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D-spaces
Directed Homotopy Theory I, Cah. Top. Géom. Diff. Cat., Marco Grandis (2003)

— A Hausdorff space X together with a collection dX of paths on it such that

- any constant path belongs to dX,
- the collection dX is stable under concatenation, and
- ify edX,domy =[0,r]and @ : [0, r'] — [0, r] is continuous and increasing, theny o 6 € dX

— The elements of dX are called the d-paths while the collection dX is called a direction on X. The
collection of all directions over X is a complete lattice.

— A d-map from (X, dX) to (Y, dY) is acontinuous mapf: X — Y s.t. fodX C dY
— The category of d-spaces is denoted by dTop

Ex
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D-spaces
Examples

— Any subspace of R” with increasing paths.
— The d-complex plane C (i.e. the d-paths are t — p(t)e’g(’) with o > 0 and 6, p nondecreasing)

— The d-Riemann sphere X (i.e. the d-paths are t — p(t)e’ga) with p € R, U {+o0} and 6, p
nondecreasing)

— The d-circle S' as a d-subspace of C (or ).
— The direction of a product of d-spaces is given by paths whose projections are d-paths.
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The fundamental category
of a d-space (X,dX)

A d-homotopy (resp. anti-d-homotopy) from a dipath y to a dipath 6 is a d-map h of some rectangle
[a, b] x [c, d] (resp. [a, b] X [c, d]°P) such that Uh is a homotopy from Uy to U§.

An elementary homotopy is a finite concatenation of d-homotopies and anti-d-homotopies.

Then y and 6 are d-homotopic when there exists an elementary homotopy between y o @ and 6 o 6’ for
some reparametrizations 6 : [a, b] — dom (y) and €’ : [a, b] — dom (5). We write y ~ &.

The relation ~ defines a congruence over PX, the path category of X, and the fundamental category of X,
denoted by 71X, is the quotient PX/ ~. This construction extends to a functor

71 : dTop — Cat

Ex
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Compactifications of d-spaces

Compactification

— A compactification of a topological space X is an embedding k : X < K such that K is Hausdorff
compact and k(X) is dense in K.

— Some examples:
- 10, 1["= [0, 1]" and ]0, 1["=> S™!
- The Stone-Cech compactification for Tychonoff spaces given by /3, the left adjoint to
N

CHaus < Top (e.g. SR has 22 ° elements).

- The Alexandroff compactification for locally compact Hausdorff spaces adds one point co and
its neighborhoods are the complement of the compact subspaces (e.g. R" U {co} = S™*1).

- The Freudenthal compactification for o--locally compact, locally connected, Hausdorff spaces
with finitely many connected components, which adds a new point for each end of the space
(e.g. RU {ends} = RU {—oco, +c0} = [0, 1] and R" U {ends} = S™").

Ex
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Compactifications of d-spaces

Compactifying d-spaces
A problem

Suppose X and K are d-spaces such that
— k : UX — UK is a compactification

— The direction dK of K is the least one that makes the preceding inclusion a d-map
(i.e. that contains k o dX)
Problem: No path starting or ending at a point of K \ X is a d-path (e.g. ]0, 1[= [0, 1]).
Consequence: 7T1)K = 7T1)X [} 7T1>(K \ X) the second one being discrete.
A solution: A d-space is said to be complete when
— foralld-maps 6 : R — X, if both following limits exist then & extends to a d-map
S : RU {00, +c0} — X.
. lim &(t) and . lim &(t)
——00 —+00

dTop, C dTop the full subcategory whose objects are complete.
A compactification of a complete d-space X is a d-space K s.t. UK is compactification of UX and dK is the

least complete direction on UK that contains dX.
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Compactifications of d-spaces

Examples
of d-compactifications

- (RxS") U {ends} = the d-Riemann sphere = C U {c0}
— (Rx S") U {oo} is the d-Riemann sphere with north and south poles identified ... make a picture !

Ex
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Directions from vector fields

Direction
from a single vector field

Given a vector field f over a manifold M and a point x € M, there is a unique maximal integral curve y that
goes through x at time O i.e.
d
¥(©) =x and ¥t € dom (). T (1) = f(y(1)

In particular the traces of the maximal integral curves form a partition of M.

Then consider the direction d M on M generated by the proper integral curves

{6 |6 = 7 l[a,5] for some maximal intergal curve y and some compact interval [a, b] € dom (7)}

Then 77 (M, d M) is isomorphic with a disjoint union of copies of {0}, (R, <) and 77S".

Ex
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Directions from vector fields

Direction

from several vector fields

Given an n-uple of vector fields fq, . . ., fx over a manifold M, consider for all points x € M, the set

k
Fy ::{Z/I,-~f,-(x)|/l,->0fori:1,...,k}
i=1

as the forward cone of M at x.

A curve v is said to be forward (with respect to fy, . . ., f) when its derivative at time ¢ belongs to £, () for
allt € domy:

o
%(0 €Fyo

The d-space generated by the vector fields fi, . . ., fx on the manifold M is the least direction on M that
contains all the forward curves, it is denoted by d M with f being understood as the set {fq, . . ., fi}.
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Directions from vector fields

Singular points are disconnected

Problem: If f{(x) = - - - = f(x) = 0 at some point x, then x is isolated in (M, aM).

Examples:

- the vector fields f(t) = 1 and g(t) = t induce the d-spaces dR; and dRy and 71 (dRy) = (R, <) and
T1(@Rg) = (R \ {0}, ) U {0} U (R.\ {0}, ©)

— if ¥ is equipped with the vector fields f{(z) = zand fo(z) = z - e% then

7C = (7?1’51 x (R, <)) L {0} U {oo)}

As before we consider the complete direction generated by the forward curves.
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Directions from vector fields

Direction from an n-uple of vector fields
vs n-join of the directions for each vector field

The collection of (complete) directions form a complete lattice and one easily sees that

de1 Vo Vden C dMs

problem: The example of R" with the constant vector fields fx(x) = (..., 0, 1,0, . . .) proves that the
converse inclusion does not hold.

One can fix it by considering the d-spaces X such that for all paths 7y,

if for all open subsets U, all [a, b] C ¥~ 1(U) there exists a d-path & from y(a) to y(b) such that img(&) C U,
then y is a d-path.

Such a d-space is said to be filled.

Conjecture: If d My is defined as the least complete filled d-space containing the forward curves, then

Ex
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Parallelizable manifolds

Pospace atlases
Fajstrup, Goubault, and Rauf3en (1998)

A pospace is a topological space X together with a closed parital order on it (Nachbin (1948)).
The underlying space UX of a pospace X is Hausdorff.

A pospace atlas on a Hausdorff space X is a family U of pospace such that:
— the collection {UW | W € U} is an open covering of UX, and
— forall Wy, Wy € YU and all x € Wy N Wy, there exists Wo € U such that x € Wo € Wy N W, and

Ewp |uw2 = Ew, = Ew |UW2

The pospace atlases U and U’ are equivalent when their union is still a pospace atlas.

A local pospace is an equivalence class of pospace atlases.

Ex
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Parallelizable manifolds

Local pospaces
Fajstrup, Goubault, and Rauf3en (1998)

Every equivalence class has a greatest element (namely the greatest pospace atlas).

A pospace atlas morphism from U to U’ is a mapping f s.t. for all x and all W’ € U’ containing f(x) there
exists W € U containing x s.t. f(W) € W'.

If Uy ~ Uy and ’116 ~ U] and f is a pospace atlas morphism from U to 'L{é, then it is also a pospace
atlas morphism from U to Uj.

The category of local pospaces is denoted by LpoTop.

There is an inclusion LpoTop < dTop in the category of complete filled d-spaces.

Ex
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Parallelizable manifolds

Fundamental category of local pospaces

Let X be a local pospace

— Alocal pospace has no vortex (i.e. each point has a neighborhood without d-loop)
— Given ad-loop « at x, « is d-homotopic with the constant path x iff « is the constant path x.
— Conjecture: Given a nonconstant d-loop @ € 7T1>X(x, x),one has {a" | n € N} = (N, +, 0)
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Parallelizable manifolds

A parallelization of a manifold M of dimension n is an n-uple of vector fields (fy, . . ., fy) s.t. forall x € M,
(f1(x), . . ., fr(x)) is a vector basis of the tangent space of M at x namely Ty M.

Conjecture: There exits an open covering U of M such that

— forall W € U, the relation x Cyy y defined by the existence of a forward curve § from x to y with
img(6) < W defines a pospace on W

— These pospaces induce a local pospace
This local pospace induces d M.

A manifold M is said to be parallelizable when it admits a parallelization.

E. Haucourt (Ecole Polytechnique) Compactifications of d-spaces and vector fields 15/16



Parallelizable manifolds

All the linear groups of the tangent spaces Ty M, for x € M, are gathered in a single manifold called the
frame manifold GL M.

Then GL M "transitively acts" on the parallelizations of M in the following sense: if g is a section of GLM
then g - (fy, . . ., fp) is another parallelization of M and all of them can be obtained that way.

Conjecture: Up to isomorphism, the local pospace structure induced by a parallelization of a manifold M
(and therefore 77 M), does not depend on the specific parallelization.

In that case we can define "the" fundamental category of a parallelizable manifold.

Example: Every Lie group is parallelizable.

Ex
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