
A Framework for Component Categories

Emmanuel Haucourt 1,2

PPS/LSL
Paris 7/CEA Saclay

Paris, France

Abstract

This paper provides further developments in the study of the component categories which have been in-
troduced in [7]. In particular, the component category functor is seen as a left adjoint hence preserves the
pushouts. This property is applied to prove a Van Kampen like theorem for component categories. This
last point is very important to make effective calculations. The original purpose of component categories
is to suitably reduce the size of the fundamental categories which are the directed counterpart of classical
fundamental groupoids (see [15]). In concrete examples, the fundamental category is as “big” as R while
the component category is “finitely generated”. We take advantage of this fact to define the cohomology
of a directed geometrical shape as the cohomology of its component category. The cohomology of small
categories is defined in [2] and [1]. Still, in the recent paper [18], the homology of small categories is defined
in a very similar way and applied to the study of asynchronous transition systems.

Keywords: algebraic topology, directed algebraic topology, partially ordered spaces, pospaces, local
pospaces, Yoneda inversible morphisms, inessential morphisms, weak equivalence subcategory, loop-free
category, fundamental category, component category, Van Kampen theorem, fundamental monoid,
directed (co)homology

1 Introduction

Given a small category C and a subcategory Σ of C, we define the quotient cat-
egory C/Σ applying the results developed in [3]. Indeed, the size of −→π1(

−→
X )/Σ

decreases as the one of Σ increases. As one can expect, if Σ = −→π1(
−→
X ) then −→π1(

−→
X )/Σ

is {∗}. Then the component category of a pospace −→
X is defined as −→π1(

−→
X )/Σ

where Σ is the greatest weak-equivalences subcategory of C and −→π1(
−→
X ) the

fundamental category of −→X . We have in mind that Σ is made of the dipaths 4 of −→X 5

along which “no choice is made” so we do not lose information removing them 6 .

1 Thanks to everyone who should be thanked
2 Email: haucourt@cea.fr
3 Email: couserid@codept.coinst.coedu
4 or execution traces from a computer scientist point of view.
5 seen as the space of states of a computer on which a program runs.
6 precisely, they are not removed but turned into identities.
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The previous construction can be done in a category whose objects are taken in the
class of pairs (C, Σ), such a pair is called a system over C, where C is an object of a
subcategory of CAT and Σ ⊆ C. The idea is to equip the objects C of a sub-category
of CAT with a sub-poset of the poset of all subcategories of C. Then we define
the quotient functor sending (C,Σ) on C/Σ. The component category is obtained
when Σ is optimal i.e. when the size of C/Σ is minimal without loss of relevant
information. Several examples are given, involving different subcategories of CAT,
and we define component categories of pospaces, local pospaces and d-spaces.
Some proofs of technical points are skipped and the paper is organized in the fol-
lowing way:

(i) Pospaces, local pospaces and d-spaces are defined. Concrete but informal ex-
amples are given to make the reader understand what component categories
should be.

(ii) Generalized congruences and some related tools are described.

(iii) A general theorem describes a framework in which the component category
functor can be defined. As we shall see, this theorem makes the component
category functor a left adjoint.

(iv) The previous theorem is applied to define the component category of pospaces,
local pospaces and d-spaces. We check that we have obtained what was ex-
pected.

(v) Preservation of colimits by component category functor is applied to prove
Van Kampen like theorems for component category (instead of fundamental
category). Examples are given.

(vi) A form of directed cohomology is defined as the cohomology of the component
category.

2 Geometrical intuition of component categories
through examples

Component categories first appear in [7] in order to reduce the size of the funda-
mental category. Pospaces are certainly the simplest model of directed topology
one may find.

Definition 2.1 [Pospaces] A pospace is a triple (X, τX ,≤X) where (X, τX) is a
topological space, (X,≤X) is a poset and ≤X is a closed subset of (X, τX)×(X, τX).
A dimap from a pospace (X, τX ,≤X) to a pospace (Y, τY ,≤Y ) is a set-theoretic
function f from X to Y inducing a continuous map from (X, τX) to (Y, τY ) and an
increasing map from (X,≤X) to (Y,≤Y ). The collection of po-spaces together with
dimaps between them form a category denoted POSPC. Isomorphisms of POSPC
are called dihomeomorphisms and are bijective (one-to-one, onto) dimaps whose
inverse is also a dimap. Monomorphisms are one-to-one dimaps.

Note that the caracterization of epimorphisms is much more complicated. The
unit segment

−−→
[0, 1] with classical topology and order is a pospace as well as all its
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Fig. 1. Square with centered hole and Swiss flag

products with product topology and order.
−−→
[0, 1] is in fact the “standard” example

in the sense that it is the cogenerator 7 of the category of compact pospaces 8 . The
examples of figure 1 are built up from the unit square with classical topology and
order in which “holes” have been dug. In each case the underlying space is divided
into “components” which give the set of objects of the component category, their
borders are drawn with the dashed lines. Two components sharing a frontier are
“neighbours” and we put a unique “prime arrow” between neighbour components,
the source component being the left most bottom most one. The morphisms of the
component category are “generated” by those “prime arrows”. In the first example,
the component category is free, in the “swiss flag” example (figure 1) it is not the
case any more because we have BD �� ◦ AB �� = CD �� ◦ AC �� .

The two examples of figure 2 are not dihomeomorphic since their component
categories are clearly not isomorphic, it suffices to compare how many morphisms
go from the left most bottom most object to the right most upper most one.

Before going further in the study of examples, let me emphasize the fact that
we “read” the dipaths of the pospace in its component category. In mathematical
terms, we have a lifting property which says that any morphism of the funda-
mental category is represented by a unique morphism of the component category,
conversely, any morphism of the component category represents a morphism of the
fundamental one. This property can be found in [7], it is also given for free provided
we define the component category by means of generalized congruences, see [3] and
the description of the component category given in the rest of the paper. Next
examples are 3−dimensional, the unit cube (with classical topology and order) with
a centered hole is shown on the left side of figure 3. The right side picture depicts
its components, whose border are represented by “walls”:

In figure 5, the blue parallelepipeds are holes and the red cube is a deadlock

7 see [4] for the definition.
8 i.e. the underlying topological space is compact.
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Fig. 2. Two possible configurations of two holes in a square

Fig. 3. The cube with a centered hole

E. Haucourt / Electronic Notes in Theoretical Computer Science 230 (2009) 39–6942



The point at the center
of the left side figure
is represented by a
3−morphism (the grey
filling on the right side
figure) in a suitable
3−category built up
from the component
category.

.
Fig. 4. Dimensional duality

area, i.e. any dipath entering in it will not go beyond the deep right upper corner of
the red cube. On the right side, the corresponding component category is depicted,
but the conventions of representation are different, vertices are components, edges
are elementary arrows and faces represent relations between morphisms. By the
way, this convention of representation induces a “dimensional duality”, components
are 3−dimensional subpospaces of the cube and they are represented by points,
which are 0−dimensional. Faces of the components are 2−dimensional subpospaces
and they are represented by “elementary arrows” (hence 1 − dimensional) from
component to the neighbour it shares the face with. A segment shared by four faces

is a 1− dimensional subpospace and is represented by a relation

β

������������ ⇔
δ

������������

γ

������������
α

������������

between the four “elementary arrows” representing the four faces. This relation can
be seen as a 2− dimensional arrow provided we turn the component category into
a 2−category adding a trivial groupoid between β ◦ α and δ ◦ γ. One can even go
further with a point of the pospace shared by six segments all of them being shared
by four faces, which makes us reach 3−categories, see figure 4.
This “duality” property has been practically applied by Eric Goubault to write a
program which provides a 3-dimensional “view” of the component category of the
3-dimensional pospaces. A detailed description of the method is available in [11].
The right side picture of figure 5 has been produced by this program.

3 Generalized congruences

This section is devoted to generalized congruences which have been formalized in
[3].
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Fig. 5. Three philosophers diner

Definition 3.1 [Generalized Congruences [3]] A generalized congruence on a small
category C, is an equivalence relation ∼o on Ob(C) and a partial equivalence rela-
tion ∼m on Mo(C)+ (the set of all non-empty finite sequences of morphisms of C)
satisfying the following conditions (· is the usual concatenation, the α’s, β’s and γ’s
range over Mo(C)):

• (βn, ..., β0) · (αp, ..., α0) ∼m (γq, ..., γ0) ⇒ tgt(αp) ∼o src(β0)
• (βn, ..., β0) ∼m (αp, ..., α0) ⇒ tgt(βn) ∼o tgt(αp) and src(β0) ∼o src(α0)
• x ∼o y ⇒ idx ∼m idy

• (βn, ..., β0) ∼m (αp, ..., α0) and (δq, ..., δ0) ∼m (γr, ..., γ0) and tgt(βn) ∼o

src(δ0) ⇒
(δq, ..., δ0) · (βn, ..., β0) ∼m (γr, ..., γ0) · (αp, ..., α0)

• src(β) = tgt(α) ⇒ (β ◦ α) ∼m (β, α)

Given a functor f ∈ CAT[C1, C2], in other words a morphism of CAT from C1 to
C2, the generalized congruence ∼f := (∼o,∼m) is defined by x ∼o y iff f(x) = f(y)
and given ∼o-composable sequences (βm, ..., β0) and (αn, ..., α0), (βm, ..., β0) ∼m

(αn, ..., α0) iff f(βm)◦ ...◦f(β0) = f(αn)◦ ...◦f(α0). For any generalized congruence
∼, (αn, ..., α0) is a ∼o-composable sequence iff ∀k ∈ {0, ..., n − 1}, src(αk+1) ∼o

tgt(αk).

Theorem 3.2 (Quotient Category [3]) Given (∼o,∼m) a generalized congru-
ence on a small category C, we define the quotient category C/∼ by
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• Ob(C/∼) := {[x]∼o/x ∈ Ob(C)}
• src([(γn, ..., γ0)]∼m) = [src(γ0)]∼o and tgt([(γn, ..., γ0)]∼m) = [tgt(γn)]∼o

• [(βn, ..., β0)]∼m ◦ [(αp, ..., α0)]∼m = [(βn, ..., β0) · (αp, ..., α0)]∼m

Moreover, there is a quotient functor Q∼ : C → C∼, defined by Q∼(x) = [x]∼o

and Q∼(γ) = [γ]∼m. Q∼ enjoys the following universal property, for any functor
f : C → C2, if ∼⊆∼f then ∃!g : C/∼ → C2 making the following diagram commutes

C/∼
g

���
�

�
�

C

Q∼
����������

f
��

=

C2

Still, we have the following facts :

• g is a monomorphism iff ∼f=∼
• ∼Q∼=∼
• Q∼ is an extremal epimorphism

Lemma 3.3 ([3]) Generalized congruences on a given small category, ordered by
componentwise inclusion form a complete lattice whose meets are componentwise
intersections. The total relation which identifies all objects and all non-empty finite
sequences of morphisms is a generalized congruence, precisely 
 of the lattice, while
(=Ob(C), =Mo(C)+�

) is ⊥. Mo(C)+� is the set of non empty ∼o-composable sequences.

Thus, for an arbitrary pair of relations Ro on Ob(C) and Rm on Mo(C)+, there is
a least generalized congruence containing (Ro, Rm).

4 The Component Category functor

4.1 Loop Free, One Way and Directed categories

Pureness first appears in [7] and is an unavoidable technical tool to study component
categories, indeed, good properties of C/Σ directly depend on pureness of Σ. In
ideas, if Σ consists of execution paths 9 along which nothing happens then if β◦α ∈ Σ
it is expectable that β, α ∈ Σ too. It is also a convenient way to define loop free,
one way and directed categories.

Definition 4.1 A sub-category B of C is pure in C iff ∀f, g morphisms of C with
src(g) = tgt(f), g ◦ f ∈ B ⇒ f, g ∈ B.

Pureness is a kind of generalization of convexity in poset framework, indeed, a
subposet (A,≤A) of a poset (X,≤X) is convex iff A′ is a pure subcategory of X ′,
where A′ and X ′ are the small categories coresponding to A and X.

9 it is a computer science point of view.
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Definition 4.2 A loop free category is a category whose subcategory of endo-
morphisms is pure and discrete 10 .
A one way category is a category whose subcategory of isomorphisms is pure
and discrete. 11

A directed category or d-category is a category whose subcategory of isomor-
phisms is pure. Loop free, one way and directed small categories respectively form
epi-reflective subcategories of CAT respectively denoted LFCAT, OWCAT, dCAT, see
proposition 4.3.

The fundamental category of a pospace is obviously loop free, the one of a local
pospace is one way, but it is much harder to prove, and I conjecture that the one of
a d-space is directed, it is in fact the reason why I called them “directed”, roughly
speaking, it comes from the fact that dX is stable under direparametrization (see
definition 7.2).

We say that A is a reflective subcategory of B when

• A is a full subcategory of B
• for all A ∈ Ob(A) and B ∈ Ob(B), if A and B are isomorphic in A then A ∈ Ob(B).
• the inclusion functor A� � ��B has a left adjoint.

When the two first points are satisfied, we say that A is a replete subcategory of B.
The left adjoint is called the reflection. Moreover, if all the elements of the counit
of the adjunction are epimorphisms, we say that A is an epireflective subcategory
of B.

Proposition 4.3
We have the inclusion functors

LFCAT
� � ��OWCAT

� � �� dCAT
� � ��CAT

and the domain of each inclusion depicted on the previous diagram is an epireflective
subcategory of its source.

For further details about reflective subcategories, see [4].

Conjecture 4.4 We have the following commutative diagram

POSPC
� � ��

π1

��

LPOSPC
� � ��

π1

��

dSPC

π1

��
LFCAT

� � ��OWCAT
� � �� dCAT

10 i.e. for all diagram

α

��

β

		 in C, α and β are identities. Hence C has no “loops”, whence the name.

11A one way category might have loops, but each loop is either clockwise or anticlockwise never both at
the time.
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4.2 Weak Equivalences Subcategory

Next materials are directly related to the choice of a Σ such that C/Σ is the
component category of C. As we shall see, all the rest of the subsection, in
particular the existence of a non empty weak equivalences subcategory, holds
for any directed category C. Then the component category of a pospace/local
pospace/directed space, is defined as the component category of its fundamental
category.

4.2.1 Yoneda inversible morphisms, Left/Right extension properties and Weak
Equivalences Subcategories

Definition 4.5 [[7]] Let C be a category. A morphism σ of C is said to be Yoneda
revertible iff ∀x ∈ Ob(C), (C[x, src(σ)] �= ∅ ⇒ γ ∈ C[x, src(σ)] �→ σ ◦ γ ∈
C[x, tgt(σ)]) is bijective and ∀y ∈ Ob(C), (C[tgt(σ), y] �= ∅ ⇒ γ ∈ C[tgt(σ), y] �→
γ ◦ σ ∈ C[src(σ), y]) is bijective.

Definition 4.5 is closely related to representable functors of C and Yoneda’s
lemma (see [4]), however, the restriction ∀x ∈ Ob(C), (C[x, src(σ)] �= ∅... and
∀y ∈ Ob(C), (C[tgt(σ), y] �= ∅... cannot be removed, otherwise, a Yoneda inversible
morphism would necessarily be an isomorphism which is silly for loop free and one
way categories whose only isomorphisms are identities. From a computer science
point of view, the subtle difference between Yoneda inversible morphisms and
isomorphisms give a theoretical method for deadlock detection, but we will not
develop this remark here. In all examples given in section 2, any dipath joining
two points of the same component gives rise to a Yoneda inversible morphism of
the fundamental category.

Lemma 4.6 Let C be any (small) category, x, y objects of C and σ1, σ2 ∈ C[x, y]
Yoneda inversible, ∃!f1, f2 ∈ Iso(C)[y, y], σ2 = f1 ◦ σ1, σ1 = f2 ◦ σ2 and ∃!g1, g2 ∈
Iso(C)[x, x], σ2 = σ1 ◦ g1, σ1 = σ2 ◦ g2.

Proof. C[y, y] �= ∅ hence by definition of Yoneda inversible applied to σ1, ∃!f1 ∈
C[y, y] such that σ2 = f1 ◦ σ1. Exchanging σ1 and σ2, ∃!f2 ∈ C[y, y] such that
σ1 = f2 ◦σ2. In particular, σ2 = f1 ◦(f2 ◦σ2) = (f1 ◦f2)◦σ2 and σ1 = f2 ◦(f1 ◦σ1) =
(f2 ◦ f1) ◦ σ1, but, by definition of Yoneda inversible, idy is the only morphism of
h ∈ C[y, y] such that σ2 = h ◦ σ2. It is also only morphism of h ∈ C[y, y] such that
σ1 = h ◦σ1. It follows that f1 ◦ f2 = f2 ◦ f1 = idy i.e. f1, f2 ∈ Iso(Mo(C)). It works
the same way for the g’s. �

Corollary 4.7 Let C be a (small) category such that Iso(C) is dicrete, then given
x, y objects of C, C[x, y] ∩ {Y oneda inversibles} is either ∅ or a singleton.

Remark 4.8 Any isomorphism is Yoneda inversible morphism, and a composition
of Yoneda inversible morphisms is a Yoneda inversible morphism. Moreover, if L is
loop-free and σ is a Yoneda inversible morphism of L then L[src(σ), tgt(σ)] = {σ}.
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To prove the last point, note that γ ∈ L[src(σ), src(σ)] �−→ σ ◦ γ ∈
L[src(σ), tgt(σ)] is a bijection. Up to now, this definition has only proved its rel-
evance in loop-free cases. First, we recall from [7] that the Σ-zigzag connected
component of x in L denoted Cx is the subcategory of L whose objects are those
connected to x by a zigzag of morphisms of Σ and satisfying for all objects y, z of
Cx, Cx[y, z] = L[y, z] ∩ Σ.

Definition 4.9 Right Extension Property
Σ has the right extension property with respect to C iff ∀γ : y′ −→ x′, ∀σ : x −→

x′ ∈ Σ, ∃σ′ : y −→ y′ ∈ Σ, ∃γ′ : y −→ x such that σ ◦ γ′ = γ ◦ σ′, i.e. the following
diagram is commutative:

y

∃σ′∈Σ



�
�
�
� ∃γ′

���
�

�
�

y′

∀γ ���
��

��
��

x

∀σ∈Σ����
��
��
��

x′

Left Extension Property is obtained “dualizing” definition 4.9

Definition 4.10 [Eric Goubault] 12 Let C be a small category, Σ ⊆ Mo(C) is a
WE-subcategory iff (by definition) Σ is stable under composition (of C) and
satisfies

1 Iso(C) ⊆ Σ ⊆ Y oneda(C) 13

2 Σ is stable under pushouts and pullbacks (with any morphism in C). It means
that Σ has both REP and LEP with respect to C and further the commutative
squares provided by REP and LEP can be chosen in order to be respectively
pullback and pushout squares in C.

Eric Goubault, in [12], has changed the definition of Weak Equivalences sub-
category of [7] 14 replacing left and right extension axiom by pushout/pull back
stability axiom, providing an extremely handy tool. Indeed, any WE-subcategory
of any small category C is pure (it will be proved later) and has left and right exten-
sion properties (it is obvious). Moreover, if Iso(C) is pure in C (i.e. C is directed)
then C has a ⊆-biggest WE-subcategory.

4.2.2 Locale of the Weak Equivalences of a small category
We give several results which will be combined to prove that the collection of WE-
subcategories of a small category C such that Iso(C) is pure in C forms a locale. We
recall that a locale is a poset (L,≤L) such that ∀U ⊆ L, U has a least upper bound
and a greatest lower bound (it is a complete lattice) and ∀(bj)j∈J ∈ LJ ∀a ∈ L, a∧

12 in directed categories framework, this definition is equivalent to Eric Goubault’s one.
13 Iso(C) and Y oneda(C) are subcategories of C respectively generated by isomorphisms and Yoneda in-
versible morphisms of C.
14definition of [7] was itself inspired by the notion of calculus of fractions, see [8] and [4].
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(∨
j∈J bj

)
=

∨
j∈J(a ∧ bj) (see [5], [19], [9] or [10]). Lemma 4.11 is due to Eric

Goubault, it is the reason for definition 12. Indeed, in [7], we had to enforce the
pureness of Σ by an axiom, unfortunately, the resulting definition was not “stable”
in the sense that the subcategory generated by two pure subcategory is not, in
general, pure.

Lemma 4.11 Let C be a small category such that Iso(C) is pure in C. Then any
WE-subcategory of C is pure in C.

Proof. Take σ ∈ Σ and f1, f2 ∈ Mo(C) such that σ = f2 ◦ f1. By 2nd point of
definition 12, we have a σ′ ∈ Σ and f ′

1 which form a pushout square and a unique

g ∈ Mo(C) making the push-out diagram

g





f ′
1

���
�

�
�

id

��

σ′
��	
	
	
	

f2

��

σ

��							 f1

���������

pushout

commutative. By pureness

of Iso(C) in C, f ′
1 and g are isomorphisms, hence by 1st point of definition 12, belongs

to Σ. So, by stability under composition of Σ (definition 12), f2 = g ◦ σ′ ∈ Σ. The
same way, using the pull-back (instead of push-out) extension property, one proves
that f1 ∈ Σ. Thus Σ is pure in C. �

Lemma 4.12 Let C be a small category. If Iso(C) is pure in C then Iso(C) is a
WE-subcategory of C.

Proof. Stability under composition and 1st point of definition 12 are obviously
satisfied since, any isomorphism is Yoneda inversible (remark 4.8) and isomorphisms

compose. Let σ ∈ Iso(C) and f ∈ Mo(C) be, then we have

f◦σ−1
���

�
�

�

id

��	
	
	
	

σ

��							 f

���������

pushout and

σ

���������

f
��							

σ−1◦f

��	
	
	
	 id

���
�

�
�

pullback so the 2nd point is also satisfied. �

Lemma 4.13 If (Σj)j∈J is a non empty family of WE subcategories of a small
category C then

⋂
j∈J Σj is a WE-subcategory of C.

Proof.
⋂

j∈J Σj obviously enjoys stability under compose and the 1st point of def-
inition 12. Suppose σ ∈ ⋂

j∈J Σj and f ∈ Mo(C) with src(f) = src(σ). Take
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j1, j2 ∈ J , since σ ∈ Σj1 we have a push out square

x1
f ′
1

��









σ′
1∈Σj1

���
�
�
�

σ

���������� f

��









pushout and also

x2
f ′
2

��









σ′
2∈Σj2

���
�
�
�

σ

���������� f

��









pushout

because σ ∈ Σj2 . By uniqueness (up to isomorphism) of the pushout, we have an
isomorphism τ from x2 to x1 such that σ′

1 = τ ◦ σ′
2. By 1st point of definition 12

and for τ is an isomorphism, τ ∈ Σj2 which is stable under composition (1st point),
thus σ′

1 = τ ◦ σ′
2 ∈ Σj2 . By the same argument, ∀j ∈ J, σ′

1 ∈ Σj i.e. σ′
1 ∈ ⋂

j∈J Σj

and we have

f ′
1

���
�

�
�

σ′
1∈

T

j∈J Σj

��	
	
	
	

σ∈T

j∈J Σj

��							 f

���������

pushout . The same proof holds for pull-backs. �

Lemma 4.14 If (Σj)j∈J is a non empty family of WE subcategories of a small
category C then

⊎
j∈J Σj is a WE-subcategory of C. Where

⊎
j∈J Σj is the least

sub-category of C including all the Σj’s.

Proof. By definition,
⊎

j∈J Σj = {σn ◦ ... ◦ σ1/for n ∈ N
∗ {j1, ..., jn} ⊆

J and ∀k ∈ {1, ..., n}σk ∈ Σjk
}, stable under composition and 1st point of definition

12 immediately follows since a composition of Yoneda inversible morphisms (re-
spectively isomorphism) is Yoneda inversible (respectively isomorphism) (see remark
4.8). Take σn◦...◦σ1 ∈ ⊎

j∈J Σj with n ∈ N
∗, {j1, ..., jn} ⊆ J , ∀k ∈ {1, ..., n}σk ∈ Σjk

and f ∈ Mo(C) with src(σ1) = src(f). We have f





σ1∈Σj1

��
σn∈Σjn

��
. With a finite

induction (apply consecutively the 2nd point of definition 12 for Σj1 , ...,Σjn), we

have

σ′
1∈Σj1����� σ′

n∈Σjn�����

f





σ1∈Σj1

��
pushoutf1



�
�
�

σn∈Σjn

��
fn−1



�
�
�pushoutfn



�
�
� . Now, it is a general fact that a “composition” of

push-out squares is a push-out square (see [4]) hence

σ′
n◦...◦σ′

1∈
U

j∈J Σj �������������

f





σn◦...◦σ1∈
U

j∈J Σj

��
pushout fn



�
�
� .

It works analoguously for pull-backs, thus the 2rd point of definition 12 is satisfied.�

Lemma 4.15 Let C be a (small) category. If A is a pure subcategory of C then for

all families (Cj)j∈J of subcategories of C, A ∩
(⊎

j∈J Cj

)
=

⊎
j∈J(A ∩ Cj)

Proof. The inclusion A ∩
(⊎

j∈J Cj

)
⊇ ⊎

j∈J(A ∩ Cj) is always satisfied. Indeed,
if f is an element of the right member, then one has n ∈ N

∗, {j1, ..., jn} ⊆ J ,
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∀k ∈ {1, ..., n}σk ∈ A ∩ Σjk
and f = σn ◦ ... ◦ σ1. Now A is a subcategory of C and

in particular ∀k ∈ {1, ..., n}σk ∈ A, hence f ∈ Mo(A). Conversely, suppose that we
have n ∈ N

∗, {j1, ..., jn} ⊆ J , ∀k ∈ {1, ..., n}σk ∈ Σjk
and f = σn ◦ ... ◦σ1 ∈ Mo(A),

by pureness of A, σn, ..., σ1 ∈ Mo(A). Then ∀k ∈ {1, ..., n}σk ∈ A∩Σjk
and f is an

element of the left member. �

Remark 4.16 If C satisfies the following property: ∀γ1, γ2 ∈ Mo(C), γ2◦γ1 = γ2 ⇒
γ1 = id and γ2 ◦ γ1 = γ1 ⇒ γ2 = id, then the converse of lemma 4.15 is true.

Proof. Take γ2 ◦ γ1 ∈ Mo(A) where γ2, γ1 ∈ Mo(C). Set C1 := {γ1}, C2 := {γ2} 15

and apply the distributivity for the family {C1, C2}. If γ1 �∈ Mo(A) and γ2 �∈ Mo(A)
then (A ∩ C1) � (A ∩ C2) = ∅ while A ∩ (C1 � C2) = {γ2 ◦ γ1}. If γ1 �∈ Mo(A) and
γ2 ∈ Mo(A) then (A∩C1)� (A∩C2) = {γ2} while A∩ (C1 �C2) = {γ2, γ2 ◦ γ1} and
γ2 �= γ2 ◦ γ1 by the property of C, precisely, if we had γ2 = γ2 ◦ γ1, we would have
γ1 = idsrc(γ1) hence idsrc(γ1) ∈ Mo(A) because A is a subcategory of C.
�

The required property is true if C is a groupoid or a loop-free category. In
fact, having A ∩

(⊎
j∈J Cj

)
=

⊎
j∈J(A ∩ Cj) is equivalent to the existence of the

right adjoint of the functor A∩ : ({subcategories of C},⊆) −→ ({subcategories of
C},⊆), where the continuous lattice ({subcategories of C},⊆) is seen as a complete
and co-complete small category. The equivalence directly comes from the special
adjoint functor theorem . This equivalence is related to the link between locales
and complete Heyting algebras, see [5] for further details.

Corollary 4.17 Let (Σj)j∈J be a family of WE-subcategories of a (small) cat-
egory C such that Iso(C) is pure in C and Σ a WE-subcategory of C. Then
Σ ∩

(⊎
j∈J Σj

)
=

⊎
j∈J(Σ ∩ Σj).

Proof. By lemma 4.11, Σ is pure in C, the result follows by lemma 4.15. Note that
the hypothesis that all the Σj ’s are WE-subcategories is not used in the proof. �

Remark 4.18
⋂

and
⊎

are associative over the family of subcategories of a small
category C.

Theorem 4.19 Let C be a small category such that Iso(C) is pure in C (i.e. C is
directed). Then, the family of WE-subcategories of C is not empty and, together with
⊆ it forms a locale whose l.u.b. operator is

⊎
and g.l.b operator is

⋂
. Moreover,

the least element of this locale (“bottom”) is Iso(C).

Proof. Axioms of a locale are given by lemmas 4.13, 4.14 and corollary 4.17.
�

As it is explained in [5] and [19], the notion of locale generalizes the notion of
family of open subsets of a topological space, thus, theorem 4.19 gives us a kind
of topology over C as soon as Iso(C) is pure in C. This pureness hypothesis is

15an abuse of notation to say that C1 and C1 are subcategories of C respectively generated by γ1 and γ2
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actually very “natural”. Ideologically, if we want to consider an isomorphism of
C as a path that can be run forward, which is the case when C is a fundamental
category, it geometrically makes sense to expect that all its subpaths can also be
run forward i.e. are isomorphisms. When this “geometrical” assumption is fulfilled
by a small category C, roughly speaking, C describes the arc-wise connectedness of
a “geometrical shape”.

4.3 Quotient of a small category by one of its subcategory : C/Σ

Given Σ a subcategory of a small category C, we can define C/Σ := C/∼ where ∼ is
the least generalized congruence on C containing

(∅, {(idtgt(σ), σ), (σ, srcsrc(σ))/σ ∈ Mo(Σ)})

This definition holds by lemma 3.3.

Theorem 4.20 (Description and universal property of C/Σ)
Given a small category C and Σ ⊆ Mo(C), closed under composition (in fact,
take Σ a subcategory of C). Let (∼o,Σ,∼m,Σ) be the least generalized congruence
containing (∅, {(idtgt(σ), σ), (σ, idsrc(σ))/σ ∈ Σ}). Then ∀x, y ∈ Ob(C), x ∼o,Σ iff
there is a Σ-zig-zag between x and y. ∀(βn, ..., β0), (αm, ..., α0) ∼o,Σ-composable
sequences (i.e. src(αi+1) ∼o,Σ tgt(αi) and src(βi+1) ∼o,Σ tgt(βi)), we have
(βn, ..., β0) ∼m,Σ (αm, ..., α0) iff there is a finite sequence of “elementary trans-
formation” from (αm, ..., α0) to (βn, ..., β0), where an “elementary transformation”
is either

• (αn, ..., αi+1, σ, αi−1, ..., α0) ∼1
m,Σ (αn, ..., αi+1, idsrc(σ) or idtgt(σ), αi−1, ..., α0) if

σ ∈ Σ

or
• (αn, ..., αi+2, αi+1, αi, αi−1, ..., α0) ∼1

m,Σ (αn, ..., αi+2, αi+1 ◦ αi, αi−1, ..., α0) if
src(αi+1) = tgt(αi).

C/Σ is caracterized by the following universal property, ∀f ∈CAT[C, C′], if
∀σ ∈ Σ, f(σ) = id then ∃!g ∈CAT[C, C/Σ] such that

C/Σ
g

���
��

��
��

�

C f
��

QΣ

����������
commutes

C′

Moreover, if C1
f �� C2 satisfies f(Σ1) ⊆ Σ2 then ∃! C1/Σ1

h �� C2/Σ2 making the
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following diagram commutes

C1
f ��

QΣ1

��

C2

QΣ2

��

=

C1/Σ1 h
�� C2/Σ2

Where QΣ is the quotient functor (refer to theorem 3.2) associated to the generalized
congruence induced by Σ. g is also denoted f/Σ, and in the same stream of notation
h is denoted f/Σ1,Σ2

.

Definition 4.21 (Definition of the Component Category) The
component category of a directed category C is defined as C/
WE(C)

where

WE(C) is the biggest weak equivalence subcategory of C.Given a pospace/local
pospace/directed space X, the component category of X is defined as the
component category of π1(X), the fundamental category of X.

It makes sense by theorem 4.19 and 4.3. Remark we have not the functoriality
yet. Next theorem establishes a relation between connectedness 16 and component
category of the fundamental groupoid of a topological space.

Theorem 4.22 Let G be a groupoid, then Mo(G) is the ⊆-biggest WE-subcategory
of G. Moreover G/Mo(G) is (isomorphic to) the set (prcisely a discrete category
seen as its set of objects) of zigzag connected components of G. If G := Γ1(X, τX)
the fundamental groupoid of topological space (X, τX), then G/Mo(G) is the set of
arc-wise connected components of (X, τX).

Proof. Any morphism of Mo(G) is an isomorphism of Mo(G), thus, by 1st point of
definition 12, if G has a WE-subcategory, it is necessarily Mo(G) which is stable un-
der composition. By remark 4.8, each morphism of a groupoid is Yoneda inversible
hence 1st point of definition 12 is satisfied. Finally, it is a general fact that if σ is an
isomorphism, then any morphism f such that src(f) = src(σ) has a push-out along
σ and any morphism g such that tgt(g) = tgt(σ) has a pull-back along σ, thus we
have the 2nd point of definition 12.

Then each morphism of G is identified with the identity of its source and target.
Two objects x, y of G are identified iff there is a zigzag between them (note that,
since G is a groupoid, it is equivalent to G[x, y] �= ∅). �

Remark 4.23 Any free category is obviously a one-way category, so we can always
define the component category of a free category. For example, the component
category of the monoid (N, +) seen as a small category is (N, +). However, (N, +) is
not the component category of the free categories generated by the following graphs

16 in the classical algebraic topology sense.
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���� ,
��	

		
		

		�����������
,

��

��





��
... indeed, there are there own component category.

This is a rather severe drawback for the study of directed shapes with loops since,
ideologically, we expected that they admit (N, +) as component category. The last
section of the paper is devoted to some ways of fixing this up. Also note that

−→
S1

can be seen as a continuous generalization of the previous examples. 17 .

Theorem 4.24 Let C be a small category and Σ a wide subcategory of C. If C is
loop-free and Σ is a pure subcategory of Yoneda inversible morphisms admitting left
and right extension properties then C/Σ is loop-free. If Σ is pure in C then C/Σ
is one-way.

Proof. Omitted. �

Theorem 4.25 For any small category C, C/Σloop
is loop-free. Where Σloop is the

wide subcategory of C generated by morphisms σ such that ∃α, β, γ ∈ Mo(C) forming
a loop as follows

α
��	

		
		

		

γ

��

σ
��

β

���������

the above diagram is not required to be commutative.

Proof. Omitted. �

Note that Σloop is a pure subcategory of C
Definition 4.26 A category is thin iff its biggest weak equivalences subcategory is
discrete. TLFCAT, TOWCAT and TdCAT are the full sub categories of thin loop-free
categories of LFCAT, OWCAT and dCAT.

Conjecture 4.27 Let L be a small loop-free category and ΣL the biggest WE-
subcategory of L. Then L/ΣL is thin (see definition 4.26).

4.4 Functoriality of component categories

Next theorem gives the general framework in which the notion of component cate-
gory becomes functorial. As pointed out in the abstract, the idea is to equip any
small category C in our scope of interest with a subcategory of distinguished mor-
phisms (called “inessential” in [7]) which are unformally those along which “nothing
happens”.

Theorem 4.28 (General framework for component category functor)
Let K be a subcategory of CAT and Φ be an “assignment” which gives to each C object
of K a subposet of (Sb(C),⊆) (which is the complete partial order of subcategories of
C) with “top” and “bottom” elements. Then we define KΦ the category whose objects

17Still, note that the fundamental category of π1(
−→
S1) is not free as described in section 2.
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are pairs (C, Σ) where C is an object of K and Σ ∈ Φ(C) and KΦ[(C1,Σ1), (C2,Σ2)] :=
{f ∈K[C1, C2]/∀σ ∈ Σ1, f(σ) �= id ⇒ f(σ) ∈ Σ2}.
(i) ∀f ∈K[C1, C2]∀σ ∈ 
Φ(C1), f(σ) �= id ⇒ f(σ) ∈ 
Φ(C2)

(ii) ∀f ∈K[C1, C2]∀σ ∈ ⊥Φ(C1), f(σ) �= id ⇒ f(σ) ∈ ⊥Φ(C2)

(iii) For all C object of K, ∀Σ ∈ Φ(C)
(a) ⊥Φ(C) ⊆ id(C)
(b) QΣ : C −→ C/Σ is a morphism of K (hence C/Σ is an object of K)
(c) ∀f ∈KΦ[(C,Σ), (C′,Σ′)], f/Σ : C/Σ −→ C′ and f/Σ,Σ′ : C/Σ −→ C′/Σ′ 18

are morphisms of K

Then we have

• (iiia) ⇒ (ii)
• If (i) is satisfied then R is well defined and U � R

• If (ii) is satisfied then L is well defined and L � U

• If (iii) is satisfied then CompΦ is well defined and CompΦ � L

Where

KΦ

U

��

CompΦ

��K

L

�� �������

R

�� �
�

�
���

�
�

�

U is the obvious forgetful functor.
Given C ∈K, L(C) := (C,⊥Φ(C), R(C) := (C,
Φ(C)), CompΦ(C, Σ) := C/Σ.
Given f : C1 −→ C2, R(f) is the induced morphism from (C1,
Φ(C1)) to

(C2,
Φ(C2)) (i.e. U(R(f)) = f) L(f) is the induced morphism from (C1,⊥Φ(C1)) to
(C2,⊥Φ(C2)) (i.e. U(L(f)) = f) and for all f ∈KΦ[(C1Σ1), (C2, Σ2)], CompΦ(f) :=
fΣ1,Σ2.

Proof. (iiia) ⇒ (ii): Take f ∈K[C1, C2] and σ ∈ ⊥Φ(C1) by (ii), σ is an identity so
necessarily f(σ) is an identity.

(i) ⇒ U � R: R is well defined because the object part does not raise any problem
and (i) is exactly the assumption we need to ensure that morphism of K from C1

to C2 induces a morphism of KΦ from (C1,
Φ(C1)) to (C2,
Φ(C2)). The unit of
the ajunction is η(C,Σ) : (C,Σ) −→ (C,
Φ(C)), which is a morphism of KΦ since
Σ ⊆ 
Φ(C). The co-unit is εC := idC . Given f : (C, Σ) −→ (C′,Σ′), put g := U(f), it
is clearly the only morphism of K such that f = g ◦ idC and f = R(g) ◦ η(C,Σ). The
naturality of η is obvious.

(ii) ⇒ L � U : L is well defined because the object part does not raise any problem

18 see lemma 4.20 for notations f/Σ and f/Σ,Σ′ .

E. Haucourt / Electronic Notes in Theoretical Computer Science 230 (2009) 39–69 55



and (ii) is exactly the assumption we need to ensure that morphism of K from C1

to C2 induces a morphism of KΦ from (C1,⊥Φ(C1)) to (C2,⊥Φ(C2)). The unit of the
ajunction is ηC = idC the co-unit is ε(C,Σ) : (C,⊥Φ(C)) −→ (C, Σ) which is a morphism
of KΦ because ⊥Φ(C) ⊆ Σ. Given a morphism f ∈K[C1, C2], setting g := ε(C,Σ)◦L(f),
we have f = ηC ◦ L(g) i.e. f = L(g).

(iii) ⇒ CCΦ � L: The object part of CCΦ is well defined by (iiib), the morphism
part of CCΦ is well defined by (iiic) (f/Σ,Σ′ : C/Σ −→ C′/Σ′ is a morphism of K).
The unit of the adjunction is the only morphism η(C,Σ) : (C, Σ) −→ (C/Σ,⊥Φ(C/Σ))
such that U(η(C,Σ)) = QΣ, QΣ is in K by (iiib), moreover ∀σ ∈ Σ, QΣ(σ) is an
identity, hence by definition of KΦ, η(C,Σ) is in KΦ. Let f : (C, Σ) −→ (C′,⊥Φ(C′))
morphism of KΦ, it follows that ∀σ ∈ Σ, f(σ) �= id ⇒ f(σ) ∈ ⊥Φ(C′), however,
by (iiia), ⊥Φ(C′) ⊆ id(C′) then ∀σ ∈ Σ, f(σ) is an identity. So we can apply
lemma 4.20, f/Σ is the only morphism of small categories from C/Σ to C′ such that
U(f) = f/Σ◦QΣ. It follows that f/Σ is the only morphism of K (cf (iiic)) such that
f = L(f/Σ) ◦ η(C,Σ). Naturality of η(C,Σ) is a consequence of uniqueness property of
lemma 4.20. �

Definition of the Component Category Functor by Means of Theorem
4.28

It suffices to set K:=LFCAT and Φ(C) := WE(C), (ii) and (iiia) are satisfied
because ⊥Φ(C) := {idx/x ∈ Ob(C)}. By theorem 4.24, ∀Σ ∈ WP (C), C/Σ is a
loop-free category, since LFCAT is a full sub-category of CAT, (iiib) and (iiic) are
also satisfied. Note that (i) is not necessarily satisfied, hence we do not have, in
general, the functor R.

We can do the same setting K:=OWCAT and Φ(C) := WE(C), (ii) and (iiia) are
satisfied because ⊥Φ(C) := {idx/x ∈ Ob(C)}. By theorem 4.24, ∀Σ ∈ WP (C), C/Σ
is a one-way category, since OWCAT is a full sub-category of CAT, (iiib) and (iiic)
are also satisfied. Once again, (i) is not necessarily satisfied, hence we do not have,
in general, the functor R.

For directed categories, things are slightly more intricate, the reason is that
the least weak equivalences subcategory of a directed category C might contain
isomorphisms which are not identities, hence (iiia) of theorem 4.28 is not neces-
sarily satisfied. However, by theorem 4.3, OWCAT is a reflective subcategory of
dCAT hence, if L �(dCAT↪→OWCAT) we define the compoent categroy functor
as CompOW ◦ L where CompOW is the component category functor defined in
the case of one way categories. It is natural, isomorphisms are Yoneda inversible
so they have to be turned into identities, the fact that we have to identify them
before applying theorem 4.28 is just a technical twist which does not change the
underlying philosophy of the method.
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4.5 Comments and examples

4.5.1 Is there any relation with weak equivalences in model categories ?
In our context, morphisms of the weak eaquivalence subcategory of C are to be
called weak equivalences. However, these weak equivalences are far from model cat-
egories ones. There is a slight analogy between them, due to the pushout/pullback
stability property but it does not really go further. In fact, the main difference
is that, in model categories, the weak equivalences are (almost) always given by
an intrisic property of the morphisms, for example in SPC the category of topo-
logical spaces, weak equivalences are continuous maps giving rise to isomorphisms
between homotopy groups in all dimensions. This definition just depends on the
map and its domains and codomains, in some sense, it is local. On the other hand,
weak equivalences in our context are defined as part of a subcategory which is
defined in a global way. Let us consider −→

T := {(x, y)/0 ≤ x, y;x + y ≤ 1} and−→
C := {(x, y)/0 ≤ x, y ≤ 1} with classical topology and order. It is easy to check
that in π1(

−→
T ) as well as in π1(

−→
C ), all morphisms are Yoneda inversible. π1(

−→
C )

clearly has all pushouts and pullbacks hence any morphism of π1(
−→
C ) is a weak

equivalence while the only weak equivalences of π1(
−→
T ) are identities. The reason

is that for any non identical morphism σ of π1(
−→
T ) one can find a morphism γ so

that the (right) extension property is not fulfilled. The last example emphasizes the
global and geometric aspect of our weak equivalence definition.

4.5.2 Detailed calculation of the component category of the “L” pospace
The idea is to find morphisms that are “obviously” not weak equivalences and to
check the remaining ones form a weak equivalence subcategory. Let L be the pospace
depicted in figure 6 with classical topology and order. Given (x, y) ≤ (x′, y′) there
is, up to dihomotopy, a unique morphism from (x, y) to (x′, y′), hence any morphism
is Yoneda inversible. Now suppose that a morphism σ crosses the vertical dotted
segment, then take γ a morphism which crosses the horizontal one. Clearly, the right
extension property is not satisfied by σ. Now it is easy to check that the subcategory
made of the morphisms of π1(L) which do not cross any dotted segments are weak
equivalences. By the way, note that if a morphism has its source or target exactly
on the dotted line, it is still a weak equivalence. This is due to topological properties
of components which have been deeper studied in [7].

5 Tool for calculation of component categories

The presentation given above could let the reader think that theorem 4.28 is useless
to define component categories, and forgeting the functoriality question, he is right!
The point is that, in concrete case, we want to be able to calculate component
categories and, in order to do so, we need efficient tools. One of the most classical
results towards calculation of fundamental groups, groupoids and categories are Van
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Fig. 6. The “L” pospace

Kampen theorem 19 . The idea of the theorem is as follows, given a geometrical shape
X (classical or directed), instead of directly calculating the fundamental object of
X, split X into two parts, say A and B whose fundamental objects are known (or
at least easier to calculate) then “glue” the fundamental objects of A and B to
have the fundamental object of X. If you see a geometrical shape as a program
and its fundamental object as an abstract interpretation (see [6]) of this program,
then Van Kampen theorem becomes a kind of “compositionality” result. Technical
details of Van Kampen theorem are of out of the scope of this paper, so we just give
an unformal statement.
In theorems 5.1 and 5.2, �SPC are �CAT are taken by pair according to the following
table
Table 19

�SPC �CAT

POSPC LFCAT

LPOSPC OWCAT

dSPC dCAT

where �SPC is the domain of the fundamental category functor π1 and �CAT its
codomain.

Theorem 5.1 (Van Kampen for fundamental category) Let −→X 1,
−→
X 2 be sub-

objects of −→X (object of �SPC) such that the underlying topological space of −→X is the
union of the interiors 20 of the underlying topological spaces of −→X 1 and −→

X 2 and let−→
X 0 := −→

X 1 ∩ −→
X 2. i1 : −→X 0 ↪→ −→

X 1, i2 : −→X 0 ↪→ −→
X 2, j1 : −→X 1 ↪→ −→

X and j2 : −→X 2 ↪→ −→
X

19 there are several versions depending on the framework : see [22] and [24] for groups, [15] for groupoids,
[14] for categories.
20with respect to the underlying topology of

−→
X .
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the inclusion maps. Then we have the following push-out squares

−→
X π1(

−→
X )

−→
X 1

j1




��




push−out
−→
X 2

j2���

�����

π1(
−→
X 1)

π1(j1)���

�����

push−out π1(
−→
X 2)

π1(j2)���

�����

−→
X 0

i1���

�����
i2




��




π1(
−→
X 0)

π1(i1)���

�����
π1(i2)���

�����

respectively in �SPC and �CAT.

Theorem 5.2 (Van Kampen for component category)
Let −→X 1,

−→
X 2 be sub-objects of −→X 3 (object of �SPC) such that the underlying topolog-

ical space of −→X3 is the union of the interiors of the underlying topological spaces of−→
X 1 and −→

X 2 and let −→X 0 := −→
X 1 ∩ −→

X 2. i1 : −→X 0 ↪→ −→
X 1, i2 : −→X 0 ↪→ −→

X 2, j1 : −→X 1 ↪→ −→
X3

and j2 : −→X 2 ↪→ −→
X3 the inclusion maps.

Moreover, we suppose that Σ1,Σ2 are WE-subcategories of π1(
−→
X 1), π1(

−→
X 2),

π1(j1)(Σ1)
⊎

π1(j2)(Σ2) (also denoted Σ3) is a WE-subcategory of π1(
−→
X 3),

π1(i1)(Σ0) ⊆ (Σ1) and π1(i2)(Σ0) ⊆ (Σ2) (i.e. π1(i1), π1(i2) are morphisms of
�CATΦ).

Then i1, i2, j1 and j2 give rise to i′1, i′2, j′1 and j′2 morphisms of �CATΦ and we
have

(π1(
−→
X 3),Σ3)

(π1(
−→
X 1),Σ1)

j′1
��            

push out in (π1(
−→
X 2),Σ2)

j′2
��!!!!!!!!!!!!

(π1(
−→
X 0),Σ0)

i′1

��!!!!!!!!!!!! i′2

��            
�CATΦ

and

CompΦ(π1(
−→
X 3),Σ3)

CompΦ(π1(
−→
X 1),Σ1)

CompΦ(j′1)
��""""""""""""""""
push out in CompΦ(π1(

−→
X 2),Σ2)

CompΦ(j′2)
  ################

CompΦ(π1(
−→
X 0),Σ0)

CompΦ(i′1)

  ################ CompΦ(i′2)

��""""""""""""""""
�CAT

The proof of theorem 5.1 requires three cases, one for each line of table 19.
POSPC/LFCAT case can be found in [13]. dSPC/dCAT is available in [14]. In
all the cases one might define the fundamental category of a local pospace as the
fundamental category of its corresponding directed space see theorem 4.3.
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Proof. Theorem 5.1 gives us pushout squares in �SPC and �CAT:

−→
X π1(

−→
X )

−→
X 1

j1




��




push−out
−→
X 2

j2���

�����

π1(
−→
X 1)

π1(j1)���

�����

push−out π1(
−→
X 2)

π1(j2)���

�����

−→
X 0

i1���

�����
i2




��




π1(
−→
X 0)

π1(i1)���

�����
π1(i2)���

�����

We have to prove that π1(
−→
X 0), π1(

−→
X 1), π1(

−→
X 2) and π1(

−→
X 3) respectively equiped

with Σ0, Σ1, Σ2 and Σ3 give rise to a pushout square in �CATΦ. Given f1 :
(π1(

−→
X 1), Σ1) −→ (L,Σ) and f1 : (π1(

−→
X 2), Σ2) −→ (L,Σ) morphisms of �CATΦ

such that f1 ◦ i1 = f2 ◦ i2, by hypothesis, ∃!h : π1(
−→
X 3) −→ L (morphism of �CAT)

such that f1 = h◦j1 and f2 = h◦j2. It remains to see that h gives rise to a morphism
of �CATΦ i.e. h(Σ3) ⊆ Σ. By hypothesis, Σ3 = j1(Σ1)

⊎
j2(Σ2) so any element of Σ3

can be written j2(α2n+1) · j1(α2n) · ... · j2(α1) · j1(α0) where ∀k ∈ {0, ..., n}, α2k ∈ Σ1

and α2k+1 ∈ Σ2, so h(j2(α2n+1) · j1(α2n) · ... · j2(α1) · j1(α0)) = (h ◦ j2)(α2n+1) · (h ◦
j1)(α2n) · ... · (h ◦ j2)(α1) · (h ◦ j1)(α0) = f2(α2n+1) · f1(α2n) · ... · f2(α1) · f1(α0) ∈ Σ
since f1, f2 are morphisms of �CATΦ, hence h gives rise to a morphism of �CATΦ
from (π1(

−→
X 3),Σ3) to (L,Σ). Thus we have a pushout square in �CATΦ. Now by

theorem 4.28, we know that CompΦ is a left adjoint hence 21 preserves colimits and,
in particular, pushouts. �

Theorem 5.2 does not necessarily give the biggest WE-subcategory of π1(
−→
X 3), so

one has to guess what this biggest WE-subcategory is in order to choose appropriate
Σ1 and Σ2, the choice of Σ0 is not as important, and once Σ1 and Σ2 are given, it
might be possible to take Σ0 as the biggest WE-subcategory of π1(

−→
X 0) satisfying

π1(i1)(Σ0) ⊆ (Σ1) and π1(i2)(Σ0) ⊆ (Σ2). A very simple application of theorem 5.2
to calculate the component category of the first example given in section 2.

Let us come back to the example of the rectangle with two holes:

21general facts of category theory see [4].

pushout

in

POSPC T

in

TLFCA

t

y

pushou

x

x

y

y
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j2 j1

i1i2

in
Pushout

POSPC

which gives, by theorem 5.2

in
Pushout

LFCAT

j2

i2

j1

i1

In this figure, rectangle filled with grey color are not commutative. The holes of
the geometrical shape are represented by non-commutative squares in the compo-
nent category.

Applying theorem 5.2 we can also prove that the component category of
the cube with a centered cubical hole has 26 objects 22 . It can be repre-
sented in R

3 putting an object in the “center” of each vertex, edge and face
(8 vertices+12 edges+6 faces = 26 objects). Morphisms are generated by arrows
from a point to its “closer neighbours in the future”, for example those of (0, 0, 0)
are (0, 0, 1

2), (0, 1
2 , 0) and (1

2 , 0, 0) while (1, 1, 1) has no such neighbours. In order to
have the hypothesis of theorem 5.2 satisfied, we split the cube into two parts so
that, following notation of theorem 5.1, X0 :=]12 − ε, 1

2 + ε[×[0, 1] × [0, 1]. It is the
analog of the previous example in three dimensions.

22geometrically, picture the Rubik’s cube, the interior cube is the hole, all other cubes give an object.
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6 Towards directed cohomology

In [2] and [1] a cohomology of small categories is presented by means of natural
systems of factorization. The idea would be to define the cohomology of a directed
geometrical object −→

X as the cohomology of its fundamental category 23 . However,
as we have already pointed it out, the fundamental category has often as many
objects as R. Still, there is only few of them which is relevant, and finding them
amounts to calculate the component category. Thus, the cohomology of −→X could
be defined as the cohomology of the component category of −→X . For example, with
this definition, the fourth and fifth examples given in section 2 are distinguished
by their first cohomology groups.

In this paragraph, “cubical” pospace means a disjoint union of unit cubes of
dimension n in which finitely many parallelepipeds 24 have been dug out. As we
have remarked in the previous paragraph, the choice of a “good” natural system
is influenced by “good” properties of the small category we want to calculate the
cohomology groups.

Definition 6.1 • A morphism γ is said prime iff for any morphisms γn, ..., γ0 such
that γ = γn ◦ ... ◦ γ0, ∃!i ∈ {1, ..., n}, γi �= id.

• A category C is generated by primes iff any non trivial morphism of C can be
written as a finite composition of prime morphisms.

• A category C is homogeneous iff C is generated by primes and for all composable
sequences of prime morphisms (γn, ..., γ0) and (γ′

n′ , ..., γ′
0) we have (γn◦...◦γ0) =

(γ′
n′ ◦ ... ◦ γ′

0) ⇒ n = n′. n + 1 is the length of γn ◦ ... ◦ γ0.
• A category C is said strongly homogeneous iff C is generated by primes and
∀x, y ∈ Ob(C)∃Nx,y such that for all composable sequences of prime morphisms
(γn, ..., γ0) with src(γ0) = x and tgt(γn) = y we have n = Nx,y. In this case,
length depends only on src and tgt.

• A category C is said bounded iff the length of the composable sequences of
C whose elements are not trivial are bounded, i.e. ∃NC ∈ N such that for all
composable sequences (γn, ..., γ0) satisfying γi �= id, we have n ≤ NC .

• A category C is said weakly bounded iff ∀γ ∈ Mo(C), Max({n ∈
N/∃(αn, ..., α0) such that αn ◦ ... ◦ α0}) < +∞

The relations existing between these properties are given in the following dia-

23 it is abusive to write “the” cohomology of a small category because, as far as I know, it depends on
the natural system one has put on the small category one wants to calculate “the” cohomology. Hence, it

becomes a part of the art to choose a good natural system. In partical cases, the component category of
−→
X

has good properties which induce an “obviously” interesting natural system.
24with faces parallel to the faces of the unit cube.
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gram

Free

!!
Strongly Homogeneous ""

##

Homogeneous

!!
Bounded ""

!!

Weakly Bounded

!!
Direct

!!

generated by Primes

!!
Loop-free "" Iso is discrete

!!
Skeletal

Prime morphisms generalize prime numbers, indeed, the monoid (N, +) seen as
a small category has prime morphisms which are exactly the prime numbers. In
fact, it is homogeneous by the famous prime number decomposition theorem. In
particular, π1(

−→
S1) is homogeneous. The notion of direct categories is related to

model category theory, see [17] or [16] for further details.

Definition 6.2 A linear extension of a small category C is a functor f : C → λ

such that ∀γ ∈ Mo(C), f(γ) = id ⇒ γ = id and where λ is an ordinal 25 i.e. a
poset whose any non empty subset has a minimum.
A direct category is a small category having a linear extension. An inverse
category is a small category whose dual is direct.

Conjecture 6.3 The component category of a cubical pospace is homogeneous.
Moreover, if its underlying space is connected, the component category is bounded.

In general it is not strongly homogeneous as shown by the right side of figure
2 nor bounded because it is always possible to have a infinite disjoint union of
connected cubical pospaces C0� ...�Cn� ... such that ∀n ∈ N, Cn has a composable
sequence of prime morphisms of length n. Being homogeneous induces a natural
system as follows. Given a small category C, the category of factorizations of C
(denoted FC) is given by Ob(FC) = Mo(C) and FC[α, β] is the collection of pairs
(γ2, γ1) ∈ C[tgt(α), tgt(β)] × C[src(β), src(α)] such that β = γ2 ◦ α ◦ γ1

26 . Given
a small category C, a natural system (of abelian groups) 27 on C is a functor
D : FC →Ab, where Ab is the category of abelian groups and group morphisms
between them.

25 see [17] or [20] or any set theory textbook for the definition.
26 If C is small then so is FC. Moreover, if C is loop-free then so is FC.
27 see [2] and [1] for further details.
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Lemma 6.4 Let C be a homogeneous small category. We define a natural system
on C setting D(γ) := Z length(γ) and for

α ��

γ2

��
β

��
γ1

��
=

D(γ2, γ1) : (xn, ..., x1) ∈ Z length(α) ↪→ ( 0, ............, 0︸ ︷︷ ︸
length(γ2) times

, xn, ..., x1, 0, ............, 0︸ ︷︷ ︸
length(γ1) times

) ∈

Z length(β), with length(γ2) zeros on the left side of xn and length(γ1) zeros on the
right side of x1.

Instead of a (boring and) formal proof that we actually have a functor, observe
the following example, suppose length(γ1) = 1, length(γ2) = 2, length(β) = 6, then
necesarily, length(α) = 3 and D(γ2, γ1) is an abelian group embedding pictured by
the following diagram:

{0} ×

0

��

{0} ×

0

��

Z ×

id

��

Z ×

id

��

Z ×

id

��

{0}
0

��
Z × Z × Z × Z × Z × Z

It is important to notice that the image of a morphism of FC only depends on the
length of γ1, γ2 and α.

7 Dealing with loops: the fundamental monoid

As one can notice, the category POSPC does not contain any satifactory model of
the directed circle “

−→
S1”. Indeed, the only authorized paths of

−→
S1 are the clockwise

ones 28 . The problem is to modelize this idea. What order relation should equip S1

in order to make it a pospaces whose dipaths are exactly the clockwise ones? Sup-
pose that such a relation ≤ exists, in particular, t ∈ −→

I �−→ (cos(−2πt), sin(−2πt))
is clockwise, so we should have ∀t ∈ [0, 1], (0, 1) ≤ (cos(−2πt), sin(−2πt)) ≤ (0, 1)
hence, by antisymmetry, (cos(−2πt), sin(−2πt)) = (0, 1) which is a contradic-
tion. A naive solution consists of weakening the definition of a pospace asking
≤ be a preorder instead of an order relation. But then, by transitivity, ∀t, t′ ∈
[0, 1], (cos(2πt), sin(2πt)) ≤ (cos(2πt′), sin(2πt′)) so t ∈ −→

I �−→ (cos(2πt), sin(2 πt))
which is anticlockwise would also be directed. Marco Grandis approach consists of
equiping a topological space X with a set of distinguished paths denoted dX and
submited to some conditions. The elements of dX are naturaly called the directed
paths. Then it suffices to equip S1 with the set of all clockwise paths to obtain a
model of the directed circle. It is also possible to have a model of directed circle by
covering S1 with open subsets, each of which being suitably equiped with an order
relation ≤ that locally makes S1 a pospace.

28obviously we could have chosen the anticlokwise ones
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Besides, the fact that a pospace does not have loops makes its fundamental cat-
egory loop-free, in particular it has no endomorphisms. As a direct consequence,
trying to define the “fundamental monoid” of a pospace −→

X as −→π1(
−→
X )[x, x] is sound

but pointless because −→π1(
−→
X )[x, x] = {idx}. Introducing loops in our models, the

“fundamental monoid” becomes relevant.
Ideas related to the definition of local pospaces are borrowed from the ones of

differential geometry and smooth manifold theory, for a deeper analogy see [21] and
[23].

Definition 7.1 [Local Pospaces] A local pospace is a triple (X, τX ,≤X) such
that (X, τX) is a topological space, ≤X a relation on X and ∀x ∈ X∃U an open
neighbourhood of x such that (U, τU ,≤U ) is a pospace. τU and ≤U are respectively
the restriction of τX and ≤X to U . An atlas of (X, τX ,≤X) is an open covering
(Ui)i∈I of (X, τX) such that ∀i ∈ I, (Ui, τUi ,≤Ui) is a pospace. A local dimap
f : (X, τX ,≤X) → (Y, τY ,≤Y ) is a continuous map between underlying topolog-
ical spaces such that ∃(Uj)j∈J atlas of (X, τX ,≤X) ∃(Vj)j∈J atlas of (Y, τY ,≤Y )
satisfying ∀j ∈ J , fUj→Vj : x ∈ Uj �−→ f(x) ∈ Vj is a dimap (i.e. a morphism of
POSPC). Local pospaces and local dimaps organize themselves in a category denoted
LPOSPC.

As
−−→
[0, 1] is the standard example of pospace, the directed circle

−→
S1 is the standard

example of local pospace, its relation is described by means of maps θ0 : x ∈
]0, 2π[�−→ (cos(x), sin(x)) ∈ S1 and θ1 : x ∈]− π, π[�−→ (cos(x), sin(x)) ∈ S1 setting
∀x, y ∈]0, 2π[, θ0(x) < θ0(y) if x < y and ∀x, y ∈] − π, π[, θ1(x) < θ1(y) if x < y.

The next definition is due to Marco Grandis in [14] 29

Definition 7.2 [d-spaces] A directed space or d-space is a triple (X, τX , dX)
where (X, τX) is a topological space and dX ⊆ {paths of (X, τX)} with the following
conditions

(i) {constant paths} ⊆ dX

(ii) for all θ : [0, 1] → [0, 1] continuous and increasing, for all γ ∈ dX, γ ◦ θ ∈ dX

(dX is stable under di-reparametrization)

(iii) for all γ1, γ2 ∈ dX, γ2 ◦ γ1 ∈ dX (dX is stable under concatenation)

A d-map from (X, τX , dX) to (Y, τY , dY ) is a continuous map f from (X, τX) to
(Y, τY ) such that ∀γ ∈ dX f ◦ γ ∈ dY d-spaces and d-maps organize themselves in
a category denoted dSPC.

Remark that we have the “obvious” inclusion functors

POSPC
� � �� LPOSPC

� � �� dSPC

Now let us focus on two examples:

29 [14] also contains a definition of local pospace which differs from the presently given one.
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Denoting π1(
−→
S1) the fundamental category of

−→
S1, we have

∀x ∈ −→
S1, π1(

−→
S1)[x, x] isomorphic to N. Compare N to

the fundamental group of the circle. Precisely, π1(
−→
S1)

can be described the following way, for each x, y ∈ S1

there is a distinguished arrow αx,y and the family of dis-
tinguished arrows is submitted to the following axiom,
∀x, y, z ∈ S1, αy,z ◦ αx,y = αx,z, where y ∈ (x, z). Here,
(x, z) is the clockwise open arc from x to z. Intuitively,
the distinguished arrow from x ∈ −→

S1 to y ∈ −→
S1 is the

clockwise path from x to y on the directed circle, see the
left side figure. Then ∀γ ∈ π1(

−→
S1)[x, y] ∃!n ∈ N such that

γ = (αy,y)n ◦ αx,y and ∀γ ∈ π1(
−→
S1)[x, x] ∃!n ∈ N such

that γ = (αx,x)n. Hence we could define the fundamental

monoid of
−→
S1 as (N, +).

The idea of the fundamental monoid is attractive but does not work
because, in general, it depends on the base point x:

The left side picture can easily be described as a lo-
cal pospace or a directed space denoted −→

X in both
cases. Adapting the description of the fundamental
category of

−→
S1, it is easy to describe the one of −→X .

Then we observe that −→π1(
−→
X )[x, x] ∼= (N,+) in MON

- the category of monoids - while −→π1(
−→
X )[y, y] ∼= {•}.

The base point dependence makes impossible to de-
fine the fundamental monoid of −→X as the straight-
forward generalization of the fundamental group.

In addition, the component category of
−→
S1 is its fundamental one. Indeed, none

of the morphisms αx,y of π1(
−→
S1) is Yoneda inversible. By definition, if αx,y were

Yoneda inversible then, since π1(
−→
S1)[y, x] �= ∅, we would have a morphism g from y

to x such that g ◦ αx,y = idx, which is impossible. Hence, as any arrow of π1(
−→
S1)

can be written as a composition of α’s, none of them is Yoneda inversible.
In particular the component category, as it has been defined previously, does not
efficiently reduce the size of the fundamental category of a local pospace or a directed
space which “contains”

−→
S1. Still, the next result may provide a way to solve this

problem:

Proposition 7.3 Let C be a small category. Suppose that σ : x −→ y is a morphism
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of C:

(i) If ∀δ ∈ C[x, x] ∃!γ ∈ C[y, y] such that σ ◦ δ = γ ◦ σ then the map Φσ : δ ∈
C[x, x] �−→ γ ∈ C[y, y] is a morphism of monoids

(ii) If ∀γ ∈ C[y, y] ∃!δ ∈ C[x, x] such that γ ◦ σ = σ ◦ δ then the map Ψσ : γ ∈
C[y, y] �−→ δ ∈ C[x, x] is a morphism of monoids

(iii) If ∀δ ∈ C[x, x] ∃!γ ∈ C[y, y] such that σ ◦δ = γ ◦σ and ∀γ ∈ C[y, y] ∃!δ ∈ C[x, x]
such that γ ◦ σ = σ ◦ δ then Ψσ ◦ Φσ = IdC[x,x] and Φσ ◦ Ψσ = IdC[y,y]

Proof. σ◦idx = idy◦σ, thus Φσ(idx) = idy. Moreover, σ◦(δ2◦δ1) =
(
Φσ(δ2◦δ1)

)
◦σ

and σ ◦ (δ2 ◦ δ1) = (σ ◦ δ2) ◦ δ1 =
(
Φσ(δ2) ◦ σ

)
◦ δ1 = Φσ(δ2) ◦ (σ ◦ δ1) =

(
Φσ(δ2)

)
◦(

Φσ(δ1)
)
◦σ. By uniqueness, Φσ(δ2 ◦δ1) = Φσ(δ2)◦Φσ(δ1), hence Φσ is a morphism

of monoids. The same holds for Ψσ dualizing everything. Suppose we have the
hypothesis of the third point, then σ ◦ δ = Φσ(δ) ◦ σ = σ ◦ Ψσ(Φσ(δ)), hence, by
uniqueness, Ψσ(Φσ(δ)) = δ. The same way, Φσ(Ψσ(γ)) = γ. �

Proposition 7.4 Let C be a small category. Suppose that σ : x −→ y is a morphism
of C such that fσ : δ ∈ C[x, x] �−→ σ◦δ ∈ C[x, y] and gσ : γ ∈ C[x, x] �−→ γ◦σ ∈ C[x, y]
are bijective. Then the hypothesis of the third point of proposition 7.3 are satisfied.

Proof. Given δ ∈ C[x, x], by definition of the bijections f and g, γ := g−1
σ (σ ◦ δ)

is the only element of C[y, y] such that σ ◦ δ = γ ◦ σ. Of course, given γ ∈ C[y, y],
by defintion of the bijections f and g, δ := f−1

σ (γ ◦ σ) is the only element of C[x, x]
such that γ ◦ σ = σ ◦ δ. In particular, Φσ = g−1

σ ◦ fσ and Ψσ = f−1
σ ◦ gσ. �

Corollary 7.5 Any Yoneda inversible morphism satisfies the hypothesis of propo-
sition 7.4

For example, we remark that ∀x, y ∈ S1, αx,y satisfies the hypothesis of the third
point of proposition 7.3 and of proposition 7.4, nevertheless, as we have already
seen, they are not Yoneda inversible. This remark leads to settle some definitions,
the former Yoneda inversible morphisms are, from now, called strong Yoneda
inversible, the morphisms satisfying the hypothesis of proposition 7.4 are called
Yoneda inversible and the ones enjoying the hypothesis of the third point of
proposition 7.3 are called weak Yoneda inversible. The next step consists of
adapting the definition of inessential system, putting Yoneda or weak Yoneda in-
stead of strong Yoneda. In the new context, there is no doubt that the definition of
the component category will require some changes too.

7.1 Component category of the directed torus with a hole

Take the directed square with a hole (see figure 1) then identify [0, 1] × {0} ≈
[0, 1] × {1} and {0} × [0, 1] ≈ {1} × [0, 1]. We obtain a local pospace whose
underlying topological space is a torus with a hole and where the local order is
clockwise on the “small” and “large” generators, denote T this local pospace.
Figure 7 represents T with the identifications described above. No morphism is
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Fig. 7. Directed torus T 2 -unfold representation-

Yoneda inversible, for the same reason as in the directed circle case. Still, all
the morphisms of the fundamental category they induce are both monic and epic
making the correponding set theoretic maps are one-to-one but not onto (see
definition 4.5). For example, the dipaths α and β on figure 7 are not dihomotopic,
the right hand part shows the “only” dihomotopy one could image. In fact, α

and β are not even homotopic, it is a classical algebraic topology problem. The
consequence is that ∀δ, morphism of π1(

−→
T 2), �B ◦ (C → A) �= (C → A) ◦ δ. Where

(C → A) is an arrow whose beginning is in the interior of C and the end in the
interior of A, and �B

is a loop starting from A going through B and coming back
to its initial point. In particular, any dipath crossing the fronteer of A, B or C,
cannot be weakly Yoneda inversible. Conversely, it seems that any dipath staying
in the same “component” is weakly Yoneda inversible. Then, ideologically, we
“should” have three components 30 and the component category “should” be the

free category generated by B

gB

$$A

fC

%%

fB

&&
C

gC

'' .

These last statements are just prospective thoughts and conjectures.
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