , vn}
and set of arrows {α1, . . . , αn}, we define α0 (resp. αn+1) as the unique v0-ingoing
(resp. vn-outgoing) arrow:

132



6.1. The Directed Geometric Realization of a Graph 6. Isothetic Regions

. . .
∂-E v0 vn ∂+E

α0 α1 αn αn+1

E

nonexpandable nonexpandable

Then:

– we choose a finite strictly increasing sequence 0 < t0 < · · · < tn < 1 of points of
]0, 1[,

– we set Φ(vn) = tn for all k ∈ {0, . . . , n}, and

– we define Φ on {αk}×]0, 1[ as the unique increasing affine mapping to the open
segment {αE }×]tk−1, tk[ with the convention that k ∈ {0, . . . , n + 1}, t−1 = 0,
tn+1 = 1, and αE is the arrow of red(G) corresponding to E .

If E is infinite then it is either isomorphic to N or Nop. The preceding construction still
applies replacing the finite increasing sequence 0 < t0 < · · · < tn < 1 by an infinite one
that converges to 1 (or decreasing to 0 in the second case). Proving that Φ induces a
dihomeomorphism (cf.Definition 4.2.2) on its image is a routine verification. Moreover
the only points of �red(G)� that are not reached by Φ are the vertices corresponding to
each infinite E ∈ Expnd(G). Hence the image of Φ is dense in its codomain. Doing
so we have proven that �red(G)� is a directed compactification of �G�. We still have
to check that it is the Freudenthal one. To do so we refer to Proposition 6.1.40 which
describes red(G) in terms of �G�. The ends of �G� indeed correspond to the connected
components of �G� \D (with the notation of the proof of Proposition 6.1.40) whose
closure in �G� are isomorphic to R, R+, or R-: each component of the first kind gives
rise to two ends while every component of the second and third ones gives rise to a
single end. Indeed, when G satisfies the statements of the theorem, any compact subset
of �G� is contained in a larger one whose complement is isomorphic to n copies of R
with n ∈ N only depending on G.

It is worth noticing that the preceding result would not have been true if we had
considered the Freudenthal extension of a d-space X endowed with the least direction
containing X instead of the least complete direction. Indeed the directed paths arriving
at or starting from a vertex corresponding to some infinite E ∈ Expnd(G) would have
been constant.

Definition 6.1.43. Any graph satisfying one of (therefore all) the assertions of Theo-
rem 6.1.42 is said to be essentially finite.

Remark 6.1.44. Any essentially finite graph satisfies the statements of Theorem 6.1.20.

Proposition 6.1.45.
Given the essentially finite graphsG andG′, the directed Freudenthal compactifications
of �G� and �G′� are isomorphic iff red(G) � red(G′).

Proof. Since �_� is functorial red(G) � red(G′) implies �red(G)���red(G′)� hence
F�G� � F�G′� by Theorem 6.1.42. The converse implication comes from the descrip-
tion of the reduced graph provided by Proposition 6.1.40.

133



6.2. Block Coverings 6. Isothetic Regions

What precedes is to be compared to (Nadler Jr., 1992, Chap.IX) which defines
graphs as union of finitely many copies of [0, 1]with some of their endpoints identified.
Then observe that the objects of a framework for directed topology (cf. Section 4.2)
arising as the realization of some graph can be characterized in Continuum Theory
terminology4 – see (Nadler Jr., 1992, Th.9.10 p.144). Also note that Diestel and Kühn
(2003) thoroughly compares the notion of ends depending onwhether they are expressed
in graph theoretic or topological terms.

6.2 Block Coverings
Aswewill see in Section 7.1, certain parallel programs can be analyzed handling subsets
of �G�n where n ∈ N. The powerset of �G�n is untractable in practice, fortunately there
exists a subcollection of it that contains the models of all the programs in our scope,
and that can be handled by computers. Indeed we only need to take into account the
subsets of �G�n of the form

k⋃
i=1

n∏
j=1

ai, j

with ai, j being taken in a distinguished collection of subsets of �G�. As a preamble, let
us describe an abstract situation to which we will go back in Section 9.5. The powerset
of a set E is denoted by Pow(E). Given a set X , a field of sets over X is a Boolean
subalgebra of powerset Pow(X). Given a finite family B1, . . . ,Bn (n ∈ N) of fields of
sets over the sets X1, . . . , Xn, it is natural to take an interest in the field of sets generated
by the subsets of the Cartesian product X1× · · ·×Xn of the form proji-1Ai where Ai ∈ Bi
and proji : X1 × · · · × Xn → Xi is the ith projection. This well-known construction
(Givant and Halmos, 2009, Chap. 44) actually provides the coproduct of B1, . . . ,Bn in
the categoryBoolAlg of Boolean algebras. The category of Boolean algebras is actually
cocomplete though its coproducts are usually called free products by the experts of the
domain (Koppelberg, 1989, Chap.4.11, p.157-158). We will go back to the theoretical
aspects of that construction in Section 9.5. The purpose of the present one is to provide
a canonical representation for the elements of that field of sets. For example, in the case
where n = 2 and X1 = X2 = R, its elements are precisely the finite unions of rectangles
of the plane R2. Rectangles should be understood in the broad sense here, namely as
the Cartesian product of two non-empty connected subsets of R.

Definition 6.2.1. Let B be a Boolean subalgebra of Pow(E) and let n be a natural
number. A B-block of dimension n is a subset of En of the form B1 × · · · × Bn with
Bi ∈ B and Bi , ∅ for all i ∈ {1, . . . , n}. An isothetic B-region of dimension n ∈ N is
a subset of En that can be written as a finite union of n-dimensional B-blocks. When
the context is clear, we omit the prefix referring to B. A routine verification shows
that the collection Rn of n-dimensional isothetic regions forms a Boolean subalgebra
of Pow(En). The maximal elements of the collection of blocks contained in X ∈ Rn

are called the maximal blocks of X .

The next two lemmas easily derive from the following exchange law for i ∈
{1, . . . , n} and Bi, B′i ∈ B:

(B1 × · · · × Bn) ∩ (B′1 × · · · × B′n) = (B1 ∩ B′1) × · · · × (Bn ∩ B′n)

4A continuum is a Hausdorff compact space

134



6.2. Block Coverings 6. Isothetic Regions

Lemma 6.2.2. The maximal blocks of the complement of a block B1 × · · · × Bn are the
blocks E i−1 × Bc

i × En−i for i ∈ {1, . . . , n}. Moreover any block of this complement is
contained in a maximal block.

Lemma 6.2.3. Let X and Y be subsets of En having finitely many maximal blocks. If
each block of the subset X (resp. Y ) is contained in a maximal block of X (resp. Y )
then each block of the intersection X ∩ Y is contained in a maximal block of X ∩ Y .
Moreover, all the maximal blocks of X ∩ Y have the form B ∩ B′ for some maximal
blocks B and B′ of X and Y , hence there are finitely many of them.

Proof. By hypothesis a block B of X ∩ Y is contained in BX ∩ By for some maximal
blocks BX and BY of X and Y . By the exchange law, the intersection BX ∩ By is a block
of X ∩ Y . Because X and Y have finitely many maximal blocks, we can suppose that
BX ∩ BY is maximal.

The next lemma characterizes the elements of Rn in terms of their maximal blocks.
It is a key ingredient in the proof of Theorem 9.5.26.

Lemma 6.2.4. A subset of En belongs to Bn iff its has finitely many maximal blocks
and their union covers it.

Proof. By the De Morgan’s law any element of Bn can be written as an intersection
of complement of blocks. By Lemma 6.2.2 each block of the complement of a block
is contained in a maximal block and there are finitely many of them. The conclusion
follows from Lemma 6.2.3.

Definition 6.2.5. A block covering of X ∈ Rn is a finite collection F of blocks
whose union is X . A block covering is thus a finite family of blocks. We denote by
FinCovn(B) the collection of all n-block coverings. We define the covering preorder
writing F 4c F′, for block coverings F and F′, to mean that any element of F is
included in an element of F′. By Lemma 6.2.4 one soundly defines themaximal block
covering of X as the collection of its maximal blocks. It is the greatest element of the
collection of block coverings of X with respect to 4c . We also define the gathering
preorder writing F 4g F′ to mean that the union of the elements of F is included in
that of the elements of F′. Of course F 4c F′ implies that F 4g F′ but the converse
is false.

Remark 6.2.6. Let F and F′ be two maximal block coverings, the following are
equivalent:

– F = F′ (i.e. both languages contain the same words)

– F and F′ are equivalent with respect to the gathering preorder (i.e. ⋃F = ⋃F′)
– F and F′ are equivalent with respect to the covering preorder (i.e. any connected

block of one of the languages F and F′ is contained in some connected block of
the other).

Proposition 6.2.7. Assuming that FinCovn(B) is equipped with the covering preorder,
we have a Galois connection

FinCovn(B)
γn // Rn
αn

oo

135



6.2. Block Coverings 6. Isothetic Regions

defining γn(F) as
⋃F and αn(X) as the maximal block covering of X . In particular

γn ◦ αn = id and α(∅) is the empty family. The Galois connection becomes an
isomorphism of Boolean algebras if one substitutes FinCovn(B) with the image of αn
(i.e. the collection of all maximal block coverings).

Proof. The monotonicity of γn exactly means that the covering preorder is finer that the
gathering one (cf.Definition 6.2.5). Themonotonicity ofαn and the relation γn◦αn = id
are immediate consequences of Lemma 6.2.4. By Remark 6.2.6 the restriction of the
relation 4c to the image of αn induces a partial order that is isomorphic to that of the
Boolean structure of B, namely the inclusion relation inherited from Pow(E).

The covering and the gathering preorders are tightly related: one has F 4g F′ if
and only if there exist coverings F′′ and F′′′ such that

⋃F = ⋃F′′, ⋃F′ = ⋃F′′′,
and F′′ 4c F′′′ (cf. Proposition 6.2.7).

How far the powerset Pow(En) is captured by Rn directly depends on the choice of
B. If B is reduced to the collection {E, ∅}, then Rn is reduced to the collection {En, ∅},
which is too coarse. On the other hand, setting B = Pow(E) does not lead to a tractable
Boolean subalgebra of Pow(En).

A striking fact is that replacing B by a collection of subsets of E which behaves
like the collection of connected subsets of a topological space, one obtains a result that
is similar to Proposition 6.2.7.

Definition 6.2.8. A connectology over a set E is a collection C ⊆ Pow(E), whose
elements are said to be connected, containing the empty set and all the singletons, and
such that for all F ⊆ C, if F , ∅ and ⋂F , ∅, then ⋃F ∈ C.
Remark 6.2.9. As one can expect, the connected subsets of a topological space form
a connectology. In particular C is stable under monotonic union and the family of all
connected subsets containing a given connected subset C admits a greatest element,
actually its union, which is called the connected component of C.

Connectologies can be defined in many other ways:

Lemma 6.2.10. Given C ⊆ Pow(�G�), consider the following assertions

1. ∀F ⊆ C, ⋂F , ∅ ⇒ ⋃F ∈ C
2. ∀F ⊆ C, (

(∀F, F ′ ∈ F, F ∩ F ′ , ∅) ⇒ ⋃F ∈ C)
3. ∀F ⊆ C, (

(∀F, F ′ ∈ F, F ∪ F ′ ∈ C) ⇒ ⋃F ∈ C)
4. ∀F, F ′ ∈ C, F ∩ F ′ , ∅ ⇒ F ∪ F ′ ∈ C

then 1. ⇔ 2. ⇔ (3. and 4.)

Proof. The second point clearly implies the first one. Conversely, defineM as the set
of maximal elements of

{A ∈ C | A ⊆
⋃
F}

From the first point one deduces that for all M ∈ M and all F ∈ F∪M one has F ⊆ M
or F ∩ M = ∅. Let M, M ′ ∈ M and F, F ′ ∈ F that meet respectively M and M ′. By
hypothesis we have F ∩ F ′ , ∅ and therefore M = M ′.
We prove the same way that the first point implies the third one, it suffices to change
the last argument to “ by hypothesis we have F ∪ F ′ ∈ C and thus M = M ′ ”.

136



6.2. Block Coverings 6. Isothetic Regions

Remark 6.2.11. The third point does not imply the second one: consider for example
the collection of chains of a poset in which there are two noncomparable points with a
common lower bound.

We mimic Definition 6.2.1, the natural number n is still supposed to be fixed.

Definition 6.2.12. Let C be a connectology over E . A connected n-block is a subset
of En of the form C1 × · · · × Cn with Ci ∈ C and Ci , ∅ for all i ∈ {1, . . . , n}.
The maximal elements of the collection of blocks contained in X ⊆ En are called the
maximal connected n-blocks of X .

Lemma 6.2.13.
Any connected block of X ⊆ En is contained in a maximal connected block of X .

Proof. Let C be a connected block of X . By Zorn’s Lemma there exists some maximal
⊆-chain of connected blocks of X in which C appears. The union of this chain is
calculated component by component as a monotonic union of connected subsets of E ,
so it is a maximal connected block of X containing C.

Definition 6.2.14. A connected block covering of X ⊆ En is a collection F of
connected blocks whose union is X . Note that it is not required to be finite (compare
with Definition 6.2.5). A connected block covering is thus a family of connected blocks.
We denote by ConnCovn(C) (resp. FinConnCovn(C)) the collection of all (resp. finite)
connected n-block coverings. The collection of all the singletons contained in X is a
connected block covering. Of course it is the worst one in the sense that even connected
blocks contain infinitely many points in general. However, by Lemma 6.2.13 one
soundly defines the maximal connected block covering of X as the collection of its
maximal connected blocks. It is the greatest element of the collection of connected
block coverings of X with respect to the covering preorder.

Remark 6.2.15. The equivalence stated in Remark 6.2.6 for maximal block coverings
still holds for maximal connected block coverings.

Proposition 6.2.16. The set ConnCovn(C) is equipped with the covering preorder, and
the powerset of En is ordered by inclusion. Then we have a Galois connection

ConnCovn(C)
γn // Pow(En)
αn

oo

defining γn(F) as
⋃F and αn(X) as the maximal connected block covering of X . In

particular γn ◦ αn = id and αn(∅) is the empty family. The Galois connection becomes
an isomorphism of Boolean algebras if one substitutes ConnCovn(C) with the image of
αn (i.e. the collection of maximal connected block coverings).

Proof. As before the monotonicity of γn exactly means that the covering preorder is
finer that the gathering one (cf. Definition 6.2.5). Any point of X can be seen as
a connected block since C contains all the singletons. The monotonicity of αn and
the relation γn ◦ αn = id are thus immediate consequences of Lemma 6.2.13. By
Remark 6.2.15 the restriction of the relation 4c to the image of αn induces a partial
order that is isomorphic to that of the Boolean structure of B, namely the inclusion
relation inherited from Pow(E).

Example 6.2.17. Let E be the real line and C be the collection of its intervals. The
compact unit disk contains infinitely many maximal connected blocks (i.e. compact
rectangles).

137



6.2. Block Coverings 6. Isothetic Regions

Remark 6.2.18. As in topology, the maximal connected blocks of a finite Cartesian
product are easy to determine. Indeed, given Xi ⊆ E for i ∈ {1, . . . , n} the following
equality

αn(X1 × · · · × Xn) = α1(X1) × · · · × α1(Xn)

holds because A1 × · · · × An ⊆ B1 × · · · × Bn iff Ai ⊆ Bi for all i ∈ {1, . . . , n}.

Both Proposition 6.2.7 and Proposition 6.2.16 provide normal forms to describe
certain elements of En. Assuming that Boolean operations in B are computationally
tractable, Proposition 6.2.7 provides a Boolean subalgebra of Pow(En) that is also com-
putationally tractable (up to the problem of complexity). However, ifB is too restrictive,
then so is the associated Boolean subalgebra. On the other hand Proposition 6.2.16 pro-
vides a normal form for any element of Pow(En) but implementing computation might
not be feasible if one has to deal with infinite families of connected blocks. Assuming
an extra hypothesis on connectologies, one can take advantage of both approaches by
studying subsets of En that can be written as a finite union of connected blocks.

Definition 6.2.19. A connectology C is said to be regionalwhen the collection of finite
unions of elements of C forms a Boolean subalgebra of Pow(E). It amounts to suppose
that the collection of finite union of connected subsets of E is stable under complement.

Example 6.2.20. The collection of connected subsets of R (i.e. its subintervals) is a
regional connectology while the collection of connected subsets of R2 is not since one
can easily find a connected subset of the plane whose complement has infinitely many
connected components (e.g. R2 \ Z2).

The notions introduced in Definition 6.2.1, 6.2.5, and 6.2.12 heavily depend on the
subsets of E that are allowed to form blocks, viz B or C, hence we sometimes add a
prefix to stress that fact. This will be useful in the context of Theorem 6.2.21.

Theorem 6.2.21. If B is the Boolean subalgebra of Pow(E) generated by a regional
connectology C then the Galois connection of Proposition 6.2.16 restricts as follows:

FinConnCovn(C)
γn // Rn .
αn

oo

Moreover, it becomes an isomorphism of Boolean algebras if FinConnCovn(C) is
replaced by the image of αn (i.e. the collection of maximal connected block coverings).

Proof. A maximal connected block C of X ∈ Rn is contained in a maximal B-block B
of X . Hence C is also a maximal connected block of B. We known from Remark 6.2.18
that B has finitely many maximal connected blocks. Since X has finitely many maximal
B-blocks, we conclude that it also has finitely many maximal connected blocks.

Remark 6.2.22. Formally speaking R0 contains exactly two elements which are the
empty set and the singleton containing the empty word, it is therefore isomorphic to the
Boolean algebra {true, false}.

Remark 6.2.23. Assuming that C is a regional connectology, the Boolean algebra R1
is precisely the Boolean subalgebra of Pow(E) generated by C.

Example 6.2.24. One should keep in mind the situation where E is the real line and C
is the collection of its intervals: the elements of Rn are then called the cubical regions.

138



6.2. Block Coverings 6. Isothetic Regions

Example 6.2.25. Example 6.2.24 is actually a special instance of the case where E is
the (underlying set of) the geometric realization of some essentially finite graph G –
see Definition 6.1.43, and C is the collection of its connected subsets.

Notation αn refers to the Galois connection introduced in Proposition 6.2.16 and
C to a connectology. The following lemmas provides the tools to compute the normal
form associated to a connected block covering, in other words the mapping αn ◦ γn.

Lemma 6.2.26. Let C and C ′ be n-dimensional connected blocks. Then

αn(C ∩ C ′) = α1(C1 ∩ C ′1) × · · · × α1(Cn ∩ C ′n)

If C is regional, then C ∩ C ′ has finitely many maximal connected blocks.

Proof. By the exchange law and Remark 6.2.18.

Lemma 6.2.27. LetC be a connected block, a connected block M of En \C is maximal
iff there exists i ∈ {1, . . . , n} such that Mi is a connected component of E \ Ci and for
j , i, Mj is a connected component of E . If C is regional, then En \ C has finitely
many maximal connected blocks.

Proof. The complement of a connected block C can be written as the finite union of
the sets

E × · · · × E × E \ Ci︸ ︷︷ ︸
ith position

×E × · · · × E

Then note that the maximal connected blocks of En \ C are precisely the maximal
connected blocks of the products given above. We conclude by Remark 6.2.18.

Lemma 6.2.28. Given isothetic regions X and Y we have the following inclusion:

αn(X ∩ Y ) ⊆
⋃ {

αn(C ∩ C ′)
�� C ∈ αn(X); C ′ ∈ αn(Y )

}
.

If C is regional, then X ∩ X ′ has finitely many maximal connected blocks.

Proof. Let C ′′ ∈ αn(X ∩ X ′), there exist C ∈ αn(X) and C ′ ∈ αn(X ′) such that
C ′′ ⊆ C ∩ C ′, so C ′′ ∈ αn(C ∩ C ′). The finiteness comes from Theorem 6.2.21.

The subtle distinction between a regional connectology and its associated Boolean
algebra actually matters. To explain this, let us consider the case where the regional
connectology C is the collection of intervals of the real line. Then

X = [0, 1] × [0, 1] ∪ [0, 1] × [2, 3] ∪ [2, 3] × [0, 1]

has 3 maximal connected blocks and 2 maximal blocks – see Figure 6.7. In practice,
the Boolean operations on isothetic regions are based on their analog on blocks or
connected blocks, according to theway one has chosen to represent the isothetic regions.
From a combinatorial point of view, the block based approach leads to much smaller
representation so it should be preferred. As a dramatic example the block ([0, 1]∪[2, 3])n
is made of 2n maximal connected blocks – see Figure 6.7.

Furthermore the basic operations on blocks are built on the Boolean operations on
finite unions of intervals. The latter can be implemented so that their complexity is
linear in the number of maximal intervals. A more naive approach leads to quadratic
algorithms. Of course this optimization cannot be exploited if one represents the
isothetic regions by means of connected blocks.

139



6.3. Product of Isothetic Regions 6. Isothetic Regions

Figure 6.7: A fine connectology and its associated Boolean algebra

6.3 Product of Isothetic Regions
We describe the combinatorial framework for the product of isothetic regions. Let A
be a set called the alphabet. The free monoid generated by A is denoted by A∗. Its
elements are the words (i.e. the finite sequences) over A, and its composition law is the
concatenation: given words w and w′ of length n and n′, the word w ∗ w′ of length
n + n′ is defined by

(w ∗ w′)k =
{
wk if 1 6 k 6 n
w′
k−n if n + 1 6 k 6 n + n′

The empty word ε is the neutral element of A∗. The concatenation extends to languages
(i.e. sets of words): given D,D′ ⊆ A∗ we define

D ∗ D′ := {w ∗ w′ | w ∈ D;w′ ∈ D′}

The set of languages (i.e. the powerset of A∗) is thus endowed with a structure of (non-
commutative) monoidD(A) whose neutral element is {ε} (i.e. the singleton containing
the empty word). Note that the empty language ∅ is the absorbing element of D(A),
that is for all D ⊆ A∗ we have

∅ ∗ D = D ∗ ∅ = ∅

Unless A is a singleton (and then A∗ � (N,+, 0)), the monoid A∗ is noncommutative in
a very strong sense: the only word that commutes with all the others is the empty one.
The length of a word w is also referred to as `(w).

Definition 6.3.1. A language is said to be homogeneouswhen all the words it contains
share the same length. The notion of length thus extends to homogeneous languageswith
the convention that `(∅) = −∞, and we have the following relation for all homogeneous
languages D and D′

`(D ∗ D′) = `(D) + `(D′)

The homogeneous languages form a submonoid Dh(A) ⊆ D(A) and we sometimes
write Dn(A) (resp. Dnf(A)) for the collection of homogeneous languages (resp. finite
languages) of length n ∈ N. Hence we have the disjoint unions

Dh(A) =
⊔
n∈N
Dn(A) and Dhf(A) =

⊔
n∈N
Dnf(A)

∗ ∗ ∗

140



6.3. Product of Isothetic Regions 6. Isothetic Regions

We are now ready to describe a special class of subsets of the disjoint union⊔
n∈N
�G�n

that can be handled algorithmically – see Section 6.4, and provides a framework in
which parallel composition can be modelled – see Proposition 7.1.5. From now on
and until the end of the section, the graph G is supposed to be essentially finite
(cf. Example 6.2.25). With notation of Section 6.2, the idea is to see each block as
a word over a regional connectology (i.e. A = C) or its associated Boolean algebra
(i.e. A = B), and thus interpreting a covering as a language over the corresponding
alphabet. The only subtlety one has to deal with is the empty set. Indeed, if some letter
of a word is the empty set, then the whole word should be understood as the empty set
and could therefore be dropped from the language. Nevertheless, we have to keep in
mind that the underlying sets of Rn and Rm are disjoint for n , m. In particular, since
we are handling homogeneous languages (i.e. coverings) of length n instead of subsets
of En, the empty set of Rn and the emptyset of Rm should not be represented by the
same mathematical object. A natural trick is to forbid the empty language and identify
any word in which the empty set appears with the word all the letters of which are the
empty set. Another theoretical reason for this glitch will be explained in Section 9.5
and more specifically in Example 9.5.18 and Remark 9.5.21. In this context, the least
element of A is the empty subset of �G�. Since we think of A as a collection of subsets
of �G� and the words over it as blocks, it is natural to order them by inclusion. In
particular given two such words w and w′ of length n, we have w ⊆ w′ when ∅ occurs
in w or when w(i) is included in w′(i) for all i ∈ {0, . . . , n − 1}. The rest of the section
can be seen as an introduction to Section 9.3.

Definition 6.3.2. Because any element of �G�n can be identified with a word of length
n over �G �, the monoid Dh(�G�) is identified with the following disjoint union of
powersets so it is ordered by inclusion at each level

P =
⊔
n∈N

Pow(�G�n).

The monoid of regions is the following disjoint union of Boolean algebras equipped
with concatenation and ordered by inclusion at each level

R =
⊔
n∈N
Rn .

Themorphisms αn and themorphisms γn fromTheorem 6.2.21 can thus be gathered
to form mappings α and γ so that we have the following result.

Corollary 6.3.3. The mappings α and γ induce morphisms of (pre)ordered monoids
betweenDhf(C) and R. They become isomorphisms of ordered monoids if one restricts
Dhf(C) to the image of α (i.e. the maximal connected block coverings).

Proof. The only nontrivial point to check is that α preserves the product, which derives
from the fact that for all blocks w, w′, and w′′ of dimension n, n′, and n + n′, one
has w ∗ w′ ⊆ w′′ iff w ⊆ proj(w′′) and w′ ⊆ proj′(w′′), where proj and proj′ are the
projections on coordinates 1 to n and n + 1 to n + n′.

Remark 6.3.4. As a by-product of the proof of Corollary 6.3.3, the maximal subblocks
of the Cartesian product of isothetic region A × B have the form w × w′ where w

(resp. w′) is a maximal subblock of A (resp. B).

141



6.4. Directed Topological Regions 6. Isothetic Regions

Remark 6.3.5. By Proposition 6.2.7 (resp. 6.2.16), Corollary 6.3.3 is still valid for
Dhf(B) and R (resp.Dh(C) and P) where B is the Boolean algebra associated with the
regional connectology C.

In Chapter 9, the monoids introduced in this section will be turned into free com-
mutative monoids so the prime decomposition corresponds to parallelization of code.

6.4 Directed Topological Regions
Let �G� be the directed geometric realization of some essentially finite graph G –
see Definition 6.1.43. The realization can be indifferently taken in many categories
(cf. Proposition 6.1.7) yet we chose the one of local pospaces which is more restrictive.
From Theorem 6.1.42 we know that the collection of finite unions of connected subsets
of �G� is a Boolean algebra, in other words the connectology associated with the
topology of �G� is fine. In particular Proposition 6.2.7 and Theorem 6.2.21 apply
and the elements of the Boolean algebras Rn are also called the G-regions – see
Example 6.2.25. Any G-region inherits the direction and the topology from �G� so it
becomes a directed topological isothetic region. As we shall see in the remainder of
this section, these additional structures can be expressed in terms of G-regions, which
makes the notion tractable. Note that when |G | is homeomorphic with a nondegenerate
interval ofR or equivalently whenG is a connected subgraph ofZ (cf.Definition 6.1.27)
the G-regions are cubical – see Example 6.2.24.

In the rest of this chapter, the graph G is supposed to be essentially finite (cf. Defi-
nition 6.1.43).

Interior and Closure Operators
The Boolean algebra Rn inherits, in a sense to be made precise, from the topological
structure of �G�. Let us denote the interior of X (i.e. the greatest open subset of �G�
contained in X) by int(X) and the closure of X (i.e. the least closed subset of �G�
containing X) by clo(X). The closure of X is also denoted by X . Also denote the
boundary of X (i.e. the set difference clo(X) \ int(X)) as bnd(X). It is known, from
Kuratowski’s axioms, that a topology is entirely characterized by the induced closure
(resp. interior) operator. Note that R1 is actually R |G | – see Remark 6.2.23.

Lemma 6.4.1. The Boolean algebra R1 is stable under closure, boundary, and interior
operators.

Proof. First note that the Boolean algebra R1 is stable under the closure operator since
the closure of a connected set is connected. The boundary of some A ∈ R1 can also be
written as

bnd(A) = clo(A) ∩ clo(�G� \ A)

so it also belongs to R1. As a consequence the interior of A also belongs to R1 because
it can be written as

int(A) = clo(A) \ bnd(A)

Proposition 6.4.2. The Boolean algebra Rn is stable under closure, boundary, and
interior operators.

142



6.4. Directed Topological Regions 6. Isothetic Regions

Proof. A basis of the topology of �G�n is given by the open connected blocks (i.e. those
ones whose k th projection is open in |G | for all k). Then remark that for all blocks w
we have

int(w) = int(w1) × · · · × int(wn)

and
clo(w) = clo(w1) × · · · × clo(wn)

the latter is a connected block while the former is a disjoint union of (open) connected
blocks by Lemma 6.4.1. In particular a point x ∈ �G� belongs to int(X) iff there is some
connected open block w such that x ∈ w ⊆ X . Therefore

int(X) =
⋃

w∈αn(X)
int(w)

the union being taken over the collection αn(X) of the maximal blocks of X – see
Proposition 6.2.7. The stability under closure operator immediately derives from the
basic fact (of general topology) that for any finite collection C of subsets of a topological
space the following equality holds

clo(
⋃
C) =

⋃
C∈C

clo(C) .

Forward and Backward Operators
Until now, we have been concerned about the Boolean and the topological structures of
isothetic regions, which are both unambiguously defined. Defining “the” direction of
an isothetic region is a bit more subtle because it admits a structure of a local pospace,
of a stream, and of a d-space. This structure is indeed inherited from that of �G�n.
Therefore it may depend on the category in which G has been realized. However, by
Proposition 6.1.7, and Theorem 4.5.21 and its corollaries, the collection of paths on
|G | that induce a directed path on �G� (cf. Definition 4.2.12) does not depend on the
category in which G has been realized. Formally, the collection{

U(γ)
�� γ ∈ C([0, r], �G�C)}

does not depends on the category C ∈ {LpoTop, dTop, Strm, dTopf, Strmd} where
U is the forgetful functor to Haus. The preceding collection is actually the collection
of paths on the geometric realization of G such that for all arrows α of G, and for
all connected components C of γ−1({α}×]0, 1[), the restriction of γ to C is order-
preserving.

Proposition 6.4.3. A directed path on a region X is the sense of Definition 4.2.12 is
a path γ on UX in the sense of Definition 2.1.7 such that for all i ∈ {1, . . . , n}, the ith

projection of γ is a directed path on �G� in the above sense.

Since the operators we are about to define on the class of isothetic regions only depend
on the collection of directed paths on them, these operators are unsensitive for the
choice of the underlying category. We arbitrarily decide to work with d-spaces so we
write �G� without subscript and “subobject” without further precision. Then we prove
that the Boolean algebra Rn also inherits from the directed structure of �G�n.

143



6.4. Directed Topological Regions 6. Isothetic Regions

Definition 6.4.4. For all subsets A and B of a d-space X , the elements of frw(A, B) are
the endpoints of the directed paths of A ∪ B starting in A.

frw(A, B) = {∂+δ | δ directed path of X; ∂-δ ∈ A; img(δ) ⊆ A ∪ B}

The mapping which send (A, B) to frw(A, B) is called the forward operator over X . The
backward operator over X (i.e. the mapping (A, B) 7→ bck(A, B)) is defined dually.

bck(A, B) = {∂-δ | δ directed path of X; ∂+δ ∈ A; img(δ) ⊆ A ∪ B}

Remark 6.4.5. Both operators are ⊆-increasing in both variables. Also remark that for
all subsets A and B, we have A ⊆ frw(A, B) ⊆ A∪B, and that if A and B are disconnected
(i.e. neither A nor B meets the closure of the other) then frw(A, B) = A. Note however
that the converse is false (e.g. A = [1, 2] and B = [0, 1]). The same obviously holds
for the backward operator. Furthermore if A is (path) connected then so are frw(A, B)
and bck(A, B). Indeed as any d-space is stable under subpaths, Definition 6.4.4 can be
rephrased as follows.

frw(A, B) =
⋃ {

img(δ)
�� δ directed path of X; ∂-δ ∈ A; img(δ) ⊆ A ∪ B

}
Lemma 6.4.6. For all Ak ⊆ Bk with k ∈ {1, . . . , n}, we have

frw(A1 × · · · × An, B1 × · · · × Bn) = frw(A1, B1) × · · · × frw(An, Bn)

and
bck(A1 × · · · × An, B1 × · · · × Bn) = bck(A1, B1) × · · · × bck(An, Bn)

Proof. If δ is a dipath on B1×· · ·×Bn with ∂-δ ∈ A1×· · ·×An then for all k ∈ {1, . . . , n},
prk ◦ δ is a dipath on Bk whose source belong to Ak . Conversely, given some n-tuple
of dipaths (δ1, . . . , δn) with δk dipath on Bk with its source in Ak , the dipath defined
by t 7→ (δ1(t), . . . , δn(t)) has its source in A1 × · · · × An and its image contained in
B1 × · · · × Bn.

The inclusion assumption cannot be dropped from the statement of Lemma 6.4.6.
Indeed, taking the disconnected sets A = [0, 1[×[0, 1] and B = [1, 2]×]1, 2] we have
frw(A, B) = A though

frw([0, 1[, [1, 2]) = frw([0, 1], ]1, 2]) = [0, 2] .

Definition 6.4.7. For a given d-space X we define for all A ⊆ X:

– the future closure (resp.past closure) of A, denoted by A
f (resp. A

p), as frw(A, A)
(resp. bck(A, A)),

– the future cone (resp. past cone) of A, denoted by conef(A) (resp. conep(A)) as
frw(A, X) (resp. bck(A, X)),

– the subset A is said to be future stable when conefA = A. The past stable
subsets are defined dually.

Remark 6.4.8. With the notation of Definition 6.4.7, conefA (resp. conepA) is future
(resp. past) stable, and any d-subspace is future stable iff its complement is past stable.
The collection of future (resp. past) stable d-subspaces of X forms a sub-complete
lattice of the powerset of X .

144



6.4. Directed Topological Regions 6. Isothetic Regions

Remark 6.4.9. As a consequence of Lemma 6.4.6, for all Ak with k ∈ {1, . . . , n} we
have

A1 × · · · × An
f
= A1

f × · · · × An
f

and
conef(A1 × · · · × An) = conef(A1) × · · · × conef(An)

Dually, the same holds for past closure and past cone.

From the operators of Definition 6.4.7 one can define several meaningful new ones.

Definition 6.4.10. Given a subset A of a d-space X , the subset conepA ∪ conefA is
called the cone of A, it is denoted by coneX A. The reference to the underlying d-space
X is often omitted.

Remark 6.4.11. Unlike the future cone and the past cone operators, the cone operator is
not idempotent. In fact, the ⊆-increasing sequence (conenA)n∈N may not be stationary.
The union of its terms

cone∞A =
⋃
n∈N

↑ conenA

is indeed the set of points that can be reached from some point of A by a zigzag of
directed and antidirected paths. In particular, the fundamental category of a d-space is
connected iff this d-space is equal to cone∞({p}) for some point p. Of course, if such a
point p exists, then any other point also satisfies the property. For example, if we let X
be the infinite ascending staircase on Figure 6.8 (seen as a noncompact subspace of R2

which is actually dihomeomorphic to R+), then coneX {p} = X for every point p. The
latter assertion assumes that any increasing paths on R2 is directed. The preceding d-
space should be compared to the infinite descending staircase X (cf. Figure 6.8), which
is dihomeomorphic to the directed geometric realization of the half infinite zigzag
shown below.

p · · ·

In that case we have conenX ({p})  conen+1
X ({p}) for all n ∈ N. Yet, the fundamental

categories of both infinite staircases are connected.

Example 6.4.12. Given a graphG satisfying the properties of Theorem6.1.42 (resp. The-
orem 6.1.20), there is a finite set of point F ⊆� G � and some n ∈ N such that
conen�G�F =�G � (resp. cone

∞
�G�F =�G �). The converse is false as one can check

by considering a star with infinitely many branches.

Conjecture 6.4.13. For all subsets Aof an isothetic region X , the sequence (conenX A)n∈N
is stationary and its limit is the union of all the connected components of X that meet A.

Conjecture 6.4.13 is illustrated by Figure 6.9. We consider the unit square from which
some horizontal and vertical segments have been removed. The latter are the “walls”
of a “labyrinth”.

Remark 6.4.14. Let A be the set of points
{
(n,−n)

�� n ∈ Z
}
⊆ R2. Then

R2 \ coneA =
⋃
n∈Z
[n − 1, n] × [n, n + 1] \ A

145



6.4. Directed Topological Regions 6. Isothetic Regions

p

p

Figure 6.8: Infinite staircases

p

cone({p})

p

cone2({p})

p

cone3({p})

p

cone4({p})

p

cone5({p})

p

cone6({p})

Figure 6.9: Labyrinth

146



6.4. Directed Topological Regions 6. Isothetic Regions

Definition 6.4.15. A d-space X is said to be zigzag connected when it contains a point
p such that cone∞X ({p}) = X . It is said to be finitely zigzag connected when it contains
a point p such that conenX ({p}) = X for some n ∈ N.

Remark 6.4.16. Given a point p of a zigzag connected d-space X , the least n ∈ N∪{∞}
such that conenX ({p}) = conen+1

X ({p}) may depend on p, we denote it by np . Then we
define the zigzag diameter of a zigzag connected d-space X as the least element of the
set below. {

np ∈ N ∪ {∞}
�� p ∈ X

}
Example 6.4.17. If X =�G� for some finite zigzag G and p is one of the extremities of
X , then the least n ∈ N such that conenX A = conen+1

X A is the number of arrows of G,
which corresponds to the “length” of the zigzag.

The operators we are about to introduce are involved in deadlock detection.

Definition 6.4.18. Given a d-space X we define for all A ⊆ X , the future escape of A,
denoted by escapefA, as the set of points of X whose future cones avoid A. the past
attractor of A, denoted by attpA, is the set of points of x ∈ X such that any dipath
starting at x can be extended to a dipath arriving in A. The past escape and the future
attractor of A, denoted by escapepA and attfA, are defined dually.

Proposition 6.4.19. The future escape and the past attractor are expressed in terms of
past cone and complement. Moreover, both are future stable.

escapefA = (conepA)c attpA = escapef(escapefA)

Lemma 6.4.20. For all subsets A ⊆ B ⊆ C of a d-space, we have

frw(A,C) = frw(frw(A, B),C) and bck(A,C) = bck(bck(A, B),C)

Proof. The left member is contained in the right one by Remark 6.4.5 and because
A ⊆ frw(A, B) (no assumption on A, B, nor C is required here). Conversely, let γ be
a dipath from frw(A, B) to C whose image is contained in frw(A, B) ∪ C. We have
frw(A, B) ⊆ B ⊆ C, hence the image of γ is contained in C. By definition of frw(A, B),
there also exists a dipath δ from A to ∂-γ whose image is contained in B, hence in C.
The concatenation γ · δ therefore starts in A and has its image contained in C.

Once again the inclusion assumption cannot be dropped. Taking A = [0, 1], B =
[1, 2], and C = [2, 3] provides an obvious counter-example. The following result is the
key ingredient for effective computations in the case of isothetic regions.

Proposition 6.4.21. Let A and B be subsets of some d-space X , and suppose that for
all dipaths δ of X , δ -1(A) has finitely many connected components. Then

frw(A, B) = A ∪ frw(Af ∩ B, B) ∪ frw(A ∩ B
p
, B)

and
bck(A, B) = A ∪ bck(Ap ∩ B, B) ∪ bck(A ∩ B

f
, B)

Proof. Let δ be a dipath on A∪ B starting in A and such that ∂+δ < A (hence ∂+δ ∈ B).
Let C be the connected component of δ -1(B) that contains 1 and denote by t0 its greatest
lower bound. Then any neighborhood of t0 contains some t < t0 such that δ(t) < B, and

147



6.4. Directed Topological Regions 6. Isothetic Regions

therefore δ(t) ∈ A. By hypothesis on A the last connected component of δ -1(A) makes
sense. Its least upper bound is t0. Then δ(t0) ∈ A

f.
If δ(t0) ∈ B then δ |[t0,1] is a dipath whose image is contained in B. It follows that

∂+δ ∈ frw(Af ∩ B, B).
If δ(t0) < B the image of δ |[t0,1] is then included in B

p and δ(t0) ∈ A (since
img(δ) ⊆ A ∪ B). It follows that the image of δ |[t0,1] in included in A ∩ B

p ∪ B and
therefore ∂+δ ∈ frw(A ∩ B

p
, B).

Conversely, suppose that there exists a dipath δ starting in A
f ∩ B and whose image is

contained in B. Then consider a dipath γ starting in A and such that ∂+γ = ∂-δ. The
image of the concatenation δ · γ is then contained in A∪ B. Therefore ∂+δ ∈ frw(A, B).

Now if δ is a dipath starting in A∩B
p and whose image is contained in (A∩B

p)∪B.
Suppose that ∂+δ < A, then ∂+δ ∈ B and thus let C be the connected component of
δ -1(B) that contains 1. Let t1 be the greatest lower bound of C. Suppose that δ(t1) < A,
therefore δ(t1) ∈ B and any neighborhood of t1 contains some t < t1 such that δ(t) < B
(and therefore δ(t) ∈ A). The least upper bound of the last connected component of
δ -1(A) is thus t1 and the image of the restriction δ |[t1−ε,t1], for some ε > 0, is included
in A. Then img(δ |[t1−ε,1]) ⊆ A ∪ B and ∂+δ ∈ frw(A, B). By duality, the result also
holds for the backward operator.

Note that the extra hypothesis is only required for the first parameter. Also remark
that in the case where X = R is equipped with the chaotic direction (i.e. all continuous
maps from [0, 1] to R are directed) this property fails for all A but ∅ and R. Given any
t ∈ R there is indeed a path converging to t that oscillates infinitely many times around
t. The isothetic regions behave much better.

Proposition 6.4.22. For all isothetic regions A and all dipaths δ on �G�n, the inverse
image δ -1(A) has finitely many connected components.

Proof. An immediate consequence of Proposition 6.1.7.

Definition 6.4.23. To each point p of (G1, . . . ,Gn) in the sense of Definition 3.3.1 we
associate the subblock Bp of �G1� × · · · × �Gn� whose ith component is {pi} when pi is
a vertex, and {pi}×]0, 1[ when it is an arrow. The blocks Bp form the ginzu partition
of �G1 � × · · · × �Gn �. By the way, note that defining the dimension of Bp as the
number of arrows of p induces a filtration of �G1� × · · · × �Gn� in the sense of (Brown
et al., 2011, p.211). A region that can be written as a union of blocks of the canonical
partition is said to be a compatible with it.

Remark 6.4.24. The ginzu partition is not intrinsically related to the product �G1 �
× · · · × �Gn � since it partially depends on expandable vertices while the product of
the directed realizations does not. In particular, given a finite family F of isothetic
subregions of �G1 � × · · · × �Gn �, there are graphs G′1, . . . ,G

′
n such that red(Gi) �

red(G′i) for all i ∈ {1, . . . , n} and the ginzu partition associated with G′1, . . . ,G
′
n is

compatible with all the members of the family F. For i ∈ {1, . . . , n}, let G′i be the graph
whose vertices are all the vertices of Gi plus all the points of �Gi� that belongs to the
boundary of proji(M) for some maximal subblock M of some member of the family F.
The set V ′i of vertices of G′i is thus a discrete subspace of �Gi�, the arrows of G′i are
the connected components of �Gi� \V ′i . Each of them is isomorphic, as a pospace, with
]0, 1[, so the source and the target maps of G′i are defined accordingly. In particular
one has an isomorphism Φi from �Gi� to �G′i� whose restriction to V ′i is the identity.

148



6.4. Directed Topological Regions 6. Isothetic Regions

Figure 6.10: A directed path and its discretization.

The product map Φ = (Φ1, . . . ,Φn) is thus an isomorphism from �G′1� × · · · × �G
′
n� to

�G1� × · · · × �Gn�. Due to its specific form Φ also induces an isomorphism between
the corresponding Boolean algebras of isothetic regions. In addition the direct image
under Φ of every member of the family F is compatible with the ginzu partition of
�G′1� × · · · × �G

′
n�. The graphs Gi and G′i readily have isomorphic reduced graphs.

Lemma 6.4.25. If there exists a directed path starting in Bp , ending in Bp′ , and whose
image is contained in Bp ∪ Bp′ (i.e. frw(Bp, Bp′) , Bp or equivalently bck(Bp′, Bp) ,
Bp′) then we have the following facts:

– for all i ∈ {1, . . . , n}, pi = p′i or pi is the source of the arrow p′i , or

– for all i ∈ {1, . . . , n}, pi = p′i or p′i is the target of the arrow pi .

Proof. The inverse image γ -1(Bp) and γ -1(Bp′) have finitely many connected compo-
nents, it is a consequence of Proposition 6.4.22 and the standard equality thereinafter.

γ -1(Bp) =

n⋂
i=1

γi
-1(proji(Bp)) .

Hence we have a partition of the domain of γ into intervals which are alternatively
contained in γ -1(Bp) and γ -1(Bp′), the first interval I being contained in the former
while the second one J is contained in the latter. In particular we have sup I = inf J
which either belongs to I or J. The conclusion follows.

Lemma 6.4.25 has been the motivation for Definition 3.3.2 in retrospect. See also
Figure 6.10.

Corollary 6.4.26. Under the hypotheses of Lemma 6.4.25 we have

frw(Bp, Bp′) = bck(Bp′, Bp) = Bp ∪ Bp′ .

Definition 6.4.27. Given a directed path γ on �G1� × · · · × �Gn� (cf. Proposition 6.4.3)
we have, by the same arguments as in the proof of Lemma 6.4.25, a finite partition I0 <
· · · < IK of dom γ such that for all k ∈ {0, . . . ,K}, there exists a (necessarily unique)
point p(k) such that γ(Ik) ⊆ Bp(k). By Lemma 6.4.25 the sequence p = p(0), . . . , p(K)
is a path in the sense of Definition 3.3.2. This latter is called the discretization of γ
and denoted by D(γ). Conversely, given a path p on (G1, . . . ,Gn) (cf. Definition 3.3.2)
it is not difficult to find a directed path γ (cf. Definition 4.2.12) on �G1� × · · · × �Gn�
whose discretization is p, such a path γ is said to be a lifting of p. The di scretization
procedure is illustrated on Figure 6.10.

Theorem 6.4.28.
The Boolean algebra Rn is stable under forward and backward operators.

149



6.5. Metric Properties of Regions 6. Isothetic Regions

Proof. First we assume that all the graphs Gi are finite. Suppose that both A and B
are compatible with the canonical partition (cf. Definition 6.4.23). By Corollary 6.4.26
any block of the ginzu partition met by some directed path on A ∪ B starting in A and
ending in B, is entirely contained in frw(A, B). Since the canonical partition has finitely
many blocks, the subspace frw(A, B) is an isothetic region. By Remark 6.4.24 we can
suppose that the ginzu partition is compatible with both A and B. By Theorem 6.1.42
if the graph Gi is essentially finite then its directed geometric realization is canonically
embedded in that of red(Gi) which is finite. We conclude because the product map

�G1� × · · · × �Gn� ↪→ �red(G1)� × · · · × �red(Gn)�

preserves and reflects the isothetic regions.

Corollary 6.4.29.
Given isothetic regions A and B, the sets A

f, A
p, frw(Af ∩ B, B), bck(Ap ∩ B, B),

frw(A ∩ B
p
, B), and bck(A ∩ B

f
, B) are isothetic regions.

Corollary 6.4.29 combined with Proposition 6.4.22 provides the algorithm that
enables the ALCOOL software to compute forward and backward operators.

Corollary 6.4.30. If A ⊆ X are isothetic regions, then the future attractor and the past
attractor (cf. Definition 6.4.18) of A (in X) are isothetic regions.

Proof. By Proposition 6.4.19.

6.5 Metric Properties of Regions
So far we have endowed isothetic regions with topology and direction. These mathe-
matical concepts do not allow more than a qualitative analysis. For example, one can
tell whether a program may freeze from the presence of a deadlock in its model, but
one cannot tell how likely it is to happen. We are not either able to measure the speed
of an execution trace. We provide isothetic regions with extra structures inspired by
the standard distance and the Lebesgue measure on R. We do not pretend that the
constructions proposed thereafter enable a satisfactory quantitative analysis, yet, they
are natural and therefore deserve to be mentioned. Moreover, as we shall see in Chap-
ter 9, any isothetic region (cf. Definition 6.2.1) can be written as a Cartesian product of
“irreducible” isothetic regions in a unique way (cf. Theorem 9.3.2). Knowing that, we
wonder if the additional structures are preserved by decomposition.

The length `(γ) of a path γ : [a, b] → (X, d) on a metric space is defined as the
supremum of

N∑
i=1

d(γ(ti−1), γ(ti))

for all finite sequences a = t0 6 · · · 6 tN = b. A length-metric is a metric such that
the distance between two points is the infimum of the lengths of the paths joining them –
see (Bridson and Haefliger, 1999, Chap.I.3), (Epstein, 1992, Sect.3.1), (Papadopoulos,
2013, p.11), or (Gromov, 2007, Chap.1) for a slightly different approach. Length-
metrics are actually the significant ones though they raise a technical problem: the
metric induced on a subspace of a length metric is generally not a length-metric.
However the problem is solved by a standard construction: any metric space (X, d) is

150



6.5. Metric Properties of Regions 6. Isothetic Regions

associated with a length-metric, the so-called intrinsic metric, defined for all x, y ∈ X
by

d ′(x, y) = inf{`(α) | α paths joining x and y}
If no such path exists (i.e. when the points do not lie in the same path-connected
component) the distance between them is conventionally defined as infinite. Even
further, a length-metric space is said to be geodesic when any couple of its points are
connected by a path whose length is the distance between these points – see (Bridson
and Haefliger, 1999, p.9). The geometric realization of any graph is known to admit
a canonical metric structure assuming that any arrow is of length 1. Such metric
spaces are called metric graphs – see (Bridson and Haefliger, 1999, Chap.1). Every 1-
dimensional isothetic region A is actually a geodesic space by considering the intrinsic
metric derived from the metric induced on A by the metric graph structure on |G |.
This situation is rather exceptional, indeed the intrinsic metric induced on a subset of a
geodesic metric space is not geodesic in general.

Example 6.5.1. Observe that the punctured plane (i.e. R2 \ {0}) equipped with the
Euclidean distance (resp. the max distance) is not geodesic tough it is a length-metric.

This section aims at providing any isothetic region with a length-metric. It is well-
known that given two metric spaces (X, dX ) and (Y, dY ) there are many ways to provide
the topological space X × Y with a metric. The Euclidean metric

dX×Y =
√

d2
X + d2

Y

and the max-metric
dX×Y = max(dX, dY )

are two examples of such metrics. One even knows that if both dX and dY are geodesic
metrics, then so are their Euclidean product and their max-product. In accord with
our intention to measure the speed of a parallel execution trace, we equip every n-
dimensional subregion of �G1� × · · · × �Gn� with the intrinsic metric induced by the
max-product, we will assume that each �Gk � is a metric (control flow) graph, and
that “parallel execution trace” actually means “directed path whose interpretation is an
execution trace indeed”. If we had been interested in interleaving execution traces, then
we would have chosen the following product.

d�G1�×···×�Gn� = d�G1� + · · · + d�Gn�

Remark 6.5.2. Any isothetic region is a Polish space (i.e. a complete separable metric
space).

Remark 6.5.3. According to Hopf-Rinow Theorem – see (Bridson and Haefliger,
1999, p.35), if the length-metric space we have defined is complete and its underlying
topology is locally compact, then it is geodesic regardless of the chosen metric product.
Unfortunately the continuous model of a Paml program (cf. Definition 7.1.2) generally
is neither complete nor geodesic: this will matter in Section 9.6.

Example 6.5.4. The punctured plane (cf. Example 6.5.1), which is not geodesic, is the
continuous model of the following program.

var: x = 0
proc: p = x:=0
init: 2p

151



6.5. Metric Properties of Regions 6. Isothetic Regions

We now focus on measures over isothetic regions. The measure associated with
an isothetic region A will be denoted by µA or just µ in the sequel. Let us start
by considering the case where A is the realization of an essentially finite graph G.
We define the measure of a connected subset X of the geometric realization of G by
remarking that its interior and its closure have the same measure. Indeed, either X is
reduced to a segment that satisfies

{α}×]a, b[ ⊆ X ⊆ {α} × [a, b]

for a unique arrow α together with 0 < a 6 b < 1; or for all arrows α of G there exists
0 6 aα 6 bα 6 1 such that

{α} × (]0, aα[∪]bα, 1[) ⊆ X ∩ {α}×]0, 1[ ⊆ {α} × (]0, aα] ∪ [bα, 1[)

The measure of X is thus defined as b − a in the first case and

µG(X) =
∑
α∈G
(1 − bα + aα)

in the second one. The preceding summakes sense because the indexing set is countable
by Remark 6.1.21. Since any element of RG is the finite disjoint union of its connected
components, the previous definition extends to a measure µG over RG . Since G is
essentially finite, this measure is σ-finite, hence Carathéodory’s theorem5 extends µG
to a unique measure, still denoted by µG , over the complete Borel σ-algebra of |G |
(i.e. the least σ-algebra containing all the open subsets of |G | as well as any subset of
a neglectable6 subset of |G |). Assuming we are given the Lebesgue measure on ]0, 1[
and following the description of the realization of G given in Section 6.1, µG can also
be defined as the sum

µG(X) =
∑
α∈G

λ]0,1[(X ∩ {α}×]0, 1[)

being understood that the set of vertices of G is neglectable. Given an n-tuple of
essentially finite graphs, the isothetic region |G1 | × · · · × |Gn | can therefore be equipped
with the tensor product of measures (cf. (Halmos, 1974, Chap.VII))

µG1,...,Gn = µG1 ⊗ · · · ⊗ µGn

Remark 6.5.5.
As a distinctive feature, if all the graphs Gk equal {· → ·} then µ(|G1 | × · · · × |Gn |) = 1.
In particular, if all the graphs Gk equal Z (and therefore |Gk | = R) then µG1, · · · ,Gn boils
down to the usual Lebesgue measure over Rn.

Now we would like to provide any subregion A of |G1 | × · · · × |Gn | with a relevant
measure. A naive approach consists of defining µA as the restriction of µG1,...,Gn to
measurable subsets of A but this measure is null whenever µG1,...,Gn (A) = 0. The
problem is that Lebesgue measure on Rn, on which µG1,...,Gn is based, is not adapted
to subsets whose “intrinsic dimension” is strictly lower than n. Formalizing the notion
of “intrinsic dimension” and providing the corresponding measure are the first steps
to Geometric Measure Theory (Morgan, 2008, chapter 1). There are actually several
such measures, all of them being based on the Carathéodory construction (cf. (Federer,

5See Cohn (1980), Folland (1999), Bogachev (2007), Klenke (2008) or Fremlin (2011).
6The neglectable subsets are defined as the ones whose measure is null.

152



6.5. Metric Properties of Regions 6. Isothetic Regions

2013, Section 2.10, p.169) or (Krantz and Parks, 1999, Section 3.1, p.57)). The crucial
point is that all of them agree on rectifiable7 sets (cf. (Federer, 2013, 3.2.14, p.251
and 3.2.26, p.261) or (Krantz and Parks, 1999, 3.2.9-10, p.70-71)). So we can define
the intrinsic measure of a rectifiable set of intrinsic dimension d as its d-dimensional
Hausdorff measure8. One readily checks that any product I1 × · · · × In of intervals of
R is rectifiable and its intrinsic dimension d is the cardinal of the family

F =
{
k

�� Ik is not a singleton
}

Its intrinsic measure is then defined, for all measurable sets X , as the d-dimensional
Lebesgue measure of projF(X). By extension we define the intrinsic dimension of a
connected block (cf. Definition 6.2.12) C1 × · · · ×Cn ⊆ |G1 | × · · · × |Gn | as the cardinal
of the family

F =
{
k

�� Ck is not a singleton
}
= {i1 < . . . < id} .

Its intrinsic measure µC1×···×Cn is the tensor product of measures

µCi1
⊗ · · · ⊗ µCid

where µCk
is the restriction of µ |Gk | to measurable subsets of Ck . From the connected

ginzu partition C of A (cf. Definition 6.4.23) we define

µA(X) :=
∑
C∈C

µC(C ∩ X)

where µC is the intrinsic measure of the connected block C.

Remark 6.5.6. In general, an isothetic region A is “heterogeneous” in the sense that the
elements of its connected ginzu partition do not have the same intrinsic dimension. The
measure µA is designed to take “locally intrinsic” dimension into account. For example,
the connected ginzu partition of the punctured plane (cf. Example 6.5.1) has 8 elements,
namely (R+ \ {0})2, (R+ \ {0}) × {0} and their images under the π

2 rotation. According
to our construction, the measure of [−1, 1]2 \ {(0, 0)} is 8 though its 2-dimensional
Lebesgue measure is 4.

7Rectifiable subsets of Rn are characterized in Preiss (1987) and De Lellis (2008).
8Hausdorff measure is studied with much attention in the second chapter of Evans and Gariepy (1992).

153



7

Continuous Semantics
of the Parallel Automata Meta Language

This chapter aims at proving that conservative programs are profitably modelled within
the class of isothetic regions (cf. Definition 6.2.1). Let G1, . . . ,Gn be the control
flow graphs (cf. Definition 3.2.1) of the running processes of a program P, we denote
the set of vertices of Gi by Vi . In the light of Definition 6.4.27 we partly override
Definitions 3.3.1 and 3.3.2 to consider points and directed paths on the local pospace
�G1� × · · · × �Gn�. In terms of instruction pointer dynamics, this approach imposes
a paradigm shift about the meaning of arrows of control flow graphs. Referring to
Definition 3.3.7 we interpret arrows as intermediate positions between instructions. In
this context being inbetween instructions is a qualitative statement. After each arrow of a
control flowgraph has been replaced by a copy of the open segment ]0, 1[ (by considering
the geometric realization of the graph (cf. Section 6.1)) the abovementioned statement
becomes quantitative. Indeed an intermediate point can be “close to” the preceding
instruction (which is carried by the source of the arrow along with which the instruction
pointer moves) or “almost on” the next one (which is carried by the target of this
arrow). In this chapter we mainly handle isothetic regions. In that context, the term
“directed path” (or “dipath” for short) should therefore be understood in the light of
Proposition 6.4.3.

7.1 Switching to the continous framework
We adapt Sections 3.3 and 3.4 to the isothetic region context. Roughly speaking,
we replace a control flow graph by its directed geometric realization. Leaning on
Definition 6.4.27 the sequence of mutli-instructions associated with a directed path γ
on �G1� × · · · × �Gn� is the one associated with its discretization. Hence following
Definition 3.3.7, the directed path γ is admissible (resp. is an execution trace) when
so is D(γ). If γ is admissible, we define its action on (the right of) a state σ as σ ·D(γ).

Remark 7.1.1. Due to the convention that the effect of an instruction is visible at the
very moment it is reached, there exists a partition of intervals I ′0 < · · · < I ′K′ of dom γ,
which is coarser than the partition I0 < · · · < IK of Definition 6.4.27, and such that for
all k ∈ {0, . . . ,K}′, the interval I ′

k
is closed on the left and open on the right, and such

154



7.1. Switching to the continous framework 7. Continuous Semantics

that for all t, t ′ ∈ I ′
k
, we have the following equality.

δ0 · γ |[0,t] = δ0 · γ |[0,t′]

Assuming that the (middle-end representation of the) program is conservative
(cf. Definition 3.4.1) the potential function F from Definition 3.4.8 is defined for
all (p, s) with s ∈ S and p point of (G1, . . . ,Gn) in the sense of Definition 3.3.1. From
F we derive another potential function by setting F ′(p′, s) = F(p, s) for all p′ ∈ Bp

with Bp defined in Definition 6.4.27.

F ′ : �G1� × · · · × �Gn� × S → N

Hence Definition 3.4.10 still makes sense when we consider points of �G1� × · · · × �Gn�
and the potential function F ′ instead of F.

Definition 7.1.2. The continuous model of the program P, denoted by JPK, is the
complement of the forbidden subspace of �G1� × · · · × �Gn�.

Remark 7.1.3. Referring to the ginzu partition (cf. Definition 6.4.23), the continuous
model of the program P can also be written as follows⋃

d∈N
(Kd \ Fd)×]0, 1[d

with Kd (resp. Fd) being the set of d-dimensional (resp. forbidden) points of the tensor
product G1 ⊗ · · · ⊗ Gn (cf. Definitions 2.4.12 and 3.4.10). This remark is illustrated
by Figure 7.1. Analogously, the deadlock subspace can be described as the following
union ⋃

d∈N
Dd×]0, 1[d

where Dd is the set of d-dimensional deadlock points (cf. Definition 3.4.10).

Remark 7.1.4. Theorem 3.4.11 is still valid with the terms “directed path”, “forbidden
point”, and “admissible” being understood in the context of �G1� × · · · × �Gn�. The
continuous version of Theorem3.4.11 casts a glowon the example shownonFigure 3.13:
the ‘replacement’ it proposes might seem cryptic in the discrete setting but, as shown
on Figure 7.2, it becomes obvious in the light of the continuous one.

We substitute the discrete model from Definition 3.4.10 with an isothetic region which
is compatible with the ginzu partition associated with the control flow graphs (cf. Defi-
nition 6.4.23).

Proposition 7.1.5. The continuous model, the deadlock subspace, and the deadlock
attractor of (the middle-end representation of) a program are isothetic regions. Their
common dimension being the number of running processes of the program (i.e. the
mass of its bootup multiset, see Definition 1.1.7.).

Proof. Referring to Definition 6.4.27, observe that each of the blocks Bp of the ginzu
partition of �G1 � × · · · × �Gn �, which is finite, is either contained in the forbidden
subspace or disjoint from it, depending on the point p being forbidden or not in the
sense of Definition 3.4.10. The same remark applies to the subspace of deadlocks of
the program. One deduces from Corollary 6.4.30 that the deadlock attractor is also an
isothetic region.

155



7.1. Switching to the continous framework 7. Continuous Semantics

y:=0

W(b)

P(a)

x:=z

V(a)

z:=1

W(b)

P(a)

x:=y

V(a)

⊗

y:=0

W(b)

P(a)

x:=z

V(a)

z:=1

W(b)

P(a)

x:=y

V(a)

×

Figure 7.1: Discrete model vs continuous model

156



7.1. Switching to the continous framework 7. Continuous Semantics

x:=1

x:
=0

× × x:=1

x:
=0

×

Figure 7.2: Comparing the discrete and the continuous approaches: an admissible
directed path that meets a forbidden point and a possible replacement for it.

W(a)

W(
a)

synchronisation point

unreachable

un
re
ac
ha
bl
e

x:=x+1

W(
a)

W(a)

x:
=x

-1

W(b)

W(
b)

Figure 7.3: Binary synchronisation: producer vs consumer on a flat torus (the opposite
edges of the dotted frame are identified).

On this occasion we provide several illustrations.

Example 7.1.6. The left-hand model on Figure 7.3 illustrates a binary synchronisa-
tion. The right-hand one represents the ‘producer vs consumer’ situation introduced
in Example 1.1.9. Using synchronisation barriers we ensure that items are made and
delivered just-in-time. Note that this example lie on the directed torus, each dotted
edge being identified with its opposite. On both models, the grayed out subspace is
unreachable from the origin of the model.

Example 7.1.7. The models shown on Figure 7.4 are standard examples of deadlocking
programs introduced in Example 1.1.10. The “Swiss Cross” model and the “dining
philosophers” problem appear in Coffman et al. (1971) and Dijkstra (1971) respectively.

Example 7.1.8. The models shown on Figure 7.5 illustrate how drastically sensitive
the model of a program is to the arities of the semaphores it uses. The left hand model
is obtained with a semaphore of arity 1 while the right hand one is obtained by setting
the arity to 2.

157



7.1. Switching to the continous framework 7. Continuous Semantics

x

y

z

P(a) P(b) V(a) V(b)

P(c)

P(a)

V(c)

V(a)

P(b)
P(c)

V(b)
V(c)

P(a)

P(
b)

P(b)

P(
a)

V(b)

V(
a)

V(a)

V(
b)

Figure 7.4: The three dining philosophers and the Swiss Cross with their deadlock
attractors (in red).

x

y

z

P(a) V(a)

P(a)

V(a)

P(a)

V(a)
x

y

z

P(a) V(a)

P(a)

V(a)

P(a)

V(a)

Figure 7.5: The tetrahemihexacron a.k.a. 3D Swiss Cross, and the ‘floating’ cube.

158



7.2. Justifying the Topological Approach 7. Continuous Semantics

p

q

r

sem 1: u v w x y z

proc:

XXp = P(x);P(y);P(z);V(x);P(w);V(z);V(y);V(w)

XXq = P(u);P(v);P(x);V(u);P(z);V(v);V(x);V(z)

XXr = P(y);P(w);V(y);P(u);V(w);P(v);V(u);V(v)

init: p q r

Figure 7.6: The continuous model of the Lipski algorithm.

Example 7.1.9. The model of the Lipski algorithm, depicted on Figure 7.6, was
introduced in Lipski and Papadimitriou (1981) as an example of program without
deadlock though its “request graph” has cycles. A careful examination reveals that
there is indeed a “tunnel” going through the forbidden subspace.

7.2 Justifying the Topological Approach
This section is devoted to a theorem which justifies the use of algebraic topology
methods in the study of concurrency. In computer science terms, it says that dihomotopy
of directed paths is sound with respect to Paml programs semantics, thus validating the
construction described in Definition 7.1.2. In order to state it properly, we relax the
notion of alternating dihomotopy (cf. Definition 5.2.5).

Definition 7.2.1. A weak dihomotopy is a homotopy (cf. Definition 5.1.1) whose
intermediate paths are directed. In the context of this manuscript, two directed paths
are said to be weakly dihomotopic when there exists a weak dihomotopy between
them. The effect of weakly directed homotopies on the sequences of multi-instructions
associated to the intermediate dipaths is illustrated on Figure 7.7.

Example 7.2.2. Any alternating homotopy is a weak dihomotopy but the converse is
false as shown by the sphere S2 directed by its meridians (i.e. the Riemann sphere with
paths of the form t ∈ R+ ∪ {∞} 7→ z · t with z ∈ C \ {0}). Any two meridians are
indeed weakly dihomotopic with one another though both of them are dihomotopic iff
they have the same image. This counterexample is an instance of directed suspension
above a chaotic d-space X: form the product X × [0, 1] then identify all the points
(x, 0) (resp. (x, 1)) with a single one, being understood that [0, 1] is directed. However
Fajstrup (2005) proves that the notions coincide for the so-called cubical complexes
(i.e. realization of geometric precubical sets as local pospaces).

Weak dihomotopies have been introduced with a view to Theorem 7.2.4. However,
for theoretical purposes, alternating dihomotopies are easier to work with (cf. Re-
mark 5.4.2). In addition, (Fajstrup, 2005, Theorem 5.7, p.203-204), and in a more
general setting (Krishnan, 2013, Theorem 8.13, p.208), have proved that the notions
coincide on �K �LpoTop and �K �Strm for a large class of precubical and cubical sets.
Strictly speaking, isothetic regions do not fall in that class but we are confident that the
following conjecture holds.

159



7.2. Justifying the Topological Approach 7. Continuous Semantics

P1

P2

y:=2

x:
=1

γ2

γ3 γ1

γ1
P1

P2

x:
=1

y:
=2

γ3
P1

P2

x:
=1

y:
=2

γ2
P1

P2

x:
=1

y:
=2

γ2 : {y := 2} · {x := 1}

γ3 :
{

x := 1
y := 2

}
γ1 : {x := 1} · {y := 2}

Figure 7.7: Timelines and sequences of multi-instructions interpreting weakly diho-
motopic directed paths.

160



7.2. Justifying the Topological Approach 7. Continuous Semantics

Conjecture 7.2.3. Weakly dihomotopic paths on an isothetic region are dihomotopic.

Theorem 7.2.4. Two weakly dihomotopic directed paths on the continuous model of a
conservative program induce the same action over the valuations. Moreover, one is an
execution trace if and only if the other is so.

Proof. Let X be the continuous model of a conservative program and suppose we are
given a weakly directed homotopy h : [0, r] × [0, q] → U(X). By Definition 7.1.2 the
model X is a subobject of �G1� × · · · × �Gn� with each Gi being the control flow graph
of a process. The set of vertices of Gi is denoted by Vi . The labelling on �Gi� is the
mapping λi : Vi → {instructions} and we define hi = proji ◦ h. For all s ∈ [0, q] the
image of the directed path h(_, s) lies in the continuous model, hence it is admissible by
Theorem 3.4.11 which is still valid in the continuous framework (cf. Remark 7.1.4). Fix
s ∈ [0, q]. In each coordinate i ∈ {1, . . . , n}, the subspace (hi(_, s)) -1(Vi) is the union
of the following finite sequence of disconnected compact intervals because (hi(_, s)) is
a directed path (cf. Proposition 6.1.7).

[a(i)1 (s), b
(i)
1 (s)] < · · · < [a

(i)
Ni
(s), b(i)Ni

(s)]

Define Y (s) =
{
a(i)
k
(s)

�� i ∈ {1, . . . , n} ; k ∈ {1, . . . , Ni}
}
and let y be some of its

elements. We consider Ey(s) the set of i ∈ {1, . . . , n} such that y is theminimumof some
connected component of (hi(_, s)) -1(Vi), or y belongs to this connected component and
λi(hi(y, s)) is a synchronisation W(_). In other words Ey(s) is the subset of {1, . . . , n}
whose elements i satisfy the conditions below.

∃k ∈ {1, . . . , Ni}; y ∈ [a(i)
k
(s), b(i)

k
(s)] ∧ y , a(i)

k
(s) ⇒ λi(hi(y, s)) = W(_)

The multi-instruction µy(s) is defined over Ey(s) by (µy(s))(i) = λi(hi(y, s)) which is
the instruction carried by the point hi(y, s) of �Gi�. Since Y (s) is totally ordered (as
a subset of R) so are the multi-instructions µy(s). The latter actually forms the finite
sequence associated with the discretization of h(_, s) (cf. Section 7.1). It is denoted by
Jh(_, s)K in the sequel. Then for each i ∈ {1, . . . , n} choose ti > 0 so that the intervals
[a(i)

k
(s) − ti, b

(i)
k
(s) + ti] are still pairwise disjoint. For h is continuous, one has εi > 0

such that for all s′ ∈ [0, q], if |s − s′ | 6 εi then (hi(_, s)) -1(Vi) and (hi(_, s′)) -1(Vi) have
the same number of connected components, viz Ni , and for all k ∈ {1, . . . , Ni}, the
following inclusions hold.

[a(i)
k
(s′), b(i)

k
(s′)] ⊆ [a(i)

k
(s) − ti, b

(i)
k
(s) + ti]

Define ε′ = min{ε1, . . . , εn} and let s′ ∈ [0, q] be satisfying |s − s′ | 6 ε′. For
Y (s) is finite we can actually find ε ∈]0, ε′] such that for all i, i′ ∈ {1, . . . , n}, for all
k ∈ {1, . . . , Ni}, for all k ′ ∈ {1, . . . , Ni′}, for all s′ ∈ [0, q] such that |s − s′ | 6 ε, the
following statement is satisfied.

a(i)
k
(s) < a(i

′)
k′ (s) ⇒ a(i)

k
(s′) < a(i

′)
k′ (s

′)

Enumerating Y (s) = {y1 < . . . < ym}, it exactly means that if s′ is close enough to s,
then one can write Jh(_, s′)K as an appending of finite sequences of multi-instructions
S1, . . . , Sm such that for all p ∈ {1, . . . ,m}, the domains of definition of the multi-
instructions contained in Sp are disjoint and their union is µyp (s) (i.e. one recover
Jh(_, s)K from Jh(_, s′)K by gathering certain consecutive elements). We write εs

161



7.3. Independence of Conservative Programs 7. Continuous Semantics

instead of ε to stress the dependency on s. The open intervals ]s − εs, s + εs[ form
an open covering of the compact interval [0, q]. Let ε be some Lebesgue number of
the covering. By Corollary 3.4.14, for all s, s′ ∈]0, q[ such that |s − s′ | 6 ε both
directed paths h(_, s) and h(_, s′) induce the same action on valuations, and h(_, s) is
an execution trace iff so is h(_, s′). The conclusion follows.

Corollary 7.2.5. The fundamental category of the continuousmodel of a (conservative)
Paml program acts on valuations.

7.3 Independence of Conservative Programs
Building on the notion of continuous model (cf. Definition 7.1.2) and following the
intuition that the Cartesian product of models should represent the parallel composition
of the corresponding programs, we introduce another notion of independence that
applies to conservative programs.

Definition 7.3.1. The Paml programs P1, . . . , PN are said to be model independent
when they make coherent declarations (cf. Definition 1.5.1) and the following equality
holds.

JP1 | . . . |PN K = JP1K × · · · × JPN K

Proposition 7.3.2. Syntactically independent conservative programs are model inde-
pendent.

Proof. The forbidden region F` of each of the conservative programs P` for ` ∈
{1, . . . , L} is a subobject of �G(`)1 � × · · · × �G(`)N` � which we denote by Ω` . The
continuous model of the parallel compound JP1 | · · · |PLK is thus a subregion of the
product

�G(1)1 � × · · · × �G
(1)
N1
�︸                    ︷︷                    ︸

Ω1

× · · · × �G(L)1 � × · · · × �G
(L)
NL
�︸                     ︷︷                     ︸

ΩL

.

Because the programs P` are syntactically independent, the forbidden region of the
parallel compound P1 | · · · |PL generated by P` has the form

Ω1 × · · · ×Ω`−1 × F` ×Ω`+1 × · · · ×ΩL .

So the forbidden region of the parallel compound P1 | · · · |PL is the following one

L⋃̀
=1
Ω1 × · · · ×Ω`−1 × F` ×Ω`+1 × · · · ×ΩL .

The model JP1 | · · · |PLK of the parallel compound is thus the complement of the pre-
ceding region.

L⋂̀
=1
Ω1 × · · · ×Ω`−1 × (Ω` \ F`) ×Ω`+1 × · · · ×ΩL

The region above can be rewritten as the following one

(Ω1 \ F1) × · · · × (Ω` \ F`) × · · · × (ΩL \ FL)

162



7.3. Independence of Conservative Programs 7. Continuous Semantics

which is precisely the product of the continuous models of the programs P` .

JP1K × · · · × JP`K × · · · × JPLK

As illustrated by the next example model independent programs might not be syntac-
tically independent. However, such a situation suggests that the source code of the
program under consideration can be cleaned up.

Example 7.3.3. Let us denote by P (resp. Q) the left-hand (resp. right-hand) program
thereinafter.
sem: 1 a
sem: 2 c
proc: p = P(a);P(c);V(c);V(a)
init: 2p

sem: 1 b
sem: 2 c
proc: q = P(b);P(c);V(c);V(b)
init: 2q

The programs P and Q make coherent declaration (cf. Definition 1.5.1) so we can
form their parallel composition P |Q yet they are readily not syntactically independent
(cf. Definition 1.5.3). A direct but rather tedious calculation proves that JP |QK =
JPK × JQK in other words that P and Q are model independent (cf. Definition 7.3.1).
We also observe that due to the mutual exclusion a, the program P cannot hold more
that one occurrence of the semaphore c. The same remark can be made about the
program Q. Hence no process of the parallel composition P |Q can be hindered by a
lack of semaphore c. In other words the parallel composition P |Q never uses more
than two occurrences of c. From the above remarks, we deduce that P and Q are
observationally independent (cf. Definition 1.5.7). We also deduce that the forbidden
region generated by c is included in the forbidden region generated by a and b. From
the computer science point of view, it means that c has no influence on the executions
of the program P |Q so it is harmless to drop it. Denote by P′ and Q′ the programs
obtained by removing the instructions P(c) and V(c) from P and Q, then P′ and Q′

are syntactically independent and we have JP |QK � JP′ |Q′K. This example is due to
Balabonski and Haucourt (2010).

Theorem 7.3.4. Model independent conservative programs are observationally inde-
pendent.

Proof. Let S1 t · · · t SN be the associated partition of the set of running processes of
the parallel composition P1 | · · · |PN (cf. Definition 1.5.7) with n being the total number
of running processes. Let δ be an execution trace (cf. Definition 2.1.7) and denote by
(µ0, . . . , µq) its associated sequence of multi-instructions. First, we treat the case where
the permutation is a rolling (0 · · · q) compatible with δ (cf.Definitions 1.5.7 and 1.5.10).
The idea is to consider a lifting of δ and to deform it (by a weakly directed homotopy)
so it becomes a directed path whose discretization is associated with the sequence of
multi-instructions (µ′0, . . . , µ

′
q) with µ′

k
= µρ−1(k). If we succeed, then we have by

Theorem 7.2.4 that both sequences of multi-instructions (µ0, . . . , µq) and (µ′0, . . . , µ
′
q)

come from execution traces and induce the same action over valuations. The general
case will follow from the rolling decomposition of the compatible permutation to treat
(cf. Lemma 1.5.12). As ρ is compatible with δ we have J∩ J ′ = ∅ with J and J ′ befined
thereinunder.

J =
{

j ∈ {1, . . . , N}
�� dom µq ∩ Sj , ∅

}
163



7.3. Independence of Conservative Programs 7. Continuous Semantics

J ′ =
{

j ∈ {1, . . . , N}
�� dom µk ∩ Sj , ∅ for some k ∈ {0, . . . , q − 1}

}
The projections projJ and projJ′ send a point of �G1� × · · · × �Gn� to the extracted
tuples of components whose indices respectively belong to the following sets.⋃

j∈J
Sj

⋃
j′∈J′

Sj′

Therefore we have a lifting γ of δ (cf. Definition 6.4.27) that can be written as a
concatenation γ = γJ′ · γJ such that projJ ◦ γJ′ and projJ′ ◦ γJ are constant. As an
instance of Godement exchange law between composition and concatenation we have
the directed paths γ1 and γ2 defined below.

γ1 = projJ′ ◦ γ = γJ′ · cst γ2 = projJ ◦ γ = cst · γJ

Sowe have γ = (γ1, γ2)with the convention that we omit all the ‘harmless’ components,
that is to say the ones in following set.

{1, . . . , n} \
⋃

j∈J∪J′
Sj .

Since P1, . . . , PN are model independent, the continuous model JP1 | · · · |PN K is the
local pospace product JP1K × · · · × JPN K. Therefore, assuming that both γ1 and γ2 are
defined over [0, 1], the mapping thereinafter induces a local pospace morphism from
[0, 1]2 to the continuous model of the parallel composition.

(x, y) 7→ (γ1(x), γ2(y))

Precomposing with a weakly directed homotopy from [0, 1] × {0} ∪ {1} × [0, 1] to
{0} × [0, 1] ∪ [0, 1] × {1} we obtain a weakly directed homotopy from γ = γJ′ · γJ to
γ′ = γ′J · γ′J′ with γJ′ , γJ , γ′J , and γ′J′ being characterized by the relations below:

– projJ ◦ γ′J = projJ ◦ γJ and projJ′ ◦ γ′J′ = projJ′ ◦ γJ′ , and

– projJ ◦ γ′J′ = cst and projJ′ ◦ γ′J = cst .

The sequence of multi-instruction associated with γ′ is (µ′0, . . . , µ
′
q) and we are done.

Remark 7.3.5. Remark 1.5.8 also proves that observationally independent programs
might not be model independent. Gathering the results obtained so far, we have proven
the following chain of strict implications.

syntactic independence ⇒ model independence ⇒ observational independence

Relevancy of model independence goes beyond the theoretical aspect since it comes
with a unique decomposition theorem for cubical regions together with a factorization
algorithm Balabonski and Haucourt (2010). In addition Haucourt and Ninin (2014)
proves that the Boolean algebra of n-dimensional cubical regions is the n-fold tensor
product of the Boolean algebra of 1-dimensional cubical regions. Both results should
be extendible to all isothetic regions and gathered in a more general formulation, which
is the purpose of Chapter 9.

164



8

Categories of Components

In good cases (e.g. when X is the continuous model of a Paml program, see Defini-
tion 7.1.2) the homsets of the fundamental category of X are finitely generated, and
even finite when X is a pospace. However −→π1X still has infinitely many objects while,
in some sense, all information about it would be known from a well chosen full subcat-
egory with finitely many objects. If −→π1X were a groupoid then its skeleton would be the
disjoint union of the fundamental groups of its connected components, thus providing
the expected reduction. Unfortunately, for any relevant X the only isomorphisms of
−→π1X are its identities, and therefore −→π1X is its own skeleton. The category of compo-
nents, introduced in Fajstrup et al. (2004), is intended to address this issue. The basic
idea is to define a generic class of morphisms that strictly contains the collection of
isomorphisms and shares enough of its properties. This lead to the notion of systems
of weak isomorphisms. Note that we have adopted another terminology than the one
used in Fajstrup et al. (2004): Yoneda morphisms and Yoneda systems are now called
potential weak isomorphisms and systems of weak isomorphisms. A practical applica-
tion of the categories of components can be found in Goubault and Haucourt (2005).
The functoriality of the construction is broached in Goubault and Haucourt (2007).
Goubault et al. (2010) changes the original approach to break the symmetry between
past and future. The notion of components of a category is actually far from being
completely understood except in the loop-free case – see Haucourt (2006). A concept
that would relevantly apply to all small categories is almost surely a chimere – at least
for now. Our aim is thus to find a class of categories within which a “reasonable” notion
of component can be defined. Loop-free categories and one-way categories, which
were respectively introduced in Haefliger (1992) and McLarty (2006) in mathematical
contexts very far from ours, provide two examples. Localizations – see Borceux (1994a)
and generalized congruences – see Bednarczyk et al. (1999), are everywhere in this
chapter. The latter allow us to identify morphisms even when they do not share their
extremities, and therefore also identify objects. When R is the left (resp. right) adjoint
to an inclusion functor A ⊆ B, R(x) is called the left (resp. right) reflect of x in A.
By extension the functor R is also called a reflection – see Borceux (1994a).

In Section 8.1 we describe a class of small categories in which the notion of
components is fully understood, all the subsequent sections (but the last one) only deal
with such categories. In Section 8.2, we formalize the idea of a class of morphisms that
extends the class of isomorphisms but shares a great deal of its properties. The category
of components −→π0C of a one-way category C is defined in Section 8.3. By the way, an
extensive description of it is provided. In particular it comes with a quotient functor

165



8.1. Loop-Free Categories vs One-Way Categories 8. Categories of Components

q : C → −→π0C whose right inverses are discussed in Section 8.4. The existence of
such embeddings is guaranteed by the finiteness of the set of components. The general
case is related to the Axiom of Choice. How the category of components construction
behaves with respect to Cartesian product is studied in Section 8.5. In Section 8.6,
we attempt to provide the category of components with a homotopical interpretation.
Indeed both model categories (cf.Quillen (1967)) and components are based on the idea
that the class of isomorphisms of certain categories could be extended soundly. Some
conjectures about the components of regions are stated in Section 8.7. The overall idea
is that the components of a region should be regions.

8.1 Loop-Free Categories vs One-Way Categories
The notion of one-way category slightly extends the notion of loop-free category. Most
of the ideas implemented in this context come from Haucourt (2006).

Definition 8.1.1. A category C is said to be one-way when its endomorphisms are
its identities. A one-way category C is said to be loop-free when C[x, y] , ∅ and
C[y, x] , ∅ implies that x = y.

We denote by Ow (resp. Lf) the full subcategory of Cat (resp. Ow) whose objects
are one-way (resp. loop-free).

Example 8.1.2. The fundamental category of a pospace is loop-free because any
directed loop on a pospace is constant.

Definition 8.1.3 (Borceux (1994a), p.120). A full subcategory A of B is said to be
reflective when A contains any object of B which is isomorphic to some object of
A, and the inclusion functor A ↪→ B has a left adjoint. It is said to be epireflective
when it is reflective and for all objects B of B, the unit of the adjunction at B is an
epimorphism.

Lemma 8.1.4. The category Ow (resp. Lf) is epireflective in Cat (resp. Ow).

Proof. Given a small category C consider the congruence ∼ that identifies any endo-
morphism e ∈ C(x, x) with idx . This construction induces a functor from Cat to Ow
which is left adjoint to the inclusion Ow ⊆ Cat. The collection of quotient functors
C → C/∼, which are epimorphisms of Cat, indeed provides the unit of the adjunction.

Given a one-way category C consider the generalized congruence ∼ that identifies
any isomorphism f ∈ C(x, y) with idx (and therefore also with idy). This construction
induces a functor from Ow to Lf which is left adjoint to the inclusion Lf ⊆ Ow. The
collection of quotient functors C → C/∼, which are epimorphisms of Ow, indeed
provides the unit of the adjunction.

The skeleton of a category can be defined as any of its full subcategories whose col-
lection of objects meets every isomorphism class exactly once. Such a full subcategory
is a representative of the skeleton.

Lemma 8.1.5. A category is one-way iff its skeleton if loop-free. Moreover the reflect
of a one-way category in Lf is its skeleton.

Proof. Let C be a one-way category and let f , g be morphisms of the skeleton of C such
that ∂- f = ∂+g and ∂+ f = ∂-g. Then f is an isomorphism: its inverse is necessarily

166



8.2. Systems of Weak Isomorphisms 8. Categories of Components

z∂+σ

σ

σ′

Figure 8.1: Potential weak isomorphism

g because C is one-way. Since the skeleton meets every isomorphism class exactly
once we have ∂- f = ∂+ f hence f is an identity. Conversely every homset C(x, x) is in
bijection with some homset S(y, y) of the skeleton of C, which is loop-free.

Suppose that C is one-way and letS be a representative of its skeleton. Then denote
by φ(x), for every object x ∈ C, the distinguished object of the isomorphism class of
x. Since C is one-way, there is a unique morphism τx : x → φ(x). In particular τx is
an isomorphism. Then one can extend φ to a functor from C to S sending f ∈ C(x, y)
to τy ◦ f ◦ τ−1

x ∈ S(φ(x), φ(y)). Then one checks that φ sends any isomorphism to an
identity, and that it is universal among those functors enjoying this property.

Corollary 8.1.6. A category is one-way iff it is equivalent to its loop-free reflect.

The construction we are about to describe is actually a generalization of the previous
one.

8.2 Systems of Weak Isomorphisms
Given a small category C, we define a class of morphisms that contains the class of
isomorphisms and that enjoys many of its properties. For any morphism σ and any
object z, we define the σ, z-precomposition as the mapping

γ ∈ C(∂+σ, z) 7→ γ ◦ σ ∈ C(∂-σ, z)

and dually the z, σ-post-composition by

δ ∈ C(z, ∂-σ) 7→ σ ◦ δ ∈ C(z, ∂+σ)

Note that C(∂+σ, z) and C(z, ∂-σ)may be empty. Also remark that σ is an isomorphism
iff for all z both σ, z-precomposition and z, σ-post-composition are bijective. In order
to capture a wider class, the latter condition has to be weakened.

Definition 8.2.1. A morphism σ is said to preserve the future cones (resp. past
cones) when for all z, if C(∂+σ, z) , ∅ (resp. C(z, ∂-σ) , ∅) then the precomposition
(resp. post-composition) is bijective. The morphism σ is called a potential weak
isomorphism when it preserves both the future and the past cones. Potential weak
isomorphisms readily compose.

Example 8.2.2. Assume thatwe areworking in the fundamental category of the isothetic
region depicted on Figure 8.1. Due to the lower dipath, the σ, z-precomposition is not
bijective. On the contrary, σ′ is a potential weak isomorphism.

167



8.2. Systems of Weak Isomorphisms 8. Categories of Components

z

σ′′

Figure 8.2: An unwanted potential weak isomorphism

Example 8.2.3. The collection of potential weak isomorphismsmight contain unwanted
members. On Figure 8.2, the morphism σ′′ is indeed a potential weak isomorphism
though there exists a morphism from ∂-σ′′ to z but none from ∂+σ′′ to z.

A remarkable feature of the collection of isomorphisms of a category is that it is
stable under pushouts. That is if σ is an isomorphism and γ is any morphism such
that ∂-σ = ∂-γ then there exists a pushout of σ along γ and all of them are still
isomorphisms. Dually, the collection of isomorphisms is stable under pullback. Hence

Definition 8.2.4. A family Σ is said to be a system of weak isomorphisms when
i) { isomorphisms } ⊆ Σ ⊆ { potential weak isomorphisms }
ii) Σ is stable under pushouts and pullbacks

Remark 8.2.5. Let σ be an element of some system of weak isomorphisms Σ, and φ be
an isomorphism such that ∂-σ = ∂+φ. The pushout of σ along φ−1, namely σ ◦ φ, thus
belongs to Σ. We have proved that Σ is stable under pre-composition by an isomorphism.
Dually, we prove that it is stable under post-composition by an isomorphism.

We denote by < Σ > the closure under composition of any collection Σ of morphisms
of C.

Lemma 8.2.6. If Σ is a system of weak isomorphisms then so is < Σ >.

Proof. Potential weak isomorphisms compose and two pullbacks (resp. pushouts) put
side by side give rise to another pullback (resp. pushout) – (Borceux, 1994a, Prop.2.5.9
p.54).

Denote the collections of systems of weak isomorphisms over C by SWI(C), and let
SWIC(C) be the subcollection of SWI(C)whose elements are closed under composition.
We denote the corresponding inclusion by i and the mapping that returns the closure
under composition by r . They provide a Galois connection i.e. r ◦ i = id and id ⊆ i ◦ r

SWIC(C)
i // SWI(C)
r
oo

Remark 8.2.7. A right calculus of fractions of C is a collection Σ of morphisms of
C satisfying the following properties (Borceux, 1994a, Definition 5.2.3, p.183):

– { identities } ⊆ Σ,

– Σ is stable under composition,

168



8.2. Systems of Weak Isomorphisms 8. Categories of Components

– for all morphisms f : x → z of C and all σ : y → z with σ ∈ Σ, there exist a
morphism f ′ : z′→ y of C and σ′ : z′→ x in Σ such that σ ◦ f ′ = f ◦ σ′, and

– for all morphisms f , g : x → y of C and allσ : z → x in Σ such thatσ◦ f = σ◦g,
there exists σ′ : y → z′ such that f ◦ σ′ = g ◦ σ′.

Every Σ ∈ SWIC(C) readily satisfies the first three properties. Then remark that if
σ ◦ f = σ ◦ g, then f = g because σ is a potential weak isomorphism. Therefore
σ′ = idy is an element of Σ that satisfies f ◦ σ′ = g ◦ σ′. Dually, Σ is also a left
calculus of fractions. This remark will be of importance in Section 8.3.

From now on C is assumed to be one-way.

Definition 8.2.8. A collection Σ of morphisms is said to be purewhen both morphisms
γ and δ belong to Σ when their composite does.

The following Lemma is of prime importance in the sequel.

Lemma 8.2.9. Any system of weak isomorphisms of a one-way category is pure.

Proof. Consider σ ∈ Σ and two morphisms δ and γ such that σ = γ ◦ δ. As Σ is stable
under pushout, we have σ′ ∈ Σ and a morphism δ′ of C which form a pushout square.
We also have a unique morphism ξ making the following diagram commute. Since C is
one-way both morphisms δ′ and ξ are isomorphisms. In particular γ = ξ ◦ σ′ belongs
to Σ by Remark 8.2.5. We prove the same way, referring to the stability under pullback,
that δ belongs to Σ.

ξ

OO

δ′
??

id

66

σ′
__

γ

hh

σ

__

δ

??
push
out

Lemma 8.2.10. The inverse image (resp. the direct image) of a system of weak iso-
morphisms by an equivalence of categories is a system of weak isomorphisms. If the
system is stable under composition, then so is its inverse (resp. direct) image.

Proof. As an equivalence of category, the functor E : C → D is such that
1) all the homset mappings γ ∈ C(x, y) 7→ E(γ) ∈ D(E x, E y) are bijections,
2) any object of D is isomorphic to some E(x) with x object of C,
3) the pushout squares and the pullback squares are preserved by E .

The remaining details are routine verification.

A locale is a complete lattice whose binary meet distributes over arbitrary join.
Intuitively it mimics the properties of the lattice of open subsets of a topological space
– see (Borceux, 1994c, Chap.1) or (Pedicchio et al., 2003, Chap.2).

Lemma 8.2.11. The collection SWI(C) is stable under union and intersection, and
SWIC(C) forms a locale. They share their least and greatest elements.

169



8.2. Systems of Weak Isomorphisms 8. Categories of Components

Proof. The collection SWI(C) is obviously stable under union. Suppose that σ belongs
to the intersection of a nonempty family Σi of elements of SWI(C). Let γ be amorphism
with ∂-γ = ∂-σ. Given an index i we let σ′ be a representative of the pushout of σ
along γ. Then σ′ belongs to Σi . By Lemma 8.2.6 the least upper bound of a nonempty
family of elements of SWIC(C) is the closure under composition of its union. As
a consequence the union of all systems of weak isomorphisms of C is stable under
composition. Let Σ′ belong to SWIC(C) and Σi be a nonempty family of elements of
SWIC(C). We would like to prove that∨

i

(Σ′ ∩ Σi) = Σ
′ ∩

∨
i

Σi

From general facts about posets the left-hand term is included in the right-hand one
as soon as both exist. Conversely an element of the right hand term can be written as
σ = σn ◦ · · · ◦ σ1 with σk ∈ Σik . By Lemma 8.2.9 each σk belongs to Σ′ which is
closed under composition.

In particular the greatest system of weak isomorphisms of C, which is intended
to extend the class of isomorphisms, can also be obtained as the following decreasing
intersection ⋂

n∈N
Φ

n({potential weak isomorphisms of C})

with Φ(S) defined as the collection of morphisms of σ ∈ S such that for all morphisms
f :

– if ∂-σ = ∂- f then the pushout of σ along f exists and belongs to S, and
– if ∂+σ = ∂+ f then the pullback of σ along f exists and belongs to S.

Lemma 8.2.12. The greatest system of weak isomorphisms of C is stable under the
action of the group of functorial permutations of the category C (i.e. the functors from
C to itself which admits an inverse)).

Proof. Let A : C → C be an automorphism. Then note that A induces a permutation
of the set of potential weak isomorphisms of C and that the mapping on morphisms
induced by A commutes with Φ.

Remark 8.2.13. Lemma 8.2.12 may fail for systems of weak isomorphisms which are
not maximum. Consider for example the totally ordered real line (R,6) as a loop-free
category. Its greatest system of weak equivalences contains all the morphisms (i.e. the
2-tuple (x, y) with x 6 y). The partition

R = ] − ∞, 0[ ∪ [0,+∞[

induces the following system of weak isomorphisms.

Σ =
{
(x, y)

�� x 6 y; y < 0 or 0 6 x
}

Then any nonidentity translation induces an automorphism of (R,6) which does not
preserve Σ.

From now on all the systems of weak isomorphisms we consider are supposed to
be closed under composition.

Definition 8.2.14. The elements of the greatest system of weak isomorphisms are called
the weak isomorphisms of the category.

170



8.2. Systems of Weak Isomorphisms 8. Categories of Components

y //

//

OO

x

OO__

Figure 8.3: Filling square property

Example 8.2.15. We go back over Example 4.2.5. Since the fundamental category
of any pospace is loop-free (cf. Example 8.1.2), we can consider the category of pairs
(X, Σ) where X is a pospace and Σ is a system of weak isomorphisms of −→π1X . The
morphisms from (X, Σ) to (X ′, Σ′) are the pospace morphisms f from X to X ′ such
that −→π1 f (Σ) ⊆ Σ′. Then define A = R- \ {0} × R, B = R2 \ (0, 0), and C = R2. The
greatest systems of weak isomorphisms of A and C contain all the morphisms, while
the components corresponding to the greatest system of weak isomorphisms of B are

(R+ \ {0})2, (R- \ {0})2, R+ × R- \ (0, 0), and R- × R+ \ (0, 0).

According to the fourth axiom of Definition 4.2.2, A is a subspace of C provided that
both of them are equipped with their greatest systems of weak isomorphisms. However
the subspace structure induced on A by B is made of the two components (R- \ {0})2
and R- \ {0} × R+, therefore it is not a subspace of C (although it is a subobject of it),
see Example 4.2.5.

Before embarking in the next section, which defines the category of components,
we prove that, under an additional hypothesis, the axioms of Definition 8.2.14 can be
relaxed.

Definition 8.2.16. A category is said to be square filling when for all commutative
squares which are both pushout and pullback, if there is at least one morphism from x
to y then there exists a morphism from x to y that makes both triangles on Figure 8.3
commute.

Proposition 8.2.17. In a filling square one-way category, any collection of morphisms
that is stable under pushout and pullback is actually a system of weak isomorphisms.

Proof. Let Σ be such a collection of such a category C. Given σ ∈ Σ(x, y) and
γ ∈ C(y, z) we have, by hypothesis, a pushout square formed by the morphisms σ, γ,
γ ◦σ, and σ′ ∈ Σ. In particular there is a unique morphism ξ such that ξ ◦σ′ = id and
γ = ξ ◦ γ′. Then ξ is an isomorphism because C is one-way, and the outer shape of the
following diagram is actually a pushout.

σ′ //

id ,,
ξ
??

γ◦σ
OO

σ
//
γ′

OO
γ

RR

If γ′′ is a morphism such that σ ◦ γ = σ ◦ γ′′ then we have a pushout square formed by
σ, γ′′, γ ◦σ, and id. Then γ = γ′′ since the only endomorphisms of C are its identities.
Therefore σ is an epimorphism. By duality it is also a monomorphism.

171



8.3. Categories of Components 8. Categories of Components

Now let δ ∈ C(x, z) with C(y, z) , ∅. By hypothesis on Σ we have a pushout square
formed by σ, δ, δ′, and σ′ ∈ Σ; and then a pullback square formed by σ′, δ′, δ′′, and
σ′′ ∈ Σ. Therefore we have a morphism ζ such that δ = δ′′ ◦ ζ and σ = σ′′ ◦ ζ .
Then let u and v be such that u ◦ δ′′ = v ◦ σ′′. By precomposition with ζ we obtain
u ◦ δ = v ◦ σ so there is a unique ζ ′ such that ζ ′ ◦ σ′ = u and ζ ′ ◦ δ′ = v. Hence
the pullback square is also a pushout. By the filling square property there is thus a
morphism γ such that δ′′ = γ ◦ σ′′ from which we deduce that δ = γ ◦ σ.

z σ′ //

u ,,

ζ ′

??

δ′′

OO

σ′′
// y

δ′

OO

γ

__
v

QQ

x

δ

99

σ

EE
ζ

??

Proposition 8.2.17 might have a concrete application. Indeed we speculate that the
fundamental category of any isothetic region without directed loops actually satisfies a
stronger property: for all commutative squares with at least one dipath from x to y – see
Figure 8.3, there exists a morphism that makes both triangles of Figure 8.3 commute.
Hence the algorithm that computes the category of components of a cubical region can
actually skip the initialization phase which consists of finding all the potential weak
isomorphisms.

Remark 8.2.18. The fundamental category of the directed circle (cf. Remark 5.2.17)
does not satisfy the filling square property.

8.3 Categories of Components
Given a collection of morphisms Σ the quotient functor QΣ is defined by the following
universal property: for all categories D and all functors F : C → D such that

F(Σ) ⊆ {identities of D}

there exists a unique functor G such that F = G ◦ QΣ. The existence of QΣ is a
consequence of a general result explained in Bednarczyk et al. (1999). The localization
functor IΣ is defined similarly with the condition

F(Σ) ⊆ {isomorphisms of D} .

Remark 8.3.1. For any collection Σ of morphisms of C we have QΣ = Q<Σ> and
IΣ = I<Σ>. It immediately derives from the fact that functors preserve identities,
isomorphisms, and composition.

The existence of IΣ relies on a general construction which is detailed in (Borceux,
1994a, Chap.5). While the former construction is rather restricted the latter one is
widely spread in model category and homological algebra. We describe QΣ and IΣ

172



8.3. Categories of Components 8. Categories of Components

P(a)

P(
a)

V(a)
V(

a)

P(a)

P(
b)

P(b)

P(
a)

V(b)

V(
a)

V(a)

V(
b)

Figure 8.4: The categories of components of the square and the Swiss Cross

when Σ is a system of weak isomorphisms of a one-way category C that is closed under
composition. We know from Remark 8.2.7 that Σ is both a right and a left calculus of
fractions. Then we prove that the codomains of QΣ and IΣ, respectively the quotient
category C/Σ and the category of fractions C[Σ-1], are equivalent.

Definition 8.3.2. The category of components of C, denoted by −→π0C, is the quotient
of C by its greatest system of weak isomorphisms (cf. Lemma 8.2.11).

Example 8.3.3. The fundamental categories of the continuous models depicted on
Figure 8.1 and Figure 8.2 are loop-free, their categories of components are shown (in
red) on Figure 8.4. The red arrows generate the category while the light red filled
squares indicate commutative diagrams. These categories of components can be seen
as precubical sets, in particular the category of components of the square is isomorphic
to ∂�+

2 (i.e. the boundary of the standard 2-cube �+
2 (cf. Definition 2.4.8)).

Example 8.3.4. The category of components of the continuous model on Figure 7.1
is more intriguing. It is indeed isomorphic to the disjoint union of 3 copies of the
hollow square. The correspondence between components is shown on Figure 8.6. Two
components appearing on the same line are related by an isomorphism between the
categories of components.

Example 8.3.5. The components of the hollow cube (i.e. the boundary of [0, 1]3 as a sub-
pospace of R3) are the subspaces of the form A× B×C with A, B,C ∈

{
{0}, {1}, ]0, 1[

}
and at least one of them not ]0, 1[ (i.e. the 8 vertices, the 12 edges, and the 6 faces).
The category of components is isomorphic to the fundamental category of the 3-fold
tensor product of the graph 0→ 1→ 2 from which the middle point (1, 1, 1) has been
removed (cf. Definition 2.4.8). It is also the category of components of the “floating
cube” – see Figure 7.5.

Generally speaking the fundamental category of a precubical set is loop-free iff so
is the fundamental category of “its” directed realization. When it is the case, one may

173



8.3. Categories of Components 8. Categories of Components

P(a)

P(
a)

P(b)

V(
a)

V(b)

P(
b)

V(a)

V(
b)

Figure 8.5: The category of components of a square and a rectangle

ask whether
−→π0
−→π1K � −→π0

−→π1�K�

Taking K = ∂�+
3 actually provides a counterexample. Indeed−→π1K � {0 < 1}3 therefore

it has a single components, while �K� is the hollow cube.

Example 8.3.6. The category of components of the tetrahemihexacron (or “3D Swiss
Cross” see Figure 8.7) is freely generated by the graph on Figure 8.7.

Lemma 8.3.7. Any homset containing a potential weak isomorphism is a singleton.

Proof. If σ ∈ C(x, y) is a weak isomorphism then the x, σ-post-composition is a
bijection from C[x, x] to C[x, y], and the former is a singleton since C is one-way.

As a consequence of Lemma 8.3.7 any element of a system of weak isomorphisms
is entirely defined by its extremities. In particular any arrow labelled by a system of
weak isomorphisms Σ is the unique element of its homset and it belongs to Σ.

Definition 8.3.8. Two objects x and y are Σ-connected when there exists a finite
sequence x0, . . . , xn such that x0 = x, xn = y, and Σ[xi, xi-1] , ∅ or Σ[xi-1, xi] , ∅ for
all i ∈ {1, . . . , n}. We can suppose that xi , xj for i , j and also that Σ[xi, xi-1] = ∅ or
Σ[xi-1, xi] = ∅ because C is one-way and Σ is stable under composition.

Therefore by Lemma 8.3.7 the sequence x0, . . . , xn fully characterizes a zigzag of
elements of Σ. The Σ-connectedness defines an equivalence relation over the objects
of C whose classes are called the Σ-components of C.
Lemma 8.3.9. The following are equivalent:

1) The objects x and y are Σ-connected.
2) There exists an object z such that Σ[z, x]×Σ[z, y] is not empty.
3) There exists an object z such that Σ[x, z]×Σ[y, z] is not empty.

Proof. Statements 2) and 3) are equivalent because Σ is stable under pushouts and
pullbacks. Now if there exists a Σ-zigzag of length greater or equal than 3, then a
strictly shorter one can be found applying the fact that Σ is stable under pushout and
composition.

174



8.3. Categories of Components 8. Categories of Components

Figure 8.6: Corresponding components.

175



8.3. Categories of Components 8. Categories of Components

Figure 8.7: Components of the tetrahemihexacron a.k.a. 3D Swiss Cross

u u

x

??

y

__

x y x

??

y

__

Diagram 1

d

^^ @@

Diagram 2

d

^^ @@

Diagram 3

Figure 8.8: Structure of the Σ-components

A preordered set in which any pair of elements has both a least upper bound
and a greatest lower bound is called a prelattice. A lattice can thus be seen as an
antisymmetric prelattice. According to that definition, a lattice may not have a least
(resp. greatest) element. This fact will be of importance in Subsection 9.5, moreover it
is adapted to the next statement.

Theorem 8.3.10 (Structure of a Σ-component). Let K be a Σ-component of C, and
K be the full subcategory of C whose objects are the elements of K . The following
properties are satisfied :

1. The category K is isomorphic to the preorder (K,4) where x 4 y stands for
C[x, y] , ∅. In particular, every diagram in K commutes.

2. The preordered set (K,4) is a prelattice.
3. If d and u are respectively a greatest lower bound and a least upper bound of the

pair {x, y}, then Diagram 1 on Figure 8.8 is both a pullback and a pushout in C, and all
the arrows appearing on the diagram belong to Σ.

4. C = K iff C is a prelattice, and Σ is the greatest system of weak isomorphisms
of C.

Proof. Let α ∈ K(x, y). Since the objects x and y lie in the same Σ-component, there
are, by Lemma 8.3.9, four morphisms σ1, σ2, σ3 and σ4 in Σ which form a commutative
square as in Diagram 1 on Figure 8.9. The morphism σ1 ◦ σ3 belongs to Σ which is
stable under composition. By Lemma 8.3.7 it follows that σ2 ◦ α ◦σ3 = σ1 ◦σ3. Then
α ∈ Σ by Lemma 8.2.9, and K(x, y) is a singleton by Lemma 8.3.7. On the way we
have proved that any morphism of C between two objects of the same Σ-component is
in Σ. Let x and y be two elements K . Lemma 8.3.9 provides Diagram 2 on Figure 8.9
which admits a pullback with σ′1, σ

′
2 ∈ Σ, as shown on Diagram 3 on Figure 8.9. The

object d clearly belongs to K . If d ′ is a lower bound of {x, y} then C[d ′, x] and C[d ′, y]
are two singletons whose respective elements γ and δ belong to Σ. So Diagram 4 on
Figure 8.9 commutes by Lemma 8.3.7. The universal property of pullbacks implies that

176



8.3. Categories of Components 8. Categories of Components

u u

x

σ1
AA

α // y

σ2
]]

u x

σ1 ??

y

σ2__

x

σ1 >>

y

σ2``

Diagram 1

σ3

\\
σ4

BB

x
Diagram 2

σ1
AA

y

σ2
]]

Diagram 3
d

σ′2

^^

σ′1

@@pullback

Diagram 4
d ′

γ

__

δ

??

Figure 8.9: Illustrating the proof of Theorem 8.3.10

x δ // y
Σ

))d

Σ

55

Σ
))

� x ∧ x ′
Σ

::

Σ

$$

y ∨ y′
$$Σ

::
Σ

u�

x ′
δ′
// y′

Σ

55

Figure 8.10: Soundness of the equivalence of morphisms

K[d ′, d] , ∅ i.e. d ′ 4 d. We prove analogously the existence of the least upper bound
of {x, y}. The third and fourth assertion follow.

We provide a simple description of the quotient category C/Σ. Its objects are the Σ-
connected components of C, in particular the one containing an object x is denoted by
[x]. Then given δ ∈ C(x, y) and δ′ ∈ C(x ′, y′) with x ∼ x ′ and y ∼ y′ we write δ ∼ δ′
when the inner hexagon on Figure 8.10 commutes. There is however a slight ambiguity
here since the greatest lower bound and least upper bound given by Theorem 8.3.10
are only defined up to isomorphisms. Then let u and d be other representatives of
x ∧ x ′ and y ∨ y′. On Figure 8.10 the arrows labelled with Σ belongs to it while
the ones labelled with � are isomorphisms. Then it follows by Lemma 8.3.7 that the
four triangles on Figure 8.10 commute, so an easy diagram chase proves that the outer
hexagon commutes iff the inner one does. Therefore we will write without ambiguity
x ∨ y and x ∧ y to denote a greatest lower bound or a least upper bound of x and y.

Lemma 8.3.11. The relation ∼ is an equivalence.

Proof. Transitivity is given by Lemma 8.3.9, Lemma 8.3.7 and the fact that Σ is stable
under composition.

We denote by [γ] the ∼-equivalence class of γ.

Lemma 8.3.12. Let γ, γ′, δ and δ′ be respectively picked from C[y, z], C[y′, z′],
C[x, y] and C[x ′, y′]. If γ ∼ γ′ and δ ∼ δ′ then γ ◦ δ ∼ γ′ ◦ δ′.

Proof. Since Diagrams 1 and 2 on Figure 8.11 commute and the central square on
Figure 8.12 is both pushout and a pullback (cf. Theorem 8.3.10), there exist a unique
morphism δ′′ in C[x∧ x ′, y∧ y′] and a unique morphism γ′′ in C[y∨ y′, z∨ z′]making
the diagram on Figure 8.12 commute.

177



8.3. Categories of Components 8. Categories of Components

x δ // y
Σ // y ∨ y′ y

γ // z Σ // z ∨ z′ x
γ◦δ // z Σ // z ∨ z′

x ∧ x ′
Σ

//
Σ

OO

x ′
δ′
// y′

Σ

OO

y ∧ y′
Σ

//
Σ

OO

y′
γ′
// z′

Σ

OO

x ∧ x ′
Σ

//
Σ

OO

x ′
γ′◦δ′
// z′

Σ

OO

Diagram 1 Diagram 2 Diagram 3

Figure 8.11: Equivalent morphisms

x δ // y
Σ
$$

γ // z
Σ
##

x ∧ x ′
Σ
::

Σ ##

δ′′ // y ∧ y′

Σ
::

Σ ##

y ∨ y′
γ′′ // z ∨ z′

x ′
δ′

// y′
Σ

;;

γ′
// z′

Σ

<<

Figure 8.12: Equivalence fits with composition

We now describe a category C whose objects and morphisms are the Σ-components and
the ∼-equivalence classes of morphisms of C. Given a morphism γ of C the source and
the target of [γ] are defined as [∂-(γ)] and [∂+(γ)]. Indeed none of these equivalence
classes depend on the choice of the representative of [γ]. Given another morphism
δ of C such that [∂-(γ)] = [∂+(δ)] there exist two morphisms γ′ and δ′ of C such
that [γ] = [γ′], [δ] = [δ′] and ∂-(γ′) = ∂+(δ′): it suffices to invoke the stability of Σ
under pushout as suggested by Figure 8.13. Suppose that γ′′ and δ′′ are two other such
morphisms, then we have [γ′] = [γ′′] and [δ′] = [δ′′]. Applying Lemma 8.3.12 we
have [γ′ ◦ δ′] = [γ′′ ◦ δ′′]. Then we can define [γ] ◦ [δ] as [γ ◦ δ] without ambiguity,
the identities are given by the ∼-equivalence classes of the identities of C.

Lemma 8.3.13. For any morphism δ of C, t.f.a.e.
1) δ ∈ Σ
2) [δ] ⊆ Σ
3) [δ] is an identity of C

Proof. By Lemma 8.2.9 the collection Σ is pure therefore the morphism δ on Diagram
1 of Figure 8.11 belongs to Σ is and only if so does δ′, statements 1) and 2) are thus
equivalent. It is easy to see that [σ] = [id∂-(σ)] = [id∂+(σ)] for all σ in Σ, so 1) implies
3). Now if [δ] is an identity of C, then δ ∼ idx for some object x of C. Since idx is an
element of Σ so does δ (see the argument at the beginning of this proof).

The category C is thus constructed and we define a functorQ from C to C, surjective

Σ // γ′ //
δ
??

δ′

77

Σ

OO

γ
//
Σ

OO

Figure 8.13: Composition in the quotient category

178



8.3. Categories of Components 8. Categories of Components

on objects andmorphisms, by settingQ(x) := [x] for each object x of C andQ(γ) := [γ]
for each morphism γ of C. We conclude :

Proposition 8.3.14. The category C and the functor Q are the quotient category C/Σ
and the quotient functor QΣ.

Proof. Let F : C → D be a functor such that F(Σ) ⊆ {identities of D}. For every
object x and every morphism γ of C, we set G([x]) := F(x) and G([δ]) := F(δ). These
definitions are sound since F(x) = F(x ′) as soon as x and x ′ are Σ-connected and
F(δ) = F(δ′) when Diagram 1 on Figure 8.11 commutes. One easily checks that G is
a functor. Since the functor Q is surjective on objects and morphisms, we have G = G′

as soon as G ◦ Q = G′ ◦ Q. Thus Q satisfies the universal property that characterizes
the quotient functor QΣ.

Corollary 8.3.15. The functor QΣ is surjective on morphisms.

Corollary 8.3.16. The category C/Σ is loop-free.

Proof. Consider the diagram on Figure 8.13 in which ∂-δ ∼ ∂+γ, then we have ∂-δ ∼
∂+γ′ from which one deduces, from Lemma 8.2.9, that γ and δ belongs to Σ. We
conclude by Lemma 8.3.13.

The next result actually claims that QΣ is not far from being an equivalence of
categories.

Theorem 8.3.17. If C(x, y) is nonempty then the following map is a bijection.

δ ∈ C(x, y) 7→ QΣ(δ) ∈ C/Σ
(
QΣ(x),QΣ(y)

)
Proof. Any element of C/Σ(QΣ(x),QΣ(y)) is the equivalence class of some δ′ whose
source x ′ and target y′ are equivalent to x and y. Then x∧ x ′ and y∨ y′ are provided by
Theorem 8.3.10. Since the arrows y → y ∨ y′ and x ∧ x ′→ x are weak isomorphisms
there is a unique δ ∈ C[x, y] such that Diagram 1 on Figure 8.11 commutes.

Corollary 8.3.18. If C/Σ
(
QΣ(x),QΣ(y)

)
is nonempty then there exist x ′ and y′ such

that Σ(x ′, x), Σ(y, y′), C(x ′, y), and C(x, y′) are nonempty.

Proof. By Corollary 8.3.15 we have some morphism α : a → b whose image by
QΣ belongs to C/Σ(QΣ(x),QΣ(y)). Then Theorem 8.3.10 provides x ∧ a and for Σ
is a system of weak isomorphisms we have the pushout square on Figure 8.14. Then
Theorem 8.3.10 provides y ∨ c so C(x, y ∨ c) is nonempty and we put y′ = y ∨ c. Then
by Theorem 8.3.10 we have b ∧ y so we can consider the pullback on Figure 8.14 thus
providing x ′.

In an analogous way we find an object x ′ such that both Σ(x ′, x) and C(x ′, y) are
nonempty.

Corollary 8.3.19. The quotient C/Σ is a poset iff C is a preorder.

Proof. By Corollary 8.3.18 all pairs of objects of C/Σ can be obtained as [x], [y] with
C(x, y) nonempty. It follows from Theorem 8.3.17 that C/Σ is a preorder iff C is a
preorder. We conclude by Corollary 8.3.16.

179



8.3. Categories of Components 8. Categories of Components

x // c Σ // y′ = y ∨ c

x ∧ a
Σ

OO

Σ

// a
α

// b
Σ

OO

x ′ //
Σ

OO

b ∧ y
Σ

//
Σ

OO

y

Σ

OO

Figure 8.14: Bringing extremities into line

Then combining Theorem 8.3.17 and Corollary 8.3.18 we see that for anymorphism
δ ∈ C/Σ(QΣ(x),QΣ(y)) there is a unique α in C(x, y′), resp. in C(x ′, y), such that
QΣ(α) = δ. In other words when we need α such that QΣ(α) = δ we can always choose
one of its extremities in the suitable Σ-component: this is the lifting property of QΣ.
As a consequence QΣ preserves potential weak isomorphisms.

Corollary 8.3.20. The functor QΣ reflects and preserves potential weak isomorphisms.

Proof. Let α ∈ C(x, y) such that QΣ(α) is a potential weak isomorphism and f a
morphism of C from x to z such that C(y, z) is not empty. There is a unique β′ from
QΣ(y) to QΣ(z) such that QΣ( f ) = β′ ◦ QΣ(α). We have a unique morphism β in
C(y, z) such that QΣ(β) = β′ and it is the only one in C(y, z) such that f = β ◦ α by
Theorem 8.3.17. We have proved that α preserves the future cone and we prove in the
same way that it preserves the past one, so QΣ reflects weak isomorphisms.
Now suppose that α ∈ C(x, y) is a potential weak isomorphism and let f ′ ∈ C/Σ([x], z′)
such that C/Σ([y], z′) , ∅. By Corollary 8.3.18 there exists z such that [z] = z′ and
C(y, z) , ∅. Then by Theorem 8.3.17 there is a unique f ∈ C(x, z) such that [ f ] = f ′

and for α is a potential weak isomorphism there is a unique g ∈ C(y, z) such that
f = g ◦ α. So g′ = [g] satisfies f ′ = g′ ◦ [α] and it is the only one in C/Σ([y], [z]) by
Theorem 8.3.17. So QΣ preserves potential weak isomorphisms.

Corollary 8.3.21 (Finiteness). If C is finite then so is the quotient C/Σ

Proof. The functor QΣ is surjective on morphisms by Corollary 8.3.15.

By the universal property of the functor IΣ there exists a unique functor PΣ such that
QΣ = PΣ ◦ IΣ. We will prove that PΣ is an equivalence of categories. A fraction is
a pair of morphisms (γ, σ) with σ ∈ Σ, ∂+(σ) = x, ∂-(σ) = ∂-(γ), and ∂+(γ) = y.
Two fractions (γ, σ) and (γ′, σ′) are ∼x,y-related when there exists two morphisms
τ, τ′ ∈ Σ such that Diagram 1 on Figure 8.15 commutes. It is proved in Borceux
(1994a) that if Σ is a right calculus of fractions, then the morphisms of C[Σ-1][x, y] are
the ∼x,y-equivalence classes of fractions. The composition is defined as suggested by
Diagram 2 on Figure 8.15. In particular (γ, σ) ∼x,y (γ′, σ′) implies that γ ∼ γ′ i.e.
[γ] = [γ′]. Thus, if κ is the ∼x,y-equivalence class of (γ, σ) then κ = IΣ(γ) ◦ (IΣ(σ))-1
and PΣ(κ) = [γ].

Lemma 8.3.22. If C(x, y) , ∅ then IΣ induces a bijection from C(x, y) to C[Σ-1](x, y).

Proof. Let the fraction (γ, σ) be a representative of an element of C[Σ-1](x, y). Since
σ is a weak isomorphism there is a unique δ ∈ C(x, y) such that γ = δ ◦ σ. Hence
(δ, idx) ∼x,y (γ, σ). If (δ1, idx) ∼x,y (δ2, idx) then we have v and τ1, τ2 ∈ Σ(v, x) such
that δ1 ◦ τ1 = δ2 ◦ τ2. It follows from Lemma 8.3.7 that τ1 = τ2 and since τ1 is a weak
isomorphism we get δ1 = δ2.

180



8.4. Sections of the Quotient Functor 8. Categories of Components

y v
δ //

τ∈Σ
((

z

u

γ
77

σ ((

v
τoo τ′ // u′

γ′
hh

σ′vv

w

γ′
66

τ′∈Σ ((

y

x u
γ

66

σ∈Σ
// x

Diagram 1 Diagram 2

Figure 8.15: Equivalent fractions and composition of fractions

Theorem 8.3.23 (Haucourt (2006)). The functor PΣ is an equivalence of categories.

Proof. The functor QΣ is surjective on objects by construction hence so is PΣ. Let x
and y be two objects of C and f ∈ C/Σ(QΣ(x),QΣ(y)). By Corollary 8.3.18 there exists
σ ∈ Σ(y, y′) such that C[x, y′] , ∅. By Theorem 8.3.17 there is a unique δ ∈ C(x, y′)
such that QΣ(δ) = f . Then ξ := (IΣ(σ))-1 ◦ IΣ(δ) belongs to C[Σ-1][x, y] and satisfies
PΣ(ξ) = f . Suppose that ξ ′ is another such morphism. Then IΣ(σ) ◦ ξ ′ ∈ C[Σ-1](x, y′)
and by Lemma 8.3.22 there is a unique δ′ ∈ C(x, y′) such that IΣ(δ′) = IΣ(σ) ◦ ξ ′.
Moreover

QΣ(δ′) = PΣ(IΣ(δ′)) = PΣ(IΣ(σ) ◦ ξ ′) = PΣ(ξ ′) = f

Hence δ′ = δ from which comes IΣ(σ) ◦ ξ ′ = IΣ(σ) ◦ ξ, and thus ξ ′ = ξ.

Corollary 8.3.24. The skeleton of C[Σ-1] is C/Σ and C[Σ-1] is one-way.

Proof. The quotient C/Σ is skeletal by Corollary 8.3.16 and it is equivalent to C[Σ-1]
by Theorem 8.3.23. Hence C[Σ-1] is one-way by Lemma 8.1.5.

From a theoretical point of view, Theorem 8.3.23 implies that it is unimportant
whether one defines the category of components by means of fractions or quotients.
Yet the latter might have a finite presentation even if the former has infinitely many
objects. A similar result was proved by Clerc and Mimram (2015) in the context of
rewriting theory.

8.4 Sections of the Quotient Functor
We define the category of components in an alternative way. This approach turns out
to be fruitful when trying to extend the notion of component to categories with loops
(e.g. the fundamental category of the directed circle). However it poses a technical
problem related to the Axiom of Choice. In any category when the composite r ◦ s is
an identity one says that r is a retract of s and that s is a section of r . An embedding
is a full and faithful functor that is one-to-one on objects. We will study the sections of
QΣ and prove that:

1. any section of QΣ is an embedding,

2. the sections of QΣ form a preordered set with binary l.u.b. and g.l.b., and

3. the functor QΣ admits a section when C/Σ is finite.

Proposition 8.4.1. Any section of QΣ is an embedding.

181



8.4. Sections of the Quotient Functor 8. Categories of Components

Proof. Any section of any functor is faithful and one-to-one on objects. Let f ∈
C(S(a), S(b)), we haveQΣ◦S◦QΣ( f ) = QΣ( f ) henceQΣ( f ) ∈ C/Σ[a, b] and S◦QΣ( f ) =
f for QΣ is faithful by Theorem 8.3.17.

Corollary 8.4.2. Every section of QΣ reflects identities, isomorphisms, potential weak
isomorphisms, pushout and pullback squares.

Proof. It is an immediate consequence of Proposition 8.4.1 and the fact that if A is a
full subcategory of B, then every morphism (resp. diagram) of A which is a potential
weak isomorphism (resp. a pushout/pullback square) of B is also a potential weak
isomorphism (respectively pushout/pullback square) of A.

Proposition 8.4.3. Every section of QΣ preserves the potential weak isomorphisms.

Proof. Let σ′ be a potential weak isomorphism of C/Σ. Then S(σ′) ∈ C(x, y) and let z
be such that C(y, z) , ∅, and δ ∈ C(x, z). We have a unique γ′ such thatQΣ(δ) = γ′◦σ′.
Then by Theorem 8.3.17 we have a unique γ ∈ C(y, z) such that δ = γ ◦ S(σ′), it is
indeed given by the unique γ such that QΣ(γ) = γ′.

The collection of objects of a category is preordered putting x less than y when the
homset from x to y is nonempty.

Proposition 8.4.4. Any morphism of preordered sets φ : Obj(C/Σ) → Obj(C) such
that φ(K) ∈ K for all K ∈ Obj(C/Σ) extends to a section of QΣ in a unique way.

Proof. The object part of the section S is given by φ and by Theorem 8.3.17 we define
S(δ), for δ ∈ C/Σ(K,K ′), as the unique γ in C(S(K), S(K ′)) such that QΣ(γ) = δ.

The collection of sections of QΣ is preordered as follows: S 4 S′ when S(K) 4
S′(K) for all K ∈ Obj(C/Σ). Then as an immediate consequence of Theorem 8.3.10 we
have

Corollary 8.4.5. The preordered set of sections of QΣ is a prelattice.

Still by Theorem 8.3.10 we know that each Σ-component of C is a poset with binary
l.u.b.’s and g.l.b.’s from which it follows that there is an inclusion from the collection
of sections of QΣ to the Cartesian product of all the Σ-components of C. This inclusion
preserves l.u.b.’s and g.l.b.’s and it is an isomorphism iff the following property is
satisfied for all Σ-components K and K ′:

(∃x ∈ K∃x ′ ∈ K ′, C[x, x ′] , ∅) ⇒ (∀x ∈ K∀x ′ ∈ K ′, C[x, x ′] , ∅)

which is the case when C derives from an equivalence relation (i.e.when C is a groupoid
each homset of which admits at most one element) such a category is also called a
contractible groupoid. In this case the unique system of weak isomorphisms is the
collection of isomorphisms of C, the Σ-components are just the connected components,
and each Σ-component inherits the chaotic preorder of C, and thus a section of QΣ is
just a function of choice. In particular if we suppose that the quotient functor QΣ admits
a section for all systems of weak isomorphisms of all one-way categories, then the
Axiom of Choice is satisfied. The converse, (i.e. the existence of such sections within
Zermelo-Fraenkel set theory with Axiom of Choice) is currently an open problem.
Nevertheless we have

182



8.5. Components of a Product 8. Categories of Components

Proposition 8.4.6. For all systems of weak isomorphisms Σ of all one-way categories
C, and for all finite subset K of Obj(C/Σ), there exists a morphism of preordered sets
S from K to Obj(C) such that S(K) ∈ K for all K ∈ K.

Proof. By induction on the cardinality n of K. If n = 0 the empty map fits. Suppose
that we have the statement for some n ∈ N and let K be of cardinality n + 1. Then let
Km be a maximal element of K with respect to the preorder inherited from C/Σ. For
all K , Km, we have, by Corollary 8.3.18, some xK in Km such that S(k) 4 xK . Then
define

S(Km) =
∨

K,Km

xK

which is the least upper bound of a finite family in a preordered set which admits binary
least upper bounds – see Theorem 8.3.10.

Corollary 8.4.7. If C/Σ has finitely many objects then QΣ admits a section.

If Σ is the greatest system of weak isomorphisms of C then it seems rather natural
to imagine that the greatest system of weak isomorphisms of C/Σ is trivial (i.e. only
contains isomorphisms which are actually identities since C/Σ is loop-free by Corol-
lary 8.3.16). It would mean, in particular, that the category of components construction
is idempotent. Up to now however, I have been unable to prove it. Yet we have

Proposition 8.4.8. Denote by Σ and Σ′ the greatest systems of weak isomorphisms of
Cand C/Σ, t.f.a.e.

1 – Σ′ is trivial
2 – C/Σ has a unique system of weak isomorphisms
3 – Q−1

Σ
(Σ′) is a system of weak isomorphisms

moreover if S is a section of QΣ we also have a logical equivalence with
4 – S(Σ′) ⊆ Σ
5 – S−1(Σ) = Σ′

Proof. Assertions 1) and 2) are equivalent because the set of identities of C/Σ is the
least system of weak isomorphisms of a loop-free category and C/Σ is loop-free by
Corollary 8.3.16. Suppose that assertion 3) is satisfied, then Q−1

Σ
(Σ′) ⊆ Σ. Since QΣ

is surjective on morphisms – by Corollary 8.3.15, we have QΣ(Q−1
Σ
(Σ′)) = Σ′ hence

Σ′ ⊆ QΣ(Σ) = {identities}. The converse is obvious. The fourth assertion implies the
first one since

Σ
′ = QΣ(S(Σ′)) ⊆ QΣ(Σ) = {identities}

The converse is obvious. Let σ′ ∈ S−1(Σ) be, then σ′ = QΣ(S(σ′)) = id. Hence the
first assertion implies the fifth one which obviously implies the fourth one.

8.5 Components of a Product
We study the systems of weak isomorphisms and the categories of components of
(co)products of one-way categories. Consider to this end a family Ci one-way categories
with i ranging through some indexing set I. The product of this family will be denoted
by P, and the projections are denoted by pi : P → Ci .

Lemma 8.5.1. A morphism σ of P is a potential weak isomorphism iff for all i ∈ I,
pi(σ) is a potential weak isomorphism of Ci .

183



8.5. Components of a Product 8. Categories of Components

Proof. Let x and y be the source and target of σ. Fix i ∈ I and δi ∈ Ci(pi(x), zi) be
such that Ci(pi(y), zi) , ∅. Then define δ by pi(δ) = δi and pj(δ) = pj(σ) for i , j.
Because σ is supposed to be a potential weak isomorphism, there is a unique γ such
that γ ◦ σ = δ. Hence pi(γ) ◦ pi(σ) = δi . The uniqueness of pi(γ) derives from the
one of γ. So σ is a potential weak isomorphism of Ci . The converse is obvious.

The same pattern of proof applies to pull-backs and push-outs.

Lemma 8.5.2. A commutative square of P is a pushout (resp. pullback) iff for all i ∈ I,
its image by pi is a pushout (resp. pullback) of Ci .

Corollary 8.5.3. Given a family Σi ⊆ Ci with i ∈ I, ∏
i∈I Σi is a system of weak

isomorphisms iff all the Σi are systems of weak isomorphisms.

The preceding corollary does not mean that all systems of weak isomorphisms of a
product is a corresponding product of systems of weak isomorphisms. One can remark
indeed that the projection of a system of weak isomorphisms may not be stable under
composition. Consider for example the product

{0, 1} × (R,6)

The collection of morphisms (ε, (x 6 y)) such that:
y 6 0 or 0 < x if ε = 0, and
y < 0 or 0 6 x if ε = 1

forms a system of weak isomorphisms that is stable under composition though its
projection on (R,6) is not.

Lemma 8.5.4. For all i ∈ I, we have a morphism of poset

Σ ∈ SWIC(P) 7→ < pi(Σ) > ∈ SWIC(Ci)

Proof. All the elements of pi(Σ) are potential weak isomorphisms by Lemma 8.5.1.
Given σ ∈ Σ we write σi for pi(σ). If γi is a morphism of Ci with ∂-γi = ∂

-σi , define
the morphism γ ∈ P by pi(γ) = γi , and pj(γ) = id∂-p jσ for j , i. The pushout of
σ along γ exists and belongs to Σ (for the latter is a system of weak isomorphisms)
and its image by pi is, by Lemma 8.5.2, the pushout of σi along γi . The closure under
composition is still a system of weak isomorphisms by Lemma 8.2.6. The remaining
facts hold by Corollary 8.5.3.

Corollary 8.5.5. The mapping P that sends an I-family Σi ∈ SWIC(Ci) to its product,
and the mapping S that sends Σ ∈ SWIC(P) to the I-family < pi(Σ) >, satisfy

S ◦ P = id and id ⊆ P ◦ S

Lemma 8.5.6. Let σ be an element of a system of weak isomorphisms Σ of P, and let
δ be such that ∂-δ = ∂-σ or ∂-δ = ∂+σ. Then σ′ ∈ Σ with σ′ defined, for some J ⊆ I,
by pi(σ′) = pi(σ) if i ∈ J, and pi(σ′) = id∂+δi otherwise.

Proof. Given a morphism γ ∈ P, and J ⊆ I we define γ−J and γ+J by:
pi(γ−J ) = pi(γ+J ) = pi(γ) when i ∈ J, and
pi(γ−J ) = id∂-γi and pi(γ+J ) = id∂+γi when i < J.

The commutative square γ+I\J ◦γ
−
J = γ

+
J ◦γ−I\J is both a pushout and a pullback. For all

σ ∈ Σ, a system of weak isomorphisms of P, σ+J and σ−J belong to Σ by Lemma 8.2.9.
Suppose that ∂-δ = ∂-σ and define γ by:

184



8.5. Components of a Product 8. Categories of Components

pi(γ) = pi(σ) for i ∈ J, and
pi(γ) = pi(δ) for i < J.

Then note that γ−J = σ
−
J hence σ′ := γ+J belongs to Σ which is stable under pushout. In

the case where ∂-δ = ∂+σ, just replace δ by δ ◦ σ in the previous proof.

Remark 8.5.7. A category is said to be connected when any two objects of it are
related by a zigzag of morphisms. If P is connected then so are all the categories Ci .
The converse may however be false when I is infinite. Consider indeed the product of
the family Wn, for n ∈ N, with Wn a zigzag of length n. Each Wn is connected though
the product is not.

Corollary 8.5.8. Assume that P is connected. If σ belongs to a system of weak
isomorphisms, then so does the morphism obtained by changing, for all i in a given set
of index J, the i-coordinate of σ into some identity of Ci .

Proof. Consider an object of P whose i-coordinate, for i < J, is ∂-pi(σ). Then ∂-σ is
related to this object by a zigzag of morphisms such that for all i < J the i-coordinate
of all morphisms of the zigzag is id∂-(pi (σ)). Then apply Lemma 8.5.6 along the
zigzag.

Proposition 8.5.9. If P is connected and Σ is stable under composition, then each pi(Σ)
is stable under composition. Moreover if I is finite then P ◦ S = id.

Proof. If σ, σ′ ∈ Σ, and pi(σ) and pi(σ′) compose, then by Corollary 8.5.8 we can
change all the j-coordinates of σ and σ′, for j , i, so that σ and σ′ compose and still
belong to Σ. It follows that pi(Σ) is stable under composition. Assume I = {1, . . . , n}
is finite and let Σ be a system of weak isomorphisms of P. Let σ ∈ P be such that for
all i ∈ I, pi(σ) ∈ pi(Σ). For k ∈ {1, . . . , n} define τ(k) as

(id∂+p1(σ), . . . , id∂+pk−1(σ), pk(σ), id∂-pk−1(σ), . . . , id∂-pn(σ))

Each morphism τ(k) belongs to Σ by Corollary 8.5.8, hence so does the composite
namely σ.

Proposition 8.5.10. Let Σi be a system of weak isomorphisms of Ci , for i ∈ I, then∏
i∈I

(
Ci/Σi

)
�

(∏
i∈I
Ci

)/ (∏
i∈I

Σi

)
Proof. By Corollary 8.5.3 the product of the family of systems Σi , denoted by Σ, is
a system of weak isomorphisms of the product of categories P. Thus both terms
of the relation make sense. From Proposition 8.3.14 we deduce that two objects
(resp. morphisms) of P are Σ-equivalent iff their projections on i are Σi-equivalent for
all i ∈ I.

Proposition 8.5.11. For all i ∈ I, let Σi be a system of weak isomorphisms of Ci , then∏
i∈I

(
Ci

[
Σ
−1
i

] )
�

(∏
i∈I
Ci

) [(∏
i∈I

Σi

)−1]
Proof. As a consequence of Remark 8.2.7, the categoryC[Σ-1] admits a nice description
(Borceux, 1994a, Proposition 5.2.4, p.183-184) from which one easily deduces the
result.

185



8.6. A Homotopical Perspective 8. Categories of Components

8.6 A Homotopical Perspective on
Categories of Components

As explained in Section 8.2 the systems of weak isomorphisms are intended to extend
the collection of isomorphisms of one-way categories. Following this idea it would
be nice that they are preserved by functors, however it is obviously not the case: the
unique non trivial morphism of the category {· → ·} might indeed be sent to an arrow
that is not even a potential weak isomorphism. Then it is natural to consider Owh the
category of one-way categories with functors preserving the greatest systems of weak
isomorphisms. As a consequence of Corollary 8.3.16 and the universal property of the
quotient category, the category of components construction induces a functor

−→π0 : Owh → Lf

Following Dwyer et al. (2004), there is actually a homotopic interpretation of this. A
category is said to be homotopical when it comes with a classW of distinguished
morphisms, whose elements are called theweak equivalences, satisfying the following
properties:

1) all the identities belong toW, and
2) 2 out of 6: when γ ◦ β and β ◦ α (exist and) belong toW, then α, β, γ, and

γ ◦ β ◦ α also belong toW.
Alternatively the second condition is equivalent to the conjunction of the following two
ones:

2’) weak invertibility: any morphism β for which there are α and γ such that
γ ◦ β ∈ W and β ◦ α ∈ W, belongs toW, and

2”) 2 out of 3: for every two morphisms α and β for which ∂-β = ∂+α and two of
α, β, and β ◦ α belong toW, so is the third.
The homotopy category of a homotopical category C with its class of weak equiva-
lencesW is defined as the localization (i.e. C[W−1]). A functor between homotopical
categories is then said to be homotopical when it preserves the weak equivalences. By
Lemma 8.2.9 any one-way category that comes with a system of weak isomorphisms
is a homotopical category. In particular the objects of Owh are homotopical categories
and its morphisms are the homotopical functors between them.

Proposition 8.6.1. If Σ is a system of weak isomorphisms of a one-way category C
then C[Σ-1] is one-way.

Proof. The categories C/Σ and C[Σ-1] are equivalent by Theorem 8.3.23. The quotient
C/Σ is loop-free by Corollary 8.3.16, and therefore it is skeletal. Hence C[Σ-1] is
one-way by Lemma 8.1.5.

As a consequence of Proposition 8.6.1 and the universal property of localization
there is a functor sending each homotopical category to its homotopy category.

Ho : Owh → Ow

The relation to homotopy actually goes further: the notion of homotopical category has
been designed to generalize the concept of model category which was identified as an
abstract framework for homotopy theory byQuillen (1967), see alsoHovey (1999). Such
a structure is made of three distinguished classes of morphisms, namely the fibrations,
the cofibrations, and the weak equivalences, that are related by a series of axioms. In

186



8.6. A Homotopical Perspective 8. Categories of Components

C[Σ-1]

PΣ

��

h // D[Σ′-1]

PΣ′

��

C

IΣ

bb

QΣ||

f // D

IΣ′
;;

QΣ′ ##
C/Σ

g
// D/Σ′

Figure 8.16: Characterizing the weak equivalences of Owh

particular the last class satisfies the 2 out of 3 property. It is a well-known fact by model
category theorists that there is a unique model category structure over Cat whose weak
equivalences are precisely the usual equivalences of categories. One refers to it as the
canonical model structure on Cat. In regard with the fourth point of Theorem 8.3.10,
a satisfactory class of weak equivalences should at least contains all the functors from
a prelattice to {∗}, the terminal object of Cat. The restriction of the canonical model
category to Ow is therefore not very interesting since no nontrivial lattice – seen as a
category, is equivalent to {∗}. However the category Owh itself can be equipped with
a homotopical category structure by definingW as the class of morphisms of Owh
whose image under −→π0 is an isomorphism. The homotopical category structure of Owh
we have defined is thus related to the canonical model category over Cat, as we show
now.

Proposition 8.6.2. Given a functor f ∈ Owh(C,D) with Σ and Σ′ the systems of
weak isomorphisms of C and D, the unique functor g : C/Σ → D/Σ′ such that
g ◦QΣ = QΣ′ ◦ f is an isomorphism iff the unique functor h : C[Σ−1] → D[Σ′−1] such
that h ◦ IΣ = IΣ′ ◦ f is an equivalence of categories.

Proof. Observe the commutative diagram on Figure 8.16 keeping in mind that, by
Corollary 8.3.16, both C/Σ and D/Σ′ are loop-free. Hence any equivalence between
them is actually an isomorphism. Moreover, both PΣ and PΣ′ are equivalences of
categories by Theorem 8.3.10. The conclusion follows from the fact that the collection
of equivalences of categories satisfy the 2 out of 3 property.

Theorem 8.6.3. All equivalences of categories between one-way categories are weak
equivalences.

Proof. By Lemma 8.2.10 any equivalence of category belongs to Owh. Let E be an
equivalence of categories and F be its quasi inverse. We denote by E ′ and F ′ the unique
functors such that

QΣD ◦ E = E ′ ◦QΣC and QΣC ◦ F = F ′ ◦QΣD

There are natural isomorphisms α : E ◦ F → idD and β : F ◦ E → idC . It follows that
QΣD ∗ α and QΣC ∗ β are identities in a category of functors. Therefore we have

QΣD = QΣD ◦ E ◦ F = E ′ ◦ F ′ ◦QΣD and QΣC = QΣC ◦ F ◦ E = F ′ ◦ E ′ ◦QΣC

By the universal properties of QΣC and QΣD we have

E ′ ◦ F ′ = idD and F ′ ◦ E ′ = idC

187



8.7. Components of Regions 8. Categories of Components

A natural weak equivalence is a natural transformation which sends objects to
weak equivalences therefore we have:

Corollary 8.6.4. The collection of functors PΣ : C[Σ-1] → C/Σ with C ranging
through the collection of (small) one-way categories and Σ being the greatest system of
weak isomorphisms of C, forms a natural weak equivalence from Ho to −→π0.

One may ask whether IΣ and QΣ are weak equivalences, the answer is actually
related to the problem of idempotency of the functor −→π0 .

Corollary 8.6.5. Let Σ be the greatest system of weak isomorphisms of the one-way
category C, t.f.a.e.

1) QΣ : C → C/Σ is a weak equivalence,
2) IΣ : C → C[Σ-1] is a weak equivalence, and
3) the greatest system of weak isomorphisms of C/Σ only contains identities.

Proof. We have QΣ = PΣ ◦ IΣ and PΣ is a weak equivalence by Theorem 8.3.23 and
Theorem 8.6.3, hence the assertions 1) and 2) are equivalent by the 2 out of 3 property.
Denote by Σ′ the greatest system of weak isomorphisms of C/Σ and F be the unique
functor such that F ◦QΣ = QΣ′ ◦QΣ. The universal property ofQΣ implies that F = Q′

Σ
.

Then F is an isomorphism iff Σ′ is the collection of identities of C/Σ.

Through the functor −→π0 we have endowed Owh with a structure of homotopical cat-
egory in which the class of weak equivalences strictly contains the class of equivalences
of categories. To finish this section let us remark that the pushout in Owh of two copies
of {0 < 1} over {0} is the commutative square (i.e. {0 < 1}2).

8.7 Components of Regions
An isothetic region is said to be loop-free when its fundamental category is so. Note
that cubical regions (cf. Example 6.2.24) are special cases of loop-free regions. Loop-
free regions thus provide a convenient directed topological playground for applying the
results of the preceding sections. The following conjectures illustrate how the infor-
mation encoded in the fundamental category of a (loop-free) region can be drastically
reduced.

Conjecture 8.7.1. The components of (the fundamental category of) a loop-free region
are loop-free regions.

In fact the dihomotopy class of a dipath is characterized by its image.

Conjecture 8.7.2. For all loop-free regions X , there exists a finite familyK of loop-free
subregions of X such that for all directed paths γ and δ on X sharing their sources and
their targets, γ and δ are dihomotopic iff

∀K ∈ K, img(γ) ⊆ K ⇔ img(δ) ⊆ K

Figure 8.17 provides a simple illustration of Conjecture 8.7.2. The elements of K
are called the dihomotopy classifiers and they may not cover the whole space – see

188



8.7. Components of Regions 8. Categories of Components

Figure 8.17: The dihomotopy classifiers of the complemented square

Figure 8.18. A candidate for K is obtained as follows. First define for all dipaths γ the
collection [γ] of all points of X visited by a dipath δ that is dihomotopic with γ:

[γ] := {p ∈ X | there exists δ dihomotopic with γ such that δ covers p}

Then our next conjecture is the following.

Conjecture 8.7.3. For all dipath γ over a loop-free region X , the set [γ] is a loop-free
subregion of X .

Then consider the collectionK ′ of all [γ] such that −→π1X[∂-γ, ∂+γ] is not a singleton.
The collection K would then be the set of ⊆-maximal elements of K ′. Moreover, each
element of K should be a finite union of Σ-components of −→π1X where Σ is the greatest
system of weak isomorphisms of −→π1X (cf. Definition 8.3.8 and Lemma 8.2.11). It
is worth noticing that Conjecture 8.7.2 is obviously wrong for regions in general: the
image of a dipath covering the directed circle does not depend on its winding number.
The notion of components remains puzzling in the presence of loops, still, we state
some conjectures to extend the concept beyond the loop-free case.

Let G be a graph together with a binary relation ρ over the collection of paths
on G such that two related paths share their sources and their targets. Then (G, ρ) is
said to be a presentation of the category F(G)/ρ∗ where F(G) is the category freely
generated by G and ρ∗ is the least congruence on it containing ρ, see (Mac Lane, 1998,
p.52). Any category C is presented by the graph whose set of arrows consists of all the
morphisms of C, two paths of which being related when their composites match. This
presentation comes from the pair of adjoint functors initiated by the forgetful functor
Cat → Grph, and it is actually the most expansive one in the sense that it has more
redundancy that any other reasonable one. We will refer to this presentation as the
standard one. Our purpose is to provide certain fundamental categories −→π1X with a
much cheaper presentation taking advantage of some extra hypothesis made on X . Such
presentations are intended to approximate the category of components of −→π1X .

We first provide a presentation of −→π1(�G�) for a graph G. The vertices of the
underlying graph of the presentation are the points of �G�. Its arrows are the triples
t · α · t ′ with α arrow of G and 0 6 t < t ′ 6 1. We define the source of t · α · t ′ as ∂-α
if t = 0, and (α, t) otherwise. The target is defined accordingly. For all arrows α and
all triples t < t ′ < t ′′ we have the relation

(t ′ · α · t ′′) ◦ (t · α · t ′) = t · α · t ′′

The previous presentation of −→π1�G� is clearly smaller than the generic one hence the
category of components of −→π1�G� should at least remove all expandable vertices of G

189



8.7. Components of Regions 8. Categories of Components

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

Figure 8.18: The dihomotopy classifiers of the complemented cube

190



8.7. Components of Regions 8. Categories of Components

(cf. Definition 6.1.26).

The higher dimensional case is much more intricate. As we have seen Conjec-
ture 8.7.2 fails in the presence of loops, yet it can be weakened so it applies to all
regions.

Lemma 8.7.4. Suppose that all the elements of a finite partition P of a region A are
subregions of A, and let γ be a dipath on A. Then we have a finite ordered partition
{I1 < . . . < IN } of dom(γ) whose elements are intervals together with a mapping
P : {1, . . . , N} → P such that for all k ∈ {1, . . . , N}, γ(Ik) ⊆ Pk and Pk , Pk+1.

Proof. The result derives from Proposition 6.1.7 and the fact that Bdom(γ) is a Boolean
algebra. Then if one considers the components of γ, say (γ1, . . . , γn), and a subblock
B1 × · · · × Bn of A then

γ -1(B1 × · · · × Bn) = γ1
-1(B1) ∩ · · · ∩ γn -1(Bn)

The finite sequence P1, . . . , PN is called the trace of γ on the partition P. Conjec-
ture 8.7.2 is then adapted to isothetic regions as follows:

Conjecture 8.7.5. For all regions A, there exist a partition of subregions P such that
for all dipath γ over A the collection

{ trace(δ) | δ is dihomotopic with γ }

is finite and the collection

W = { trace(γ) | γ is dipath on A }

is a regular language1 over P. Moreover there exists a finite collection ρ ⊆ W ×W such
that two dipaths sharing their sources and their targets are dihomotopic iff there traces
are equivalent up to the congruence on W generated by ρ.

With the notation of Conjecture 8.7.5 the collection W may not be stable under
concatenation. However if ω1, ω′1, ω2, ω′2, ω2 · ω1 belong to W , and ω1ρ

∗ω′1, and
ω2ρ

∗ω′2, then ω′2 · ω
′
1 ∈ W and ω2 · ω1ρ

∗ω′2 · ω
′
1. Furthermore W is pure in the

sense that if ω2 · ω1 belongs to W then so ω2 and ω1 do. Beyond the mere statement
of Conjecture 8.7.5, the basic ginzu partition of A (cf. Definition 6.4.23) is a natural
candidate for P, this question was the subject of the master thesis of Quentin Plazar
(2015). Yet there may be admissible partitions P that do not derive from a ginzu
partition (e.g. Figure 8.4 and Figure 8.5). Conjecture 8.7.5 should also be related to
the notion of automatic groups (i.e. a set S that generates the group together with an
automaton which recognizes exactly the words over S whose composite is the neutral
element of the group – see Epstein (1992)).

Example 8.7.6. The punctured torus is the local pospace S1 × S1 \ {(1, 1)} or{
(z1, z2) ∈ C × C

�� |z1 | = |z2 | = 1
}
\ {(1, 1)}

1See the first chapter of Epstein (1992), Lawson (2004), Wang (2012) or any textbook on the subject.

191



8.7. Components of Regions 8. Categories of Components

using the complex number notation (cf. Example 5.4.3). Its components are expected to
be A = {1}×S1\{(1, 1)}, B = S1×{1}\{(1, 1)}, andC = S1×S1\({1}×S1∪S1×{1}),
while its category of components is expected to be freely generated by the graph

A C //
oo oo

// B

This should be compared to Section 5.5 and the fundamental group of the underlying
space (i.e. Z ⊕ Z in the category of groups since the punctured torus is homotopy
equivalent to two circles sharing a single point.)

192



9

Unique Decomposition
Theorems

It was known by the ancient Greeks that any integer can be written as a product of prime
numbers in a unique way. In modern algebra a unique factorization domain or UFD
for short – Hungerford (2003), is a ring whose elements satisfy this property. Such a
ring is also said to be factorial – Lang (2002). On the computer science side, a process
algebra is a set of terms built over an infinite set of variables and the following binary
operators:

– sequential composition P; Q which mean that Q is performed once P is over,

– branching P + Q which means that either P or Q is executed, but which one
cannot be predicted a priori, and

– parallel composition P‖Q which means that both P and Q run simultaneously.

These terms are subjected to a set of rewriting rules which provide each operator
with a behaviour that fits with the intuition. For example both branching and parallel
composition are supposed to be commutative while the sequential one should not. Also
sequential composition distributes over branching but not over parallel composition.

Examples of such process algebras are the Calculus of Communicating Systems
or CCS (cf. Milner (1989)), the π-Calculus (cf. Milner (1999)), the Communicating
Sequential Processes or CSP (cf. Hoare (1978, 1985)), the Join-calculus (cf. Fournet
and Gonthier (2000)) which is based on the chemical abstract machine – Berry and
Boudol (1990, 1992) and actually implemented in the JoCaml compiler). An element
of a process algebra is just called a process. A process that can be written without the
parallel composition operator is called a sequential process.

The ring of polynomials over some factorial ring is factorial. This well known fact
provides a theoretical result of existencewhile numerous algorithms actually performing
the decomposition are known, each of them taking advantage of any extra information
about the coefficient ring. In the process algebra setting, the decomposition of a
program is always understood with respect to parallel composition. Remark indeed that
the decomposition of polynomials is to root finding as the decomposition of a program
is to parallel computing optimization. The interest in parallel decomposition is thus
beyond the theoretic concern, and it is not surprising that it has already been the subject
of several publications – Milner and Moller (1993); Luttik (2003); Luttik and Oostrom

193



9. Unique Decomposition Theorems

(2005); Fröschle and Lasota (2009); Dreier et al. (2013). The continuous model of a
program satisfies the following property: if the set of resources occurring in each of the
processes P1, . . . , Pn are pairwise disjoint, then

JP1 | · · · |PnK � JP1K × · · · × JPnK

If we are able to decompose any mathematical object arising as the geometric model
of some program, then we could try to recover the decomposition of the program from
it (at least partial information about it). Results about decomposition of mathematical
structures as a direct product of simpler ones abound. One of the most famous facts
of this kind is about finitely generated abelian groups – Hungerford (2003): any such
group G can be written as a direct sum

G � Zs1
p1 ⊕ · · · ⊕ Zsk

pk ⊕ Zn

with k ∈ N, n ∈ N, and (p1, s1), . . . , (pk, sk) a sequence of (not necessarily distinct)
ordered pairs of integers whose first term is prime and the second one is positive. The
decomposition being unique up to reordering. The Remak-Krull-Schmidt theorem is a
broad generalization – see Rotman (1994); Grillet (2007): any (not necessarily abelian)
group G whose ⊆-sequences of normal subgroups (Hn)n∈Z are constant beyond some
rank (i.e. there exists an integer n such that Hk � Hn and H−k � H−n for all k > n) can
be written as an internal finite product of indecomposable subgroups. Moreover given
two such decompositions G1 × · · · × Gs and H1 × · · · × Ht one has s = t and there is a
reordering such that Gi � Hi for all i, and for each r 6 t

G � G1 × · · · × Gr × Hr+1 × · · · × Ht

The story goes even further. The Ore-Kuroš theorem – see Ore (1936); Grätzer (2003);
Blyth (2005), states that in amodular lattice L if a = x1∨· · ·∨ xn and a = y1∨· · ·∨ ym
are irredundant joins of join-irreducible elements then n = m and for all xi there exists
yj such that

a = x0 ∨ · · · ∨ xi−1 ∨ yj ∨ xi+1 ∨ · · · ∨ xn−1

The Remak-Krull-Schmidt theorem can then be deduced from the Ore-Kuroš one as the
lattice of normal subgroups of a group is known to be modular (Kuroš, 1956, p.92).

The standard notions of prime element and irreducible element in a commutative
monoid are recalled in Section 9.1. They are used to characterize the free commu-
tative monoids (cf. Proposition 9.1.5 and Corollary 9.1.16). Homogeneous monoids
are described in Section 9.2. They are based on the action of symmetric groups on
homogeneous languages (cf.Definition 6.3.1) and proven to be free (cf. Theorem 9.2.5).
In Section 9.3, we prove that the commutative monoid of regions (cf. Definition 9.3.1)
is isomorphic to a pure submonoid of some homogeneous monoid, therefore it is free.
A very efficient factoring algorithm, discovered by Nicolas Ninin, is explained (cf. The-
orem 9.3.4). In Section 9.4, we examine how the category of components construction
could relate the free commutative monoid of regions to that of nonempty connected
loop-free categories (cf. Conjecture 9.4.13). In Section 9.5, we introduce the tensor
product of Boolean algebras in the category of semilattices with zero (cf. Proposi-
tion 9.5.25). Then we prove that the map sending any region to the Boolean algebra
of its subregions turns a product into a tensor product. The content of Section 9.6
is exploratory, it is concerned with prime decomposition of regions endowed with a
metric space structure (cf. Section 6.5).

194



9.1. Prime vs Irreducible 9. Unique Decomposition Theorems

9.1 Prime vs Irreducible
The existence of unique decompositions is related to the subtle distinction between
prime and irreducible elements in a commutative monoid. In this section we denote
the neutral element of a monoid by ε. More details can be found in the first chapter of
Geroldinger and Halter-Koch (2006).

Definition 9.1.1. A unit of a commutativemonoid is an element u to which corresponds
an element u′ such that uu′ = ε. One says that d divides x when there exists x ′ such
that x = dx ′, this situation being denoted by d |x. The elements x and y are said to be
equivalent when y = ux for some unit u.

Definition 9.1.2. A nonunit element is said to be irreducible when it can only be
divided, up to equivalence, by ε and itself. A nonunit element is said to be prime when
it divides a or b as soon as it divides their product. Denote by I(M) and P(M) the set
of irreducible elements and the set of prime elements of a commutative monoid M .

Example 9.1.3. In the monoid (N − {0},×, 1) it is well known that an integer is prime
iff it is irreducible.

Example 9.1.4. Define the support of a mapping from X to N as the subset of X on
which it is nonzero. The collection of all the mappings with finite support is denoted by
F(X). It becomes a commutative monoid when endowed with the pointwise addition,
the null mapping being the neutral element. This construction extends to a functor
F : Set → CMon which is left adjoint to the forgetful one. A commutative monoid
is said to be free when it is isomorphic to F(X) for some set X . We say that G ⊆ M
generates M when any element of M is, up to equivalence, a product of elements of G.
For example F(X) is generated by the mappings gx : X → N defined by gx(y) = 1 if
x = y; 0 otherwise.

Proposition 9.1.5.
A commutative monoid M is free iff P(M) = I(M) and generates M .

Example 9.1.6. The monoids (N,+, 0) and (N\{0},×, 1) are freely commutative.

Example 9.1.7.
The commutative monoid (R+,+, 0) has neither prime nor irreducible element.

Example 9.1.8. Due to idempotency, a semilattice has no irreducible element. In
particular any nonbottom element of a lower bounded chain is a reducible prime.

Example 9.1.9. In Z6 one can remark that 2 is a reducible prime since 2 = 2 · 4 (mod
6) and neither 2 nor 4 are unit as they are zero divisors – see (Hungerford, 2003, p.136).

Example 9.1.10.
In the subring {a + b

√
10 | a, b ∈ Z} of R the elements 2, 3 and 4 ±

√
10 are nonprime

irreducible – see (Hungerford, 2003, p.140) or (Bressoud, 1989, p.1). This example is
the prototype of a situation which is thoroughly explained in (Weintraub (2008)).

Example 9.1.11. In the semiring N[X] of polynomials with coefficient in N, one sees
that Hashimoto’s polynomial X5 + X4 + X3 + X2 + X + 1 has two noncompatible
decompositions

(X + 1)(X4 + X2 + 1) = (X3 + 1)(X2 + X + 1)

195



9.1. Prime vs Irreducible 9. Unique Decomposition Theorems

while the following ones hold in Z[X]

X3 + 1 = (X + 1)(X2 − X + 1) X4 + X2 + 1 = (X2 + X + 1)(X2 − X + 1) .

The polynomials X3 + 1 and X4 + X2 + 1 are therefore nonprime irreducible – see
Nakayama and Hashimoto (1950).

Example 9.1.12. In differential geometry, the compact, connected, smooth oriented
n-dimensional manifolds without boundary equipped with the connected sum # (tom
Dieck, 2008, p.390) form a commutative monoid Mn whose neutral element is the
n-sphere. It is well-known thatM2 is generated by torus T2 (Massey, 1991, Chap.1).
A more involved result is thatM3 is freely generated by countably many elements – see
(Hempel, 1976, Chap.3) or (Jaco, 1980, Chap.2). The existence of the decomposition
is due to Kneser (1929) and its uniqueness to Milnor (1962).

Definition 9.1.13. A commutative monoid M is said to be graded when there exists a
morphism of monoid d : M → N such that

d -1({0}) = {units of M}

The morphism d is called a length function in (Anderson, 1997, p.8).

Remark 9.1.14. A free commutative monoid is graded since each of its elements can be
associated with the number of terms of its prime decomposition. The graded monoids
are actually not far from being free.

Proposition 9.1.15. Given a graded monoid M , I(M) generates M and contains P(M).

Proof. Given x1, . . . , xn nonunit elements of M we have

d(x1 · · · xn) = d(x1) + · · · + d(xn) > n

because M is graded. It is therefore generated by its irreducible elements. Suppose that
p = a · b is prime. So we can suppose p divides a, and then

d(a) + d(b) = d(a · b) = d(p) 6 d(a)

Therefore d(b) = 0 from which we deduce that b is a unit element of M which is
graded.

Corollary 9.1.16. A commutative monoid M is free iff it is graded and I(M) ⊆ P(M).

Note that in Definition 9.1.13 we can actually replace N by any free commutative
monoid. Yet another characterization of free commutative monoids can be found in the
introduction of Luttik and Oostrom (2005).

Any submonoid of a graded monoid is graded. Yet a submonoid of a free commu-
tative monoid might not be free e.g. define α = x + 2y, β = 2x + y, and γ = x + y so
the submonoid of N{x,y } generated by α, β, and γ satisfies α + β = 3γ.

Definition 9.1.17. A submonoid P of M is said to be pure when for all x, y ∈ M , if
x · y ∈ P then both x and y belongs to P.

Definition 9.1.17 is actually a special case of Definition 8.2.8, in the current context it
is motivated by the following result:

196



9.2. Action of the Symmetric Groups 9. Unique Decomposition Theorems

Lemma 9.1.18. Any pure submonoid of a free commutative monoid is free.

Proof. Let M be a free commutative monoid and P be one of its submonoids. Then P
is graded. Moreover if p is irreducible in P and p divides x · y with x, y ∈ P then we
can suppose that x = p · x ′ with x ′ ∈ M . Since P is pure, x ′ actually belongs to P. We
conclude by Corollary 9.1.16.

9.2 Action of the Symmetric Groups
on the Homogeneous Languages

This section provides a nontrivial example of free commutative monoid which is based
on homogeneous languages (cf. Definition 6.3.1) and can be seen as the sequel of
Section 6.3.

Definition 9.2.1. A subword of a word w is a word of the form w ◦ φ where φ
is a strictly increasing map {1, . . . , n} → {1, . . . , `(w)}. Such a map φ is entirely
characterized by its image A, hence it makes sense to write w |A (instead of w◦φ) for any
A ⊆ {1, . . . , `(w)}. By extension we define the subword language of a homogeneous
language D applying the precomposition _ ◦ φ to all its words, and denote it by D |A.

It comes with a factorization algorithm whose complexity is exponential in the
length of its elements (cf. Definition 6.3.1). In practice, if the prime factors of some
element have “small” lengths, then the decomposition algorithm quickly finds them.
This is to be compared with the naive decomposition algorithm of natural numbers,
which is fast provided the prime factors are “small”.

The nth symmetric group Sn, whose elements are the permutations of the set
{1, ..., n}, acts on the words of length n by composing on the right, that is for all σ ∈ Sn

and all words w of length n we have

σ · w := w ◦ σ = (wσ(1) · · ·wσ(n))

By extensionSn also acts onDn(A) (cf. Definition 6.3.1) by applying the same permu-
tation to all the words of a homogeneous language D of length n:

σ · D := {σ · w | w ∈ D}

Two homogeneous languages are said to be equivalent, denoted by D ∼ D′, when
`(D) = `(D′) = n and there exists σ ∈ Sn such that D′ = σ · D. The juxtaposition
σ ⊗ σ′ ∈ Sn+n′ of two permutations σ ∈ Sn and σ′ ∈ Sn′ is defined as:

σ ⊗ σ′(k) :=
{

σ(k) if 1 6 k 6 n(
σ′(k − n)

)
+ n′ if n + 1 6 k 6 n + n′

AGodement-like exchange law is satisfied, which ensures that∼ is actually a congruence
over Dh(A):

(σ · S) ∗ (σ′ · S′) = (σ ⊗ σ′) · (S ∗ S′)

Definition 9.2.2. The homogeneous monoid over A, denoted by H(A), is the quo-
tient Dh(A)/∼ from which the absorbing element has been removed. Moreover the
homogeneous monoid is commutative and its only unit is the singleton {ε}.

Remark 9.2.3. If the alphabet A is a singleton (resp. the empty set) then the homoge-
neous monoidH(A) is isomorphic to (N,+, 0) (resp. the null monoid).

197



9.2. Action of the Symmetric Groups 9. Unique Decomposition Theorems

Remark 9.2.4. If A contains at least two elements, thenH(A) is not isomorphic to the
abelianization of Dh(A). Indeed {aaa, aab, baa} is irreducible in the latter, not in the
former since it is identified with {aaa, aba, baa} = {aa, ab, ba} ∗ {a}.

As they are ∼-equivalence classes, the elements ofH(A) are subsets ofDh(A). The
notion of length extends to all H ∈ H(A) defining `(H) := `(D) for any D ∈ H. Hence
H(A) is graded.

Theorem 9.2.5 (Balabonski and Haucourt (2010)).
The commutative monoidH(A) is free.

Proof. Suppose that H is an element of H(A) which divides H1 ∗ H2 and pick D, D1
and D2 respectively from the equivalence classes H, H1 and H2. Define n = `(D),
n1 = `(D1) and n2 = `(D2), and remark that n 6 n1 + n2. There exists σ ∈ Sn and
some D3 such that σ · (D1 ∗ D2) = D ∗ D3 in Dh(A). Suppose in addition that H
does not divide H1 nor H2 (therefore H is not prime), then we have A1 ⊆ {1, ..., n1}
and A2 ⊆ {1, ..., n2} such that A1 , ∅, A2 , ∅, and σ(A1 ∪ A′2) = {1, ..., n} where
A′2 := {a + n1 | a ∈ A2}. Then we have a nontrivial factorization D = D′1 ∗ D′2 where
D′i is the subword language D |Ai for i ∈ {1, 2}. Thus H is not irreducible. We conclude
by Corollary 9.1.16.

By definition an element of H(A) is an equivalence class whose elements are sets
of the same cardinal. Therefore we can define the cardinal of an element of H(A) as
the cardinal of any of its elements. In particular an element ofH(A) is said to be finite
when so is its cardinal. Therefore we denote byHf (A) the collection of finite elements
ofH(A).

Lemma 9.2.6. The collectionHf (A) is a pure submonoid ofH(A).

Proof. The nonempty languages S and S′ are finite iff S · S′ is so.

Corollary 9.2.7. The commutative monoidHf (A) is free.

Proof. Readily comes from Theorem 9.2.5, Lemma 9.2.6 and Lemma 9.1.18.

Remark 9.2.8. Finding a factor of H ∈ Hn(A) amounts to finding a representative of
H that can be written as D0 · D1 in Dh(A) (cf. Definition 6.3.1). In other words, we
can fix some representative D of H and seek for a permutation σ of {1, . . . , n} such
that σ · D factors in Dnf(A). In particular there is a subset A ⊆ {1, . . . , n} of cardinal
n′ = `(D0) such thatσ sends A to {1, . . . , n′} and the complement of A to {n′+1, . . . , n}.
Actually we can even suppose that the restrictions of σ to A and to its complement are
order-preserving in order to make it entirely defined by A. The factoring algorithm thus
requires to test dn/2e subsets of {1, . . . , n}1.

We shall see that the preorder relation introduced in Definition 6.2.1 can actually
be transferred to bothH(A) andHf (A) giving rise to an isomorphism analogous to that
of Corollary 6.3.3.

Definition 9.2.9. A binary relation � over Dh(A) is said to be admissible when it is
compatible with the product (of Dh(A)) and satisfies

∀D,D′ ∈ Dh(A)
(
D � D′ ⇒ `(D) = `(D′) and ∀σ ∈ S`(D) (σ · D) � (σ · D′)

)
1 dn/2e denotes the least integer greater or equal than n/2.

198



9.2. Action of the Symmetric Groups 9. Unique Decomposition Theorems

A useful feature of admissible relations is given by

Lemma 9.2.10. Any admissible relation overDh(A) can be transferred to a relation on
H(A) which is still compatible with the product.

Proof. It suffices to set H �H ′ when `(H) = `(H ′) and there exists D ∈ H and D′ ∈ H ′

such that (σ · D) � (σ · D′) hold for all σ ∈ S`(H).

The quotient mapDh(A) → H(A) is then compatible with � and its extension. The
next result provides a natural example of such a relation.

Lemma 9.2.11. Let 4A be a preorder on the alphabet A with a least element ⊥A. The
preorder 4h defined over Dh(A) by

D 4h D′ ≡ ∀w ∈ D (∃i ∈ {1, . . . , `(D)}, w(i) ∼A ⊥A or ∃w′ ∈ D′, w 4`(D)A w′)

is admissible. Moreover the relation 4 induced onH(A) is also a preorder with a least
element. In particular, H,H ′ ∈ H(A) are equivalent iff there exist D ∈ H and D′ ∈ H ′

such that for all σ ∈ S`(H), σ · D and σ · D′ are equivalent.

Proof. The relation 4h is admissible by construction and the relation 4 is obviously
reflexive. If H1 4 H2 4 H3 then we have D1 ∈ H1, D2,D′2 ∈ H2, and D′3 ∈ H3 such
that

D1 4h D2 and D′2 4h D′3

then we have some permutation τ such that τ · D′2 = D2. Therefore setting D3 = τ · D′3
we have for all σ ∈ Sd(H)

σ · D1 4h σ · D2 4h σ · D3

In particular given w ∈ D1 no term of which is (equivalent to) ⊥A , we have w′ ∈ D2,
and w′′ ∈ D3 satisfying w 4A w′ 4A w′′, and thus H1 4 H3. Now suppose that
H 4 H ′ and H ′ 4 H. Then we have D ∈ H, D′ ∈ H ′ and some permutation τ such
that D 4h D′ 4h τ · D. So we obtain inductively for m ∈ N

D 4h τ · D 4h · · · 4h τ
m · D 4h · · ·

By finiteness of the group S`(H) we have τm = id for some m ∈ N \ {0} so D and D′

are equivalent.

Corollary 9.2.12. The free commutative monoidsH(A) andHf (A) inherits their pre-
orders from the preorder on the alphabet A.

Remark 9.2.13. Defining 4h by

D 4h D′ ≡ ∀w ∈ D ∃w′ ∈ D′, w 4`(D)A w′

would have also provided an admissible relation. In the former case however, two words
containing ⊥A are equivalent though they may not be in the latter. The definition given
in Lemma 9.2.11 is thus better fitted with the situation where A is a (fine) connectology
over X ordered by inclusion, for it sees any word w containing ⊥A as a representative
of the empty subset of X`(w).

199



9.3. Isothetic Regions 9. Unique Decomposition Theorems

H1

H4

H2

H3

Figure 9.1: Two elements ofHf (A) with two non comparable minimal upper bounds

Remark 9.2.14. The preorder induced onHf (A) by Lemma 9.2.11 does not, in general,
inherits the properties from 4A. For example let A be the collection of finite unions of
subintervals of R ordered by inclusion (cf. Example 6.2.20). The frames on Figure 9.1
are extensive descriptions of elements of Hf (A), which are denoted by H1, H2, H3
and H4. Formally we have H1 = {[0, 1] × [1, 3], [1, 3] × [0, 1]} and H2 = {[1, 3] ×
[3, 4], [3, 4] × [1, 3]}. Then observe that H3 and H4 are non comparable minimal upper
bounds of H1 and H2:

H3 = {[0, 1] × [1, 3] ∪ [3, 4] × [1, 3], [1, 3] × [0, 1] ∪ [1, 3] × [3, 4]}

and
H4 = {[0, 1] × [1, 3] ∪ [1, 3] × [3, 4], [1, 3] × [0, 1] ∪ [3, 4] × [1, 3]}

The resulting preorder on Hf (A) is not even a ∨-lattice. The structures provided by
Theorem 6.2.21 are thus lost.

As a more degenerated case, let A be {a, b, a′, b′} with the discrete order. Then
consider D = {ab} and D′ = {a′b′}, and let [D] and [D′] be their corresponding
equivalence classes under the action of the symmetric group. The classes of {ab, a′b′}
and {ab, b′a′} are minimal upper bounds of {[D], [D′]} which are not comparable.
Once again, the structure carried byH(A) is thus not even a ∨-lattice.

9.3 Isothetic Regions
We have introduced three notions of independence for Paml programs: syntactic inde-
pendence (cf. Definition 1.5.3), observational independence (cf. Definition 1.5.7), and
model independence (cf. Definition 7.3.1). They are related by the following chain of
implications, each of which being strict (cf. Proposition 7.3.2, Theorem 7.3.4, and
Example 7.3.3).

syntactically indep. ⇒ model indep. ⇒ observationally indep.

On one hand the leftmost notion is too strong because it is not even able to detect
obviously artificial dependencies. On the other hand the rightmost one is so weak that it

200



9.3. Isothetic Regions 9. Unique Decomposition Theorems

lets certain Paml programs be independent from themselves, plus it cannot be decided
at compile time. The remaining one is related to the existence of decompositions of
the continuous model as Cartesian product of continuous models: the Paml programs
P1, . . . , Pn are model independent when

JP1 | · · · |PnK = JP1K × · · · × JPnK

Since the continuous models of Paml programs are isothetic regions (cf. Proposi-
tion 7.1.5), they are the prime motivation for studying homogeneous monoids (cf. Def-
inition 9.2.2). In this particular case, A is a (fine) connectology over X (cf. Defini-
tion 6.2.8, Definition 6.2.19, and Example 6.2.25) ordered by inclusion. We turn the
monoid of regions R (cf. Definition 6.3.2) into a commutative one.

Definition 9.3.1. The commutative monoid of regions is the quotient of R/S i.e. the
disjoint union of quotients ⊔

n∈N
Rn/Sn

Theorem 9.3.2. The pair (α, γ) of Corollary 6.3.3 induces morphisms of (pre)ordered
commutative monoids which becomes isomorphisms if one restricts to the image of α
(i.e. equivalence classes of maximal block coverings.)

H(A)
γ // H(X)
α
oo and Hf (A)

γ // R/S
α

oo

Proof. The action of the symmetric groups on the homogeneous languages is compat-
ible with the (pre)ordered monoid morphisms (α, γ) of in the sense that for all σ ∈ Sn,
for all D ∈ Dn(A) (resp. Dnf(A)), and for all X ∈ Dn(X) (resp. Dnf(X)), we have

σ · γn(D) = γn(σ · D) and σ · αn(X) = αn(σ · X)

Remark 9.3.3. At first sight, the prime decomposition of a continuous model given
by Corollary 9.2.7 and Theorem 9.3.2 does not directly provide a family of model
independent Paml programs. In practice, the algorithm performing that decomposition
keeps track of the correspondence between positions of letters in words and process
identifiers.

Exploiting the extra assumption that A is the Boolean algebra associated with a
fine connectology, Nicolas Ninin (2016) discovered an algorithm that is incomparably
more efficient than the one described in Remark 9.2.8. Given H ∈ Hn(A) (for n ∈ N)
let F be a collection of blocks (cf. Definition 6.2.12) whose union is the complement
(cf. Theorem 6.2.21) of some representative of H. The elements of F are words of
length n over A so we denote by projk the operator that returns the k th letter of any such
word. Then let ∼ be the equivalence relation generated by the following binary relation
over {1, . . . , n}{
(i, j)

�� ∃B ∈ F s.t. neither proji(B) nor projj(B) are the maximum element of A
}

Theorem 9.3.4 (Ninin (2016)). The ∼-equivalence classes provide a decomposition of
H. Moreover, if F is the collection of maximal blocks of the chosen representative of
H, then it is the prime decomposition of H.

201



9.3. Isothetic Regions 9. Unique Decomposition Theorems

Remark 9.3.5. In practice, the raw output of the ALCOOL software is the complement
of the continuous model of the program to analyze given as a finite collection F of
blocks of �G1� × · · · × �Gn�. So we have to be careful applying Theorem 9.3.4 which
requires to work in �G�n for some finite graph G. In that case A is the Boolean algebra
associated with the fine connectology of �G� and the maximum of A is �G� itself. One
can circumvent the problem either by:

– defining G as the disjoint union of the graphs G1, . . . ,Gn and turning each block
B1 × · · · × Bn ∈ F into B′1 × · · · × B′n with

B′k = Bk ∪
⋃
i,k

�Gi� ,

– or keeping track of the fact that complement has been computed in the product
�G1 � × · · · × �Gn � and thus testing whether proji(M) is the maximum of Ai

(i.e. the Boolean algebra associated with the fine connectology of �Gi �, the
maximum of Ai being �Gi� itself) instead of A.

Example 9.3.6. The n-dining philosophers case (n ∈ N) strikingly illustrates the effi-
ciency of the factoring method derived from Theorem 9.3.4. The corresponding Paml
program declares n mutices and n processes (i.e. the “philosophers”)

proc: pi = P(ai);P(ai+1);V(ai);V(ai+1)

with the indices being taken modulo n. The complement of the continuous model of
the program (cf. Definition 7.1.2) has exactly n maximal blocks M0, . . . , Mn−1, and for
k ∈ {0, . . . , n − 1},

projk(Mi) =

[1, 4[ if k = i ;
[2,3[ if k = i + 1 mod n ;
the maximal element of A otherwise.

from which one deduces, by Theorem 9.3.4, that the continuous model of the program
is prime inHf (A).
Example 9.3.7. Definition 7.3.1 and Theorem 9.3.4 should be understood as the refine-
ment that fills the gap between Definition 1.5.3 and Definition 1.5.7 by detecting when
a semaphore is “artificially” involved in a program. Let us go back to Example 7.3.3 to
illustrate the last remark. The raw output of the ALCOOL software is

{BBCC,CCBB, AAAC, AACA, ACAA,CAAA}
with A = [2, 3[, B = [1, 4[, and C = [0, 5] (the maximum of A). Hence A ⊆ B ⊆ C
and the preceding language is equivalent to {BBCC,CCBB}. Applying Theorem 9.3.4
we obtain that both programs of Example 7.3.3 are model independent. Note that the
forbidden regions Fa, Fb , and Fc generated by a, b, and c are respectively {BBCC},
{CCBB}, and {AAAC, AACA, ACAA,CAAA}. In particular Fc ⊆ Fa ∪ Fb , which
reflects the “handcrafted” analysis made in Example 7.3.3.

Beyond its combinatorial nature, a region is endowed with a topology, several met-
rics inducing its topology, several measures (related to its metrics), and it is associated
with invariants (e.g. its category of components). Each of the aforementioned structures
lies in a class of mathematical objects that may satisfy a unique decomposition theorem.
When it is the case, we would like to determine whether both decompositions match.
When the region of interest arises as the model of some Paml program P, the underlying
idea is that the prime decompositions in all of these classes should be strongly related to
the process decomposition of P. The subsequent sections are dedicated to this question.

202



9.4. Finite Connected Loop-Free Categories 9. Unique Decomposition Theorems

9.4 Finite Connected Loop-Free Categories
From the basic facts of category theory given therein after:

– A � A ′ and B � B ′ implies A × B � A ′ × B ′,
– A × (B × C) � (A × B) × C,
– A × B � B × A, and
– A × 1 � A with 1 a category with one object an one morphism,

one deduces that the collection of isomorphism classes of small categories can be
given a structure of commutative monoid (provided one relaxes the condition that
the underlying collection of a monoid should be a set). One readily checks that the
collection M of isomorphism classes of nonempty finite connected loop-free categories
(which is a countable set indeed) is a pure submonoid of the previous one. Then M is
graded by the mapping that sends any element of M to its number of morphisms

Card(Mo(A × B)) = Card(Mo(A)) × Card(Mo(B))

In particular there are countably many isomorphism classes of such categories since for
any of them to be prime, it suffices that its number of morphisms be prime. Thibaut
Balabonski (2007) proved the following result during an internship I supervised.

Theorem 9.4.1. Any irreducible element of M is prime.

As a straightforward consequence of Theorem 9.4.1 and Corollary 9.1.16, we have

Corollary 9.4.2. The commutative monoid M is free.

Lemma 9.4.3, Corollary 9.4.5 and Proposition 9.4.6 are the starting points of the
proof of Theorem 9.4.1.

Lemma 9.4.3. Any morphism of a finite loop-free category can be written as a com-
posite of irreducible morphisms.

Proof. Amorphism of a loop-free category C is irreducible when it cannot be written as
the composite of two nonidentity morphisms. Since C is loop-free any decomposition
(without identities) of length n gives rise to a sequence of n+1 pairwise distinct objects
of C. The finiteness of C thus imposes an upper bound on n.

A set G of morphisms of C is said to be generating when all the nonidentity
morphisms of C can be written as a composite of elements of G.

Remark 9.4.4. If the collection of irreducible morphisms of C forms a generating
set of morphisms, then it is the least one. Moreover C has neither isomorphisms nor
idempotent morphisms but the trivial ones.

Corollary 9.4.5. If C is a finite loop-free category then its set of irreducible morphisms
is the least generating one.

For all finite loop-free categoriesC, we denote by Irr(C) the graphwhose vertices are
the objects of C and arrows are the irreducible morphisms of C. Given an equivalence
relation on the collection ofmorphisms, we denote by∼∗ the least congruence containing
∼.

Proposition 9.4.6. If C is a finite loop-free category then the collection of equivalence
relations ∼ such that

Free(Irr(C))/∼∗ � C
admits a least element denoted by ∼C .

203



9.4. Finite Connected Loop-Free Categories 9. Unique Decomposition Theorems

Definition 9.4.7. A category whose irreducible elements form a generating set of
morphisms, and that satisfies Proposition 9.4.6, is said to have a least presentation.

Hence any finite loop-free category has a least presentation. The proof of The-
orem 9.4.1 is based on the relation between the Cartesian product of finite loop-free
categories and the Cartesian product of their least presentations.

Remark 9.4.8. The connectedness hypothesis cannot be dropped. Indeed we obtain a
counter-example by interpreting the product and the sum of monomials as the Cartesian
product and the coproduct of categories, and then by substituting the category {· → ·}
to X in Hashimoto’s polynomial

X5 + X4 + X3 + X2 + X + 1

Remark 9.4.9. The unique decomposition property on M actually generalizes a result
on finite posets – see Hashimoto (1951); Schröder (2002). We then wonder whether it
could be deduced from a combination of results fromHashimoto (1951) andOre (1936).
For example the unique factorization theorem for finite groups (a.k.a. Krull-Schmidt
theorem) is known to be a consequence of the latter.

Definition 9.4.10. A region A is said to be loop-free (resp. diconnected) when its
fundamental category is loop-free (resp. connected).

In this case the category of components of (the fundamental category of) A is finite.
Moreover the category of components of a loop-free (resp. connected) category is loop-
free (resp. connected). The category of components of a diconnected loop-free region
is thus a finite connected loop-free category. One easily checks that a region A ⊆�G�n
is loop-free (resp. diconnected) iff for any σ ∈ Sn, so is σ · A. Hence it makes sense to
write that an element of the commutative monoid of isothetic regions, which is an orbit
under the action ofSn, is loop-free (resp. diconnected), see Section 9.2.

Lemma 9.4.11. A product (in the commutative monoid of G-regions, see Defini-
tion 9.3.1) is loop-free (resp. diconnected) iff so are both terms of the product.

Corollary 9.4.12. The commutative monoid of connected loop-free regions is free.

Proof. ByLemma 9.4.11, the connected loop-free elements of the commutativemonoid
of regions form a pure submonoid of it. We conclude by Lemma 9.1.18.

Since both fundamental category and category of components constructions pre-
serve binary Cartesian product (cf. Lemma 5.2.12, Corollary 8.5.3, and Proposi-
tion 8.5.10), we have a morphism of commutative monoids

{connected loop-free regions}
−→π0◦−→π1 // {finite connected loop-free categories}

As a consequence of the fourth point of Theorem 8.3.10, the category of components of
a loop-free category C is reduced to a single morphism iff C is isomorphic to a lattice.

Conjecture 9.4.13. If A is a prime connected loop-free region whose fundamental
category is not isomorphic to a lattice, then −→π0(−→π1 A) is prime.

As we have seen in Section 8.7, the notion of category of components is not well
understood in the presence of loops. However we are confident that it can be defined

204



9.5. Boolean Algebras 9. Unique Decomposition Theorems

for all fundamental categories (cf. Definition 5.2.10) of isothetic regions (cf. Defini-
tion 6.2.1). In this case, we suspect that the resulting category of components has a
least presentation. As the proof of Theorem 9.4.1 heavily relies on the existence of a
least presentation, it is natural to define M′ as the commutative monoid of (isomorphism
classes of) nonempty finite diconnected categories with a least presentation. One has
M ⊆ M′ by Proposition 9.4.6 so it is natural to ask whether M′ is free and whether
decompositions are preserved by the mapping that sends a diconnected region to the
category of components of its fundamental category.

9.5 Boolean Algebras
Given an isothetic region A, the collection of isothetic regions contained in A forms
a Boolean algebra denoted by RA (cf. Definition 6.2.1 and Theorem 6.2.21). Note
however that if A ⊆ A′ then RA is not a Boolean subalgebra of RA′ since their greatest
elements are respectively A and A′. Except for this glitch, both share their join and
meet operators as well as their least element, namely the empty region. We have seen
in Definition 7.1.2 that the continuous model of a program is expressed in terms of
Boolean operations over regions. Moreover, A being the continuous model of a Paml
program P, the deadlock attractor (cf. Remark 7.1.3) as well as many other significant
pieces of information about P are obtained from Boolean operations in RA, which is
therefore of a great interest. Given isothetic regions A1, . . . , An the Boolean algebra
RA1×···×An is actually the coproduct of the Boolean algebras RAi for i ∈ {1, . . . , n}
(Givant and Halmos, 2009, p.433).

Existence of coproducts of Boolean algebras is given by the Stone representation
theorem. The category Stone is the full subcategory of CHaus whose objects are
totally disconnected (i.e. the connected components of the objects are singletons). A
Stone space is an objects of the category Stone. The categorical form of the Stone
representation theorem provides an isomorphism between the category BoolAlg and
the dual of the category Stone (Johnstone, 1982, p.71).

BoolAlg
S // Stoneop
B
oo

The category Stone is complete because the products of Stone spaces in Top are Stone
spaces. This is mainly a consequence of Tychonoff’s theorem (Kelley, 1955, p.143).
The coproduct A1 t A2 of a pair of Boolean algebras is thus B(S(A1) × S(A2)) where
the product is indifferently taken in the category Stone, CHaus, or Top.

Coproducts of Boolean algebras are given many different names in literature. The
most misleading terminology is perhaps the one adopted in Sikorski (1950) where
coproducts of Boolean algebras were considered for the first time. In that article,
they are indeed called Cartesian products. Similarly Sikorski (1969) writes Boolean
products (resp. direct unions) to denote the coproducts (resp. products) of Boolean
algebras. The term free product is the most common one (Koppelberg, 1989, p.158)
due to the link with free Boolean algebras (Givant and Halmos, 2009, Chap. 44).
That connection is to be compared to the one between free groups and free products of
groups. One also meets the word sum which echoes the name given to coproducts of
modules in commutative algebra (Givant and Halmos, 2009, Chap.44). From this point
of view, Lemma 9.5.1 is the Boolean algebra version of a well-known result of linear
algebra. To see this, it suffices to read “vector space” and “sum” instead of “Boolean
algebra” and “meet”.

205



9.5. Boolean Algebras 9. Unique Decomposition Theorems

Lemma 9.5.1 (see Givant and Halmos (2009), p.431). A Boolean algebra A is the sum
of a family of Boolean algebras Ai just in case there are homomorphisms Ai → A such
that the union ⋃

i

fi(Ai)

generates A, and whenever J is a finite, non-empty subset of the indices, and pi is an
element in Ai such that fi(pi) , 0, for each i ∈ J, then∧

i∈J
fi(pi) , 0

Occasionally one also reads the term tensor product, for example in (Pierce (1983))
and (Haucourt and Ninin (2014)), because of the similarity with commutative algebra
where the coproduct of a finite family of commutative algebras is its ordinary tensor
product (Lang, 2002, Prop.6.1, p.630). Going deeper, the preceding remark has to do
with universal algebra, this is precisely the purpose of this section. We also state some
conjectures about uniqueness of the coproduct decomposition in the case of Boolean
algebras of isothetic regions (cf. Conjecture 9.5.28, 9.5.29, and 9.5.30).

Tensor Product of Models of an Algebraic Theory
The concept of algebraic theory is related to universal algebra – see Grätzer (2008);
Burris and Sankappanavar (1981), and (Borceux, 1994b, Chap.3). A signature is a
mapping α : Ω→ N. Each elementω ∈ Ω should be thought of as an operator and α(ω)
as its arity (i.e. the number of arguments of ω). An interpretation of the signature
is a set X together with a mapping ωX : Xα(ω) → X for each ω ∈ Ω. Given two
interpretations X and Y of the same signature, amorphism of interpretations from X
to Y is a mapping f : X → Y such that for all ω ∈ Ω and for all (x1, . . . , xα(ω)) ∈ Xα(ω)

the equality below holds.

f (ωX (x1, . . . , xα(ω))) = ωY ( f (x1), . . . , f (xα(ω)))

An algebraic theory T is a signature together with a collection of axioms of the form
below, where Φ and Ψ are terms built on the operators of Ω and whose free variables
are in {x1, . . . , xn}.

∀x1 . . . ∀xn Φ(x1, . . . , xn) = Ψ(x1, . . . , xn)

A model of the theory is an interpretation of its signature satisfying all its axioms.
A morphism of models is just a morphism of interpretations between models of the
theory. The models of T and their morphisms form the category MdlT.

Remark 9.5.2. If T2 ⊆ T1 are two theories sharing the same signature, then MdlT1 is
a full subcategory of MdlT2 .

Most of the mathematical objects considered in algebra arise as models of some
algebraic theory.

Example 9.5.3. The theory of semigroups is algebraic, being built on a single binary
operator · and the associativity axiom:

(x · y) · z = x · (y · z)

206



9.5. Boolean Algebras 9. Unique Decomposition Theorems

The theory of monoids is also algebraic; it suffices to add a constant ε to the signature
and the neutral element axiom:

ε · x = x = x · ε

The theory of groups is then obtained by adding a unary operator ι and the inverse
axiom:

x · ι(x) = ε = ι(x) · x

The theory of commutative semigroups (resp. monoids, groups2) is obtained by adding
the commutativity axiom:

x · y = y · x

The additive notation “+” is often preferred when the binary operator is commutative.
In that case, the neutral element is denoted by 0 instead of ε. The theory of rings is also
algebraic, its signature contains two binary operators, a unary operator, and a constant.
The binary operators and the constant are usually denoted by +, ·, and 0, and called
sum, product, and zero. The unary operator, called opposite, is usually represented by a
minus sign “−” in prefix position. The axioms of the theory of rings state that {+,−, 0}
is an abelian group, that · is a semigroup, and that the latter acts on both sides of the
former which is formalized by the left and right distributivity axioms:

x · (y + z) = x · y + x · z and (y + z) · x = y · x + z · x

The theory of commutative rings is obtained by requiring that the multiplicative semi-
group be commutative, in which case the left distributivity axiom is equivalent to the
right one. From there, the theory of commutative rings with unit is obtained by adding
a constant, usually denoted by 1, together with an extra axiom stating that 1 is the
neutral element of the product · in which case the multiplicative semigroup is actually
a commutative monoid.

Given A, B and X three models of the same theory, a bimorphism from A × B
to X is a mapping f : A × B → X such that for all a ∈ A and for all b ∈ B the
mappings f (a, _) : B → X and f (_ , b) : A → X are morphisms. The composite
f ◦ g of a bimorphism f : A × B → X and a morphism g : X → Y is again a
bimorphism. As a consequence there is a functor Bim(A, B) from the category of
models of the theory to Set sending X to the set of bimorphisms from A × B to X . An
important result about algebraic theories is that the functor Bim(A, B) is representable
(i.e. there is a (necessarily unique) model A ⊗ B such that the functor Bim(A, B)
is isomorphic to MdlT(A ⊗ B, _)). It amounts to say that there is a bimorphism
T : A × B → A ⊗ B such that for every bimorphism F : A × B → X there is a unique
morphism h ∈ MdlT(A ⊗ B, X) such that F = h ◦T . Following the common usage, the
elements of the image of T are called the pure tensors and we write a ⊗ b instead of
T(a, b) for all (a, b) ∈ A× B. By definition T is the tensor product of A and B in MdlT
though it is also referred to as A ⊗ B. We also write universal tensor product in the
event that another notion tensor product be under consideration for the objects of MdlT
(cf. Example 9.5.8). For a general treatment of tensor product of algebraic theories
see (Borceux, 1994b, Th.3.11.3 p.173). Since the notion of bimorphism dramatically
depends on the underlying algebraic category (i.e. on the theory modelled by its objects)
so does the tensor product.

2Commutative groups are usually called abelian groups.

207



9.5. Boolean Algebras 9. Unique Decomposition Theorems

Example 9.5.4. Let A and B be two monoids and f : A × B→ X be a bimorphism of
monoids. Sincemorphisms preserve neutral elementswe have f (εA, b) = f (a, εB) = εX
for all a ∈ A and all b ∈ B. If g : A × B → X is just a bimorphism of semigroups
one may have a ∈ A and b ∈ B such that g(εA, b) , g(a, εB). The tensor product of
semigroups have been introduced and studied in (Grillet (1969a,b)).

Some inclusion functors preserve tensor products.

Remark 9.5.5. Assume that MdlT1 is a full subcategory of MdlT2 and that A and B are
two models of T1 whose tensor product in T2 is still a model of T1. The tensor products
of A and B in MdlT1 and MdlT2 are denoted by A ⊗1 B and A ⊗2 B. For all a ∈ A and
all b ∈ B the mappings x 7→ x ⊗2 b and y 7→ a ⊗2 y are actually morphisms of MdlT1 .
Therefore one has a unique morphism f : A⊗MdlT1

B→ A⊗MdlT2
B of MdlT1 such that

f (a ⊗1 b) = a ⊗2 b. Since MdlT1 is a subcategory of MdlT2 the mapping a, b 7→ a ⊗1 b
is a bimorphism of MdlT2 . Therefore one has a unique morphism g : A⊗2 B→ A⊗1 B
of MdlT2 such that g(a ⊗2 b) = a ⊗1 b. By hypothesis g is in fact a morphism of MdlT1 .
Due to the universal properties characterizing tensor products f and g are inverse of
each other and we get an isomorphism.

A ⊗1 B � A ⊗2 B

The tensor product of R-modules as defined in linear algebra is actually a special
case of universal tensor product.

Example 9.5.6. Given a commutative ring with unit R, the theory of (left) R-module
is algebraic. Its signature consist of a binary operator + (sum), a unary operator −
(opposite), a constant 0 (zero), and an extra unary operator r · (_) for each element r ∈ R
providing the scalar multiplication. The axioms state that {+,−, 0} is an abelian group
and that R acts on the left of the abelian group. The latter is formalized by a family of
axioms indexed by pairs (r, r ′) of elements of R:

(r +R r ′) · x = (r · x) + (r · x) and (r ·R r ′) · x = (r · (r ′ · x))

The tensor product of (left) R-modules usually defined in linear algebra3 matches the
universal tensor product of (left) R-modules. In particular, ifV andV ′ are vector spaces
of dimensions n and n′ their product and coproduct are vector spaces of dimension
n + n′ (hence they are isomorphic). In comparison, their tensor product is a vector
space of dimension n · n′. The latter property is even used in (Brešar, 2014, p.79) to
introduce the notion of tensor product of vector spaces.

Tensor products can be drastically degenerated.

Remark 9.5.7. Assuming that the theory T has two constants denoted by 0 and 1, any
bimorphism f satisfies f (0, 1) = 0 and f (0, 1) = 1 because both mappings f (0, _) and
f (_ , 1) preserve constants. In particular, if we consider the theory of commutative
rings with unit, the codomain of any bimorphism is reduced to the null ring {0}.

Consequently, there are situations where the universal tensor product is relaxed to
obtain a much more relevant construction.

3See (Lang, 2002, Chap.16), (Cohn, 2003, Sect.4.8, p117-125), (Grillet, 2007, p.434-441), (Roman,
2008a, Chap.14), or (Douady and Douady, 1999, p.156-167).

208



9.5. Boolean Algebras 9. Unique Decomposition Theorems

Example 9.5.8. Starting from the theory of (left) R-modules, one defines the theory
of commutative algebras over R by adding a binary operator ∗ (internal product) to the
signature together with axioms expressing that ∗ is bilinear. Formally, it amounts to
state that {+, ∗, 0} is a commutative ring and to add the following axiom for each pair
(r, r ′) of elements of R:

(r ·R r ′) · (x ∗ x ′) = (r · x) ∗ (r ′ · x ′)

The theory of unital commutative algebras over R is obtained by adding a constant 1
together with the axiom that misses to state that {+, ∗, 0, 1} is a commutative ring with
unit. It is clear from Remark 9.5.7 that universal tensor products of unital commutative
algebras is pointless. Strictly applying the universal algebra approach, a bimorphism
of commutative algebras would satisfy the following relation:

(x ∗ x ′) ⊗ (y ∗ y′) = (x ⊗ y) ∗ (x ⊗ y′) ∗ (x ′ ⊗ y) ∗ (x ′ ⊗ y′)

The universal tensor product of the commutative R-algebras A and B does not match
their ordinary tensor product4. The latter indeed consists of the tensor product of
their underlying modules endowed with the unique bilinear product that extends the
following exchange law (with a, a′ ∈ A and b, b′ ∈ B).

(a ⊗ b) ∗ (a′ ⊗ b′) = (a ∗ a′) ⊗ (b ∗ b′)

In particular one easily checks that if both A and B have a unit, then the pure tensor
1A ⊗ 1B is the unit of the ordinary tensor product A ⊗ B. The motivation here is that
the ordinary tensor product of two commutative algebras is actually their coproduct,
see (Lang, 2002, Prop.6.1, p.630), (Grillet, 2007, Prop.5.6, p.529), or (Douady and
Douady, 1999, p.168).

Semilattices and Friends
Because the notion of semilattice is at the core of this section and because the way
it is understood may differ from a source to another, we dedicate some lines to make
things clear about it. According to most references, a join-semilattice (resp. meet-
semilattice) is a poset in which all nonempty finite subsets admit a least upper bound
(resp. a greatest lower bound)5. The corresponding algebraic notion is that of semilat-
tice that is to say an idempotent commutative semigroup6. The link between the order
theoretic and the algebraic approaches is fully detailed in (Roman, 2008b, p.51-52).
However, some authors admit the empty subset in the definition of a join-semilattice
(resp. meet-semilattice) and consequently, the corresponding algebraic notion becomes
that of idempotent commutative monoid7 which we call semilattice with zero. In this
section, the semilattices under consideration mainly arise as the join-semilattices of
Boolean algebras. In accordance with that remark, the binary operator of a semilattice
is denoted by∨ and its neutral element, when it exists, by 0 (compare to Example 9.5.3).

4The term ordinary tensor product is used in (Lang, 2002, p.629-631). That tensor product is also
discussed in (Grillet, 2007, p.527-530) or (Douady and Douady, 1999, p.167-169).

5See (Gierz et al., 2003, p.5), (Blyth, 2005, p.19), (Grillet, 2007, p.539), (Grätzer, 2008, p.18), (Roman,
2008b, p.49,51), and (Goubault-Larrecq, 2013, p.10).

6See (Birkhoff, 1967, p.9), (Amadio and Curien, 1998, p.225), and (Mac Lane and Birkhoff, 1999,
p.475).

7 See (Hofmann et al., 1974, p.5), (Johnstone, 1982, p.1-2), and (Pedicchio et al., 2003, p.20).

209



9.5. Boolean Algebras 9. Unique Decomposition Theorems

The formal definitions are summarized below.

A semigroup is a set X together with an associative law ∨. An element 0 ∈ X is
said to be neutral or zero when the mappings 0 ∨ _ and _ ∨ 0 are both idX . There
is at most one such element in a semigroup. A monoid is a semigroup with a neutral
element. The semigroup (resp. monoid) is said to be idempotent when x ∨ x = x
for all x ∈ X . A semilattice is a commutative idempotent semigroup. Therefore a
semilattice with zero is a commutative idempotent monoid. Any semilattice induces
a partial order on X putting x v∨ y when x ∨ y = y. Conversely a partial order on X
whose pairs have a least upper bound induces a semilattice. A lattice is a pair ∨,∧ of
semilattices structures such that v∧=vop∨ , which is the case if and only if the absorptive
law is satisfied for all x, y ∈ X .

x ∨ (x ∧ y) = x = x ∧ (x ∨ y)

A lattice is said to be bounded when it comes with a neutral element 0 for ∨ and a
neutral element 1 for ∧, which mean that the following holds for all x ∈ X .

0 ∨ x = x = x ∧ 1

The lattice is said to be degenerated when 0 = 1. Moreover a lattice is said to be
distributive when the equality therein under is satisfied for all x, y, z ∈ X .

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

In this case it is well-known that the dual equality also holds (Birkhoff, 1967, p.11).

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

Then a Boolean algebra is defined as a bounded distributive lattice together with a
complement that is a bijection x ∈ X 7→ xc ∈ X such that x ∨ xc = 0 and x ∧ xc = 1
for all x ∈ X , where 0 and 1 are the neutral elements for ∨ and ∧. The fact that this
permutation is actually an isomorphism of commutative idempotent monoid between
(X,∨, 0) and (X,∧, 1) is known as De Morgan laws. The definitions given above are
summarised on Figure 9.2. In particular the tensor product of a pair of Boolean algebras
can be taken in any category appearing on the diagram of Figure 9.3, the arrows on it
being inclusion functors.

Tensor Product of Boolean Algebras as Idempotent Rings
The coproduct of two Boolean algebras can also be defined as the ordinary tensor
product (cf. Example 9.5.8) of their corresponding Boolean rings seen as commutative
algebras over the 2 elements field F2. The purpose of this section is to formalize the
above statement which seems to be part of the Boolean algebra folklore. What might
not be so well-known is that in this case, it also matches the universal tensor product of
the corresponding idempotent rings. A ring R is said to be idempotent when x2 = x
holds for all its elements. The theory of idempotent Boolean rings is thus algebraic.
Any idempotent ring has characteristic 2 (i.e. x + x = 0 holds for all its elements),
and any ring of characteristic 2 is commutative (Givant and Halmos, 2009, p.3). An
idempotent ring A is said to be Boolean when it is unital (i.e. the product has a neutral
element, denoted by 1). In particular, a Boolean ring can be seen as a commutative
F2-algebra. The only possible scalar product is given by 0 · a = 0A and 1 · a = a. As

210



9.5. Boolean Algebras 9. Unique Decomposition Theorems

Structure Signature Axioms Category

semilattice ∨ commutative idempotent SLatsemigroup
semilattice ∨, 0 commutative idempotent SLat0with zero monoid

lattice ∨, ∧ two semilattices Latwith v∧=vop∨
distributive lattice ∨, ∧ lattice in which ∧ DLatdistributes over ∨
distributive lattice ∨, 0, ∧ distributive lattice in which DLat0with zero ∨ has a neutral element

distributive lattice
with difference

∨, 0, ∧, \
distributive lattice with zero s.t.

DLatd(x\y) ∨ (x ∧ y) = x
(x\y) ∧ y = 0

bounded distributive ∨, 0, ∧, 1 lattice in which both ∨ and ∧ DLatblattice have a neutral element

Boolean algebra
∨, 0, ∧, 1, _c bounded distributive lattice s.t.

BoolAlgxc ∧ x = 0 and xc ∨ x = 1

∨, 0, ∧, 1, \ bounded distributive lattice
with difference

Figure 9.2: Semilattices and friends

DLatb

""

DLat

!!
BoolAlg

;;

##

DLat0

""

<<

SLat

DLatd

<<

SLat0

==

Figure 9.3: Between Boolean algebras and semilattices

211



9.5. Boolean Algebras 9. Unique Decomposition Theorems

a consequence, the mapping that sends an idempotent ring to its associated F2-algebra
extends to a fully faithful functor from IdemRng (i.e. the category of idempotent rings)
to F2-CAlg (i.e. the category of F2-algebras). Hence we can form A ⊗F2 B the ordinary
tensor product of the Boolean rings A and B seen as F2-algebras (Lang, 2002, p.629-
631). From Example 9.5.8 we know that any element of the ordinary tensor product is
a linear combination of elements of the form (a ⊗ b), the latter being called the pure
tensors, while the coefficients are taken in F2. Moreover, by definition of the ordinary
tensor product and by idempotency we have the following equality.

(a ⊗ b) · (a ⊗ b) = (a · a) ⊗ (b · b) = (a ⊗ b)

The square function x 7→ x2 being linear in characteristic 2wededuce that theF2-algebra
R(A) ⊗F2 R(B) is actually an idempotent ring.(

n∑
i=1

ai ⊗ bi

)2

=

n∑
i=1
(ai ⊗ bi)2 =

n∑
i=1

ai ⊗ bi

Moreover (1A ⊗ 1B) is clearly the unit element of R(A) ⊗F2 R(B). We have proven the
following fact.

Lemma 9.5.9. The ordinary tensor product of a pair of idempotent (resp. Boolean)
rings (seen as commutative F2-algebras) is an idempotent (resp. Boolean) ring.

As we have seen in Example 9.5.8 the ordinary tensor product of the commutative
F2-algebras A and B is their coproduct in the category F2-CAlg. By Lemma 9.5.9 the
colimit diagram is in the image of the inclusion IdemRng ↪→ F2-CAlg which is full
and faithful, and therefore reflects colimits (Borceux, 1994a, p. 65).

Remark 9.5.10. The inclusion functor BoolRng ↪→ IdemRng is not full because
the morphisms of its codomain are not require to preserve units, however it reflects
coproducts. Let A1 and A2 be Boolean rings. Their coproduct in IdemRng exists, it is
given by the morphisms ik : Ak → A1 ⊗F2 A2 which are defined by i1(x) = x ⊗ 1 for all
x ∈ A1 and i2(x) = 1 ⊗ x for all x ∈ A2. Since 1 ⊗ 1 is the unit of A1 ⊗F2 A2 both i1 and
i2 are indeed morphisms of Boolean rings. Let fk : Ak → A3 be morphisms of Boolean
rings for k ∈ {1, 2}. There is a unique idempotent ring morphism h : A1 ⊗F2 A2 → A3
such that fk = h ◦ ik for k ∈ {1, 2}. In particular we have h(1A1 ⊗ 1A2 ) = h ◦ i1(1A1 ) =
f1(1A1 ) = 1A3 so h is actually a Boolean ring morphism.

We have proven the following result.

Lemma 9.5.11. The coproduct of two Boolean rings is given by the ordinary tensor
product of their corresponding F2-algebras.

Remark 9.5.12. As they are commutative rings in the usual sense (Lang, 2002, p.83-
84), Boolean rings can also be seen as commutative Z-algebra so we can form the
ordinary tensor product R ⊗Z S. However, in that case, the square function is no longer
linear, and consequently the commutative ring R ⊗Z S is not idempotent.

By Remark 9.5.7 the universal tensor product of Boolean rings or algebras is
pointless. However one may wonder how interesting is the universal tensor product of
idempotent rings. The next result answers that question.

Proposition 9.5.13. Let R1 and R2 be Boolean rings. The universal tensor product of
the associated idempotent rings (i.e. R1 ⊗Id R2) and the ordinary tensor product of the
associated F2-algebras (i.e. R1 ⊗F2 R2) are isomorphic as Boolean rings.

212



9.5. Boolean Algebras 9. Unique Decomposition Theorems

Proof. The mapping which sends an ordered pair (x, y) ∈ R1 × R2 to the pure tensor
x ⊗ y ∈ R1 ⊗Id R2 induces a bimorphism of F2-vector spaces. Hence we have a unique
F2-linear map f that sends a pure tensor of R1 ⊗F2 R2 to the corresponding one in
R1 ⊗Id R2. Conversely, the pure tensors of the ordinary tensor product satisfy the
following equalities for all x, x ′ ∈ R1 and all y, y′ ∈ R2

xx ′ ⊗ y = xx ′ ⊗ y2 = (x ⊗ y) · (x ′ ⊗ y)

x ⊗ yy′ = x2 ⊗ yy′ = (x ⊗ y) · (x ⊗ y′)

Therefore the mapping which sends an ordered pair (x, y) ∈ R1 × R2 to the pure tensor
x ⊗ y ∈ R1 ⊗F2 R2 induces a bimorphism of idempotent rings. Hence we have a unique
idempotent ring morphism g that sends a pure tensor of R1 ⊗Id R2 to the corresponding
one in R1 ⊗F2 R2. As a consequence of the universal properties satisfied by R1 ⊗Id R2
and R1 ⊗F2 R2 the F2-linear map g ◦ f and the morphism of idempotent rings f ◦ g are
identities. In particular g is a bijective morphism of idempotent rings so it is actually
an isomorphism.

A Boolean algebra (A,∨,∧, 0, 1, (_)c) can be turned into a Boolean ring R(A) =
(A,+, ·, 0, 1) by setting a + b = (a∨ b) ∧ (a∧ b)c = (a∧ bc) ∨ (b∧ ac) and a · b = a∧ b.
Conversely, any Boolean ring (R,+, ·, 0, 1) can be turned into a Boolean algebraA(R) =
(R,∨,∧, 0, 1, (_)c) by setting xc = x + 1, x ∧ y = x · y, and x ∨ y = x + y + x · y. The
constructionsA(_) and R(_) extend to an isomorphism between the category BoolAlg
of Boolean algebras and the category BoolRng of Boolean rings. That correspondence
is concisely explained in (Johnstone, 1982, p.4-7), and more thoroughly in the first three
chapters of Givant and Halmos (2009).

BoolAlg
Rng // BoolRng
Alg
oo

Lemma 9.5.11, Proposition 9.5.13 and the isomorphism betweenBoolAlg andBoolRng
provide a natural notion of tensor product of Boolean algebras which also corresponds
to the binary coproducts of Boolean algebras.

A1 ⊗ A2 = Alg(Rng(A1) ⊗F2 Rng(A2)) = Alg(Rng(A1) ⊗Id Rng(A2))

Tensor Product of Boolean Algebras as Semilattices with Zero
This section is dedicated to finding an inclusion BoolAlg ↪→MdlT such that the tensor
product RA1 ⊗ · · · ⊗ RAn in MdlT be the Boolean algebra RA1×···×An . Hence the term
tensor product should always be understood as universal tensor product in the sense
of Subsection 9.5. In practice we ask which axioms of the theory of Boolean algebras
should be dropped to obtain an algebraic theory T fulfilling the previous requirements.
Indeed, noting that the following relations8

(A × B) ∪ (A × C) = A × (B ∪ C)

(A × B) ∩ (A × C) = A × (B ∩ C)

A × ∅ = ∅
8Besides their theoretical interests, these formulas are actually the ones used to perform calculations in

the OCaml library handling regions.

213



9.5. Boolean Algebras 9. Unique Decomposition Theorems

hold for all elements A, B, and C of a given powerset, we are tempted to think that the
following relation

RA1×···×An � RA1 ⊗ · · · ⊗ RAn

could hold for a suitably chosen universal tensor product. That approach is motivated
by the intuition that blocks (cf. Definition 6.2.1) should play the role of pure tensors.
However by noting that given an element X of the powerset of A, the set product X×A is
not the greatest element of the powerset of the set product A×A, one gets convinced that
the tensor product of Boolean algebras does not fit because, for example, the mapping
X 7→ X × A do not preserve the unit. The first axiom one may wish to drop from the
theory of Boolean algebras is thus the presence of a unit. By the way, we also address
the issue that the notion of bimorphisms of Boolean algebras is so rigid that when they
exist, their codomain is degenerated (cf. Remark 9.5.7).

A block is a Cartesian product of nonempty sets (cf. Definition 6.2.1). Pushing the
intuition that they are pure tensors the mappings X 7→ X × A preserve the empty set.
The preceding statement translated to the language of tensor products amounts to say
that bimorphisms preserve the constant zero. It is thus reasonable to think that the
algebraic theory we are looking for at least contains that of semilattices with zero.

However, dropping the unit from the theory of Boolean algebras described in Sub-
section 9.5 also implies losing the complement operator because the unit occurs in the
axioms related to it. What remains is the theory of distributive lattices with zero. Nev-
ertheless, by describing the notion of Boolean algebra by another set of axioms that loss
can be avoided. Replace the unary complement operator (_)c by the binary difference
operator \ in the signature. Also replace, in the theory, all the axioms involving the
complement operator by the following ones:

(x\y) ∨ (x ∧ y) = x

(x\y) ∧ y = 0
The relevant point is that the unit does not occur in those axioms. One easily checks
that the theory of Boolean algebras defined by means of the unary complement and
the one defined by means of the binary difference are equivalent. One switches from
one to the other by setting x\y := x ∧ yc and xc := 1\x. The signature of the theory
of distributive lattice with difference is {∨, 0,∧, \} and its axioms are those of the
theory of distributive lattices with zero plus the difference axioms given above, see
also Figure 9.2. De Morgan’s law have their counterparts in distributive lattices with
difference.

Lemma 9.5.14. Let x, y1, . . . , yn be elements of a distributive lattice. If all the differ-
ences x\yi exist then the difference x\(y1 ∨ · · · ∨ yn) also exist and it is equal to the
meet of differences (x\y1) ∧ · · · ∧ (x\yn).
Proof. Because the lattice is distributive we have the following equality.(

n∧
i=1
(x\yi)

)
∨

(
x ∧

n∨
i=1

yi

)
=

(
x ∨

n∧
i=1
(x\yi)

)
︸              ︷︷              ︸

a

∧
(

n∧
i=1
(x\yi) ∨

n∨
i=1

yi

)
︸                     ︷︷                     ︸

b

Note that for each i ∈ {1, . . . , n} we have x\yi v x hence a = x.

a =

n∧
i=1
(x ∨ x\yi)︸      ︷︷      ︸

x

= x

214



9.5. Boolean Algebras 9. Unique Decomposition Theorems

Also note that b can be written as follows.

b =

n∧
i=1
(x\yi) ∨

n∨
i=1

yi =

n∧
i=1

©­«x\yi ∨
n∨
j=1

yj
ª®¬

Since x v x\yi ∨ yi for all i ∈ {1, . . . , n} we have x v b. Therefore a ∧ b = x.
Then we consider the following equality(

n∧
i=1
(x\yi)

)
∧ ©­«

n∨
j=1

yj
ª®¬ =

n∨
j=1

(
yj ∧

n∧
i=1
(x\yi)

)
︸               ︷︷               ︸

0

and observe that the right hand term is 0 because x\yj ∧ yj = 0.

Lemma 9.5.15. Let x1, . . . , xn, y be elements of a distributive lattice. If all the differ-
ences xi\y exist then the difference (x1 ∨ · · · ∨ xn)\y also exist and it is equal to the
join of differences (x1\y) ∨ · · · ∨ (xn\y).

Proof. It derives from the following routine calculations.

n∨
i=1
(xi\y) ∨

(
y ∧

n∨
i=1

xi

)
=

n∨
i=1

(
xi\y ∨ (y ∧ xi)

)︸               ︷︷               ︸
xi

=

n∨
i=1

xi

(
n∨
i=1

xi\y
)
∧ y =

n∨
i=1
(xi\y ∧ y)︸      ︷︷      ︸

0

= 0

Remark 9.5.16. In (Birkhoff, 1967, p.16) a lattice is said to be relatively comple-
mentedwhen for all a v b v c there exists some d such that c∧ d = a and c∨ d = b. If
the lattice is distributive, then such an element d is unique. The uniqueness is due to a
more general fact that holds in any distributive lattice: if c∧ x = c∧ y and c∨ x = c∨ y,
then x = y (Birkhoff, 1967, Thm.10, p.12). It follows that the distributive lattices
with difference are exactly the relatively complemented distributive lattices with zero.
Given a distributive lattice with difference, the element d is given by (b\c) ∨ a. Con-
versely, if one has a relatively complemented distributive lattice with zero, then one has
0 v x∧y v x and x\y is the unique z such that (x∧y)∨z = x and x∧y∧z = 0. Another
consequence is that the category DLatd of distributive lattices with difference is a full
subcategory of the category DLat0 of distributive lattices with zero (see Figure 9.2).

Remark 9.5.17. In some sense the theory of distributive lattices with difference is that
of Boolean algebras without unit. That statement is formalized by an extension of
the isomorphism between the categories BoolAlg and BoolRng. A distributive lattice
with difference (A,∨,∧, 0, \) can be turned into a idempotent ring Rng(A) = (A,+, ·, 0)
by setting a + b = (a\b) ∨ (b\a) and a · b = a ∧ b. Conversely, any idempotent ring
(R,+, ·, 0) can be turned into a distributive lattice with differenceAlg(R) = (R,∨,∧, 0, \)
by setting x\y = x + x · y, x ∧ y = x · y, and x ∨ y = x + y + x · y. The constructions

215



9.5. Boolean Algebras 9. Unique Decomposition Theorems

0 ⊗ 0

1 ⊗ 1

0 ⊗ 1 1 ⊗ 0

1 ⊗ 0 ∨ 0 ⊗ 1

0 ⊗ 0

1 ⊗ 1

0 ⊗ 1 1 ⊗ 0

1 ⊗ 0 ∨ 0 ⊗ 1

0 ⊗ 0

1 ⊗ 1

0 ⊗ 1 1 ⊗ 0

1 ⊗ 0 ∨ 0 ⊗ 1

0 ⊗ 0

1 ⊗ 1

0 ⊗ 1 1 ⊗ 0

1 ⊗ 0 ∨ 0 ⊗ 1

0 ⊗ 0

1 ⊗ 1

0 ⊗ 1 1 ⊗ 0

1 ⊗ 0 ∨ 0 ⊗ 1

Figure 9.4: The Hasse diagram of {0 < 1} ⊗ {0 < 1} in SLat

Alg(_) and Rng(_) extend to an isomorphism between the categories of distributive
lattices with difference and that of idempotent rings.

DLatd
Rng // IdemRng
Alg
oo

BoolAlg
Rng //

⊆

OO

BoolRng
Alg
oo

⊆
OO

The tensor products in DLatd and the one in IdemRng are therefore related.

We have therefore three algebraic theories that might meet the requirements of the
question asked at the beginning of this section: the theory of semilattices with zero,
that of distributive lattices with zero, and that of distributive lattices with difference.
As we shall see, they all fit. What really matters is actually the presence of a zero so the
meet operator can indeed be removed. Therefore we first study the case of semilattices
with zero. Tensor products of semilattices and other related structures have already
been the source of many publications (e.g. tensor product in DLat and tensor product
of distributive lattices in SLat are treated in Fraser (1976a,b)). The tensor product in
SLat appears in Fraser (1978), and in Anderson and Kimura (1978), while the tensor
product in SLat0 is the subject of Grätzer et al. (1981), and Grätzer and Wehrung
(2000, 2001). The basic properties of the category SLat0, in particular the construction
of tensor product in it, are very well exposed in the first chapter of (Hofmann et al.
(1974)). Note that semilattices and semilattices with zero are called “protosemilattice”
and “semilattice” in (Hofmann et al., 1974, p.5). The next example highlights the
distinction between tensor products in SLat and SLat0.

Example 9.5.18 (Haucourt and Ninin (2014)). Let B be the Boolean algebra {0, 1}
with x ∧ y = min (x, y), x ∨ y = max (x, y), and xc = x + 1 mod 2. We determine
B ⊗ B in SLat0, DLat0, SLat, and DLat. First note that a bimorphism F : {0, 1}2 → S
of SLat0 sends all the elements of {0, 1}2 but (1, 1) to the neutral element of S, namely
0S . Then note that any order-preserving map defined over B also preserve binary joins
and meets. It follows that the relation B ⊗ B � B holds in both SLat0 and DLat0. By
similar arguments we prove that given X ∈ SLat0 (resp. X ∈ DLat0) B ⊗ X � X holds
in SLat0 (resp. DLat0).

We now prove that the tensor product B ⊗ B in SLat is the bounded distributive
lattice C whose corresponding Hasse diagram is depicted on Figure 9.4. Remark that
a set map F : {0, 1}2 → S is a bimorphism of SLat iff we have the relations

F(0, 0) v F(0, 1) v F(1, 1) and F(0, 0) v F(1, 0) v F(1, 1) .

216



9.5. Boolean Algebras 9. Unique Decomposition Theorems

0 ⊗ 0

1 ⊗ 0 ∧ 0 ⊗ 1

1 ⊗ 1

0 ⊗ 1 1 ⊗ 0

1 ⊗ 0 ∨ 0 ⊗ 1

0 ⊗ 0

1 ⊗ 0 ∧ 0 ⊗ 1

1 ⊗ 1

0 ⊗ 1 1 ⊗ 0

1 ⊗ 0 ∨ 0 ⊗ 1

0 ⊗ 0

1 ⊗ 0 ∧ 0 ⊗ 1

1 ⊗ 1

0 ⊗ 1 1 ⊗ 0

1 ⊗ 0 ∨ 0 ⊗ 1

0 ⊗ 0

1 ⊗ 0 ∧ 0 ⊗ 1

1 ⊗ 1

0 ⊗ 1 1 ⊗ 0

1 ⊗ 0 ∨ 0 ⊗ 1

0 ⊗ 0

1 ⊗ 0 ∧ 0 ⊗ 1

1 ⊗ 1

0 ⊗ 1 1 ⊗ 0

1 ⊗ 0 ∨ 0 ⊗ 1

0 ⊗ 0

1 ⊗ 0 ∧ 0 ⊗ 1

1 ⊗ 1

0 ⊗ 1 1 ⊗ 0

1 ⊗ 0 ∨ 0 ⊗ 1

Figure 9.5: The Hasse diagram of {0 < 1} ⊗ {0 < 1} in DLat

Let us check that there is a unique h ∈ SLat(C, S) satisfying F = h ◦T . Firstly we have
h(a⊗ b) = F(a, b) for all (a, b) ∈ {0, 1}2 in order to have the equality h(a⊗ b) = F(a, b)
satisfied. Because h is a morphism of SLat it preserves binary join therefore it comes

h(0 ⊗ 1 ∨ 1 ⊗ 0) = h(0 ⊗ 1) ∨ h(1 ⊗ 0) = F(0, 1) ∨ F(1, 0)

so h is uniquely defined. Checking that h is indeed a morphism of SLat is a routine
verification based on the previous relation and the fact that F is a bimorphism. Note
that h might not preserve existing meets.

A similar reasoning proves that the tensor product B ⊗ B in DLat is the bounded
distributive lattice whose corresponding Hasse diagram is depicted on Figure 9.5.

The next lemma solves the word problem for tensor products in SLat0.

Lemma 9.5.19 (Grätzer et al. (1981), Thm.2.1, p.505). Let A, B be lattices with zero.
Let a, a1, . . . , an ∈ A \ {0A} and let b, b1, . . . , bn ∈ B \ {0B}. Then

a ⊗ b v
n∨
i=1

ai ⊗ bi

iff there are finite subsets S1, . . . , Sm of {1, . . . , n} such that

a v
m∨
j=1

∧
i∈S j

ai and b v
m∧
j=1

∨
i∈S j

bi

Remark 9.5.20. Grätzer et al. (1981) state Lemma 9.5.19 without proof, claiming that
it is an immediate variant of a result by G. A. Fraser (1978). The latter deals with
tensor product of semilattices in SLat (instead of SLat0) assuming that A and B are
semilattices (instead of lattices). In doing so, one has to replace the meets of elements
by the corresponding meets of principal ideals, which are ideals but may fail to be
principal. The prototype of the preceding two results is (Fraser, 1976a, Th.2.5, p.185).

Remark 9.5.21. As an immediate consequence of Lemma 9.5.19 – see also (Grätzer
et al., 1981, Cor.2.2, p.505), the pure tensors are compared component by component.
In other words the equivalence a ⊗ b v c ⊗ d iff a = 0A, or b = 0B, or a v c and b v d,
holds for all a, c ∈ A and b, d ∈ B. It is worth noticing the following subtlety. Since
we are taking the tensor product in SLat0 the morphisms a 7→ a ⊗ 0B and b 7→ 0A ⊗ b
preserve joins. As a consequence 0A ⊗ 0B is the least pure tensor, and since every

217



9.5. Boolean Algebras 9. Unique Decomposition Theorems

element of A ⊗ B is the join of finitely many pure tensors and ∨ is associative, the
element 0A ⊗ 0B is actually the neutral element of ∨, in other words the zero of the
semilattice A⊗B. The above reasoning is actually valid for both tensor products in SLat
and SLat0. However, in the latter case, the morphisms a 7→ a ⊗ 0B and b 7→ 0A ⊗ b
also preserve zero, therefore all the pure tensors a ⊗ 0B and 0A ⊗ b are identified with
0A ⊗ 0B. The latter argument is not valid for the tensor product in SLat. See also
Section 6.3.

Assuming that both A and B have a greatest element, respectively 1A and 1B, the
pure tensor 1A⊗ 1B is greater than any other. As before we conclude that it is absorbing
for ∨. Moreover, if A ⊗ B is actually a lattice, then 1A ⊗ 1B is its unit.

Remark 9.5.22. As a consequence of Lemma 9.5.19 any element x of A ⊗SLat0 B
can be written as a finite join of pure tensors cj ⊗ dj , with j ∈ {1, . . . ,m}, such that
for all pure tensors a ⊗ b, one has a ⊗ b v x iff there exists j ∈ {1, . . . ,m} such that
a⊗ b v cj ⊗ dj . Dropping some elements, one can even suppose the pure tensors cj ⊗ dj

are maximal in the sense that cj ⊗ dj v cj′ ⊗ dj′ implies that j = j ′. One readily checks
that the resulting family is unique. By analogy with the maximal block covering of an
isothetic region (cf. Definition 6.2.1) the family (cj ⊗ dj)j=1...m is called the maximal
pure tensor covering of x. Corollary 9.5.27 actually derives from this observation.

The two next remarks are standard facts about isomorphisms of semilattices, they
will be applied in the proofs of Proposition 9.5.25 and Corollary 9.5.27.

Remark 9.5.23. A semilattice isomorphism f : A → B between lattices A and B is
actually a lattice isomorphism. Given a, a′ ∈ A we have a ∧ a′ v a, a′ from which
we get f (a ∧ a′) v f (a), f (a′), and f (a ∧ a′) v f (a) ∧ f (a′) because the latter is the
greatest lower bound of f (a) and f (a′). Repeating the same argument with f (a), f (a′),
and the semilattice isomorphism f −1 we get the inequality

f −1( f (a) ∧ f (a′)) v f −1( f (a)) , f −1( f (a′))

which can be rephrased as below

f −1( f (a) ∧ f (a′)) v a ∧ a′

the latter inequality being equivalent to f (a) ∧ f (a′) v f (a ∧ a′). Thus f (a ∧ a′) is
equal to f (a)∧ f (a′). Moreover, one easily checks that if A has a least (resp. a greatest)
element, then so does B and it is preserved by f . One readily deduces that if A is a
Boolean algebra (resp. distributive lattice with difference) then so is B, and f is actually
an isomorphism of Boolean algebras (resp. distributive lattices with difference).

Remark 9.5.24. Given two semilattices A and B, a mapping f : A → B induces a
semilattice isomorphism iff it induces a poset isomorphism.

In the many papers published around the notion of tensor product of semilattices
and related structures (see the discussion before Example 9.5.18) it seems that the case
where the factors are Boolean algebras has never been considered, not even mentioned.
For example (Bell et al., 1984, Thm.3.1, p.244) provides a simple formula to compute
an invariant of A ⊗DLat B under the hypothesis that both A and B are Boolean algebras.
The tensor product being taken in DLat it may not be a Boolean algebra.

Proposition 9.5.25 (Haucourt and Ninin (2014)).
Given two distributive lattices with difference (resp. Boolean algebras) A and B, the
tensor products A ⊗SLat0 B, A ⊗DLat0 B and A ⊗DLatd B are isomorphic distributive
lattices with difference (resp. Boolean algebras).

218



9.5. Boolean Algebras 9. Unique Decomposition Theorems

Before starting the proof, let us make the statement of Proposition 9.5.25 a bit more
explicit. The two tensor products exist for abstract reasons explained in Subsection 9.5.
However they are defined only up to isomorphism of SLat0 (resp. DLat0). What
Proposition 9.5.25 actually claims is that any representative of such a tensor product
is actually a distributive lattice with difference (resp. a Boolean algebra) provided that
the factors are so. By Remark 9.5.23 two representatives of A ⊗SLat0 B (resp. A ⊗DLat0
B) are thus isomorphic distributive lattices with difference (resp. Boolean algebras).
However itmight be that the isomorphism class of the distributive latticeswith difference
(resp. Boolean algebras) A ⊗SLat0 B differs from that of A ⊗DLat0 B. The fact that they
do not is the last part of the statement.

Proof. By (Grätzer et al., 1981, Th.4.7, p.514) we know that the tensor product of
two distributive lattice with difference in SLat0 is a distributive lattice with zero. By
Remark 9.5.21 we know that its zero is the pure tensor 0A⊗ 0B. Moreover if both A and
B have a unit (i.e. is both A and B are actually Boolean algebras) then its unit is 1A⊗1B.
We prove that an exchange law between ⊗ and ∧ holds. First note that (a ∧ c) ⊗ (b∧ d)
is less than both a ⊗ b and c ⊗ d. Then suppose that we have(

n∨
i=1

xi ⊗ yi

)
∨ (a ⊗ b) = a ⊗ b

for some n ∈ N, xi ∈ A, and yi ∈ B. By associativity of ∨ and an immediate
induction we prove that xi ⊗ yi v a ⊗ b holds for all i ∈ {1, . . . , n}. According to the
characterization of the partial order v between pure tensors (cf.Remark 9.5.21) we have
xi v a and yi v b for all i ∈ {1, . . . , n}. The same way we prove that xi v c and yi v d
for all i ∈ {1, . . . , n}. We deduce the following relations

n∨
i=1

xi ⊗ yi v
(

n∨
i=1

xi

)
⊗

(
n∨
i=1

yi

)
v (a ∧ c) ⊗ (b ∧ d)

and conclude that (a∧ c) ⊗ (b∧ d) is the greatest lower bound of a ⊗ b and c ⊗ d which
gives the relation

(a ⊗ b) ∧ (c ⊗ d) = (a ∧ c) ⊗ (b ∧ d) .

To prove that the tensor product A ⊗ B is a distributive lattice with difference, it
remains to check that the difference operator is well-defined. First we prove that the
difference between pure tensors exist and satisfies the following relation.

(a ⊗ b)\(c ⊗ d) =
(
(a\c

)
⊗ b) ∨

(
a ⊗ (b\d)

)
The general case will follow fromLemma 9.5.14 and 9.5.15. We evaluate the expression
below.

(a\c ⊗ b) ∨ (a ⊗ b\d)︸     ︷︷     ︸
(a\c ⊗ b\d) ∨ (a∧c ⊗ b\d)

∨ (a ⊗ b ∧ c ⊗ d)︸             ︷︷             ︸
(a∧c ⊗ b∧d)

The third term is rewritten applying the exchange law. The mapping x 7→ x ⊗ b\d
preserves joins and a can be written as a\c∨(a∧ c) so the second term can be rewritten

219



9.5. Boolean Algebras 9. Unique Decomposition Theorems

as above. By the same arguments we gather the first two terms and the last two ones in
the next expression.

(a\c ⊗ b) ∨ (a\c ⊗ b\d)︸                                 ︷︷                                 ︸
a\c⊗b

∨ (a ∧ c ⊗ b\d) ∨ (a ∧ c ⊗ b ∧ d)︸                                           ︷︷                                           ︸
a∧c⊗b

The original expression thus boils down to (a\c ⊗ b) ∨ (a ∧ c ⊗ b) = a ⊗ b. We also
need to evaluate the following expression.(

(a\c ⊗ b) ∨ (a ⊗ b\d)
)
∧ (a ⊗ b ∧ c ⊗ d)︸             ︷︷             ︸

(a∧c ⊗ b∧d)

By distributivity of ∧ over ∨ and and the exchange law it can be expressed as follows:(
(a\c ∧ a ∧ c)︸          ︷︷          ︸

0

⊗b ∧ d
)
∨

(
a ∧ c ⊗ (b\d ∧ b ∧ d)︸           ︷︷           ︸

0

)
Therefore it is reduced to (0 ⊗ b ∧ d) ∨ (a ∧ c ⊗ 0). Since tensor products are taken
in SLat0 the mappings x 7→ x ⊗ b ∧ d and y 7→ a ∧ c ⊗ y preserve zero, so the last
expression is actually zero. We emphasize that the last argument does not hold in SLat
– see Remark 9.5.21. It is the only place in the proof where this subtlety indeed matters,
however, as shown by Example 9.5.18, it is crucial.

It remains to prove that the tensor product of distribute lattice with difference in
SLat0 matches the ones in DLat0 and DLatd. As a consequence of the exchange law,
the bimorphism TSLat0 which sends (a, b) to the pure tensor a ⊗ b in A ⊗SLat0 B is
actually a bimorphism of distributive lattices with zero. Therefore we have a unique
morphism σ ∈ DLat0(A ⊗DLat0 B, A ⊗SLat0 B) such that TSLat0 = σ ◦ TDLat0 . Of
course we also have a unique morphism δ ∈ SLat0(A ⊗SLat0 B, A ⊗DLat0 B) such that
TDLat0 = δ ◦ TSLat0 because TDLat0 is, in particular, a bimorphism of SLat0. From the
universal properties satisfied by TSLat0 and TDLat0 we obtain that both morphisms δ ◦σ
and σ ◦ δ are identities of SLat0. From Remark 9.5.23 we deduce that both σ and δ
are isomorphisms of distributive lattice with difference (resp. Boolean algebras). The
isomorphism between the tensor product of distributive lattice with difference and that
of distributive lattice with zero is given by Remark 9.5.5 and the fact that DLatd is a
full subcategory of DLat0 (cf. Remark 9.5.16).

∗ ∗ ∗

The next theorem is a generalization of a result by Haucourt and Ninin (2014). Given
n ∈ N and for each i ∈ {1, . . . , n} a Boolean subalgebra Bi of some powerset Pow(Ei),
we slightly extend Definition 6.2.1 allowing a block of dimension n ∈ N to be a subset
of E1 × · · · × En of the form B1 × · · · × Bn with Bi ∈ Bi . Consequently we write
RB1,...,Bn instead of Rn.

Theorem 9.5.26. With the notation introduced before we have an isomorphism of
Boolean algebras, the tensor product being taken in SLat0, DLat0, or DLatd.

RB1,...,Bn � B1 ⊗ · · · ⊗ Bn

220



9.5. Boolean Algebras 9. Unique Decomposition Theorems

Proof. By Proposition 6.2.7 and Theorem 6.2.21 we know that every element of
RB1,...,Bn is the finite union of its maximal blocks. Analogously by Remark 9.5.22
we know that every element of B1 ⊗ · · · ⊗ Bn is the finite join of its maximal pure ten-
sors. From Remark 9.5.21 we deduce that for tuples (a1, . . . , an) and (b1, . . . , bn) with
ai, bi ∈ Bi wehave a1⊗· · ·⊗an v b1⊗· · ·⊗bn if and only if a1×· · ·×an ⊆ b1×· · ·×bn.
As a consequence, the bijection between the pure tensors and the blocks extends to a
bijection between B1 ⊗ · · · ⊗ Bn and RB1,...,Bn which exchanges the maximal pure
tensors of an element of B1 ⊗ · · · ⊗ Bn with the maximal blocks of the corresponding
element of RB1,...,Bn . This bijection is readily a poset isomorphism. By Remark 9.5.24
that poset isomorphism is actually a semillatice isomorphism, and thus an isomorphism
of Boolean algebras by Remark 9.5.23.

As announced at the beginning of this section, our incursion in the realm of uni-
versal algebra is motivated by Corollary 9.5.27 which, in particular, expresses the
Boolean algebra of n-dimensional isothetic regions in terms of the Boolean algebra of
1-dimensional isothetic regions. We recall that the isothetic subregions of an isothetic
region A form a Boolean algebra denoted by RA. In particular, if A1, . . . , An are iso-
thetic regions, we can form their Cartesian product and consider the Boolean algebra
RA1×···×An . The latter can be expressed as the tensor product of the Boolean algebras
RAi for i ∈ {1, . . . , n}.

Corollary 9.5.27 (Theorem 4.1, Haucourt and Ninin (2014)). Given isothetic regions
A1, . . . , An we have the following equality.

RA1×···×An = RA1 ⊗ · · · ⊗ RAn

Proof. Note that for all i ∈ {1, . . . , n}, RAi is a Boolean subalgebras of Pow(Ai). Then
apply Theorem 9.5.26 noting that RA1×···×An is actually RRA1,...,RAn

.

It is then natural to pay attention to the following conjecture.

Conjecture 9.5.28.
For all isothetic regions X1, . . . , Xn,Y , if RY � RX1 ⊗ · · · ⊗RXn thenY � X1×· · ·×Xn.

Declaring RX as region-irreducible if it cannot be written as a nontrivial tensor
product of Boolean algebras of the form RY withY being an isothetic region, we deduce
from Conjecture 9.5.28 and Corollary 9.2.12 that

Conjecture 9.5.29. The Boolean algebra RX has, up to terms reordering, a unique
decomposition in region-irreducible terms.

A Boolean algebra is said to be irreduciblewhen it cannot be written as a nontrivial
tensor product of Boolean algebras. It is natural to ask whether Conjecture 9.5.29
remains valid replacing “region-irreducible” by “irreducible”.

Conjecture 9.5.30. The Boolean algebra BX has, up to terms reordering, a unique
decomposition in irreducible terms.

As an illustration consider the singleton as a 0-dimensional isothetic region. It is
the neutral element of the monoid of isothetic regions. The corresponding Boolean
algebra of subregions is the two elements one (i.e. the neutral element for the tensor
product). In fact we would like to go even further and establish the next conjecture,
referring to suitably designed measures (cf. the discussion in Section 6.5).

221



9.6. Metrics 9. Unique Decomposition Theorems

Conjecture 9.5.31. For all isothetic regions X1, . . . , Xn,Y , we have the following
equivalence.

Y = X1 × · · · × Xn ⇔ µY = µX1 ⊗ · · · ⊗ µXn

9.6 Metrics
As a broad generalization of a classic result by Georges de Rham (1952), Foertsch and
Lytchak (2008) provides a unique decomposition result for geodesic metric spaces of
finite affine rank. The affine rank of a region boils down to the greatest value of n such
that the hypercube [0, 1]n can be embedded in it. As one can guess, the affine rank of
a region of shape |G1 |, . . . , |Gn | is at most n. The formal definition of the affine rank
depends on the topological dimension – see (Pears, 1975, Chap.3) or (Engelking, 1978,
Chap.1). In the context of this chapter, it is therefore tempting to apply this result to the
metric spaces we have defined over regions in Section 6.5. Unfortunately these metric
spaces may not be geodesic though they are length metrics (cf. Example 6.5.4 and its
introductory discussion). Yet, assuming the result of Foertsch and Lytchak (2008) still
holds for length-metric spaces, we would like to compare the prime decomposition of
a region with the prime decomposition of its metrics.

222



10

Perspectives

10.1 Implementation
Several theoretical results presented in this memoir are implemented in the static an-
alyzer ALCOOL whose input language is Paml. From a mathematical point of view
ALCOOL is based on the notion of continuous models (cf. Definition 7.1.2). The AL-
COOL software is entirely written in OCaml and has grown at CEA from 2006 to 2014,
up to 40kloc. A preceding prototype had been developed (in C) by Éric Goubault to
initiate a partnership with EDF which has partly funded the development of the current
version. The results obtained from this collaboration are gathered in Bonichon et al.
(2011). Given a Paml program P the ALCOOL software is currently able to:

– build the continuous model,

– compute the deadlock attractor,

– factorize the continuous model,

and provided the continuous model is loop-free, it can also:

– find all the dihomotopy classes,

– compute the category of components, and

– generate the Čech complex associated with the continuous model.

10.2 Does Model Category Fit with
Directed Topology ?

The compact unit interval plays a fundamental role in algebraic topology. It can be
seen as the building block of the whole theory. This statement can be made formal in
the context of path functors and P-categories (resp. cylinder functors and I-categories)
– see Baues (1989). In Top for example, the path functor P and the cylinder functor I
are the following ones.

P : X 7→ X [0,1] I : X 7→ X × [0, 1]

223



10.2. Does Model Category Fit with Directed Topology ? 10. Perspectives

It is well known that I a P and that both induce fibrations and cofibrations for a standard
model structure on Top. Still following Baues (1989) a path-object P (resp. a cylinder
object I) induces a P-category (resp. I-category) structure, with P and I (the path functor
and the cylinder functor) satisfying ad hoc properties. In most cases they are obtained as
(_)P and (_× I) both being related when I is exponentiable and isomorphic to P, which
is the case in algebraic topology. In addition any P-category (resp. I-category) induces
a fibration (resp. cofibration) category, and when both structures coexist in a compatible
way, we have a model category – Baues (1989). With respect to the machinery provided
by model category theory, it would suffice to find a satisfactory directed counterpart of
the compact unit interval to provide algebraic directed topology with a firm foundation.
Loosely speaking, the only reasonable choice is the compact unit interval together with
the standard order over real numbers. The constructions (_ × I) and (_)I make sense in
all the categories described in Chapter 4, moreover they enjoy all the nice properties
one can expect from them in a directed context. This is one of the motivations for
Marco Grandis’s work on algebraic directed topology (Grandis (2009)). Unfortunately
there is a glitch, the functors (_ × I) and (_)I do not induce a cofibration category nor a
fibration one. Let us see why.

In directed topology, the notion of dihomotopy equivalence is the expected counter-
part of the classical homotopy equivalences. A naive approach consists of substituting
directed spaces and their morphisms to topological spaces and continuous maps in the
standard definition. But following that way, all the directed stars (cf. Example 4.1.15)
are equivalent with one another which is, from a computer science point of view, defi-
nitely prohibitive. In fact, there is not even a clear consensus about the properties that
dihomotopy equivalences should enjoy. This fact actually derives from a more general
issue. If we stick to the model category setting of Quillen (1967) (see also Hovey
(1999); May and Ponto (2010)) the dihomotopy equivalences should come with fibra-
tions and cofibrations. In particular the trivial cofibrations (i.e. the ones that are also
weak equivalences) are closed under pushout: if the pushout of a (trivial) cofibration
along a given morphism exists then it is still a (trivial) cofibration. As a consequence
if the dimap {0} ↪→ [0, 1] is a trivial cofibration (which is a trivial fact considering one
of the standard model categories over Top) then, once again, all the directed stars are
equivalent. For example Roman Bruckner (2015) has proven that the full subcategory
of Cat whose objects are the loop-free categories inherits from the Thomason model
structure on Cat, and Bubenik and Worytkiewicz (2006) provide a certain category of
local pospaces1 with a model category structure yet it is not clear how the latter differs
from the standard model structure on Top. The preceding remarks suggest that model
category theory just ignores direction.

A reasonable way to circumvent the problem is to restrict the collection of weak
equivalences by imposing an additional constraint. For model structures in which weak
equivalences arise as a byproduct of a path (resp. cylinder) functor, a common way to
express such constraints is the notion of relative homotopy. In other words one requires
that directed homotopies (which are mappings) be constant over some fixed directed
subspace. For example Thomas Kahl (2006) has followed this way to equip PoTop (his
definition of pospace slightly differs from our’s in that the partial order is not supposed
to be closed) with both a P-category structure and an I-category structure. In (Kahl
(2009)), he also exhibits a fibration category structure on the slice under any given local
pospace1. Peter Bubenik (2009) has also followed this approach and advocated for it.
However, it somewhat sweeps the dust under the carpet since it leaves all latitude about

1 The definition of local pospace they use differ from the one given in Section 4.3.

224



10.3. About Homology of Directed Spaces ? 10. Perspectives

the choice of the subspace that should be preserved.
The model category setting might therefore be not compatible with directed topol-

ogy. An alternative one could be provided by the notion of homotopical category,
which is obtained by relaxing the axioms of model categories – see the second part of
Dwyer et al. (2004). A category C together with a distinguished class of morphisms Σ
is said to be homotopical when Σ contains all the identities and satisfies the 2-out-of-6
property: for all morphisms α, β, and γ if both γβ and βα exist and belong to Σ, then so
do α, β, γ, and γβα. It is funny to remark that any loop-free category with any system
of weak isomorphisms is a homotopical category (cf. Section 8.6). Looking back to
the previous paragraph, the problem of choosing a “good” subspace to be preserved
seems to be tightly related to categories of components. The collection of directed weak
equivalences (in the preceding naive sense) that induces isomorphisms of categories of
components could lead to a satisfactory homotopical category (at least in the case of
PoTop).

10.3 About Homology of Directed Spaces ?
The classification of spaces provided by homotopy is finer than the one resulting from
homology, but unlike homotopy groups, which are notoriously hard to determine,
homology groups are so tractable that their computation can even be automated, being
finally reduced to linear algebra. For example the k th homology group of the n-
dimensional sphere is either Z or null according to whether k = n or not, while there
are entire books dedicated to the computation of higher homotopy groups of spheres
(e.g. Ravenel (2003)). Nevertheless, in many cases, homology suffices to distinguish
a space from another. Since homological algebra is an extremely supple tool that is
pervasively used in mathematics (see Mac Lane (1995); Cartan and Eilenberg (1999);
Weibel (1994)) one would like to apply it to directed topology. Basically, given any
functor towards the category of simplicial sets, one defines the homology of an object as
the homology of its image by the functor. The whole problem being then to understand
what it classifies. Applying this to directed topology, we obtain a classification that
might have the same defect as a hypothetical homotopy of directed spaces. Indeed it is
thus natural to take as standard simplices the directed convex subsets of Rn generated
by the following points for k ∈ {1, . . . , n}.

pk = (1, . . . , 1︸  ︷︷  ︸
k

, 0, . . . , 0︸  ︷︷  ︸
n−k

)

However, the homology obtained that way does not distinguish between the directed
stars. In fact we conjecture that the construction amounts, at least when X is the
continuous model of Paml program (cf. Definition 7.1.2), to the singular homology
of its underlying topological space. Moreover it is not clear whether another choice
of directed simplices would alter the resulting homology: consider for example the
simplices generated by the following points.

p′k = (0, . . . , 0︸  ︷︷  ︸
k−1

, 1, 0, . . . , 0︸  ︷︷  ︸
n−k

) .

In spite of these obstacles, many notions of directed homology have been proposed:
Goubault (1995), Fahrenberg (2004), Grandis (2005, 2009), Gaucher (2005, 2006),
Husainov (2013), Dubut et al. (2015).

225



10.4. A Glance at Directed Universal Coverings 10. Perspectives

10.4 A Glance at Directed Universal Coverings
The exponential map R→ S1 is the universal covering of the circle in the sense that any
path onS1 can be lifted to a path onR in a uniqueway provided one fixes basepoints. Any
connected, locally path-connected and semi-locally simply connected X has a universal
covering (i.e. a covering p : E → X with E being simply connected in addition with the
three previously mentioned properties of X). This well-known construction is obtained
by unfolding the loops. If we endow R and S1 with their standard directed structures,
the exponential map is actually a dimap and it enjoys the same lifting properties than
in the undirected case. This heavenly case could let us expect for an easy notion of
directed universal covering. Things are not so simple and the example of the circle
should be regarded as extremely misleading. The holes detected by the first homotopy
groups, that is non-nullhomotopic loops, have nothing to do with directed loops. First
observe that the underlying space of the d-space realization of the following graph is
the circle though it does not contain any directed loop.

Therefore it should be its own directed universal covering. The other way round, the
underlying space of the directed complex plane is simply connected though it contains
directed loops that are not dihomotopicwith a constant path. In fact its directed universal
covering should be given by the mapping that sends (ρ, θ) ∈ R+ × R to ρeiθ in

−→
C . The

“right” directed universal covering is an issue even for the d-space realization of graphs.
The question have been studied in the following papers: Goubault et al. (2009), Fajstrup
(2003, 2005 / 2006, 2008, 2011).

10.5 Finding Linear Representations of
Fundamental Categories

During his doctoral studies, Nicolas Ninin has worked on the linear representations of
small categories. The problem is well-known for categories freely generated by graphs,
which are, in this context, preferably called quivers. In this case indeed, Gabriel (1972)
gave a complete classification of those quivers having finitelymany isomorphism classes
of indecomposable linear representations. More details can be found in Gabriel (1975),
(Hazewinkel et al., 2007, Chap. 2) or (Assem et al., 2006, Chap. II and VII). The
class of categories to consider is therefore much broader but the aim is also much
more modest: for computational and applied purposes, we want to provide certain
small categories (at least the category of components of continuous models of Paml
programs) with a tractable faithful representation. Basically, we would like to label the
generating morphisms of any category with a least presentation (cf. Definition 9.4.7)
with matrices so that two composable sequences of irreducible elements of it are equal
iff they have the same source and the same target and the products of their labels are
equal. We also require that the entries of the labelling matrices are taken in a tractable
(semi)ring. Proposition 9.4.6 suggests that we focus on finite loop-free categories first,
but even in this case there is no obvious solution.

226



10.6. Locally Star-Shaped Pospaces 10. Perspectives

2

2 1

1

Figure 10.1: Directed Möbius strip as a precubical set

10.6 Locally Star-Shaped Pospaces
We have seen thatXn (with G some essentially finite graph andX =�G�) behaves much
like Rn. In mathematics, the study of spaces that locally look like Rn has proven to be
very fruitful. From this observation we introduce the local star-shaped pospaces.

Definition 10.6.1. A local pospace (cf. Definition 4.3.17) is said to be star-shaped
when it admits an atlas whose charts (cf. Definition 4.3.1) are finite products of open
stars (cf. Example 4.1.15).

Example 10.6.2. The local pospace Xn is star-shaped.

Example 10.6.3. A directed version of theMöbius band is obtained as the realization of
the precubical set on Figure 10.1 identifying arrows labelled with 1 and 2 accordingly.
One can check that it is star-shaped though not isomorphic to �G1� × �G2�.

A classical problem in mathematics consists of determining how far a space is
from being a nontrivial Cartesian product of spaces. When the spaces of interest are
manifolds, the answer arises from the study of vector bundles, the tangent bundle
of a manifold being the prototypical example – see (Husemoller, 1993, Chap. 3)
or (Lang, 1999, Chap. III). The proof that any region admits a unique decompo-
sition derives from a rather combinatorial approach that would not fit with random
local star-shaped pospaces. Yet, the more general notion fiber bundle (Husemoller,
1993, Chap. 4) could be a relevant candidate for an adaptation to directed topology.

227



Bibliography

Aho, A.V., Lam, M.S., Sethi, R., and Ullman, J.D. Compilers: Principles, Techniques,
and Tools (Addison-Wesley 2007), 2nd ed. ISBN 0-321-48681-1. 11, 17

Aliprantis, C.D. and Border, K.C. Infinite Dimensional Analysis: A Hitchhiker’s Guide
(Springer 2006), 3rd ed. 69

Allen, F.E. Control Flow Analysis. In Proceedings of a Symposium on Compiler
Optimization, pp. 1–19 (ACM, New York, NY, USA 1970). doi:10.1145/800028.
808479. 4, 49

Amadio, R.M. and Curien, P.L. Domains and Lambda-Calculi. Cambridge Tracts in
Theoretical Computer Science (Cambridge University Press 1998). 209

Anderson, D.F. Factorization in Integral Domains. In D. Anderson (ed.), Factorization
in Integral Domains, Lecture Notes in Pure and Applied Mathematics (CRC Press
1997). ISBN 9780824700324. 196

Anderson, J.A. and Kimura, N. The tensor product of semilattices. Semigroup Forum
16:83–88 1978. doi:10.1007/BF02194615. 216

Antolini, R. Cubical Structures, Homotopy Theory. Annali di Matematica pura ed
applicata CLXXVIII(IV):317–324 2000. 44

Antolini, R. Geometric Realisations of Cubical Sets with Connections, and Classifying
Spaces of Categories. Applied Categorical Structures 10(5):481–494 2002. doi:
10.1023/A:1020506404904. 44

Assem, I., Simson, D., and Skowronski, A. Elements of the Representation Theory
of Associative Algebras: Volume 1: Techniques of Representation Theory, vol. 65
of London Mathematical Society Student Texts (Cambridge University Press 2006).
ISBN 978-0521586313. 226

Balabonski, T. Concurrence, géométrie, et factorisation de catégories. Master’s thesis,
École Normale Supérieure de Lyon 2007. 203

Balabonski, T. and Haucourt, E. A Geometric Approach to the problem of Unique
Decomposition of Processes. In Concurrency Theory 21th International Conference,
vol. 6269 of Lecture Notes in Computer Science, pp. 132–146 (Springer 2010).
doi:10.1007/978-3-642-15375-4_10. 7, 163, 164, 198

Baues, H.J. Algebraic Homotopy. Cambridge Studies in Advanced Mathematics
(Cambridge University Press 1989). 223, 224

228



BIBLIOGRAPHY BIBLIOGRAPHY

Bednarczyk, M.A., Borzyszkowski, A.M., and Pawlowski, W. Generalized Congru-
ences – Epimorphisms in Cat . Theory andApplications of Categories 5(11):266–280
1999. 165, 172

Beer, G. Topologies on Closed and Closed Convex Sets, vol. 268 of Mathematics and
Its Applications (Kluwer Academic Publishers 1993). ISBN 0-7923-2531-1. 69

Bell, A.M., Brown, M.R., and Fraser, G.A. The tensor product of distributive lattices:
Structural results. Proceedings of the Edinburgh Mathematical Society 27:237–245
1984. 218

Berry, G. and Boudol, G. The chemical abstract machine. In Proceedings of the 17th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
POPL ’90, pp. 81–94 (ACM, New York, NY, USA 1990). ISBN 0-89791-343-4. 193

Berry, G. and Boudol, G. The chemical abstract machine. Theoretical Computer
Science 96(1):217–248 1992. 193

Birkhoff, G. Lattice Theory, vol. 25 of Colloquium Publications (American Mathemat-
ical Society 1967), 3rd ed. 209, 210, 215

Bishop, R.L. and Goldberg, S.I. Tensor Analysis on Manifolds (Dover Publications
1980). ISBN 0-486-64039-6. 102, 104

Blyth, T. Lattices and Ordered Algebraic Structures Lattices and Ordered Algebraic
Structures. Universitext (Springer 2005). ISBN 978-1-84628-127-3. 194, 209

Bogachev, V.I. Measure Theory vol. I (Springer 2007). ISBN 978-3-540-34514-5. 152

Bonichon, R., Canet, G., Correnson, L., Goubault, É., Haucourt, E., Hirschowitz,
M., Labbé, S., and Mimram, S. Rigorous Evidence of Freedom from Concurrency
Faults in Industrial Control Software. In Computer Safety, Reliability, and Security,
vol. 6894 of Lecture Notes in Computer Science, pp. 85–98 (Springer 2011). doi:
10.1007/978-3-642-24270-0_7. 223

Borceux, F. Handbook of Categorical Algebra, I. Basic Category Theory, vol. 50
of Encyclopedia of Mathematics and its Applications (Cambridge University Press
1994a). ISBN 0-521-44178-1. 33, 36, 37, 45, 68, 73, 101, 108, 114, 117, 165, 166,
168, 172, 180, 185, 212

Borceux, F. Handbook of Categorical Algebra, II. Categories and Structures, vol. 51
of Encyclopedia of Mathematics and its Applications (Cambridge University Press
1994b). ISBN 0-521-44179-X. 39, 76, 206, 207

Borceux, F. Handbook of Categorical Algebra, III. Categories of Sheaves, vol. 52
of Encyclopedia of Mathematics and its Applications (Cambridge University Press
1994c). ISBN 0-521-44180-3. 34, 169

Bressoud, D.M. Factorization and Primality Testing. Undergraduate Texts in Mathe-
matics (Springer 1989). ISBN 978-0387970400. 195

Brešar, M. Introduction to Noncommutative Algebra. Universitext (Springer 2014).
ISBN 978-3-319-08692-7. 208

229



BIBLIOGRAPHY BIBLIOGRAPHY

Bridson, M.R. and Haefliger, A. Metric Spaces of Non-Positive Curvature, vol. 319 of
Grundlehren der mathematischen Wissenschaften (Springer 1999). 122, 150, 151

Brown, R. Topology and Groupoids (BookSurge Publishing 2006). 7, 107, 111, 116,
117

Brown, R. and Higgins, P.J. On the algebra of cubes. Journal of Pure and Applied
Algebra 21:233–260 1981. 44, 45

Brown, R., Higgins, P.J., and Sivera, R. Nonabelian Algebraic Topology. Tracts in
Mathematics (European Mathematical Society 2011). 36, 41, 44, 45, 148

Bruckner, R. A Model Structure on the Category of Small Acyclic Categories. arXiv
2015. 224

Bubenik, P. Context for Models of Concurrency. In Proceedings of the Work-
shops on Geometric and Topological Methods in Concurrency Theory (GETCO
2004+2005+2006), vol. 230 of Electronic Notes in Theoretical Computer Science,
pp. 3–21 (Elsevier 2009). doi:10.1016/j.entcs.2009.02.014. 224

Bubenik, P. and Worytkiewicz, K. A model category for local pospaces. Homology,
Homotopy and Applications 8(1):263–292 2006. 224

Burago, D., Burago, Y., and Ivanov, S. A Course in Metric Geometry, vol. 33 of
Graduate Studies in Mathematics (American Mathematical Society 2001). ISBN
978-0821821299. 32

Burris, S. and Sankappanavar, H.P. A Course in Universal Algebra, vol. 78 ofGraduate
Texts in Mathematics (Springer 1981), millenium ed. ISBN 978-0387905785. 206

Carson, S.D. and Reynolds Jr., P.F. The Geometry of Semaphore Programs. ACM
Transactions on Programming Languages and Systems 9(1):25–53 1987. doi:10.
1145/9758.9759. 6

Cartan, H. and Eilenberg, S. Homological Algebra, vol. 19 of Princeton Mathematical
Series (Princeton University Press 1999). ISBN 9780691049915. 225

Cattani, G.L. and Sassone, V. Higher Dimensional Transition Systems. In 11th Sym-
posium of Logics in Computer Science, LICS ‘96, pp. 55–62 (IEEE 1996). 20

Chandy, K.M. and Misra, J. The Drinking Philosophers Problem. ACM Transactions
on Programming Languages and Systems 6(4):632–646 1984. 16

Cisinski, D.C. Les préfaisceaux comme modèles des types d’homotopie. Astérisque
(Société Mathématique de France 2006). 31

Clerc, F. and Mimram, S. Presenting a Category Modulo a Rewriting System. In
M. Fernández (ed.), 26th International Conference on Rewriting Techniques and
Applications (RTA2015), vol. 36 ofLeibniz International Proceedings in Informatics
(LIPIcs), pp. 89–105 (Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany 2015). ISBN 978-3-939897-85-9. ISSN 1868-8969. doi:10.4230/LIPIcs.
RTA.2015.89. 181

Coffman, E.G., Elphick, M., and Shoshani, A. System Deadlocks. ACMComput. Surv.
3(2):67–78 1971. ISSN 0360-0300. doi:10.1145/356586.356588. 6, 157

230



BIBLIOGRAPHY BIBLIOGRAPHY

Cohn, D.L. Measure Theory (Birkhäuser 1980). 152

Cohn, P.M. Basic Algebra: Groups, Rings and Fields (Springer 2003), 2nd ed. ISBN
978-1-4471-1060-6. 208

Conlon, L. Differentiable Manifolds. Modern Birkhäuser Classics (Birkhäuser 2008),
2nd ed. 104

Cooper, K. and Torczon, L. Engineering a compiler (Morgan Kaufmann 2011), 2nd ed.
ISBN 978-0120884780. 14, 52

Crans, S.E. On combinatorial models for higher dimensional homotopies. Ph.D. thesis,
Universiteit Utrecht 1995. 41

Cridlig, R. SemanticAnalysis of Shared-memoryConcurrent LanguagesUsingAbstract
Model-checking. In Proceedings of the 1995 ACM SIGPLAN Symposium on Partial
Evaluation and Semantics-based Program Manipulation, PEPM ’95, pp. 214–225
(ACM, New York, NY, USA 1995). ISBN 0-89791-720-0. doi:10.1145/215465.
215593. 10

Cridlig, R. Implementing a Static Analyzer of Concurrent Programs: Problems and
Perspectives. In M. Dam (ed.), Analysis and Verification of Multiple-Agent Lan-
guages, selected papers from the 5th LOMAPS, June 24-26, 1996, vol. 1192, pp.
244–259 (Springer, London, UK 1997). ISBN 3-540-62503-8. 10

Cridlig, R. and Goubault, É. Semantics and analysis of Linda-based languages. In
P. Cousot, M. Falaschi, G. Filé, and A. Rauzy (eds.), Static Analysis: Third Inter-
national Workshop, WSA ’93 Padova, Italy, September 22–24, 1993 Proceedings,
vol. 724 of Lecture Notes in Computer Science, pp. 72–86 (Springer 1993). ISBN
978-3-540-57264-0. ISSN 0302-9743. 6

Cristescu, I.D., Krivine, J., andVaracca, D. A compositional semantics for the reversible
pi-calculus. In Logic in Computer Science, pp. 388–397 (NewOrleans, United States
2013). doi:10.1109/LICS.2013.45. 118

Danos, V., Krivine, J., and Sobociński, P. General Reversibility. Electronic Notes in
Theoretical Computer Science 175:75–86 2007. 118

Davey, B.A. and Priestley, H.A. Introduction to Lattices and Order (Cambridge Uni-
versity Press 2002), 2nd ed. ISBN 9780521784511. 94

De Lellis, C. Rectifiable Sets, Densities and Tangent Measures. Zurich Lectures in
AdvancedMathematics (EuropeanMathematical Society 2008). ISBN 978-3-03719-
044-9. 153

de Rham, G. Sur la réductibilité d’un espace de Riemann. Commentarii Mathematici
Helvetici 26:328–344 1952. 222

Diestel, R. and Kühn, D. Graph-theoretical versus topological ends of graphs. Journal
of Combinatorial Theory 87:197–206 2003. 134

Dijkstra, E.W. Cooperating sequential processes. Tech. rep., Technological University,
Eindhoven, The Netherlands, september 1965. Reprinted in F. Genuys Ed. 1968.
Programming Languages, Academic Press, New York, 43-112. Article 1. 1

231



BIBLIOGRAPHY BIBLIOGRAPHY

Dijkstra, E.W. Cooperating sequential processes. In F. Genuys (ed.), Programming
Languages: NATO Advanced Study Institute, proceedings of the summer school
held at Villars-de-Lans, 1966, pp. 43–112 (Academic Press 1968). ISBN 0-12-
279750-7. Reprint of the eponymous technical report published in september 1965
by the Technological University of Eindhoven, The Netherlands. 6, 7, 8, 10, 16, 21,
67

Dijkstra, E.W. Hierarchical Ordering of Sequential Processes. Acta Informatica 1:115–
138 1971. 157

Douady, A. and Douady, R. Algèbre et Théories Galoisiennes. Nouvelle Bibliothèque
Mathématique (Cassini 1999). ISBN 978-2842250058. 208, 209

Dreier, J., Ene, C., Lafourcade, P., and Lakhnech, Y. On Unique Decomposition
of Processes in the Applied Pi-Calculus. In FOSSACS 2013 : 16th International
Conference on Foundations of Software Science and Computation Structures (2013).
7, 194

Dubut, J., Goubault, É., andGoubault-Larrecq, J. NaturalHomology. InM.M.Halldórs-
son, K. Iwama, N. Kobayashi, and B. Speckmann (eds.), Automata, Languages, and
Programming: 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July
6-10, 2015, Proceedings, Part II, vol. 9135, pp. 171–183 (Springer 2015). doi:
10.1007/978-3-662-47666-6_14. 225

Dwyer, W.G., Hirschhorn, P.S., Kan, D.M., and Smith, J.H. Homotopy Limit Functors
onModel Categories and Homotopical Categories, vol. 113 ofMathematical Surveys
andMonographs (AmericanMathematical Society 2004). ISBN978-0-8218-3975-1.
7, 38, 186, 225

Engelking, R. Dimension theory (North-Holland 1978). 222

Engelking, R. General Topology (Heldermann 1989), revised and completed edition
ed. ISBN 3-88538-006-4. 39, 72

Epstein, D.B. Word Processing in Groups (Jones and Bartlett 1992). 150, 191

Evans, L.C. and Gariepy, R.F. Measure Theory and Fine Properties of Functions.
Studies in Advanced Mathematics (CRC Press 1992). ISBN 0-8493-7157-0. 153

Fahrenberg, U. Towards an Efficient Algorithm for Detecting Unsafe States in Timed
Concurrent Sytems. Master’s thesis, The Faculty of Engineering and Science 2002.
57, 59

Fahrenberg, U. Directed Homology. Electronic Notes in Theoretical Computer Science
100:111–125 2004. 225

Fahrenberg, U. and Legay, A. Partial Higher-Dimensional Automata. In L.S. Moss
and P. Sobociński (eds.), 6th Conference on Algebra and Coalgebra in Computer
Science (CALCO 2015), vol. 35 of Leibniz International Proceedings in Infor-
matics (LIPIcs), pp. 101–115 (Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany 2015). ISBN 978-3-939897-84-2. ISSN 1868-8969. doi:
10.4230/LIPIcs.CALCO.2015.101. 48

Fahrenberg, U. and Raußen, M. Reparametrizations of continuous paths. Journal of
Homotopy and Related Structures 2(2):93–117 2007. 99, 119

232



BIBLIOGRAPHY BIBLIOGRAPHY

Fajstrup, L. Dicovering Spaces. Homology, Homotopy and Applications 5(2):1–17
2003. 226

Fajstrup, L. Dipaths and dihomotopies in a cubical complex. Advances in Applied
Mathematics 35(2):188–206 2005. 111, 117, 159

Fajstrup, L. Dicovering as quotients. Tech. rep., Institut Mittag-Leffler 2005 / 2006.
226

Fajstrup, L. On directed coverings. Tech. rep., Aablorg university 2008. 226

Fajstrup, L. Erratum to ’Dicovering spaces’. Homology, Homotopy and Applications
13(1):403–406 2011. 226

Fajstrup, L., Goubault, É., Haucourt, E., Mimram, S., and Raußen, M. Trace Spaces:
An Efficient New Technique for State-Space Reduction. In H. Seidl (ed.), ESOP, vol.
7211 of Lecture Notes in Computer Science, pp. 274–294 (Springer 2012). ISBN
978-3-642-28868-5. 119

Fajstrup, L., Goubault, É., Haucourt, E., Mimram, S., and Raußen, M. Directed
Algebraic Topology and Concurrency. Springer Briefs in Applied Science and
Technology - Mathematical Methods (Springer 2016). ISBN 978-3-319-15397-1.
119

Fajstrup, L., Goubault, É., Haucourt, E., and Raußen, M. Components of the
Fundamental Category. Applied Categorical Structures 12(1):81–108 2004. doi:
10.1023/B:APCS.0000013812.75342.de. 7, 165

Fajstrup, L., Goubault, É., and Raußen, M. Directed Algebraic Topology and Concur-
rency. Tech. rep., Aablorg university, DK-9220 Aalborg Øst 1999. 110

Fajstrup, L., Goubault, É., and Raußen, M. Algebraic Topology and Concurrency.
Theoretical Computer Science 357(1):241–278 2006. doi:10.1016/j.tcs.2006.03.022.
Presented at the 14th conference on the Mathematical Foundations of Programming
Semantics (10-13 May 1998, Queen Mary - Westfield College, London, England).
7, 79, 80, 89, 121

Fajstrup, L. and Rosický, J. A convenient category for directed homotopy. Theory and
Applications of Categories 21(1):7–20 2008. 105

Federer, H. Geometric measure theory. Classics in Mathematics (Springer 2013),
reprint of the 1st ed. 1969 ed. 152, 153

Floyd, R.W. Assigning meanings to programs. In J.T. Schwartz (ed.), Mathematical
Aspects of Computer Science, vol. 19 of Proceedings of Symposia in Applied Mathe-
matics, pp. 19–32 (American Mathematical Society 1967). ISBN 978-0821813195.
5, 49

Foertsch, T. and Lytchak, A. The De RhamDecomposition Theorem for Metric Spaces.
Geometric and Functional Analysis 18:120–143 2008. 7, 222

Folland, G.B. Real Analysis Modern Techniques and Their Applications (Addison-
Wesley 1999), 2nd ed. 152

233



BIBLIOGRAPHY BIBLIOGRAPHY

Fournet, C. and Gonthier, G. The Join Calculus: A Language for Distributed Mobile
Programming. In Applied Semantics, International Summer School, APPSEM 2000,
Caminha, Portugal, September 9-15, 2000, Advanced Lectures (2000). 193

Fournet, C., Le Fessant, F., Maranget, L., and Schmitt, A. JoCaml: A Language
for Concurrent Distributed and Mobile Programming. In J. Jeuring and S. Jones
(eds.), Advanced Functional Programming, vol. 2638 of Lecture Notes in Computer
Science, pp. 129–158 (Springer 2003). ISBN 978-3-540-40132-2. doi:10.1007/
978-3-540-44833-4_5. 15

Fraser, G.A. The semilattice tensor product of distributive lattices. Trans-
actions of the American Mathematical Society 217 1976a. doi:10.1090/
S0002-9947-1976-0392728-8. 216, 217

Fraser, G.A. The tensor product of distributive lattices. Proceedings of the Edinburgh
Mathematical Society 20(2) 1976b. doi:10.1017/S0013091500010622. 216

Fraser, G.A. The tensor product of semilattices. Algebra Universalis 8:1–3 1978.
doi:10.1007/BF02485362. 216, 217

Fremlin, D.H. Measure Theory: The Irreducible Minimum (Torres Fremlin 2011), 2nd
ed. ISBN 978-0953812905. 152

Fröschle, S. and Lasota, S. Normed Processes, Unique Decomposition, and Complexity
of Bisimulation Equivalences. Electronic Notes in Theoretical Computer Science
239:17–42 2009. 194

Gabriel, P. Unzerlegbare Darstellungen I. Manuscripta Mathematica 6:71–103 1972.
226

Gabriel, P. Représentation Indécomposable. In Séminaire Bourbaki (1973-74), vol.
431 of Lecture Notes in Mathematics, pp. 143–211 (Springer 1975). 226

Gabriel, P. and Zisman, M. Calculus of Fractions and Homotopy Theory. Ergebnisse
der Mathematik und ihrer Grenzgebiete (Springer 1967). 36, 37, 38, 39, 117

Gale, D. Compact sets of functions and function rings. Proceeding of the American
Mathematical Society 1:303–308 1950. 39

Gaucher, P. A model category for the Homotopy Theory of Concurrency. Homology,
Homotopy and Applications 5(1):549–599 2003. 105

Gaucher, P. Homological properties of non-deterministic branchings and mergings in
Higher Dimensional Automata. Homology, Homotopy and Applications 7(1):51–76
2005. 225

Gaucher, P. T-homotopy and refinement of observation (III) : Invariance of the branching
and merging homologies. New York J. Math. 12:319–348 2006. 225

Gaucher, P. Towards a Homotopy Theory of Process Algebra. Homology, Homotopy
and Applications 10(1):353–388 2008. 105

Gaucher, P. Combinatorics of labelling in Higher Dimensional Automata. Theoretical
Computer Science 411(11-13):1452–1483 2010a. 105

234



BIBLIOGRAPHY BIBLIOGRAPHY

Gaucher, P. Directed algebraic topology and higher dimensional transition systems.
New York J. Math. 16:409–461 (electronic) 2010b. 105

Géraud, R. Fundamental categories and their enveloping groupoids. Master’s thesis,
École Centrale Paris 2012. 117

Geroldinger, A. and Halter-Koch, F. Non-Unique Factorizations: Algebraic, Combina-
torial, and Analytic Theory. Pure and AppliedMathematics (Chapman &Hall 2006).
ISBN 978-1-58488-576-4. 195

Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M.W., and Scott, D.S.
Continuous Lattices and Domains, vol. 93 of Encyclopedia of Mathematics and its
Applications (Cambridge University Press 2003). ISBN 978-0521803380. 209

Givant, S. and Halmos, P. Introduction to Boolean Algebras. Undergraduate Texts in
Mathematics (Springer 2009). ISBN 978-0-387-40293-2. 134, 205, 206, 210, 213

Goerss, P.G. and Jardine, J.F. Simplicial Homotopy Theory, vol. 174 of Progress in
Mathematics (Birkhäuser 1999). 36, 37, 39

Goldblatt, R. Topoi: The Categorial Analysis of Logic (Dover Publications 1984),
reprint of the north-holland 1983 edition ed. 38

Goubault, É. Domains of higher-dimensional automata. In E. Best (ed.), CONCUR’93:
4th Intrenational Conference on Concurrency Theory Hildesheim, Germany, August
23–26, 1993 Proceedings, vol. 715 of Lecture Notes in Computer Science, pp. 293–
307 (Springer 1993). ISBN 978-3-540-57208-4. doi:10.1007/3-540-57208-2_21.
6

Goubault, É. The Geometry of Concurrency. Ph.D. thesis, Ecole Normale Supérieure
1995. 225

Goubault, É. Geometry and Concurrency: A user’s guide. Mathematical Structures in
Computer Science 10(4):411–425 2000. 6

Goubault, É. Some Geometric Perspectives in Concurrency Theory. Homology, Ho-
motopy and Applications 5(2):95–136 2003. 6

Goubault, É. and Haucourt, E. A practical application of Geometric semantics to
Static analysis of Concurrent programs. In Concurrency Theory 16th International
Conference, vol. 3653 of Lecture Notes in Computer Science, pp. 503–517 (Springer
2005). doi:10.1007/11539452_38. 165

Goubault, É. and Haucourt, E. Components of the Fundamental Category II. Applied
Categorical Structures 15(4):387–414 2007. doi:10.1007/s10485-007-9082-7. 165

Goubault, É., Haucourt, E., and Krishnan, S. Covering Space Theory for the Directed
Topology. Theory and Applications of Categories 22(9):252–268 2009. ISSN 1201
- 561X. 226

Goubault, É., Haucourt, E., and Krishnan, S. Future Path-components in Directed
Topology. Electr. Notes Theor. Comput. Sci. 265:325–335 2010. 165

Goubault, É. and Jensen, T.P. Homology of Higher-Dimensional Automata. In Proc. of
3rd International Conference on Concurrency Theory CONCUR, no. 630 in Lecture
Notes in Computer Science (Springer 1992). 6

235



BIBLIOGRAPHY BIBLIOGRAPHY

Goubault, É. andMimram, S. Formal Relationships BetweenGeometrical and Classical
Models for Concurrency. Electronic Notes in Theoretical Computer Science 283:77–
109 2012. 6, 45

Goubault-Larrecq, J. Non-Hausdorff Topology and Domain Theory: Selected Top-
ics in Point-Set Topology, vol. 22 of New Mathematical Monographs (Cambridge
University Press 2013). ISBN 978-1107034136. 39, 209

Goubault-Larrecq, J. Exponentiable Streams and Prestreams. Applied Categorical
Structures 22:514–549 2014. doi:10.1007/s10485-013-9315-x. 93

Grandis, M. Directed Homotopy Theory, I. The Fundamental Category. Cahiers
de Topologie et Géométrie Différentielle Catégoriques 44(4):281–316 2003. ISSN
0008-0004. 7, 93

Grandis, M. Directed Combinatorial Homology and Noncommutative Tori. Math.
Proc. Cambridge Philos. Soc. 138:233–262 2005. 225

Grandis, M. Directed Algebraic Topology : Models of Non-Reversible Worlds, vol. 13
of New Mathematical Monographs (Cambridge University Press 2009). ISBN
9780521760362. 7, 93, 97, 105, 224, 225

Grätzer, G. General Lattice Theory (Birkhäuser 2003), 2nd ed. ISBN 978-3764369965.
194

Grätzer, G. Universal Algebra (Springer 2008), updated 2nd ed. ISBN 978-0-387-
77486-2. 206, 209

Grätzer, G., Lakser, H., and Quackenbush, R. The structure of tensor products of semi-
lattices with zero. Transactions of the American Mathematical Society 267(2):503–
515 1981. doi:10.1090/S0002-9947-1981-0626486-8. 216, 217, 219

Grätzer, G. and Wehrung, F. Tensor products of semilattices with zero, revisited. Jour-
nal of Pure and Applied Algebra 147:273–301 2000. doi:10.1016/S0022-4049(98)
00145-5. 216

Grätzer, G. and Wehrung, F. A survey of tensor products and related constructions in
two lectures. Algebra Universalis 45:117–134 2001. 216

Grillet, P.A. The Tensor Product of Commutative Semigroups. Transactions of the
American Mathematical Society 138:281–293 1969a. doi:10.2307/1994915. 208

Grillet, P.A. The Tensor Product of Semigroups. Transactions of the American Math-
ematical Society 138:267–280 1969b. doi:10.2307/1994914. 208

Grillet, P.A. Abstract Algebra, vol. 242 of Graduate Texts in Mathematics (Springer
2007), 2nd ed. ISBN 978-0-387-71567-4. 194, 208, 209

Gromov, M. Metric Structures for Riemannian and Non-Riemannian Spaces. Modern
Birkhäuser Classics (Birkhäuser 2007), reprint of 2001 ed. 150

Haefliger, A. Extension of Complexes of Groups. Annales de l’institut Fourrier 42(1-
2):275–311 1992. 165

Halmos, P.R. Measure Theory. Graduate Texts in Mathematics (Springer 1974). ISBN
978-0387900889. 152

236



BIBLIOGRAPHY BIBLIOGRAPHY

Hansen, P.B. The Origin of Concurrent Programming: From Semaphores to Remote
Procedure Calls (Springer 2002). ISBN 978-0387954011. 6

Hashimoto, J. On Direct Product Decomposition of Partially Ordered Sets. Annals of
Mathematics 54(2):315–318 1951. 204

Hatcher, A. Algebraic Topology (Cambridge University Press 2002). 7, 84

Haucourt, E. Categories of Components and Loop-free Categories. Theory and Ap-
plications of Categories 16(27):736–770 2006. ISSN 1201 - 561X. 7, 165, 166,
181

Haucourt, E. Streams, d-Spaces and their Fundamental Categories. Electronic Notes in
Theoretical Computer Science 283:111–151 2012. doi:10.1016/j.entcs.2012.05.008.
7, 41, 73, 97, 98, 122, 123

Haucourt, E. Local pospaces, areas, and concurrency. Tech. rep., CEA Tech, List 2014.
7

Haucourt, E. and Ninin, N. The Boolean Algebra of Cubical Areas as a Tensor Product
in the Category of Semilattices with Zero. In 7th Interaction and Concurrency
Experience (ICE 2014), Electronic Proceedings in Theoretical Computer Science
(2014). 132, 164, 206, 216, 218, 220, 221

Hazewinkel, M., Gubareni, N., and Kirichenko, V. Algebras, Rings and Modules vol.
2, vol. 2 of Mathematics and Its Applications (Springer 2007). 226

Hempel, J. 3-Manifolds, vol. 349 of AMS Chelsea Publishing (American Mathematical
Society 1976). ISBN 9780691081830. 196

Higgins, P.J. Categories and Groupoids, vol. 32 ofMathematical Studies (Van Nostrand
(Princeton) 1971). ISBN 442-03406-7. 7, 116

Hirschhorn, P.S. Model Categories and Their Localizations. Mathematical Surveys and
Monographs (American Mathematical Society 2003). ISBN 978-0-8218-4917-0.
105

Hirschowitz, A., Hirschowitz, M., and Hirschowitz, T. Saturating directed spaces.
Journal of Homotopy and Related Structures 16:25–32 2013. 99

Hoare, C.A.R. Communicating sequential processes. Communications of the ACM
21(8):666–677 1978. 16, 193

Hoare, C.A.R. Communicating sequential processes. Prentice Hall International Series
in Computing Science (Prentice-Hall 1985). ISBN 978-0131532717. 193

Hofmann, K.H., Mislove, M.W., and Stralka, A. The Pontryagin Duality of Com-
pact 0-Dimensional Semilattices and its Applications, vol. 396 of Lecture Notes in
Mathematics (Springer 1974). ISBN 978-3-540-06807-5. 209, 216

Hovey, M. Model Categories, vol. 63 of Mathematical Surveys and Monographs
(American Mathematical Society 1999). 7, 31, 36, 37, 39, 40, 105, 186, 224

Hungerford, T.W. Algebra. Graduate Texts in Mathematics (Springer 2003). ISBN
978-0387905181. 193, 194, 195

237



BIBLIOGRAPHY BIBLIOGRAPHY

Husainov, A.A. Homology and Bisimulation of Asynchronous Transition Systems and
Petri Nets. arXiv 2013. 225

Husemoller, D. Fibre Bundles. Graduate Texts in Mathematics (Springer 1993), 3rd
ed. 227

Isaacson, S.B. Cubical Homotopy Theory and Monoidal Model Categories. Ph.D.
thesis, Harvard University 2009. 44

Isaacson, S.B. Symmetric cubical sets. Journal of Pure and Applied Algebra 215:1146–
1173 2011. 44

Jaco, W. Lectures on Three-Manifold Topology, vol. 43 of CBMS Regional Conference
(American Mathematical Society 1980). ISBN 978-0-8218-1693-6. 196

Jardine, J.F. Cubical Homotopy Theory: a beginning. Tech. rep., Newton Institute
2002. 44

Jech, T.J. Set Theory. Springer Monographs in Mathematics (Springer 2002), 3rd ed.
ISBN 3-540-44085-2. 70

Johnstone, P.T. Stone Spaces, vol. 3 of Studies in Advanced Mathematics (Cambridge
University Press 1982). ISBN 978-0521337793. 101, 205, 209, 213

Joyal, A. and Tierney, M. Notes on simplicial homotopy 2008. 37

Kahl, T. Relative Directed Homotopy Theory of Partially Ordered Spaces. Journal of
Homotopy and Related Structures 1(1):79–100 2006. 224

Kahl, T. A fibration category of local pospaces. Electronic Notes in Theoretical
Computer Science 230:129–140 2009. 224

Kan, D.M. Abstract Homotopy I. Proceedings of the National Academy of Science
U.S.A. 41(12):1092–1096 1955. 44, 45

Karrass, A., Magnus, W., and Solitar, D. Combinatorial Group Theory: Presentations
of Groups in Terms of Generators and Relations (Dover Publications 2004), 2nd ed.
ISBN 0-486-63281-4. 48

Kelley, J.L. General Topology, vol. 27 of Graduate Texts in Mathematics (Springer
1955). 39, 101, 102, 118, 205

Kernighan, B.W. and Ritchie, D.M. The C programming language (Prentice-Hall 1988).
11

Klenke, A. Probability Theory: a comprehensive course. Universitext (Springer 2008).
ISBN 978-1-84800-047. 152

Kneser, H. Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten. Jahres-
bericht der Deutschen Mathematiker-Vereinigung 38:248–259 1929. 196

Koppelberg, S. Handbook of Boolean Algebras I (North-Holland 1989). ISBN 978-
0444702616. 134, 205

Krantz, S.G. and Parks, H.R. TheGeometry ofDomains in Space. Birkhäuser Advanced
Texts (Birkhäuser 1999). ISBN 978-0817640972. 153

238



BIBLIOGRAPHY BIBLIOGRAPHY

Krishnan, S. Directed Algebraic Topology and Concurrency. Ph.D. thesis, Chicago
University 2006. 90

Krishnan, S. AConvenient Category of Locally Preordered Spaces. AppliedCategorical
Structures 17(5):445–466 2009. doi:10.1007/s10485-008-9140-9. 7, 90, 91, 92, 95,
105

Krishnan, S. Cubical Approximation for Directed Topology I. Applied Categorical
Structures 23(2):177–214 2013. 43, 111, 159

Krivine, J. Algèbres de Processus Réversibles. These, Université Pierre et Marie Curie
- Paris VI 2006. 118

Krivine, J. A Verification Technique for Reversible Process Algebra. In Fourth in-
ternational workshop on reversible computation (RC 2012), vol. 7581, pp. 204–217
(Springer 2012). 118

Kuroš, A.G. Theory of Groups, vol. 2. AMS Chelsea Publishing (American Mathe-
matical Society 1956). ISBN 978-0-8218-3477-0. 194

Lang, S. Fundamentals of Differential Geometry. Graduate Texts in Mathematics
(Springer 1999). ISBN 0-387-98593-X. 102, 103, 227

Lang, S. Algebra. Graduate Texts in Mathematics (Springer 2002), 3rd ed. 193, 206,
208, 209, 212

Lawson, M.V. Finite Automata (Chapman & Hall/CRC 2004). ISBN 1-58488-255-7.
191

Lewis, G. The Stable Category and Generalized Thom Spectra. Ph.D. thesis, University
of Chicago 1978. 31, 39

Lipski, W. and Papadimitriou, C.H. A Fast Algorithm for Testing for Safety and
Detecting Deadlocks in Locked Transaction Systems. Journal of Algorithms pp.
211–226 1981. 159

Luttik, B. A Unique Decomposition Theorem for Ordered Monoids with Applications
in Process Theory. In Mathematical Foundations of Computer Science 2003, vol.
2747, pp. 562–571 (Springer 2003). 7, 193

Luttik, B. and Oostrom, V. Decomposition orders: another generalisation of the
fundamental theorem of arithmetic. Theoretical Computer Science 335(2-3):147–
186 2005. 7, 193, 196

Mac Lane, S. Homology. Classics in Mathematics (Springer 1995), 4th ed. ISBN
978-3540586623. 225

Mac Lane, S. Categories for the Working Mathematician, vol. 5 of Graduate Texts in
Mathematics (Springer 1998), 2nd ed. ISBN 0-387-98403-8. 32, 36, 41, 71, 108,
110, 121, 189

Mac Lane, S. and Birkhoff, G. Algebra. AMS Chelsea Publishing (American Mathe-
matical Society 1999), 3rd ed. ISBN 978-0821816462. 209

Mac Lane, S. and Moerdijk, I. Sheaves in Geometry and Logic. Universitext (Springer
1994), 2nd ed. 33, 35, 38, 82

239



BIBLIOGRAPHY BIBLIOGRAPHY

Maltsiniotis, G. La catégorie cubique avec connexions est une catégorie test stricte.
Homology, Homotopy and Applications 11(2):309–326 2009. 44, 45

Mandel, L. and Pouzet, M. ReactiveML, a Reactive Extension to ML. In Proceed-
ings of 7th ACM SIGPLAN International Symposium on Principles and Practice of
Declarative Programming (PPDP’05) (Lisbon, Portugal 2005). 15

Massey, W.S. A Basic Course in Algebraic Topology. Graduate Texts in Mathematics
(Springer 1991), 3rd ed. ISBN 978-3540974307. 196

May, J.P. Simplicial Objects in Algebraic Topology. Chicago Lectures in Mathematics
(The University of Chicago Press 1967). 36, 37, 38

May, J.P. and Ponto, K. More Concise Algebraic Topology: Localization, completion,
and model categories (Chicago University Press 2010). 105, 224

McLarty, C. Every Grothendieck topos has a one-way site. Theory and Applications
of Categories 16(5):123–126 2006. 165

Milner, R. Communication and Concurrency (Prentice-Hall 1989). 193

Milner, R. Communicating Systems and The Pi-Calculus (Cambridge University Press
1999). 193

Milner, R. and Moller, F. Unique decomposition of processes. Theoretical Computer
Science 107:357–363 1993. 7, 193

Milnor, J. The Geometric Realization of a Semi-Simplicial Complex. Annals of
Mathematics 65(2):357–362 1957. 38

Milnor, J. A Unique Decomposition Theorem for 3-Manifolds. American Journal of
Mathematics 84(1):1–7 1962. doi:10.2307/2372800. 196

Miné, A. Static analysis by abstract interpretation of concurrent programs. Habilitation
thesis, École Normale Supérieure 2013. 10

Morgan, F. Geometric measure theory: A beginner’s guide (Academic Press 2008).
ISBN 978-0123744449. 152

Muchnick, S.S. Advanced Compiler Design and Implementation (Morgan Kaufmann
1997). ISBN 978-1558603202. 52

Nachbin, L. Sur les espaces topologiques ordonnés. Compte Rendus de l’Académie des
Sciences de Paris 226 1948a. 68

Nachbin, L. Sur les espaces uniformes ordonnés. Compte Rendus de l’Académie des
Sciences de Paris 226 1948b. 68

Nachbin, L. Sur les espaces uniformisables ordonnés. Compte Rendus de l’Académie
des Sciences de Paris 226 1948c. 68

Nachbin, L. Topology and Order, vol. 4 of Mathematical Studies (Van Nostrand
(Princeton) 1965). ISBN 978-0882753874. 7, 68, 69, 100

Nadler Jr., S.B. Continuum Theory, An Introduction, vol. 158 of Monographs and
Textbooks in Pure and Applied Mathematics (Marcel Dekker 1992). ISBN 0-8247-
8669-9. 69, 70, 134

240



BIBLIOGRAPHY BIBLIOGRAPHY

Nakayama, T. and Hashimoto, J. On a problem of G. Birkoff. Proceeding of the
American Mathematical Society 1:141–142 1950. 196

Naur, P. andRandell, B. (eds.). Software Engineering: Report of a conference sponsored
by the NATO Science Committee (NATO 1969). 6

Nikiel, J., Tuncali, H.M., and Tymchatyn, E.D. Continuous Images of Arcs and In-
verse Limit Methods, vol. 104 of Memoirs of the American Mathematical Society
(American Mathematical Society 1993). 70

Ninin, N. Untitled. Ph.D. thesis, Université Paris 11 Orsay 2016. 201

Ore, Ø. On the foundation of abstract algebra. II. Annals ofMathematics 37(2):265–292
1936. 194, 204

Papadopoulos, A. Metric Spaces, Convexity, and Nonpositive Curvature. IRMA
Lectures in Mathematics & Theoretical Physics (European Mathematical Society
2013), 2nd ed. ISBN 978-3037191323. 150

Pears, A.R. Dimension theory of general spaces (Cambridge University Press 1975).
222

Pedicchio, M.C., Tholen, W., et al. Categorical Foundations: Special Topics in Order,
Topology, Algebra, and Sheaf Theory. Encyclopedia of Mathematics and its Appli-
cations (Cambridge University Press 2003). ISBN 9780521834148. 79, 82, 169,
209

Pierce, R.S. Tensor products of Boolean algebras. In Universal Algebra and Lattice
Theory:Fourth International Confererence, Puebla, Mexico, 1982, vol. 1004 of Lec-
ture Notes in Mathematics, pp. 232–239 (Springer 1983). ISBN 978-3-540-12329-3.
206

Plazar, Q. Untitled. Master’s thesis, École Polytechnique 2015. 191

Plotkin, G.D. A structural approach to operational semantics. Journal of Logic and Al-
gebraic Programming 60-61:17–139 2004. doi:10.1016/j.jlap.2004.03.002. Reprint
of Tech. Rep. DAIMI FN-19, eponym, Computer Science Department, Aarhus Uni-
versity, Aarhus, Denmark. 1981. 22

Porter, T. Proper Homotopy Theory. In I.M. James (ed.), Handbook of Algebraic
Topology, pp. 127–167 (North-Holland 1995). ISBN 978-0444817792. 123

Porter, T. Steps towards a ’directed homotopy hypothesis’. (∞, 1)-categories, directed
spaces and perhaps rewriting. presented at Homotopy in Concurrency and Rewriting
conference, Palaiseau, France 2015. 105

Pratt, V. Modeling Concurrency with Partial Orders. International Journal of Parallel
Programming 15(1):33–71 1986. 45

Pratt, V. Modeling Concurrency with Geometry. In D.S. Wise (ed.), Proc. 18th Ann.
ACM Symposium on Principles of Programming Languages, pp. 311–322 (1991).
doi:10.1145/99583.99625. 1, 6, 45, 106

Pratt, V. Higher dimensional automata revisited. Mathematical Structures in Computer
Science 10(4):525–548 2000. doi:10.1017/S0960129500003169. 45

241



BIBLIOGRAPHY BIBLIOGRAPHY

Preiss, D. Geometry ofmeasures inRn: Distribution, rectifiablity, and densities. Annals
of Mathematics 125(3):537–643 1987. 153

Quillen, D.G. Homotopical Algebra, vol. 43 of Lecture Notes in Mathematics (Springer
1967). 7, 37, 105, 166, 186, 224

Randell, B. Software Engineering in 1968. In 4th International Conference on Software
Engineering, pp. 1–10 (IEEE Computer Society 1979). 6

Raußen, M. On the classification of dipaths in geometric models of concurrency.
Mathematical Structures in Computer Science 10(4):427–457 2000. 110

Raußen, M. State Spaces and and Dipaths up to Dihomotopy. Homology, Homotopy
and Applications 5(2):257–280 2003. 111

Raußen, M. Invariants of directed spaces. Applied Categorical Structures 15(4):355–
386 2007. 119

Raußen, M. Reparametrizations with given stop data. Journal of Homotopy and Related
Structures 4(1):1–5 2009a. 119

Raußen, M. Trace spaces in a pre-cubical complex. Topology and its Applications
156(9):1718–1728 2009b. 99, 119

Raußen, M. Simplicial models of trace spaces. Algebraic & Geometric Topology
10(3):1683–1714 2010. doi:10.2140/agt.2010.10.1683. 119

Raußen, M. Execution spaces for simple higher dimensional automata. Applicable
Algebra in Engineering, Communication and Computing 23(1-2):59–84 2012a. 119

Raußen,M. Simplicial models for trace spaces II: General higher dimensional automata.
Algebraic & Geometric Topology 12(3):1741–1761 2012b. doi:10.2140/agt.2012.
12.1741. 119

Ravenel, D.C. Complex Cobordism and Stable Homotopy Groups of Spheres. AMS
Chelsea Publishing (American Mathematical Society 2003), 2nd ed. ISBN 978-0-
8218-2967-7a. 225

Raynal, M. Concurrent Programming: Algorithms, Principles, and Foundations: Al-
gorithms, Principles, and Foundations (Springer 2013). ISBN 978-3-642-32026-2.
doi:10.1007/978-3-642-32027-9. 6, 14, 15

Riehl, E. Categorical Homotopy Theory, vol. 24 of New Mathematical Monographs
(Cambridge University Press 2014). ISBN 9781107048454. 36

Rockafellar, R.T. and Wets, R.J.B. Variational Analysis, vol. 317 of Grundlehren der
mathematischen Wissenschaften (Springer 2004), corr. 2nd printing ed. 69

Roman, S. Advanced Linear Algebra, vol. 135 of Graduate Texts in Mathematics
(Springer 2008a), 3rd ed. ISBN 978-0-387-72831-5. 208

Roman, S. Lattices and Ordered Sets (Springer 2008b). ISBN 978-0-387-78900-2.
doi:10.1007/978-0-387-78901-9. 209

Rotman, J.J. An Introduction to the Theory of Groups. Graduate Texts in Mathematics
(Springer 1994), 4th ed. ISBN 0-387-94285-8. 194

242



BIBLIOGRAPHY BIBLIOGRAPHY

Schröder, B.S.W. Ordered Sets, An Introduction (Birkhauser 2002). 204

Serre, J.P. Homologie Singulière ds Espaces Fibrés. Ph.D. thesis, École Normale
Supérieure 1951. 44

Sikorski, R. The Cartesian Product of Boolean Algeras. Fundamenta Matematicae
37(1):25–54 1950. 205

Sikorski, R. Boolean Algebras, vol. 25 of Ergebnisse der Mathematik und ihrer Gren-
zgebiete (Springer 1969), 3rd ed. ISBN 978-3-642-85822-2. 205

Starynkevitch, B. GCC MELT Official Website. http://gcc-melt.org/ 2012. 4

Steen, L.A. and Seebach, J.A. Counterexamples in Topology. Dover Books on Mathe-
matics (Dover Publications 1996). 124

Steenrod, N.E. A convenient category of topological spaces. MichiganMath. J. 14:133–
152 1967. 39

Strickland, N.P. The Category of CGWHSpaces. Manuscript available electronically at
http://neil-strickland.staff.shef.ac.uk/courses/homotopy/cgwh.pdf 2009.
39

tom Dieck, T. Algebraic Topology. EMS Textbooks in Mathematics (European Math-
ematical Society 2008). 196

van Glabbeek, R.J. Bisimulations for Higher Dimensional Automata. Manuscript
available electronically at http://theory.stanford.edu/~rvg/hda 1991. 6, 45

van Glabbeek, R.J. Erratum to ’On the Expressiveness of Higher Dimensional Au-
tomata’. Theoretical Computer Science 368(1-2):168–194 2006. 6, 45

Wang, J. Handbook of Finite State Based Models and Applications. Discrete Mathe-
matics and Its Applications (Chapman & Hall/CRC 2012). ISBN 978-1439846186.
191

Weibel, C.A. An Introduction toHomological Algebra. Cambridge Studies inAdvanced
Mathematics (Cambridge University Press 1994). 225

Weintraub, S.H. Factorization: Unique and Otherwise. CMS Treatises in Mathematics
(A K Peters 2008). ISBN 978-1568812410. 195

Willard, S. General Topology (Addison-Wesley 1970). 101

Winskel, G. Handbook of Logic in Computer Science, vol. 4: Semantic Modelling,
chap. 1: Models for concurrency, pp. 70–102 (Oxford University Press 1995). 6, 46

Worytkiewicz, K. Sheaves of ordered spaces and interval theories. Journal of Homotopy
and Related Structures 5(1):37–61 2010. 105

243



Index

Σ-connectedness, 174
σ-locally compact, 124
Paml

– source code, 15
request, 13
separating – programs, 25

action of a directed path, 154
admissible

– multi-instruction, 21, 55
– relation over languages, 198

algebraic theory, 206
anodyne extension, 37
arity, 18
asynchronous transition system, 46
atlas, see ordered atlas

– morphism, 81
compatible –, 81
maximal –, 81

basic block, 50
bimorphism, 207
block, 134

– covering, 135
connected –, 137
connected – covering, 137
maximal –, 134
maximal – covering, 135
maximal connected –, 137
maximal connected – covering, 137

body (of a process), 14
Boolean algebra, 210
Boolean ring, 210
branching degree, 128
bundle

tangent –, 102
vector –, 102

category
– of cubical sets, 36
– of precubical sets, 45

– of dipaths, 77
box –, 36
cubical –, 36
dipath – functor, 77
fundamental –, 46
loop-free –, 166
one-way –, 166
presentation of –, 189
simplicial –, 36

chart, see ordered chart
circle

undirected –, 85
circulation, 90
closure, 32

downward –, 81
compact, 32

locally –, 32
compactification, 101

Alexandroff –, 101
Freudenthal –, 124, 127
Stone-Čech –, 101

compatible permutation, 26
compatible region, 148
cone

future –, 167
past –, 167

connected
Σ- –, 174
– category, 185
– component, 136
element of a connectology, 136
finitely zigzag –, 147
zigzag –, 147

connectology, 136
regional —, 138

control flow graph, 49
coreflection, 68
cosheafification, 91
covering, 32

– preorder, 135
block –, 135

244



INDEX INDEX

connected block –, 137
maximal block –, 135
maximal connected block –, 137

crash, 24
critical section, 15

d-something
complete d-space, 100
d-map, 93
d-path, 93
d-space, 93
filled d-space, 96
pseudo d-path, 96
saturated d-space, 99

deadlock, 16, 24
degree, 122
deterministic, 5, 29
dihomeomorphism, 74
dihomotopic, 110
dihomotopy

– classifier, 188
anti–, 110
horizontal composition of –, 109
vertical composition of –, 109
weak –, 110

dihomotopy (of dipaths), see directed ho-
motopy of dipaths

dipath, 76
– category functor, 77
– concatenation, 77
category of –, 77
directed homotopy of –s, 109
domain of a –, 76

directed
– Riemann sphere, 96
– by dipaths stream, 92
– by the dipaths, 69, 86
– complex plane, 96, 112
– homotopy of dipaths, 109
– interval, 69
– open star, 71
framework for – topology, 74

direction, 93
discretization, 149
disjoint coproduct, 34
dynamics, 5

embedding, 68, 181
evaluation, 19
execution path

interleaving –, 23
maximal –, 23

execution trace, 23, 154
expandable, 128
expression, 11

field of sets, 134
forbidden subspace, 155
fraction, 180
fractions

category of –, 173
left calculus of –, 169
right calculus of –, 168

framework
– for directed topology, 74
directed –, 74

free product, 134
free variables, 13

of an expression, 19
Freudenthal extension, 124
full subgraph, 121
future stable, 144

generalized congruence, 165
generalized continuum, 124
ginzu partition, 148
graph

essentially finite, 133
reduced –, 129

HDA, see higher dimensional automata
higher dimensional automata, 45
homotopical

– category, 186
– functor, 186
weak equivalence, 186

homotopy, 33
– category, 186
– congruence, 111
– of paths, 107

idempotent ring, 210
identifier, 11
independent

observationally –, 26
syntactically – programs, 25

initial state, 5
initial valuation, 17
instruction, 13

assignment, 13

245



INDEX INDEX

branching, 13
compound –, 13
conflicting –, 20
deallocation, 13
jump, 13
single –, 13
stack of –s, 22
synchronisation, 13
write-write conflict, 20

instruction pointer, 5
interior, 32
interleaving, 29
interpretation

context of –, 20
morphism of –s, 206

isothetic region, 134

lattice, 210
bounded –, 210
complete –, 169
pre–, 176
relatively complemented –, 215
semi–, 210
semi– with zero, 210

lifting, 149
– property, 180

local pospace, see locally ordered space
– morphism, 82

locale, 169
localization

– functor, 172

manifold, 102
parallelizable –, 104
smooth –, 102

maximal pure tensor covering, 218
model

– of a theory, 206
continuous –, 155
exhaustive –, 49
morphism of –s, 206

model category, 186
monoid, 210

– of regions, 141
commutative – of regions, 201
idempotent –, 210

multi-instruction, 20
disjoint –s, 20, 26
summable –s, 22
trivial –, 20

nerve, 34, 35
node of the star, 130

operator
backward –, 144
cone –, 145
forward –, 144
future attractor, 147
future closure –, 144
future cone –, 144
future escape –, 147
past attractor, 147
past closure –, 144
past cone –, 144
past escape –, 147
topological closure –, 142
topological interior –, 142

ordered
– chart, 80
– atlas, 80
locally – space, 82
partially – space, 69

Paml
language

semaphore, 13
Paml language

synchronisation, 13
arity, 13

past stable, 144
pasting

– of cubes, 73
– of intervals, 73

path, 68
– category, 68
– on a graph, 50
shape of –, 68
admissible –, 154
alternating homotopy of, 110
Moore –, 68

point on a control flow graph, 50
pospace, see partially ordered space
potential function, 60, 155
precirculation, 91
preorder

covering –, 135
gathering –, 135

presheaf, 33
prestream, 91
process

246



INDEX INDEX

– description, 13
process identifier, 18
program bootup, 14
pure

– collection of morphisms, 169
– submonoid, 196
– tensor, 207

quotient
– category, 173
– functor, 172

race condition, 15
read-write conflict, 20
realization

– of graphs as local pospaces, 121
cubical –, 36
simplicial –, 36

reduced graph, 129
reflect, 165
reflection, 68, 165
reflective, 68
region

G-region, 142
cubical –, 138
diconnected –, 204
directed topological isothetic –, 142
loop-free –, 188, 204

reparametrization, 99
resource

– declaration, 13
distribution of –s, 20

restriction, 83
retract, 181
rolling, 27

– decomposition, 28

section, 181
semaphore

arity, 13
semigroup, 210

idempotent –, 210
semilattice, 210
shape

– of a homotopy, 107
– of path, 68

sheaf, 82
signature, 206

interpretation of a –, 206
simplicial sets, 36

space
Tychonoff –, 101

stream, 90
– morphism, 90
directed by dipaths –, 92
filled –, 92

subcovering, 32

tensor
– product, 207
ordinary – product, 209
pure –, 207
universal – product, 207

topological space, 32
trace (of a dipath on a partition), 191
type of a point, 130

unreachable, 157

valuation, 19
vortex, 87

weak isomorphism, 170
potential –, 167
system of –, 168

247



List of Figures

1 Basic elements of the flowchart language. . . . . . . . . . . . . . . . 5

1.1 The general form of the PV programs to which the methods described
in this memoir apply. . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 The Paml grammar – following EBNF standard . . . . . . . . . . . . 12
1.3 Producing the middle-end representation from the source code . . . . 18
1.4 Execution traces as time lines . . . . . . . . . . . . . . . . . . . . . . 23
1.5 Execution traces as time lines (abstract form) . . . . . . . . . . . . . 24
1.6 Disjoint vs not disjoint multi-instructions . . . . . . . . . . . . . . . 26
1.7 Compatible transposition . . . . . . . . . . . . . . . . . . . . . . . . 27
1.8 Rolling decomposition of a permutation . . . . . . . . . . . . . . . . 28

2.1 The Yoneda embedding in a nutshell. . . . . . . . . . . . . . . . . . . 37
2.2 Some remarkable subcategories of Top. . . . . . . . . . . . . . . . . 40
2.3 Cubical relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4 The 1-skeleton of �1 ×�1 and the tensor product �1 ⊗ �1 = �2 . . . 45
2.5 The Cartesian product �+1 ×�

+
1 and the tensor product �+1 ⊗ �

+
1 . . . 47

3.1 An execution trace on a control flow graph . . . . . . . . . . . . . . . 51
3.2 Two equivalent control flow graphs . . . . . . . . . . . . . . . . . . . 52
3.3 Shunting a vertex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4 Building the control flow graph of the Hasse/Syracuse algorithm. . . . 54
3.5 Discrete directed paths are “continuous”. . . . . . . . . . . . . . . . . 55
3.6 Conservative vs nonconservative loops. . . . . . . . . . . . . . . . . 58
3.7 Conservative vs nonconservative lollipops. . . . . . . . . . . . . . . . 58
3.8 A nonconservative loop and its conservative (but infinite) unfolding. . 58
3.9 A conservative branching. . . . . . . . . . . . . . . . . . . . . . . . 59
3.10 Conservative process may be obtained by duplicating vertex. . . . . . 59
3.11 Conservativity algorithm applied to a conservative control flow graph 61
3.12 Conservativity algorithm applied to a non-conservative control flow graph 62
3.13 A discrete model, an admissible path on it that meets a forbidden point,

a possible replacement, and a nonadmissible path. . . . . . . . . . . . 65
3.14 Timelines interpreting a sequence of multi-instructions. . . . . . . . . 66

4.1 Directed open stars . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2 Framework for directed topology . . . . . . . . . . . . . . . . . . . . 74
4.3 Concatenation of dipaths in a framework . . . . . . . . . . . . . . . . 77
4.4 Identities of the category of dipaths of X . . . . . . . . . . . . . . . . 78
4.5 Squares of inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 78

248



LIST OF FIGURES LIST OF FIGURES

4.6 Preserving concatenation . . . . . . . . . . . . . . . . . . . . . . . . 79
4.7 The downward spiral . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.8 The directed circle . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.9 Relating streams and d-spaces . . . . . . . . . . . . . . . . . . . . . 98
4.10 Full subcategories of dTop . . . . . . . . . . . . . . . . . . . . . . . 100

5.1 Homotopy of paths as “tile” . . . . . . . . . . . . . . . . . . . . . . . 108
5.2 Piled up homotopies . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.3 Juxtaposed homotopies . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.4 Godement exchange law . . . . . . . . . . . . . . . . . . . . . . . . 109
5.5 Homotopies of paths vs natural transformations . . . . . . . . . . . . 109
5.6 Swapping horizontal for vertical composition . . . . . . . . . . . . . 110
5.7 A dihomotopy from a directed path to a pseudo-directed path . . . . . 115
5.8 The Directed Seifert-van Kampen Theorem. . . . . . . . . . . . . . . 117
5.9 Enveloping groupoid vs fundamental groupoid . . . . . . . . . . . . . 118

6.1 The neighborhoods of a vertex of degree 2 . . . . . . . . . . . . . . . 122
6.2 The loop graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.3 Classification of the linear graphs . . . . . . . . . . . . . . . . . . . 123
6.4 The infinite grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.5 The infinite comb . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.6 Vertices v with a single outgoing arrow and a single ingoing arrow . . 128
6.7 A fine connectology and its associated Boolean algebra . . . . . . . . 140
6.8 Infinite staircases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.9 Labyrinth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.10 A directed path and its discretization. . . . . . . . . . . . . . . . . . . 149

7.1 Discrete model vs continuous model . . . . . . . . . . . . . . . . . . 156
7.2 Comparing the discrete and the continuous approaches: an admissible

directed path that meets a forbidden point and a possible replacement
for it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.3 Binary synchronisation: producer vs consumer on a flat torus (the
opposite edges of the dotted frame are identified). . . . . . . . . . . . 157

7.4 The three dining philosophers and the Swiss Cross with their deadlock
attractors (in red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.5 The tetrahemihexacron a.k.a. 3D Swiss Cross, and the ‘floating’ cube. 158
7.6 The continuous model of the Lipski algorithm. . . . . . . . . . . . . 159
7.7 Timelines and sequences of multi-instructions interpreting weakly di-

homotopic directed paths. . . . . . . . . . . . . . . . . . . . . . . . 160

8.1 Potential weak isomorphism . . . . . . . . . . . . . . . . . . . . . . 167
8.2 An unwanted potential weak isomorphism . . . . . . . . . . . . . . . 168
8.3 Filling square property . . . . . . . . . . . . . . . . . . . . . . . . . 171
8.4 The categories of components of the square and the Swiss Cross . . . 173
8.5 The category of components of a square and a rectangle . . . . . . . . 174
8.6 Corresponding components. . . . . . . . . . . . . . . . . . . . . . . 175
8.7 Components of the tetrahemihexacron a.k.a. 3D Swiss Cross . . . . . 176
8.8 Structure of the Σ-components . . . . . . . . . . . . . . . . . . . . . 176
8.9 Illustrating the proof of Theorem 8.3.10 . . . . . . . . . . . . . . . . 177
8.10 Soundness of the equivalence of morphisms . . . . . . . . . . . . . . 177

249



LIST OF FIGURES LIST OF FIGURES

8.11 Equivalent morphisms . . . . . . . . . . . . . . . . . . . . . . . . . 178
8.12 Equivalence fits with composition . . . . . . . . . . . . . . . . . . . 178
8.13 Composition in the quotient category . . . . . . . . . . . . . . . . . . 178
8.14 Bringing extremities into line . . . . . . . . . . . . . . . . . . . . . . 180
8.15 Equivalent fractions and composition of fractions . . . . . . . . . . . 181
8.16 Characterizing the weak equivalences of Owh . . . . . . . . . . . . . 187
8.17 The dihomotopy classifiers of the complemented square . . . . . . . . 189
8.18 The dihomotopy classifiers of the complemented cube . . . . . . . . . 190

9.1 Two elements ofHf (A) with two non comparable minimal upper bounds200
9.2 Semilattices and friends . . . . . . . . . . . . . . . . . . . . . . . . . 211
9.3 Between Boolean algebras and semilattices . . . . . . . . . . . . . . 211
9.4 The Hasse diagram of {0 < 1} ⊗ {0 < 1} in SLat . . . . . . . . . . . 216
9.5 The Hasse diagram of {0 < 1} ⊗ {0 < 1} in DLat . . . . . . . . . . . 217

10.1 Directed Möbius strip as a precubical set . . . . . . . . . . . . . . . . 227

250


	Foreword
	      Introduction
	1    Static Analyzers and Compilers
	2    Control Flow Graphs
	3    Dynamics
	4    Concurrency
	5    Directed Topology
	6    Invariants of Directed Topology
	7    Practical Situation of Concurrency
	8    Organization and description of chapters

	The Parallel Automata Meta Language
	Syntax
	Middle-End Representation
	Interpreting Multi-Instructions
	Small Step Semantics
	Independence of Programs
	Abstract Machine

	Combinatorial Structures
	A Topology Reminder
	Realization and Nerve
	A Topological Digression
	Cubical Sets

	Precubical Semantics
	Exhaustive Models
	Control Flow Graphs
	Another Abstract Machine
	Discrete Models of Conservative Programs

	Models of Directed Topology
	Partially Ordered Spaces
	Framework for Directed Topology
	Locally Ordered Spaces
	Streams
	D-spaces
	Other Formalisms

	The Fundamental Category
	Homotopies of Paths and 2-Categories
	Generic Construction
	Comparison
	The Seifert - van Kampen Theorem
	Enveloping Groupoids vs Fundamental Groupoids
	Trace Spaces

	Isothetic Regions
	The Directed Geometric Realization of a Graph
	Block Coverings
	Product of Isothetic Regions
	Directed Topological Regions
	Metric Properties of Regions

	Continuous Semantics
	Switching to the continous framework
	Justifying the Topological Approach
	Independence of Conservative Programs

	Categories of Components
	Loop-Free Categories vs One-Way Categories
	Systems of Weak Isomorphisms
	Categories of Components
	Sections of the Quotient Functor
	Components of a Product
	A Homotopical Perspective
	Components of Regions

	Unique Decomposition Theorems
	Prime vs Irreducible
	Action of the Symmetric Groups
	Isothetic Regions
	Finite Connected Loop-Free Categories
	Boolean Algebras
	Metrics

	Perspectives
	Implementation
	Does Model Category Fit with Directed Topology ?
	About Homology of Directed Spaces ?
	A Glance at Directed Universal Coverings
	Finding Linear Representations of Fundamental Categories
	Locally Star-Shaped Pospaces


