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Abstract In this article we carry on the study of the fundamental category
(Goubault and Raussen, Dihomotopy as a tool in state space analysis. In: Rajsbaum,
S. (ed.) LATIN 2002: Theoretical Informatics. Lecture Notes in Computer Science,
vol. 2286, Cancun, Mexico, pp. 16–37, Springer, Berlin Heidelberg New York, 2002;
Goubault, Homology, Homotopy Appl., 5(2): 95–136, 2003) of a partially ordered
topological space (Nachbin, Topology and Order, Van Nostrand, Princeton, 1965;
Johnstone, Stone Spaces, Cambridge University Press, Cambridge, MA, 1982),
as arising in e.g. concurrency theory (Fajstrup et al., Theor. Comp. Sci. 357:
241–278, 2006), initiated in (Fajstrup et al., APCS, 12(1): 81–108, 2004). The
“algebra” of dipaths modulo dihomotopy (the fundamental category) of such a po-
space is essentially finite in a number of situations. We give new definitions of
the component category that are more tractable than the one of Fajstrup et al.
(APCS, 12(1): 81–108, 2004), as well as give definitions of future and past component
categories, related to the past and future models of Grandis (Theory Appl. Categ.,
15(4): 95–146, 2005). The component category is defined as a category of fractions,
but it can be shown to be equivalent to a quotient category, much easier to
portray. A van Kampen theorem is known to be available on fundamental categories
(Grandis, Cahiers Topologie Géom. Différentielle Catég., 44: 281–316, 2003;
Goubault, Homology, Homotopy Appl., 5(2): 95–136, 2003), we show in this paper
a similar theorem for component categories (conjectured in Fajstrup et al.
(APCS, 12(1): 81–108, 2004). This proves useful for inductively computing
the component category in some circumstances, for instance, in the case of
simple PV mutual exclusion models (Goubault and Haucourt, A practical appli-
cation of geometric semantics to static analysis of concurrent programs. In: Abadi,
M., de Alfaro, L. (eds.) CONCUR 2005 – Concurrency Theory: 16th International
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Conference, San Francisco, USA, August 23–26. Lecture Notes in Computer Science,
vol. 3653, pp. 503–517, Springer, Berlin Heidelberg New York, 2005), corresponding
to partially ordered subspaces of IRn minus isothetic hyperrectangles. In this last case
again, we conjecture (and give some hints) that component categories enjoy some
nice adjunction relations directly with the fundamental category.
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1 Introduction

Partially ordered spaces or po-spaces appeared in [8]. Motivated by functional
analysis, several results from general topology have been extended to po-spaces by
Nachbin [27]. In the meantime, E.W. Dijkstra has introduced the notion of progress
graphs, a particular case of po-spaces, as a natural model for concurrency [6].

The main motivation of this paper is to apply methods from algebraic topology,
after several suitable modifications, to classify parallel programs via their geometric
representations. Concurrent processes naturally define po-spaces, whose points are
states of the parallel machine and the partial-order is the causal ordering.

Let us recap the now classical example of [9], where two processes share two
resources a and b :

T1 = Pa.Pb .Vb .Va

T2 = Pb .Pa.Va.Vb

the geometric model is the “Swiss flag,” Fig. 1, regarded as a subset of IR2 with
the componentwise partial order (x1, y1) ≤ (x2, y2) if x1 ≤ x2 and y1 ≤ y2. The
(interior of the) horizontal dashed rectangle comprises global states that are such
that T1 and T2 both hold a lock on a: this is impossible by the very definition of a
binary semaphore. Similarly, the (interior of the) vertical rectangle consists of states
violating the mutual exclusion property on b . Therefore both dashed rectangles form
the forbidden region, which is the complement of the space X of (legal) states.

This space with the inherited partial order provides us with a particular po-space
X, as defined in Section 2. Moreover, legal execution paths, called dipaths, are
increasing maps from the po-space

−→
I (the unit segment with its natural order) to

X. The partial order on X thus reflects (at least) the time ordering on all possible
execution paths.

Po-spaces also appear in several other contexts, all having their own mathematical
interest:

– The positive cone P of any C∗-algebra A is naturally provided with an order
relation � and thus becomes a po-space [29]. Because P is a convex subset of
A, its fundamental category is isomorphic to the poset (P, �), where P is the
underlying set of P . Moreover, Sherman’s theorem claims the order � is a lattice
if and only if the C∗-algebra A is abelian. Since a poset is a lattice if and only if its
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Fig. 1 The Swiss flag
example – two processes
sharing two resources
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category of components (as introduced in [9] and fully worked out in this paper)
is trivial [21], the commutativity of a C∗-algebra is characterized by the triviality
of the category of components of its positive cone.

– Any physically reasonable spacetime (i.e. time-oriented connected Lorentz man-
ifold or globally hyperbolic spacetime) ordered by causality [7, 22] is a po-space
whose category of components can be thus seen as an abstraction of the metric
and differential structure preserving causal information. In the same stream of
ideas, K. Martin and P. Panangaden have given an abstraction of any physically
reasonable spacetime M, based on causality, which is rich enough to recover the
topology of M from it [26].

– Given a closed Riemannian manifold M and a Morse–Smale function f : M →
IR, Smale [28] defines a partial order < on the set of critical points of f as follows:
a < b if and only if there is a flow line from a to b (which is a sub-partial order
of the po-space with the same order, but for all points of M). Note that, as
noticed by an anonymous referee, there should be some connections, yet to for-
malize, between our notion of component category, and the generalization of the
<-partial order above, introduced in [5]: the category C f whose objects are
critical points of f , and whose morphisms between two critical points a and b
are in some sense “piecewise flow lines” of the gradient flow of f which connect
a to b .

To study progress graphs and po-spaces, we easily turn the notion of fundamental
groupoid of a topological space [23] into the notion of fundamental (loop-free) cate-
gory of a po-space [14, 16, 17]. The next step consists in computing these invariants
automatically [15]. In order to do so, we need to “discretize” the representation
of fundamental categories which often have uncountably many objects. In classical
algebraic topology, the fundamental groupoid of a space X is entirely determined by
the set of its arcwise connected components and their fundamental groups which are,
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Fig. 2 The components
of the Swiss flag
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for spaces in our scope of interest, finitely generated. The problem becomes highly
more intricate in the case of the fundamental category of a po-space. Though the
construction described in [9] provides the expected discretization in all “concrete”
examples, it has severe theoretical drawbacks, one of which is that we do not know
whether the construction makes sense in general cases (including all progress graphs
for instance). By slightly reformulating the definition of component categories,
we obtain much stronger results, although ending up with the same component
categories, at least in the case of progress graphs.1

For instance, the resulting components of the po-space of Fig. 1 are shown on
Fig. 2 while its category of components, depicted by the following diagram and
obtained with our new definition, is the same as the one given in [9]:

5 �� 8
g′

2
�� 10

7

g′
1

��

g1

�� 9

g2

��

3

��

f ′
2

�� 4

1

f ′
1

��

f1

�� 2

f2

��

�� 6

��

together with relations g′
2 ◦ g′

1 = g2 ◦ g1 and f ′
2 ◦ f ′

1 = f2 ◦ f1.

1Or PV models which are special instances of progress graphs.
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Organization and contributions of the paper: We summarize the main (classical)
definitions of po-space, dihomotopy and fundamental category in Section 2. We
then introduce the first contribution of the paper: Definition 5, which gives a set
of axioms for “Yoneda-systems.” A particular Yoneda-system of the fundamental
category will be used to define the component category, as the category of fractions
of the fundamental category with respect to this Yoneda-system, Definition 6.

We show that the family of Yoneda-systems of a particular type of small categories
(including fundamental categories of po-spaces), admits a maximum element under
the subset ordering (of sets of morphisms), consequence of Theorem 1: this will
be the Yoneda-system of interest for Definition 6. This theorem asserts even more
in that it shows that the set of Yoneda-systems, together with subset inclusion, forms
a locale: this is the second main contribution of this paper.

The third major contribution of the paper is Corollary 2 in which we show that
the component category just defined could instead have been defined as a (much
more “practical”) quotient construction, defined in Section 4.1 and Section 4.2, after
the work of [1].

The fourth contribution of the paper is a van Kampen theorem for component
categories, Proposition 4, which allows for practical, inductive computations.

In Section 6 we refine our understanding of component categories by splitting the
axioms defining Yoneda-systems in two parts: one for “future components” (Yoneda-
f-systems), the other for “past components” (Yoneda-p-systems). They still enjoy
interesting lifting properties, like for component categories, Proposition 6 (this is
the fifth major contribution of the paper).

Last but not least, and sixth contribution of this article, we show in Theorem 5
that a category very similar to the component category (that we conjecture to be
equivalent again), the orthogonal subcategory of a category C with respect to its
biggest Yoneda-f-systems, is reflective in C.

Note: In order to avoid any confusion with the notion of weak equivalences
in algebraic topology, the terminology “weak(ly) invertible morphism,” “system of
weak equivalences,” that was used in [9], is replaced by “Yoneda morphism” and
“Yoneda system.” We also have slightly modified the notion of directed homotopy
of [9], to take the one of [17].

For a small category C, Ob(C) (respectively Mo(C)) denotes the set of objects
(respectively, morphisms) of C. For a morphism f ∈ Mo(C) src( f ) (respectively
tgt( f )) denotes the source of f (respectively the target of f ).

2 Basic Definitions

The framework for the applications we have in mind is mostly based on the simple
notion of a po-space:

Definition 1

1. A po-space is a topological space X with a (global) closed partial order ≤ (i.e. ≤
is a closed subset of X × X). The unit segment [0, 1] with the usual topology and
the usual order, is a po-space denoted

−→
I and called the directed interval.
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2. A dimap f : X → Y between po-spaces X and Y is a continuous map that
respects the partial orders (is non-decreasing).

3. A dipath f : −→
I → X is a dimap whose source is the interval

−→
I .

Po-spaces and dimaps form a complete and co-complete category denoted PoTop,
see [20]. To a certain degree, our methods apply to the more general categories of
lpo-spaces [10] (with a local partial order), of flows [13] and of d-spaces [17], but for
the sake of simplicity, we stick to po-spaces in the present paper.

Dihomotopies between dipaths f and g (with fixed extremities α and β in X) are
dimaps H : −→

I × −→
I → X such that for all x ∈ −→

I , t ∈ −→
I ,

H(x, 0) = f (x), H(x, 1) = g(x), H(0, t) = α, H(1, t) = β.

Given two directed paths f and g, we write f � g when there exists a dihomotopy
from f to g, the relation � thus define a partial order on the collection of directed
paths of a given po-space

−→
X . Then we define ∼dih as the equivalence relation

induced by �, its equivalence classes are called dihomotopy classes. Let us insist
on the important fact that, given two directed paths f and g and their underlying
continuous path f ′ and g′, we might have a classical homotopy between f ′ and g′
though f 
∼dih g. Furthermore, this situation is rather common, and is not by any
means an exception.

Now, we can define the main object of study of this paper:

Definition 2 The fundamental category is the category −→π1(
−→
X ) with:

– as objects: the points of X,
– as morphisms, the dihomotopy classes of dipaths: a morphism from x to y is a

dihomotopy class [ f ] of a dipath f from x to y.

Concatenation of dipaths factors over dihomotopy and yields the composition of
morphisms in the fundamental category. A dimap f : X → Y between po-spaces
induces a functor f# : −→π1(

−→
X ) → −→π1(

−→
Y ), and we obtain thus a functor −→π1 from the

category of po-spaces to the category of categories. The fundamental category of
a po-space generalizes the fundamental groupoid π1(X) of a topological space X
(same set of objects as −→π1(

−→
X ); morphisms from x to y are homotopy classes of paths

from x to y). As indicated by its name, the fundamental groupoid of a topological
space is always a small category in which any morphism is an isomorphism. It follows
that π1 is a functor from Top (the category of topological spaces and continuous maps
between them) to Grpd (the category of groupoids and functors between them).
Given a po-space

−→
X , one can remark that −→π1(

−→
X ) satisfies:

– ∀x ∈ −→π1(
−→
X ) −→π1(

−→
X )[x, x] = {idx}

– ∀x, y ∈ −→π1(
−→
X ) x 
= y ⇒ (−→π1(

−→
X )[x, y] = ∅ or −→π1(

−→
X )[y, x] = ∅)
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Any category L satisfying these properties is called loop-free.2 The small loop-free
categories and functors between them form an epi-reflective subcategory of Cat
denoted by LfCat. Hence −→π 1 is a functor from PoTop to LfCat. In other words, the
fundamental category of a po-space is loop-free, this property will be helpful in the
sequel.

The fundamental category is often an enormous gadget (with uncountably many
objects and morphisms) and possesses less structure than a group. It is the aim
of this paper to “shrink” the essential information in the fundamental category
to an associated component category, that in many cases is finite and possesses a
comprehensible structure.

3 A Convenient Framework for Components

The definition of components given in [9] is strengthened in this section, and, from a
theoretical point of view, improved. We first define “Yoneda systems” in Section 3.1
and then consider the category of fractions based on the fundamental category,
where we invert the morphisms of the maximum (see Section 3.2) Yoneda-system,
Definition 6.

“Pureness,” that was required as an axiom in [9] to have in particular the lifting
property, Proposition 7 of [9] (and recapped as Proposition 5 in this article), becomes
a fairly easy consequence of the new set of axioms for Yoneda systems, Definition 3.
Recall that a subcategory � ⊆ C is pure if for all morphisms f ∈ �, whenever f =
g ◦ h with g, h ∈ C, g and h necessarily belong to �.

3.1 Definition of Yoneda Systems

First we recall the definition of Yoneda (invertible) morphisms [9]: it expresses
basic requirements for morphisms to “bring no information,” leading to the lifting
property, Proposition 7 of [9] and Proposition 5 of this article.

Definition 3 Given a (small) category C, a morphism x
σ

�� y ∈ C is Yoneda
(invertible) morphism when for each object z of C such that C[y, z] 
= ∅, the following
map:3

C[y, z]
−◦σ

�� C[x, z] is a bijection,

and for each object z of C such that C[z, x] 
= ∅, the following map:4

C[z, x]
σ◦−

�� C[z, y] is a bijection.

2Appeared in [19] as “small categories without loops” or “scwols.” We also refer the reader to [4] for
details.
3This is a form of preservation of the future cone.
4This is a form of preservation of the past cone.
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As showed in [9], Yoneda morphisms do not necessarily make good calculi of
fractions, i.e. calculi having right and/or left extension properties as defined below:

Definition 4 Right Extension Property
� has the right extension property with respect to C iff for all γ : y′ −→ x′, for all
σ : x −→ x′ ∈ �, there exists σ ′ : y −→ y′ ∈ �, there exists γ ′ : y −→ x such that σ ◦
γ ′ = γ ◦ σ ′, i.e. the following diagram is commutative:

y

∃σ ′∈�

���
�

�
� ∃γ ′

���
�

�
�

y′

∀γ ���
��

��
��

x

∀σ∈�����
��

��
��

x′

Left Extension Property is obtained by dualizing Definition 4
This can be fixed, see Lemma 5 of [9], by restricting ourselves to the maximum

subset of Yoneda morphisms which has REP and LEP. Unfortunately, this does
not provide us with a pure calculus in general. To circumvent these problems, we
strengthen LEP and REP so that to have canonical extensions, by pushouts and
pullbacks:

Definition 5 Let C be a small category, � ⊆ Mo(C) is a Yoneda-system if and only if:

(A1) � is stable under composition (of C)
(A2) Iso(C) ⊆ � ⊆ Yoneda(C)5

(A3) � is stable under pushouts (with any morphism in C).
(A4) � is stable under pullbacks (with any morphism in C).

The last two points mean that � has both REP and LEP with respect to C and further
the commutative squares provided by REP and LEP can be chosen in order to be
respectively pullback and pushout squares in C.

Let us mention here that (private communication of Lisbeth Fajstrup, Aalborg
University), most of the following results would still hold with weaker axioms, in
particular, one can ask for only having weak pushouts (no unicity required, only
finiteness).

Any Yoneda-system of any loop-free category C is pure and has left and right
extension properties:

Lemma 1 Let C be a small category such that “Iso(C) is pure in C.” Then any Yoneda-
system of C is pure in C.

5 Iso(C) and Yoneda(C) are subcategories of C respectively generated by isomorphisms and Yoneda
invertible morphisms of C.
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Proof Take σ ∈ � and f1, f2 ∈ Mo(C) such that σ = f2 ◦ f1. By (A3) of Definition 5,
we have a σ ′ ∈ � and f ′

1 which form a pushout square and a unique g ∈ Mo(C)

making the following diagram commutative.

g

��

f ′
1

���
�

�
�

id

		

σ ′

�
�

�
�

f2

��

σ



������� f1

���������

pushout

By pureness of Iso(C) in C, f ′
1 and g are isomorphisms, hence by (A2) of Definition 5,

belong to �. So by (A1) of Definition 5, f2 = g ◦ σ ′ ∈ �. In the same way, using the
pullback (instead of pushout) extension property, one proves that f1 ∈ �. Thus � is
pure in C. ��

3.2 Locale of Yoneda-systems

In this section, we give several results which will be combined to prove that the
collection of Yoneda-systems of a small category C such that Iso(C) is pure in C
forms a locale (Theorem 1). We recall that a locale is a poset (L,≤L) such that for
all U ⊆ L, U has a least upper bound and a greatest lower bound (it is a complete

lattice) and ∀(bj) j∈J ∈ LJ ∀a ∈ L, a ∧
(∨

j∈J bj

)
= ∨

j∈J(a ∧ bj) (see [3] or [24]).

Lemma 2 Let C be a small category, the collection Iso(C) is a Yoneda-system of C.

Proof It is routine verification which does not involve more category theory than
the fact that the pushout (respectively the pullback) of an isomorphism along any
morphism is an identity. ��

Lemma 3 If (� j) j∈J is a “non empty” family of Yoneda systems of a small category C
then

⋂
j∈J � j is a Yoneda-system of C.

Proof
⋂

j∈J � j obviously enjoys (A1) and (A2) of Definition 5. Suppose σ ∈ ⋂
j∈J � j

and f ∈ Mo(C) with src( f ) = src(σ ). Take j1, j2 ∈ J, since σ ∈ � j1 we have a pushout
square

x1
f ′
1

���
�

�
�

σ ′
1∈� j1



�
�

�
�

σ

���������� f

��								

pushout
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and also

x2
f ′
2

���
�

�
�

σ ′
1∈� j2



�
�

�
�

σ

���������� f

��								

pushout

because σ ∈ � j2 . By uniqueness (up to isomorphism) of the pushout, we have an
isomorphism τ from x2 to x1 such that σ ′

1 = τ ◦ σ ′
2. By (A2) of Definition 5, τ ∈ � j2

which is stable under composition by (A1), thus σ ′
1 = τ ◦ σ ′

2 ∈ � j2 . By the same
argument, for all j ∈ J, σ ′

1 ∈ � j i.e. σ ′
1 ∈ ⋂

j∈J � j and we have

f ′
1

���
�

�
�

σ ′
1∈

⋂
j∈J � j



�
�

�
�

σ∈⋂
j∈J � j



������� f

���������

pushout

The same proof holds for pullback squares. ��

Lemma 4 If (� j) j∈J is a “non empty” family of Yoneda systems of a small category
C then

⊎
j∈J � j is a Yoneda-system of C, where

⊎
j∈J � j is the least sub-category of C

including all the � j’s.

Proof By definition,
⊎

j∈J � j = {σn ◦ . . . ◦ σ1 | n ∈ N∗ , { j1, . . . , jn} ⊆ J and for all
k ∈ {1, . . . , n}, σk ∈ � jk}, property (A1) of Definition 5 immediately follows. The
second one is obvious for the family is non empty and because a composition of
Yoneda invertible morphisms is Yoneda invertible. Take σn ◦ . . . ◦ σ1 ∈ ⊎

j∈J � j with
n ∈ N∗, { j1, . . . , jn} ⊆ J, for all k ∈ {1, . . . , n}, σk ∈ � jk and f ∈ Mo(C) with src(σ1) =
src( f ). We have

f

��

σ1∈� j1

��
σn∈� jn

��

By a finite induction (apply consecutively (A3) of Definition 5 for � j1 , . . . , � jn ),
we have

σ ′
1∈� j1

��



σ ′

n∈� jn
��




f

��

σ1∈� j1

��

p.o. f1

���
�
�

σn∈� jn

��

fn−1

���
�
�

p.o. fn

���
�
�
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Now, it is a general fact that a “composition” of push-out squares is a push-out square
(see [2, 25]) hence

σ ′
n◦...◦σ ′

1∈
⊎

j∈J � j

��















f

��

σn◦...◦σ1∈⊎
j∈J � j

��

pushout fn

���
�
�

This works analogously for pullback squares, thus property (A4) of Definition 5 is
satisfied. ��

Lemma 5 Let C be a (small) category. If A is a “pure” subcategory C then for all

families (C j) j∈J of subcategories of C, A ∩
(⊎

j∈J C j

)
= ⊎

j∈J(A ∩ C j)

Proof The inclusion A ∩
(⊎

j∈J C j

)
⊇ ⊎

j∈J(A ∩ C j) is always satisfied. Indeed, if f

is an element of the right member, then one has n ∈ N∗, { j1, . . . , jn} ⊆ J, for all
k ∈ {1, . . . , n}, σk ∈ A ∩ � jk and f = σn ◦ . . . ◦ σ1. Now A is a subcategory of C and
in particular, for all k ∈ {1, . . . , n}, σk ∈ A, hence f ∈ Mo(A). Conversely, suppose
that we have n ∈ N∗, { j1, . . . , jn} ⊆ J, for all k ∈ {1, . . . , n}, σk ∈ � jk and f = σn ◦
. . . ◦ σ1 ∈ Mo(A), by pureness of A, σn, . . . , σ1 ∈ Mo(A), then for all k ∈ {1, . . . , n},
σk ∈ A ∩ � jk and f is an element of the left member. ��

In fact, having

A ∩
⎛
⎝⊎

j∈J

C j

⎞
⎠ =

⊎
j∈J

(A ∩ C j)

is equivalent to the existence of the right adjoint of the functor A ∩ − :
({subcategories of C},⊆) −→ ({subcategories of C},⊆), where the continuous lattice
({subcategories of C},⊆) is seen as a complete and co-complete small category. The
equivalence directly comes from the special adjoint functor theorem, see [2, 11, 25].
This equivalence is related to the link between locales and complete Heyting
algebras, see [3] for further details.

Corollary 1 Let (� j) j∈J be a family of Yoneda-systems of a small category C such that

Iso(C) is pure in C and � a Yoneda-system of C. Then �∩
(⊎

j∈J � j

)
=⊎

j∈J(�∩ � j).

Proof By Lemma 1, � is pure in C, the result follows by Lemma 5. ��

Remark 1
⋂

and
⊎

are associative over the family of subcategories of a small
category C.
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We can now state:

Theorem 1 Let C be a small category such that Iso(C) is pure in C. Then, the family
of Yoneda-systems of C is not empty and, together with ⊆ it forms a “locale” whose
l.u.b. operator is

⊎
and g.l.b operator is

⋂
. Moreover, the least element of this locale

(“bottom”) is Iso(C).

Proof The collection of Yoneda-systems of C has a least element by Lemma 2 and
the other axioms of a locale are given by Lemmas 3, 4 and Corollary 1. ��

Remark that Lemmas 2, 3 and 4 are satisfied for any small category C, thus proving
that the collection of Yoneda-systems of a small category is not empty and, ordered
by inclusion, forms a complete lattice; the pureness of Iso(C) is only involved in
Lemma 5 and its Corollary 1.

As explained in [3] and [24], the notion of locale generalizes the notion of family of
open subsets of a topological space, thus, Theorem 1 gives us a kind of topology over
C as soon as Iso(C) is pure in C. This pureness hypothesis is actually very “natural.”
If we think about it, we want to consider an isomorphism of C as a undirected path,
which is the case when C is a fundamental category. It makes sense geometrically to
expect that all its subpaths are also dipaths i.e. are isomorphisms.

3.3 Component Categories

We are now in position to fully define the main mathematical notion we are
describing in this article. We have seen that Yoneda systems form a locale. Calling its
greatest element �:

Definition 6 The component category of a po-space
−→
X is defined as the category of

fractions (see [12]) −→π1(
−→
X )[�−1].

Because of the obvious analogy with the set of arc-wise connected components of
a topological space, we denote the component category of a po-space as −→π0(

−→
X ).

4 Relevant Reduction of the Size of a Loop-free Category

The previous section gives a theoretically satisfactory definition of the component
category. Still, it remains to show that it is a useful notion for our purposes. The
component category is designed to reduce the size of the fundamental category
without losing any “relevant” information. The following result formalizes this idea
and confirms an intuition that was shared by the authors from the beginning.

Recalling in Section 4.1 the notion of generalized congruence (introduced origi-
nally in [1] applied in Section 4.2 to define quotients of small categories by one of its
subcategories, we can finally re-define the component category as the quotient of the
fundamental category by the biggest Yoneda system, Section 4.3.

4.1 Generalized Congruences

This section is devoted to generalized congruences that have been formalized in [1].
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Definition 7 (Generalized Congruences) A generalized congruence on a small cate-
gory C is an equivalence relation ∼o on Ob(C) and a partial equivalence relation ∼m

on Mo(C)+ (the set of all non-empty finite sequences of morphisms of C), satisfying
the following conditions (· is the usual concatenation, the α’s, β’s and γ ’s range over
Mo(C)):

– (βn, . . . , β0) · (αp, . . . , α0) ∼m (γq, . . . , γ0) ⇒ tgt(αp) ∼o src(β0)

– (βn, . . . , β0) ∼m (αp, . . . , α0) ⇒ tgt(βn) ∼o tgt(αp) and src(β0) ∼o src(α0)

– x ∼o y ⇒ idx ∼m idy

– (βn, . . . , β0) ∼m (αp, . . . , α0)and (δq, . . . , δ0) ∼m (γr, . . . , γ0)and tgt(βn) ∼o src(δ0)

⇒ (δq, . . . , δ0) · (βn, . . . , β0) ∼m (γr, . . . , γ0) · (αp, . . . , α0)

– src(β) = tgt(α) ⇒ (β ◦ α) ∼m (β, α)

Proposition 1 (Quotient Category) Given (∼o,∼m) a generalized congruence on a
small category C, we define the “ quotient category” C/∼ by

– Ob(C/∼) := {[x]∼o |x ∈ Ob(C)}
– src([(γn, . . . , γ0)]∼m) = [src(γ0)]∼o

– tgt([(γn, . . . , γ0)]∼m) = [tgt(γn)]∼o

– [(βn, . . . , β0)]∼m ◦ [(αp, . . . , α0)]∼m = [(βn, . . . , β0) · (αp, . . . , α0)]∼m

Moreover, there is a “quotient” functor Q∼ : C → C∼, defined by Q∼(x) = [x]∼o and
Q∼(γ ) = [γ ]∼m . The functor Q∼ enjoys the following universal property, for any
functor f : C → C2, if ∼⊆∼ f then there exists a unique g : C/∼ → C2 such that f =
g ◦ Q∼. Still, we have the following facts :

– g is a monomorphism iff ∼ f =∼,
– ∼Q∼=∼,
– Q∼ is an extremal epimorphism.

Lemma 6 [1] Generalized congruences on a given small category, ordered by compo-
nentwise inclusion, form a complete lattice whose meets are componentwise intersec-
tions. The total relation which identifies all objects and all non-empty finite sequences
of morphisms is a generalized congruence, precisely � of the lattice, while (=Ob(C),∅)

is ⊥. Thus, for an arbitrary pair of relations Ro on Ob(C) and Rm on Mo(C)+, there is
a least generalized congruence containing (Ro, Rm).

4.2 Quotient of a Small Category by One of Its Subcategories : C/�

Given � a subcategory of a small category C, we can define C/� := C/∼ where ∼ is
the least generalized congruence on C containing

(∅,
{
(idtgt(σ ), σ ), (σ, idsrc(σ ))

∣∣ σ ∈ Mo(�)
})

(by Lemma 6).

Proposition 2 (Description and universal property of C/�)
Given a small category C and � ⊆ Mo(C), closed under composition (in fact, take �

a subcategory of C). Let (∼o,�, ∼m,�) be the least generalized congruence containing
(∅, {(idtgt(σ ), σ ), (σ, idsrc(σ ))|σ ∈ �}). Then:

– for all x, y ∈ Ob(C), x ∼o,� y if and only if there is a �-zig-zag between x and y.
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– for all (βn, . . . , β0), (αm, . . . , α0) ∼o,�-composable sequences (i.e. src(αi+1)

∼o,� tgt(αi) and src(αi+1) ∼o,� tgt(αi)), we have

(βn, . . . , β0) ∼m,� (αm, . . . , α0)

if and only if there is a finite sequence of “elementary transformations” from
(αm, . . . , α0) to (βn, . . . , β0), where an “elementary transformation” is either

– (αn, . . . , αi+1, σ, αi−1, . . . , α0) ∼1
m,� (αn, . . . , αi+1, idsrc(σ ),αi−1, . . . , α0) if σ ∈ �

– (αn, . . . , αi+1, σ, αi−1, . . . , α0) ∼1
m,� (αn, . . . , αi+1, idtgt(σ ), αi−1, . . . , α0) if σ ∈ �

– (αn, . . . , αi+2, αi+1, αi, αi−1, . . . , α0) ∼1
m,� (αn, . . . , αi+2, αi+1 ◦ αi, αi−1, . . . , α0) if

src(αi+1) = tgt(αi).

C/� is characterized by the following universal property:
for all f ∈Cat[C, C ′], if for all σ ∈ �, f (σ ) = id then there exists a unique

g ∈Cat[C/�, C ′] such that f = g ◦ Q� .

Moreover, if C1

f
�� C2 satisfies f (�1) ⊆ �2 then there exists a unique h :

C1/�1
�� C2/�2 such that Q�2 ◦ f = h ◦ Q�1 , where Q� is the quotient functor

(refer to Proposition 1) associated to the generalized congruence induced by �.
The arrow h is also denoted f/�1,�2 , and in the same stream of notation g is

denoted f/� .

4.3 The Component Category as a Quotient Category

Theorem 2 Given a “loop-free” category L and � a Yoneda-system of L, L[�−1] is
equivalent to L/�

Sketch of proof By definition of calculus of fractions we have a (canonical) functor
I� : L −→ L[�−1] and by definition of generalized congruences, we have a (canoni-
cal) functor Q� : L −→ L/�. By definition of Q�, for all σ ∈ � Q�(σ ) is an identity
of L/�, it follows, by the universal property of I� , that there is a unique functor
R� : L[�−1] −→ L/� such that Q� = R� ◦ I� .

Now we prove that R� is an equivalence of category. Given an object x of L/� we
“choose” (implicitly applying the axiom of choice) x ∈ x (we recall that, by definition,
x is an equivalence class of L), thus we have defined a mapping J� : Ob (L/�) −→
Ob

(
L[�−1]). Given an object x of L[�−1], R�(x) = Q�(x) = x since Q� = R� ◦

J� . It follows that given an object x of L/�, R�(J�(x)) = x. Moreover, it is a general
fact that if L is a loop-free category and � is a Yoneda-system of L, then L/� is still

loop-free (see [21]). Thus, we conclude x ∈ Ob
(
L/�

)
. Hence the only morphism of

L/� from R�(J�(x)) = x to x is idx.
Therefore the co-unit of the adjunction (if it exists) is necessarily (εx = idx)x∈L/� .

To check we actually have an adjunction, it suffices to prove that for all objects x and
y of L with x satisfying J�(R�(x)) = x, the following mapping is a bijection:

L
[
�−1

][
y, x

] �� L/�

[
y, x

]

f � �� εx ◦ R�( f ) = R�( f )
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It is obviously onto since Q� is onto. The proof of the one-to-one property is
omitted because of space limitations, but can be found in [21].

We thus actually have a bijection and the family (εx = idx)x∈L/�
is a natural

transformation from R� ◦ J� to IdL/�
. To check that we have an equivalence of

categories, it remains to see that the unit of the adjunction is also an isomorphism.

Given x ∈ Ob
(
π1(

−→
X )[�−1]

)
, ηx is a morphism of π1(

−→
X )[�−1] from x to I�(R�(x))

which are in the same �-component, hence ηx is an isomorphism of L[�−1] (the
pureness of � is implicitly involved).

This completes the proof except for the technicality that we signalled. ��
A complete proof of Theorem 2 is available in [21] together with several corollar-

ies and illustrating examples.
It would be interesting to know whether the component category construction is

functorial or not, but it seems not to be so, as far as we know.
Finally we state:

Corollary 2 Given a po-space
−→
X and � the biggest Yoneda system of

−→
X , −→π1(

−→
X )[�−1]

is equivalent to −→π1(
−→
X )/� (which is, by definition, the component category of

−→
X ).

In the above Corollary, the quotient category −→π1(
−→
X )/�, is in fact −→π1(

−→
X )/ ∼

where ∼ is the generalized congruence generated by σ ∼ id for all σ ∈ �.
From a computer science point of view, Corollary 2 is exactly what was expected

of component categories. It gives a “smaller” model of X, as far as dipaths modulo
dihomotopy are concerned.

For example, considering the example of the square with a hole, −→π1(
−→
X ) has the

size of a continuum while its component category is finite. It remains to establish an
algorithm to determine, at least in the cubical cases, the component category of a
po-space (see [15] for the first few steps in that direction).

5 van Kampen Theorem for Component Categories

The following proposition shows that loop-freeness is well-behaved with respect to
quotients. It is in fact necessary in the full proof of Theorem 2.

Proposition 3 Let C be a small category and � a wide subcategory of C. ‘If ’ C is loop-
free and � is a pure subcategory of Yoneda morphisms admitting the left and right
extension properties ‘then’ C/� is loop-free.

The proof of Proposition 3 is given in [20]. Theorem 3 gives the general framework
in which the construction of the component category is functorial. The idea is to equip
any small category C in our scope of interest with a subcategory of distinguished
morphisms (called “inessential” in [9]) which are informally those along which “noth-
ing happens.” The theorem will be applied with Yoneda-systems as subcategories of
distinguished morphisms.
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Let us denote LfCatSys the category whose objects are the couples (C, �) where
� is a Yoneda system over C and the morphisms from (C1, �1) to (C2, �2) are the
elements of LfCat

[
C1, C2

]
such that f (�1) ⊆ �2. In this case, for any couple (C, �),

we choose a representative of the quotient of C by � that we denote by −→π0
(
C, �

)
;

if f is a morphism of LfCatSys from (C1, �1) to (C2, �2), then by definition, −→π0
(

f
)

is the unique small functor g from −→π0
(
C1, �1

)
to −→π0

(
C2, �2

)
such that Q�2 ◦ f = g ◦

Q�1 : the small functors Q�1 , Q�2 and g are given by the universal property of the
quotients and the functoriality of −→π0 is thus a consequence of the uniqueness of g.
Recall that the isomorphisms of a loop-free category are its identities. Let us denote
U the forgetful functor from LfCatSys to LfCat.

Given any object C of LfCat, we set F(C) := (C, Iso(C)) and −→π0(C, �) := C/�,
defining thus the objects parts of the functors F and −→π0 .

Given a morphism f of LfCat
[
C1, C2

]
, F( f ) is the unique morphism in

LfCatSys
[
(C1, Iso(C1)), (C2, Iso(C2))

]
induced by f , meaning U(F( f )) = f , and at

last, for any morphism f of LfCatSys[(C1, �1), (C2, �2)], we set −→π0 ( f ) := f�1,�2 . Then
we have:

Theorem 3 (The component category functor) The functor −→π0 is left adjoint to the
functor F, which is left adjoint to the functor U. −→π0 � F � U

LfCatSys

U

��

−→π0

��
LfCat

F
��
 
 
 
 
 
 
 
 
 


Proof From Theorem 1, the smallest Yoneda system of C is its set of isomorphisms.
It follows that F is the left adjoint of U and the unit of this adjunction is an identity.

Let us prove that −→π0 is the left adjoint of F and that its unit is given by the
collection of quotient functors Q� from C to C/� (Proposition 2) that induce
morphisms of LfCatSys from (C, �) to (C/�, Iso(C/�)).

We have here to check that C/� is actually loop-free, which is given by Pro-
position 3. If f is a morphism of LfCatSys from (C, �) to (C ′, Iso(C ′)), then,
still from Proposition 2, there exists a unique functor g from C/� to C ′ such
that f = g ◦ Q� and it is clear that g induces a unique morphism of LfCatSys[
(C, Iso(C)), (C ′, Iso(C ′))

]
, whence the expected adjunction. ��

Remember that a van Kampen theorem about a functor F is the statement that,
under some particular conditions on a pushout square (algebraic topologists would
rather say “glueing”) this pushout square is preserved by F. We already have a
directed van Kampen theorem for −→π1 and Theorem 3 shows that −→π0 is a left adjoint,
hence preserves all colimits and a fortiori pushout squares. It remains to find a way to
“include” LfCat in LfCatSys in such a way that the pushout square we are interested
in is preserved by the “inclusion.” To do so, we will have to add hypotheses to
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the ones already required by the directed van Kampen theorem for fundamental
categories.

Proposition 4 (van Kampen theorem for fundamental categories)
Let

−→
X 1,

−→
X 2 be sub-objects of

−→
X (object of PoSpc) such that the underlying topolog-

ical space of
−→
X is the union of the interiors6 of the underlying topological spaces of−→

X 1 and
−→
X 2. Let

−→
X 0 be defined as

−→
X 1 ∩ −→

X 2 and i1 : −→
X 0 ↪→ −→

X 1, i2 : −→
X 0 ↪→ −→

X 2, j1 :−→
X 1 ↪→ −→

X and j2 : −→
X 2 ↪→ −→

X be the inclusion maps. Then we have the following
pushout squares

−→
X π1(

−→
X )

−→
X 1

j1���

������

pushout −→
X 2

j2���



����

π1(
−→
X 1)

π1( j1)����

������

pushout π1(
−→
X 2)

π1( j2)





��





−→
X 0

i1���



���
i2���

�����

π1(
−→
X 0)

π1(i1)





��




π1(i2)����

������

respectively in PoSpc and LfCat.

Proof The proof of Proposition 4 can be found in [14]7 or in [17]. It is an adaptation
of the proof of van Kampen theorem for fundamental groupoid given in [23]. ��

The following result was a conjecture in Section 7 of [9], and is the central result
of this section:

Theorem 4 (van Kampen for component category)
Let

−→
X 1,

−→
X 2 be sub-objects of

−→
X 3 (object of PoSpc) such that the underlying topolog-

ical space of
−→
X3 is the union of the interiors of the underlying topological spaces of

−→
X 1

and
−→
X 2. Also let

−→
X 0 := −→

X 1 ∩ −→
X 2 and i1 : −→

X 0 ↪→ −→
X 1, i2 : −→

X 0 ↪→ −→
X 2, j1 : −→

X 1 ↪→ −→
X3

and j2 : −→
X 2 ↪→ −→

X3 be the respective inclusion maps.
Moreover, suppose that

– �1 and �2 are respectively Yoneda-systems of π1(
−→
X 1) and π1(

−→
X 2),

– π1( j1)(�1)
⊎

π1( j2)(�2) (also denoted �3) is a Yoneda system of π1(
−→
X 3)

– π1(i1)(�0) ⊆ (�1) and π1(i2)(�0) ⊆ (�2) (i.e. π1(i1), π1(i2) are morphisms of
LfCatSys).

6With respect to the underlying topology of
−→
X .

7In a more restrictive case than in [23], but with a stronger dihomotopy relation.
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‘then’
the inclusions i1, i2, j1 and j2 give rise to i′1, i′2, j′1 and j′2 morphisms of LfCatSys and
we have

(π1(
−→
X 3),�3)

(π1(
−→
X 1),�1)

j′1
�������������

pushout in (π1(
−→
X 2),�2)

j′2
�������������

(π1(
−→
X 0),�0)

i′1

������������� i′2

�������������
LfCatSys

and

−→π0(π1(
−→
X 3),�3)

−→π0(π1(
−→
X 1),�1)

−→π0( j′1)
��������������

pushout in −→π0(π1(
−→
X 2),�2)

−→π0( j′2)
��������������

−→π0(π1(
−→
X 0),�0)

−→π0(i′1)

�������������� −→π0(i′2)

��������������
LfCat

Proof Theorem 4 gives us pushout squares in PoSpc and LfCat:

−→
X π1(

−→
X )

−→
X 1

j1���

������

pushout −→
X 2

j2���



����

π1(
−→
X 1)

π1( j1)����

������

pushout π1(
−→
X 2)

π1( j2)





��





−→
X 0

i1���



���
i2���

�����

π1(
−→
X 0)

π1(i1)





��




π1(i2)����

������

We have to prove that π1(
−→
X 0), π1(

−→
X 1), π1(

−→
X 2) and π1(

−→
X 3) respectively equipped

with �0, �1, �2 and �3 give rise to a pushout square in LfCatSys.
Given f1 : (π1(

−→
X 1),�1) −→ (L, �) and f1 : (π1(

−→
X 2),�2) −→ (L, �) morphisms

of LfCatSys such that f1 ◦ i1 = f2 ◦ i2, by hypothesis, there exists a unique h :
π1(

−→
X 3) −→ L (morphism of LfCat) such that f1 = h ◦ j1 and f2 = h ◦ j2. It remains

to see that h gives rise to a morphism of LfCatSys i.e. h(�3) ⊆ �.
By hypothesis, �3 = j1(�1)

⊎
j2(�2) so any element of �3 can be written j2(α2n+1)·

j1(α2n) · ... · j2(α1) · j1(α0) where for all k∈ {0, ..., n}, α2k ∈�1 and α2k+1 ∈ �2.
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j2 j1

i1i2

PoSpc

push–out
in

LfCat

push–out
in

j2

i2

j1

i1

Fig. 3 An application of the van Kampen theorem on component categories

It follows that h( j2(α2n+1) · j1(α2n) · ... · j2(α1) · j1(α0)) = (h ◦ j2)(α2n+1) · (h ◦ j1)(α2n)

·... · (h ◦ j2)(α1) · (h ◦ j1)(α0)= f2(α2n+1) · f1(α2n) · ... · f2(α1) · f1(α0) ∈ � since f1, f2

are morphisms of LfCatSys, hence h gives rise to a morphism of LfCatSys from
(π1(

−→
X 3),�3) to (L, �). Thus we have a pushout square in LfCatSys. Now by

Theorem 3, we know that −→π0 is a left adjoint hence (see for instance [2]) preserves
colimits and, in particular, pushout squares. ��

Theorem 4 does not necessarily give the biggest Yoneda system of π1(
−→
X 3), so one

has to guess what this biggest Yoneda system is in order to choose appropriate �1

and �2. The choice of �0 is not relevant since once �1 and �2 are given, it is possible
to take �0 as the biggest Yoneda-system of π1(

−→
X 0) satisfying π1(i1)(�0) ⊆ (�1) and

π1(i2)(�0) ⊆ (�2). Furthermore, given a po-space
−→
X , we write −→π0(

−→
X ) instead of

−→π0

(−→π1(
−→
X ),�

)
where � is the “biggest” Yoneda system of −→π1(

−→
X ). By definition,

−→π0(
−→
X ) is the component category of

−→
X .

Let us examine the example of the rectangles with two holes, see the left hand
side of Fig. 3, which gives, by Theorem 4 the category depicted on the right hand side
figure.

In this figure, rectangles in grey color are “not” commutative. The holes of the
geometrical shape are represented by non-commutative squares in the component
category. The dashed line represent the boundaries of the components. The problem
of knowing which component these lines belong to is of topological nature and has
been briefly studied in [9], Section 5.3 and 6.

Applying Theorem 4 we can also prove that the component category of the
cube with a centered cubical hole has 26 objects8 as already noted in [9]. It can be
represented in IR3 putting an object in the “center” of each vertex, edge and face

8Geometrically, picture the Rubik’s cube, the interior cube is the hole, all other cubes give an object.
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(8 vertices + 12 edges + 6 f aces = 26 objects). Morphisms are generated by arrows
from a point to its “closer neighbours in the future,” for example those of (0, 0, 0)

are (0, 0, 1
2 ), (0, 1

2 , 0) and ( 1
2 , 0, 0) while (1, 1, 1) has no such neighbours. In order to

have the hypothesis of Theorem 4 satisfied, we split the cube into two parts so that,
following notation of Theorem 4, X0 :=] 1

2 − ε, 1
2 + ε[×[0, 1] × [0, 1]. It is the analog

of the previous example in three dimensions.

6 Future and Past Components

In order to refine some of our results, and our understanding of components, we
define a notion of component category in the future, as component categories of
Section 2, except we only keep “half” of the axioms:

Definition 8 Let C be a small category, �+ ⊆ Mo(C) is a Yoneda-f-system if and only
if �+ is stable under composition and satisfies

(Af1) for all σ in �+ for all objects z of C such that C[y, z] 
= ∅, the map:

C[y, z]
−◦σ

�� C[x, z] is a “bijection,”

(Af2) �+ contains Iso(C)

(Af3) �+ is stable under “pushouts” (with any morphim in C)

Remark that (Af1) of Definition 8 is equivalent to the preservation of the future
cone, see the first part of Definition 3. The idea, that we will formalize in the rest of
the section, is that we distinguish states, or objects in the fundamental category, only
up to the possible futures. Dually we can define a Yoneda-system in the past as the
other half of the axiom of Section 2:

Definition 9 Let C be a small category, �− ⊆ Mo(C) is a Yoneda-p-system if and only
if �− is stable under composition (of C) and satisfies

– for all σ in �− for all object z of C such that C[z, x] 
= ∅, the map:

C[z, x]
σ◦−

�� C[z, y] is a “bijection.”

– �− contains Iso(C)

– �− is stable under “pullbacks” (with any morphim in C)

We will always denote in the following Yoneda-f-systems by �+ and Yoneda-p-
systems by �−. Yoneda-f-systems (respectively Yoneda-p-systems) form complete
lattice as Yoneda-systems did (similar arguments as those of Section 3.2 apply).
Future component categories (respectively past component categories) are defined
analogously as component categories, as the quotient of the fundamental category
by the biggest Yoneda-f-system (respectively Yoneda-p-system).
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The main result of [9] is the following lifting property, it has been improved in [21]
as follows:

Proposition 5 (Lemma 3.13 of [21]) Let � be a Yoneda system of a loop-free category
C and two objects C1, C2 of C/� (hence C1, C2 ⊆ ob (C)). Then, for all x1 ∈ C1 there
exists x2 ∈ C2 such that the map

C(x1, x2) → C/�(C1, C2), f �→ [ f ]

bijective.

Now we have similar results (which are then true also for component categories,
since Yoneda-systems are in particular Yoneda-f-systems):

Proposition 6 Let C be a category in which all endomorphisms are identities (this
is true in particular if C is loop-free). Let �+ (respectively �−) be any Yoneda-
f-system (respectively Yoneda-p-system) on C and C1, C2 ⊂ Ob(C) be two future
components (respectively past components) such that the set of morphisms in C/�+ (or
equivalently, by Theorem 2, in C[�−1

+ ]) is “finite.” Then, for every x1 ∈ C1 (respectively
x2 ∈ C2) there exists x2 ∈ C2 (respectively x1 ∈ C1) such that the quotient map

C(x1, x2) → C/�+(C1, C2), f �→ [ f ]

is “bijective.”

Proof It suffices to go through each different step of the proof of Proposition 7 of [9]
for future components (the case of past components is similar).

Proposition 3 of [9] still holds since future components form in particular a
l-system (i.e. in the terminology of this paper, it has LEP with respect to C, hence
it has a left extension property):

(B1) For every f ∈ C(x, y) and every x′ ∼o,�+ x there exists y′ ∼o,�+ y and f ′ ∈
C(x′, y′) such that f ′ ∼m,�+ f .

(B2) Let [ f ]m,�+ ∈ �π0(C;�+)([x]o,�+ , [y]o,�+) and let x′ ∈ [x]0,�+ , where [.]o,�+ de-
notes the equivalence class under ∼o,�+ for objects of C, with the terminology
of Section 4.2 (respectively, [.]m,�+ denotes the equivalence class under ∼m,�+
for morphisms of C). Then there exists y′ ∈ [y]�+ and f ′ ∈ C(x′, y′) such that
[ f ′]�+ = [ f ]�+ .

The proof of Proposition 4 of [9] used in the proof of Proposition 7 of [9] cannot
be used here, because for Yoneda- f -systems, we do not have the pureness necessary
for this proposition to be true. In fact, this will be not necessary here. We have a
particular form of purity for future components that is sufficient. The same argument
than for Lemma 1 shows (using the pushout property) that f2 ◦ f1 ∈ �+ implies
f2 ∈ �+.
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This is what we need to prove Proposition 5 of [9] that we recast below:
Let σ, τ ∈ �+(x,−). There exists a solution of the extension problem

· ��



σ ′

·

x

τ

��

σ

�� ·

���
�
� τ ′

with both morphisms σ ′, τ ′ ∈ �+.
Take σ : α → β ∈ �+ and τ : α → γ ∈ �+. Take their pushout:

· ��



σ̃ ·

x

τ

��

σ

�� ·

���
�
� τ̃

We know σ̃ is in �+, and that σ̃ ◦ τ = τ̃ ◦ σ . With our “half-purity,” this also
implies that τ̃ ∈ �+.

Let us now rephrase the proof of [9].
Let g1, . . . , gn be the finitely many morphisms (by hypothesis) from C1 to C2 in

C/�+. By repeated application of (B2), they can be lifted to f1, . . . , fn ∈ −→π1(
−→
X ) with

fi : x1 ∈ C1 → yi ∈ C2.
All yi are in C2, i.e. y1 ∼o,�+ y2 ∼o,�+ . . . ∼o,�+ yn. By Proposition 2, we know that

we have �+-zig-zag morphisms between yi and yi+1 (1 ≤ i ≤ n − 1). Taking repeated
pushouts of these morphisms, we deduce that there exists λi : yi → zi and μi : yi → zi

both in �+. Taking again repeated pushouts of the zig-zag morphisms constituted by
λ1, μ1, . . . , λn−1, μn−1, we find maps in �+, τi : yi → x2 ∈ C2.

The quotient map is onto, since τi ◦ fi � fi, 1 ≤ i ≤ n.
To prove injectivity, assume fi ∈ C(x1, x2) with

[ f1] = [ f2] ∈ �π0(C;�+)(C1, C2)

Then, there exist x0 ∈ C1, x3 ∈ C2 and morphisms σi ∈ �+(x0, x1), τi ∈ �+(x2, x3),

1 ≤ i ≤ 2, such that τ1 ◦ f1 ◦ σ1 = τ2 ◦ f2 ◦ σ2 ∈ C(x0, x3). By (Af1), we find that there
can only be a unique morphism between two fixed objects within the same compo-
nent, hence σ1 = σ2 and τ1 = τ2. Since . ◦ σ1 is a bijection here by (Af1) again, we
conclude τ1 ◦ f1 = τ1 ◦ f2. Finally, by (Af2), τ1 is a mono, hence f1 = f2 ∈ C(x1, x2).

��

We can improve the result of Proposition 5, so that the hypothesis of finiteness
can be suppressed. We need the following notion:

Definition 10 Given a set X ∪ {⊥} where ⊥ 
∈ X, we denote by DX the poset X ∪ {⊥}
ordered by the relation

{
(⊥, x)

∣∣ x ∈ X
}

, so ⊥ is the least element of the poset. Let
F be a functor from DX to a category C. We name the colimit of F(DX) in C, when
it exists, the X-pushout of F. An X-pushout is a natural generalization of a (binary)
pushout.
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Given two sets X and Y, DX and DY are isomorphic if and only if X and Y have
the same “cardinality,” it follows that if X and Y have the same cardinality, C has
X-pushouts if and only if it has Y-pushouts. So, for any cardinal κ , we will say that
C has κ-pushouts when it has X-pushouts for some set X of cardinality κ . Given
two cardinals κ1 and κ2 such that κ1 ≤ κ2, if C has κ2-pushouts, then it also has κ1-
pushouts. We say that C has infinite pushouts when C has κ-pushouts for any cardinal
κ , one easily checks that given a small category C, if C has Ob(C)-pushouts, then C
has infinite pushouts.

Now, if we ask for the subcategory �+ to have infinite pushouts then the lifting
property of Proposition 5 holds even if the set of morphisms (in C/�+) between two
objects is not finite.

We conjecture that in all “usual cases” of interest in concurrency semantics, such
as PV models, future components have automatically infinite pushouts (respectively,
past components have automatically infinite pullbacks).

Let us complete our knowledge of future and past component categories. We first
recall a useful notion of category theory:

Definition 11 [2] Let C be a category and � a class of morphisms of C. By the
orthogonal subcategory of C determined by �, we mean the full subcategory C� of
C, whose objects are those X ∈ C such that s ⊥ X for every s ∈ �, i.e., such that
for every s : A → B ∈ �, for every morphism f : A → X, there exists a unique
morphism b : B → X such that b ◦ s = f .

A

∀ f∈C
��

s∈�
�� B

∃!b���
�

�
�

X

Theorem 5 Let �+ be a Yoneda-f-system in the small category C. Suppose that �+
has “infinite” pushouts, then C�+ is reflective in C (Fig. 4) .

Fig. 4 Illustrates the
construction and the
geometrical meaning of
theorem 5. The “•’s” represent
the maximum elements of the -
two - components of the
po-space and the - two - wide
arrows are the two arrows of
C�+ . The thin arrows starting
from C correspond to the ts, f
of the proof, while the thin
dotted arrows are the us, f . It
clearly appears that �(C) is the
maximum element of the
component containing C.
Illustration of Theorem 5

ΓC

C
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Note that Theorem 5.4.7 of Borceux’s book [2] is of a similar nature. This theorem
shows that in a cocomplete category C such that every object is presentable, for every
set of morphism �+, C�+ is reflective in C. But this does not apply in our context, since

we want to apply it with C =→
π1

( →
x

)
which is in general not cocomplete nor well-

complete. Also, few objects are presentable in general in
→
π 1 (just consider categorical

sums). But if we have hypotheses on �+ instead of hypotheses on C, we get a very
similar result.

Proof We follow the proof of F. Borceux [2]. By definition of the orthogonal
subcategory, we have an obvious inclusion functor I from C�+ to C.

To prove that we have a reflective subcategory, we need to construct the left
adjoint to I which is denoted �. Let C ∈ C. For every pair (s, f ) where s : S → T ∈
�+ and f : S → C ∈ C, we have a pushout diagram (call it a (s, f ) pushout square)
where ts, f ∈ �+ (because �+ is a Yoneda-f-system). The diagram made of all the
arrows ts, f is small because so are �+ and C. Since �+ has infinite pushouts, the

colimit of this diagram exists in �+ and is denoted
(
�C, (us, f )s, f

)
, thus providing

�C ∈ �+.

S
s∈�+

��

f

��

T

gs, f

���
�
�

C
ts, f ∈�+

��


 Ps, f

We have defined the object part of �. Now we construct a family of morphisms
of C, denoted (γC )C∈ObC , that will be the unit of the adjunction. Let us determine
γC : C −→ �C. Given two (s, f )-pushout squares, by definition of a colimit, we have
us, f ◦ ts, f = us′, f ′ ◦ ts′, f ′ , hence we can set γC := us, f ◦ ts, f since it does not depend on
the (s, f )-pushout square we have chosen. Moreover, γC ∈ �+ for it is given by the
composite of two morphisms of �+.

S
s

��

f

��

T

gs, f

��
Ps, f

us, f

��

���
��

C

ts, f���

����

ts′ , f ′
��

���
�

γC
�� �C

Ps′, f ′

us′ , f ′��

�����

S′
s′

��

f ′

��

T ′

��
gs′ , f ′

��
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We determine the morphism part of �, this construction will implicitly prove that γ

is a natural transformation from IdC to I ◦ �. Let h : C1 −→ C2. For each pushout
square

S
s

��

f

��

T

g1
s, f

��

C1

t1
s, f

�� P1
s, f

we have, by hypothesis on �+ and since ts, f ∈ �+, the commutative diagram:

C1

h

��

t1
s, f

�� P1
s, f

g2
t1s, f ,h

��

u1
s, f

�� �(C1)

�(h)

��

C2

t2
t1s, f ,h

�� P2
t1
s, f ,h

u2
t1s, f ,h

�� �(C2)

where the left square is a pushout square as in the beginning of the proof with C :=
C2, s := t1

s, f and f := h, whence the - heavy but coherent - notation. The immediate
consequence of this setting is that γ is actually a natural transformation.

Now we prove that for all C ∈ C, �(C) ∈ C�+ . Given (s, f ) with s : S → T ∈
�+, src( f ) = S and tgt( f ) = �(C), we have a unique g making the right side diagram
commutative. Precisely, g :=us, f ◦ gs, f , indeed, us, f ◦ gs, f ◦ s=us, f ◦ ts, f ◦ f =γC ◦ f .
The uniqueness is due to the bijectivity of γ ∈ C[S, T] −→ γ ◦ s ∈ C[S, �(C)], be-
cause s preserves the future cone (see Definitions 8 and 3). Thus, s ⊥ �(C) and �(C)

is in the orthogonal subcategory determined by �+.

S
s∈�+

��

f

��

T

g���
�

�
�

�(C)

Conversely, suppose that X ∈ C�+ . Given (s, f ) with s : S → T ∈ �+, src( f ) = S
and tgt( f ) = X, we have a unique g making the right side diagram commutative,
which is in fact a pushout square since s is an epi. With the notation introduced at the
beginning of the proof, gs, f = g and ts, f = idX . Then the colimit (�(X), us, f ) is the
colimit of the family (idX){(s, f ) with s:S→T∈�+, src( f )=S and tgt( f )=X}. Hence us, f

∼= idX for
all such pairs (s, f ) and �(X) ∼= X in C.

S
s∈�+

��

f

��

T

g

���
�
�

X
idX

�� X
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The last part of the proof consists of seeing that

α ∈ C�+[�(C), D] �−→ I(α) ◦ γC ∈ C[C, I(D)]
is a bijection. Let us consider the canonical morphism γC : C → �C of the colimit.
Given D ∈ C�+ and m : C → D, we have to find a unique n : �C → D such that n ◦
γC = m.

As D ∈ C�+ , it is orthogonal to all morphisms s ∈ �+. In particular, for all pairs
(s, f ) as above, there exists a unique bs, f such that bs, f ◦ s = m ◦ f . By the pushout
property defining Ps, f we deduce that there is a unique morphism as, f : Ps, f → D
such that as, f ◦ ts, f = m and as, f ◦ gs, f = bs, f . This is done for all pairs (s, f ). Hence
by the colimit property defining �C, we find a unique morphism n : �C → D such
that n ◦ us, f = as, f . Hence

n ◦ γC = n ◦ us, f ◦ ts, f

= as, f ◦ ts, f

= m

which ends the proof. ��

Similarly for Yoneda-p-systems, if we suppose �− to have infinite pullbacks (take
the dual of the definition of infinite pushouts), then C�− (the dual orthogonal cate-

gory) is coreflective in
→
π 1 (X). In that case, points that represent past components

are the minimal points of these components.
Note that, the construction of � done above is almost exactly the same as the

one that proves the adjoint functor theorem see [2] for details. The construction is
made up to isomorphism, to have a “concrete” � we would have to “choose” a family
of us, f . In fact, C�+ is the image of � up to isomorphism, that is to say any object
of C�+ is isomorphic to an element of the image of a “concrete” �. This remark is
made to emphasize the fact that C�+ is a replete subcategory of C, i.e. any object of C
isomorphic to an object of C�+ is also in C�+ .

Referring to [9], the co-completeness of the Yoneda-f-system of π1(
→
X), namely

�+, exactly implies that all the components of
→
X have a reachable maximum element.

Then intuitively, C�+ and C/�+ should be isomorphic, C�+ being just a representation
in C of C/�+.

7 Conclusion, Related and Future Work

The material of last section has to be compared with the notion of future equivalence
(and dually, past equivalence) due to Marco Grandis [18]. Our approach consists in
determining criteria that tell which points should be identified according to some
notion of “preservation of the choices.” In Marco Grandis’ setting, one tries to find,
for any point p, a point p+9 which is the further point in the future before the first
choice: intuitively the first crossroad on the path. The point p+ should be, in our
framework, the “last” (think about it as the greatest) point of the future component

9Think about p+ as �p where the notation � refers to the proof of Theorem 5.



Components of the fundamental category II 413

of p. If one considers a �-component C for some � as in Definition 5, it might happen
that C neither has greatest nor least element: see the components 5 and 6 of the swiss
flag on Fig. 2. Even if C is a future component, the point p+ does not necessarily exist
as one can see on the example of the directed real line, the pathology comes from the
fact that the underlying topological space is not “bounded.”

However, in the case where the underlying topology of a po-space
−→
X is “com-

pact,” we hope (it is actually a conjecture) that any future component C of −→π1(
−→
X )

has a greatest element. In fact, we even expect that p+ is the colimit (in −→π1(
−→
X )) of

the full subcategory of −→π1(
−→
X ) whose objects are the points of C, in other words the

infinite pushout of the family ( fs, f ) introduced in the proof of Theorem 5. While
this property is weaker than the existence of all infinite pushouts, it should be strong
enough to prove Theorem 5 as well as (it is another conjecture) to guarantee the
existence of the future spectra of −→π1(

−→
X ) in the sense of [18].

Let us mention also that the careful study of the structure of components is of
primary importance in practice. As an example, we refer the reader to [15], where
a (still naive) inductive computation of components, in the particular case of PV
models, is used for static analysis of concurrent programs, and shows very good
performances. The more we understand the structure of the fundamental category
(and of higher-order fundamental categories), the better we can design practical
methods for validation of concurrent programs, and the better we can understand
the structure of concurrent and distributed computations.

Acknowledgements We thank Marco Grandis and the anonymous referee for the many sugges-
tions for improving this article.

References

1. Bednarczyk, M., Borzyszkowski, A., Pawlowski, W.: Generalized congruences-Epimorphisms in
CAT. Theory Appl. Categ. 5(11), (1999)

2. Borceux, F.: Handbook of categorical algebra 1 : basic category theory. In: Encyclopedia of
Mathematics and Its Applications, vol. 50. Cambridge University Press, Cambridge, MA (1994a)

3. Borceux, F.: Handbook of categorical algebra 3 : categories of sheaves. In: Encyclopedia of
Mathematics and Its Applications, vol. 52. Cambridge University Press, Cambridge, MA (1994b)

4. Bridson, M., Haefliger, A.: Metric Spaces of Non-positive Curvature. Springer, Berlin Heidelberg
New York (1999)

5. Cohen, R.L., Jones, D.S., Segal, G.B.: Morse theory and classifying spaces. Technical report,
Warwick University Preprint (1995)

6. Dijkstra, E.: Cooperating Sequential Processes. Academic, New York (1968)
7. Dodson, C., Poston, T.: Tensor Geometry, 2nd edn. Springer, Berlin Heidelberg New York

(1997)
8. Eilenberg, S.: Ordered topological spaces. Amer. J. Math. (63), 39–45 (1941)
9. Fajstrup, L., Goubault, E., Haucourt, E., Raussen, M.: Component categories and the fundamen-

tal category. APCS 12(1), 81–108 (2004)
10. Fajstrup, L., Goubault, E., Raussen, M.: Algebraic topology and concurrency. Theor. Comp. Sci.

357, 241–278 (2006) (and also technical report, Aalborg University 1999)
11. Freyd, P., Scedrov, A.: Categories, allegories. In: Mathematical Library, vol. 39. North-Holland,

Amsterdam (1990)
12. Gabriel, P., Zisman, M.: Calculus of fractions and homotopy theory. In: Ergebnisse der Mathe-

matik und ihrer Grenzgebiete, no. 35. Springer, Berlin Heidelberg New York (1967)
13. Gaucher, P.: A model category for the homotopy theory of concurrency. Homology, Homotopy

Appl. 5(1), 549–599 (2003)



414 E. Goubault, E. Haucourt

14. Goubault, E.: Some geometric perspectives in concurrency theory. Homology, Homotopy Appl.
5(2), 95–136 (2003)

15. Goubault, E., Haucourt, E.: A practical application of geometric semantics to static analysis of
concurrent programs. In: Abadi, M., de Alfaro, L. (eds.), CONCUR 2005 – Concurrency Theory:
16th International Conference, San Francisco, USA, August 23–26. Lecture Notes in Computer
Science, vol. 3653, pp. 503–517. Springer, Berlin Heidelberg New York (2005)

16. Goubault, E., Raussen, M.: Dihomotopy as a tool in state space analysis. In: Rajsbaum, S. (ed.),
LATIN 2002: Theoretical Informatics. Lecture Notes in Computer Science, Cancun, Mexico,
vol. 2286, pp. 16–37. Springer, Berlin Heidelberg New York (2002)

17. Grandis, M.: Directed homotopy theory, I. The fundamental category. Cahiers Topologie Géom.
Différentielle Catég 44, 281–316 (2003) (Preliminary version: Dip. Mat. Univ. Genova, Preprint
443 (Oct 2001); Revised: 5 Nov 2001, 26 pp (2003))

18. Grandis, M.: The shape of a category up to directed homotopy. Theory Appl. Categ. 15(4),
95–146 (2005)

19. Haefliger, A.: Extension of complexes of groups. Ann. Inst. Fourier 42(1–2), 275–311 (1992)
20. Haucourt, E.: Topologie algébrique dirigée et Concurrence. Ph.D. thesis, Université Paris 7,

Denis Diderot (2005)
21. Haucourt, E.: Categories of components and loop-free categories. Theory Appl. Categ. 16(27),

736–770 (2006)
22. Hawkins, S., Ellis, G.: The large scale structure of spacetime. Cambridge monographs on mathe-

matical physics. Cambridge University Press, Cambridge (1973)
23. Higgins, P.J.: Categories and Groupoids. Van Nostrand Reinhold, London (1971) (available as

TAC reprint at http://www.tac.mta.ca/tac/reprints/)
24. Johnstone, P.T.: Stone Spaces. Cambridge University Press, Cambridge, MA (1982)
25. Mac Lane, S.: Categories for the Working Mathematician. Springer, Berlin Heidelberg New York

(1971)
26. Martin, K., Panangaden, P.: A domain of spacetime intervals in general relativity. In:

Kopperman, R., Smyth, M.B., Spreen, D., Webster, J. (eds.), Spatial Representation: Discrete
vs. Continuous Computational Models. Internationales Begegnungs- und Forschungszentrum
fuer Informatik (IBFI), Schloss Dagstuhl, Germany (2005)

27. Nachbin, L.: Topology and Order. Van Nostrand, Princeton (1965)
28. Smale, S.: On gradient dynamical systems. Ann. of Math. 74, 199–206
29. Takesaki, M.: Theory of Operator Algebra I, 2nd edn. In: Encyclopaedia of Mathematical

sciences, vol. 124. Springer, Berlin Heidelberg New York (2002) (first edition 1979)

http://www.tac.mta.ca/tac/reprints/

	Components of the Fundamental Category II
	Abstract
	Introduction
	Basic Definitions
	A Convenient Framework for Components
	Definition of Yoneda Systems
	Locale of Yoneda-systems
	Component Categories

	Relevant Reduction of the Size of a Loop-free Category
	Generalized Congruences
	Quotient of a Small Category by One of Its Subcategories : C/
	The Component Category as a Quotient Category

	van Kampen Theorem for Component Categories
	Future and Past Components
	Conclusion, Related and Future Work
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


