
Control Flow Structures of Concurrent Programs
are Higher Dimensional Mathematical Objects

Emmanuel Haucourt

Wednesday 13th April 2016

A Toy Language
from Dijkstra’s “Cooperating Sequential Processes” paper

Program

A Toy Language
from Dijkstra’s “Cooperating Sequential Processes” paper

Resource Declarations

A Toy Language
from Dijkstra’s “Cooperating Sequential Processes” paper

Resource Declarations

Process Declarations

A Toy Language
from Dijkstra’s “Cooperating Sequential Processes” paper

Resource Declarations

Process Declarations

Bootup

A Toy Language
Resource Declaration

◦ sem: <int> <set of identifiers>

◦ sync: <int> <set of identifiers>

◦ var: <identifier> = <constant>

A Toy Language
Resource Declaration

◦ sem: <int> <set of identifiers>

◦ sync: <int> <set of identifiers>

◦ var: <identifier> = <constant>

A Toy Language
Resource Declaration

◦ sem: <int> <set of identifiers>

◦ sync: <int> <set of identifiers>

◦ var: <identifier> = <constant>

A Toy Language
Resource Declaration

◦ sem: <int> <set of identifiers>

◦ sync: <int> <set of identifiers>

◦ var: <identifier> = <constant>

A Toy Language
The Hasse / Syracuse algorithm

var: x = 7

proc:

p = ()+[x=1]+C(q)

proc:

q = (x:=x/2 ; C(p))+[x % 2 = 0]+

(x:=3*x+1; C(p))

init: p

Building the Control Flow Graph
of the Hasse-Syracuse algorithm

Building the Control Flow Graph
of the Hasse-Syracuse algorithm

entry point of the

basic block of p

x=1
x=1

C(q)

Building the Control Flow Graph
of the Hasse-Syracuse algorithm

entry point of the

basic block of p

x=1
x=1

C(q)

entry point of the

basic block of q

x:=3*x+1

x:=x/2

x%
2=
0

x%
2=
0 C(p)

C(p)

Building the Control Flow Graph
of the Hasse-Syracuse algorithm

entry point of the

basic block of p

x=1
x=1

C(q)

entry point of the

basic block of q

x:=3*x+1

x:=x/2

x%
2=
0

x%
2=
0 C(p)

C(p)

Building the Control Flow Graph
of the Hasse-Syracuse algorithm

entry point of the

basic block of p

x=1
x=1

C(q)

entry point of the

basic block of q

x:=3*x+1

x:=x/2

x%
2=
0

x%
2=
0 C(p)

C(p)

Building the Control Flow Graph
of the Hasse-Syracuse algorithm

entry point of the

basic block of p

x=1
x=1

C(q)

entry point of the

basic block of q

x:=3*x+1

x:=x/2

x%
2=
0

x%
2=
0 C(p)

C(p)

Building the Control Flow Graph
of the Hasse-Syracuse algorithm

entry point of the

basic block of p

x=1
x=1

entry point of the

basic block of q

x:=3*x+1

x:=x/2

x%
2=
0

x%
2=
0

Reducing the Control Flow Graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%2=0

x%2=0

x=1x=1

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x%
2=
0

x=1x=1

the current value of x is 7

Reducing the Control Flow Graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%2=0

x%2=0

x=1x=1

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x%
2=
0

x=1x=1

the current value of x is 7

Reducing the Control Flow Graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%2=0

x%2=0

x=1x=1

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x%
2=
0

x=1x=1

the current value of x is 7

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 7

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 7

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 22

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 22

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 22

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 22

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 11

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 11

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 11

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 11

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 34

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 34

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 34

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 34

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 17

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 17

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 17

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 17

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 52

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 52

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 52

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 52

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 26

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 26

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 26

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 26

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 13

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 13

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 13

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 13

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 40

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 40

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 40

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 40

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 20

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 20

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 20

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 20

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 10

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 10

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 10

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 10

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 5

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 5

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 5

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 5

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 16

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 16

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 16

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 16

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 8

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 8

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 8

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 8

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 4

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 4

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 4

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 4

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 2

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 2

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 2

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 2

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 1

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 1

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 1

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 1

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 1

Precubical sets
higher dimensional graphs

∂-
0 ∂+

0
∂-

1

∂+
1

∂-
0 ∂+

0

Precubical sets
higher dimensional graphs

∂-
0 ∂+

0
∂-

1

∂+
1

∂-
0 ∂+

0

Precubical sets
higher dimensional graphs

∂-
0 ∂+

0

∂-
1

∂+
1

∂-
0 ∂+

0

Precubical sets
higher dimensional graphs

∂-
0 ∂+

0

∂-
1

∂+
1

∂-
0 ∂+

0

Precubical sets
higher dimensional graphs

K1

∂+
0

∂-
0 K2

∂+
0

∂-
0

∂+
1

∂-
1

K3

∂+
0

∂-
0

∂+
1

∂-
1

∂+
2

∂-
2

K4

∂+
0

∂-
0

∂+
1

∂-
1

∂+
2

∂-
2

∂+
3

∂-
3

· · ·

Precubical sets
higher dimensional graphs

K0

K1

∂+
0

∂-
0 K2

∂+
0

∂-
0

∂+
1

∂-
1

K3

∂+
0

∂-
0

∂+
1

∂-
1

∂+
2

∂-
2

K4

∂+
0

∂-
0

∂+
1

∂-
1

∂+
2

∂-
2

∂+
3

∂-
3

· · ·

Precubical sets
higher dimensional graphs

K0 K1

∂+
0

∂-
0

K2

∂+
0

∂-
0

∂+
1

∂-
1

K3

∂+
0

∂-
0

∂+
1

∂-
1

∂+
2

∂-
2

K4

∂+
0

∂-
0

∂+
1

∂-
1

∂+
2

∂-
2

∂+
3

∂-
3

· · ·

Precubical sets
higher dimensional graphs

K0 K1

∂+
0

∂-
0 K2

∂+
0

∂-
0

∂+
1

∂-
1

K3

∂+
0

∂-
0

∂+
1

∂-
1

∂+
2

∂-
2

K4

∂+
0

∂-
0

∂+
1

∂-
1

∂+
2

∂-
2

∂+
3

∂-
3

· · ·

Precubical sets
higher dimensional graphs

K0 K1

∂+
0

∂-
0 K2

∂+
0

∂-
0

∂+
1

∂-
1

K3

∂+
0

∂-
0

∂+
1

∂-
1

∂+
2

∂-
2

K4

∂+
0

∂-
0

∂+
1

∂-
1

∂+
2

∂-
2

∂+
3

∂-
3

· · ·

Precubical sets
higher dimensional graphs

K0 K1

∂+
0

∂-
0 K2

∂+
0

∂-
0

∂+
1

∂-
1

K3

∂+
0

∂-
0

∂+
1

∂-
1

∂+
2

∂-
2

K4

∂+
0

∂-
0

∂+
1

∂-
1

∂+
2

∂-
2

∂+
3

∂-
3

· · ·

Tensor product
of precubical sets

Given precubical sets K and K ′ of dimension p and q, the set of
d-cubes for 0 6 d 6 p + q

(K ⊗ K ′)d =
⊔

i+j=d

Ki × K ′j

For x ⊗ y ∈ Ki × K ′j with i + j = d the kth face map, with
0 6 k < d , is given by

∂±k (x ⊗ y) =

{
∂±k (x)⊗ y if 0 6 k < i
x ⊗ ∂±k−py) if i 6 k < d

A Toy Language
Synchronization: the W() instruction

sync: 1 b

proc: p = W(b)

init: 2p

Tensor product
of control flow graphs

W
(
b
)

W(b)

⊗

Tensor product
of control flow graphs

W
(
b
)

W(b)

⊗

Tensor product
of control flow graphs

W
(
b
)

W(b)

⊗

Tensor product
of control flow graphs

W
(
b
)

W(b)

⊗

Tensor product
of control flow graphs

W
(
b
)

W(b)

⊗

Tensor product
of control flow graphs

W
(
b
)

W(b)

⊗

Discrete paths
are “continuous”

⊗

Discrete paths
are “continuous”

⊗

Discrete paths
are “continuous”

⊗

Discrete paths
are “continuous”

⊗

Discrete paths
are “continuous”

⊗

Discrete paths
are “continuous”

⊗

Discrete paths
are “continuous”

⊗

Discrete paths
are “continuous”

⊗

Discrete paths
are “continuous”

⊗

Discrete paths
are “continuous”

⊗

Discrete paths
are “continuous”

⊗

Discrete paths
are “continuous”

⊗

Discrete paths
are “continuous”

⊗

Discrete path on a model of dimension N
A sequence of points p0, . . . , pK s.t. for all k ∈ {1, . . . ,K} one has

for all n ∈ {1, . . . ,N} ∂+pn(k − 1) = pn(k) or pn(k) = pn(k − 1)

or

for all n ∈ {1, . . . ,N} pn(k − 1) = ∂-pn(k) or pn(k) = pn(k − 1)

Concurrent execution trace
sync: 1 b

W
(
b
)

W(b)

⊗

Concurrent execution trace
sync: 1 b

W
(
b
)

W(b)

⊗

Concurrent execution trace
sync: 1 b

W
(
b
)

W(b)

⊗

Concurrent execution trace
sync: 1 b

W
(
b
)

W(b)

⊗

Concurrent execution trace
sync: 1 b

W
(
b
)

W(b)

⊗

Concurrent execution trace
sync: 1 b

W
(
b
)

W(b)

⊗

Concurrent execution trace
sync: 1 b

W
(
b
)

W(b)

⊗

Concurrent execution trace
sync: 1 b

W
(
b
)

W(b)

⊗

Not admissible concurrent execution trace
sync: 1 b

W
(
b
)

W(b)

⊗

Not admissible concurrent execution trace
sync: 1 b

W
(
b
)

W(b)

⊗

Not admissible concurrent execution trace
sync: 1 b

W
(
b
)

W(b)

⊗

Not admissible concurrent execution trace
sync: 1 b

W
(
b
)

W(b)

⊗

Forbidden points
due to synchronization

Each point p = (p1, . . . , pd) such that

0 < card
{
k ∈ {1, . . . , d}

∣∣ label(pk) = W(b)
}
6 arity(b)

is forbidden.

A Toy Language
conflicting assignments

var: x = 0

proc: p = (x := 1)

proc: q = (x := 2)

init: p q

Not admissible execution trace
due to race condition var: x = 0

the value of x is 0

x
:
=
1

x:=2

⊗

Not admissible execution trace
due to race condition var: x = 0

the value of x is 0

x
:
=
1

x:=2

⊗

Not admissible execution trace
due to race condition var: x = 0

the value of x is 0

x
:
=
1

x:=2

⊗

Not admissible execution trace
due to race condition var: x = 0

the value of x is ?

x
:
=
1

x:=2

⊗

Admissible execution trace
that however meets a forbidden point

the value of x is 0

x
:
=
1

x:=2

⊗

Admissible execution trace
that however meets a forbidden point

the value of x is 0

x
:
=
1

x:=2

⊗

Admissible execution trace
that however meets a forbidden point

the value of x is 0

x
:
=
1

x:=2

⊗

Admissible execution trace
that however meets a forbidden point

the value of x is 1

x
:
=
1

x:=2

⊗

Admissible execution trace
that however meets a forbidden point

the value of x is 2

x
:
=
1

x:=2

⊗

Admissible execution trace
that however meets a forbidden point

the value of x is 2

x
:
=
1

x:=2

⊗

Admissible execution trace
that however meets a forbidden point

the value of x is 2

x
:
=
1

x:=2

⊗

Admissible execution trace
that however meets a forbidden point

the value of x is 2

x
:
=
1

x:=2

⊗

Admissible execution trace
avoiding forbidden points

the value of x is 0

x
:
=
1

x:=2

⊗

Admissible execution trace
avoiding forbidden points

the value of x is 0

x
:
=
1

x:=2

⊗

Admissible execution trace
avoiding forbidden points

the value of x is 0

x
:
=
1

x:=2

⊗

Admissible execution trace
avoiding forbidden points

the value of x is 1

x
:
=
1

x:=2

⊗

Admissible execution trace
avoiding forbidden points

the value of x is 1

x
:
=
1

x:=2

⊗

Admissible execution trace
avoiding forbidden points

the value of x is 2

x
:
=
1

x:=2

⊗

Admissible execution trace
avoiding forbidden points

the value of x is 2

x
:
=
1

x:=2

⊗

Admissible execution trace
avoiding forbidden points

the value of x is 2

x
:
=
1

x:=2

⊗

Admissible execution trace
avoiding forbidden points

the value of x is 2

x
:
=
1

x:=2

⊗

Forbidden points
due to race conditions

A point p = (p1, . . . , pd) is a race condition when there exist i 6= j
such that
- both λi (pi) and λj(pj) are assignments trying to alter the same
variable or
- λi (pi) tries to alter a free variable of λj(pj) or λj(α) for some
arrow α such that ∂-α = pj .

In that case the point p is forbidden.

The replacement property
for admissible execution traces

Replacement

Any admissible execution trace that meets a race condition is
“equivalent” to an admissible execution trace which avoids all of
them.

A Toy Language
Desynchronization: the P() and V() instructions

sem: 1 a

proc: p = P(a);V(a)

init: 2p

Admissible concurrent execution trace
sem: 1 a

P
(
a
)

P(a)
V
(
a
)

V(a)

⊗

Admissible concurrent execution trace
sem: 1 a

P
(
a
)

P(a)
V
(
a
)

V(a)

⊗

Admissible concurrent execution trace
sem: 1 a

P
(
a
)

P(a)
V
(
a
)

V(a)

⊗

Admissible concurrent execution trace
sem: 1 a

P
(
a
)

P(a)
V
(
a
)

V(a)

⊗

a

Admissible concurrent execution trace
sem: 1 a

P
(
a
)

P(a)
V
(
a
)

V(a)

⊗

a

Admissible concurrent execution trace
sem: 1 a

P
(
a
)

P(a)
V
(
a
)

V(a)

⊗

Admissible concurrent execution trace
sem: 1 a

P
(
a
)

P(a)
V
(
a
)

V(a)

⊗

Admissible concurrent execution trace
sem: 1 a

P
(
a
)

P(a)
V
(
a
)

V(a)

⊗
a

Admissible concurrent execution trace
sem: 1 a

P
(
a
)

P(a)
V
(
a
)

V(a)

⊗

a

Admissible concurrent execution trace
sem: 1 a

P
(
a
)

P(a)
V
(
a
)

V(a)

⊗

Admissible concurrent execution trace
sem: 1 a

P
(
a
)

P(a)
V
(
a
)

V(a)

⊗

Admissible concurrent execution trace
sem: 1 a

P
(
a
)

P(a)
V
(
a
)

V(a)

⊗

Not admissible concurrent execution trace
sem: 1 a

P
(
a
)

P(a)
V
(
a
)

V(a)

⊗

Not admissible concurrent execution trace
sem: 1 a

P
(
a
)

P(a)
V
(
a
)

V(a)

⊗

Not admissible concurrent execution trace
sem: 1 a

P
(
a
)

P(a)
V
(
a
)

V(a)

⊗

Not admissible concurrent execution trace
sem: 1 a

P
(
a
)

P(a)
V
(
a
)

V(a)

⊗
a

a

The potential functions
of processes and programs

A process π is conservative when for all paths and all semaphores
s, the amount of tokens of type s held by the process at the end of
the execution trace only depends on its arrival point. In that case
the process π comes with a potential function Fπ

Fπ : {semaphores} × {points} → N

A program Π is conservative when so are its processes π1, . . . , πd
and its potential function is given by

FΠ(s, (p1, . . . , pd)) =
d∑

k=1

Fπk (s, pk)

If FΠ(s, p) > arity(s) for some semaphore s, then p is forbidden.

The potential functions
of processes and programs

A process π is conservative when for all paths and all semaphores
s, the amount of tokens of type s held by the process at the end of
the execution trace only depends on its arrival point.

In that case
the process π comes with a potential function Fπ

Fπ : {semaphores} × {points} → N

A program Π is conservative when so are its processes π1, . . . , πd
and its potential function is given by

FΠ(s, (p1, . . . , pd)) =
d∑

k=1

Fπk (s, pk)

If FΠ(s, p) > arity(s) for some semaphore s, then p is forbidden.

The potential functions
of processes and programs

A process π is conservative when for all paths and all semaphores
s, the amount of tokens of type s held by the process at the end of
the execution trace only depends on its arrival point. In that case
the process π comes with a potential function Fπ

Fπ : {semaphores} × {points} → N

A program Π is conservative when so are its processes π1, . . . , πd
and its potential function is given by

FΠ(s, (p1, . . . , pd)) =
d∑

k=1

Fπk (s, pk)

If FΠ(s, p) > arity(s) for some semaphore s, then p is forbidden.

The potential functions
of processes and programs

A process π is conservative when for all paths and all semaphores
s, the amount of tokens of type s held by the process at the end of
the execution trace only depends on its arrival point. In that case
the process π comes with a potential function Fπ

Fπ : {semaphores} × {points} → N

A program Π is conservative when so are its processes π1, . . . , πd

and its potential function is given by

FΠ(s, (p1, . . . , pd)) =
d∑

k=1

Fπk (s, pk)

If FΠ(s, p) > arity(s) for some semaphore s, then p is forbidden.

The potential functions
of processes and programs

A process π is conservative when for all paths and all semaphores
s, the amount of tokens of type s held by the process at the end of
the execution trace only depends on its arrival point. In that case
the process π comes with a potential function Fπ

Fπ : {semaphores} × {points} → N

A program Π is conservative when so are its processes π1, . . . , πd
and its potential function is given by

FΠ(s, (p1, . . . , pd)) =
d∑

k=1

Fπk (s, pk)

If FΠ(s, p) > arity(s) for some semaphore s, then p is forbidden.

The potential functions
of processes and programs

A process π is conservative when for all paths and all semaphores
s, the amount of tokens of type s held by the process at the end of
the execution trace only depends on its arrival point. In that case
the process π comes with a potential function Fπ

Fπ : {semaphores} × {points} → N

A program Π is conservative when so are its processes π1, . . . , πd
and its potential function is given by

FΠ(s, (p1, . . . , pd)) =
d∑

k=1

Fπk (s, pk)

If FΠ(s, p) > arity(s) for some semaphore s, then p is forbidden.

Conservative process
example

x:=0

P(s)

V
(
s
)

x+
+

Conservative process
example

P(s)

V
(
s
)

Conservative process
example

P(s)

V
(
s
)

Conservative process
example

P(s)

V
(
s
)

Conservative process
example

P(s)

V
(
s
)

Conservative process
example

P(s)

V
(
s
)

Conservative process
example

P(s)

V
(
s
)

Conservative process
example

P(s)

V
(
s
)

Conservative process
example

P(s)

V
(
s
)

Conservative process
example

P(s)

V
(
s
)

Conservative process
example

P(s)

V
(
s
)

Conservative process
example

P(s)

V
(
s
)

Conservative process
example

P(s)

V
(
s
)

Conservative process
example

P(s)

V
(
s
)

Conservative process
example

P(s)

V
(
s
)

Conservative process
example

P(s)

V
(
s
)

Conservative process
example

P(s)

V
(
s
)

Conservative process
example

P(s)

V
(
s
)

Not conservative process
example

x:=0

P(s)

x
+
+

x+
+

Not conservative process
example

P(s)

Not conservative process
example

P(s)

Not conservative process
example

P(s)

Not conservative process
example

P(s)

Not conservative process
example

P(s)

Not conservative process
example

P(s)

Not conservative process
example

P(s)

Not conservative process
example

P(s)

Not conservative process
example

P(s)

Not conservative process
example

P(s)

Not conservative process
example

P(s)

Not conservative process
example

P(s)

Not conservative process
example

P(s)

Not conservative process
example

P(s)

Not conservative process
example

P(s)

Not conservative process
example

P(s)

Not conservative process
example

P(s)

conflict

Discrete model
sem: 1 a

P
(
a
)

P(a)

V
(
a
)

V(a)

⊗

0

0

1

1

0

0

0

0 0 1 1 0 0 0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

1

1

2

2

1

1

1

1

1

2

2

1

1

1

0

0

1

1

0

0

0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

Discrete model
sem: 1 a

P
(
a
)

P(a)

V
(
a
)

V(a)

⊗
0

0

1

1

0

0

0

0 0 1 1 0 0 0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

1

1

2

2

1

1

1

1

1

2

2

1

1

1

0

0

1

1

0

0

0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

Discrete model
sem: 1 a

P
(
a
)

P(a)

V
(
a
)

V(a)

⊗
0

0

1

1

0

0

0

0 0 1 1 0 0 0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

1

1

2

2

1

1

1

1

1

2

2

1

1

1

0

0

1

1

0

0

0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

Discrete model
sem: 1 a

P
(
a
)

P(a)

V
(
a
)

V(a)

⊗
0

0

1

1

0

0

0

0 0 1 1 0 0 0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

1

1

2

2

1

1

1

1

1

2

2

1

1

1

0

0

1

1

0

0

0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

Discrete model
sem: 1 a

P
(
a
)

P(a)

V
(
a
)

V(a)

⊗
0

0

1

1

0

0

0

0 0 1 1 0 0 0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

1

1

2

2

1

1

1

1

1

2

2

1

1

1

0

0

1

1

0

0

0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

Discrete model
sem: 1 a

P
(
a
)

P(a)

V
(
a
)

V(a)

⊗
0

0

1

1

0

0

0

0 0 1 1 0 0 0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

1

1

2

2

1

1

1

1

1

2

2

1

1

1

0

0

1

1

0

0

0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

Discrete model
sem: 1 a

P
(
a
)

P(a)

V
(
a
)

V(a)

⊗

0

0

1

1

0

0

0

0 0 1 1 0 0 0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

1

1

2

2

1

1

1

1

1

2

2

1

1

1

0

0

1

1

0

0

0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

Discrete Model
sync: 1 b

W
(
b
)

W(b)

⊗

0

0

1

0

0

0 0 1 0 0

0

0

1

0

0

0

0

1

0

0

1

1

2

1

1

0

0

1

0

0

0

0

1

0

0

Discrete Model
sync: 1 b

W
(
b
)

W(b)

⊗
0

0

1

0

0

0 0 1 0 0

0

0

1

0

0

0

0

1

0

0

1

1

2

1

1

0

0

1

0

0

0

0

1

0

0

Discrete Model
sync: 1 b

W
(
b
)

W(b)

⊗
0

0

1

0

0

0 0 1 0 0

0

0

1

0

0

0

0

1

0

0

1

1

2

1

1

0

0

1

0

0

0

0

1

0

0

Discrete Model
sync: 1 b

W
(
b
)

W(b)

⊗
0

0

1

0

0

0 0 1 0 0

0

0

1

0

0

0

0

1

0

0

1

1

2

1

1

0

0

1

0

0

0

0

1

0

0

Discrete Model
sync: 1 b

W
(
b
)

W(b)

⊗
0

0

1

0

0

0 0 1 0 0

0

0

1

0

0

0

0

1

0

0

1

1

2

1

1

0

0

1

0

0

0

0

1

0

0

Discrete Model
sync: 1 b

W
(
b
)

W(b)

⊗
0

0

1

0

0

0 0 1 0 0

0

0

1

0

0

0

0

1

0

0

1

1

2

1

1

0

0

1

0

0

0

0

1

0

0

Discrete Model
sync: 1 b

W
(
b
)

W(b)

⊗

0

0

1

0

0

0 0 1 0 0

0

0

1

0

0

0

0

1

0

0

1

1

2

1

1

0

0

1

0

0

0

0

1

0

0

Locally ordered spaces
Directed atlas U

For all points p, for all directed neighborhoods A and B of p,
there exists a directed neighborhood C of p such that C ⊆ A ∩ B
and 6A |C =6C=6B |C .

Locally ordered spaces
Directed atlas U

For all points p,

for all directed neighborhoods A and B of p,
there exists a directed neighborhood C of p such that C ⊆ A ∩ B
and 6A |C =6C=6B |C .

p

Locally ordered spaces
Directed atlas U

For all points p, for all directed neighborhoods A and B of p,

there exists a directed neighborhood C of p such that C ⊆ A ∩ B
and 6A |C =6C=6B |C .

p

6A

6B

Locally ordered spaces
Directed atlas U

For all points p, for all directed neighborhoods A and B of p,
there exists a directed neighborhood C of p such that C ⊆ A ∩ B
and 6A |C =6C=6B |C .

p

6A

6B

6C

The directed circle
as a local pospace

p

A B

CC

The directed circle
as a local pospace

p

A

B

CC

The directed circle
as a local pospace

p

A

B

CC

The directed circle
as a local pospace

p

A B

CC

The directed circle
as a local pospace

p

A B

CC

Directed geometric realization
Main property

� � :
{

Precubical sets
}
→
{

Locally ordered spaces
}

U(�K�) =
⊔
d∈N

Kd×]0, 1[d

The main property

�K (1) ⊗ · · · ⊗ K (n)� ∼= �K (1)� × · · ·× �K (n)�

Directed geometric realization
Main property

� � :
{

Precubical sets
}
→
{

Locally ordered spaces
}

U(�K�) =
⊔
d∈N

Kd×]0, 1[d

The main property

�K (1) ⊗ · · · ⊗ K (n)� ∼= �K (1)� × · · ·× �K (n)�

Directed geometric realization
Main property

� � :
{

Precubical sets
}
→
{

Locally ordered spaces
}

U(�K�) =
⊔
d∈N

Kd×]0, 1[d

The main property

�K (1) ⊗ · · · ⊗ K (n)� ∼= �K (1)� × · · ·× �K (n)�

The continuous model
of a conservative program

Let G (1), . . . ,G (n) the control flow graphs of the program.

For all d ∈ N, the set Fd of forbidden points of dimension d .

K = G (1) ⊗ · · · ⊗ G (n)

The continuous model⊔
d∈N

(Kd \ Fd)×]0, 1[d

The continuous model
of a conservative program

Let G (1), . . . ,G (n) the control flow graphs of the program.
For all d ∈ N, the set Fd of forbidden points of dimension d .

K = G (1) ⊗ · · · ⊗ G (n)

The continuous model⊔
d∈N

(Kd \ Fd)×]0, 1[d

The continuous model
of a conservative program

Let G (1), . . . ,G (n) the control flow graphs of the program.
For all d ∈ N, the set Fd of forbidden points of dimension d .

K = G (1) ⊗ · · · ⊗ G (n)

The continuous model⊔
d∈N

(Kd \ Fd)×]0, 1[d

The continuous model
of a conservative program

Let G (1), . . . ,G (n) the control flow graphs of the program.
For all d ∈ N, the set Fd of forbidden points of dimension d .

K = G (1) ⊗ · · · ⊗ G (n)

The continuous model⊔
d∈N

(Kd \ Fd)×]0, 1[d

From discrete to continuous
sem: 1 a sync: 1 b

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)

⊗

×

From discrete to continuous
sem: 1 a sync: 1 b

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)

⊗

×

From discrete to continuous
sem: 1 a sync: 1 b

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)

⊗

×

From discrete to continuous
sem: 1 a sync: 1 b

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)

⊗

×

From discrete to continuous
sem: 1 a sync: 1 b

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)

⊗

×

From discrete to continuous
sem: 1 a sync: 1 b

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)

⊗

×

From discrete to continuous
sem: 1 a sync: 1 b

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)

⊗

×

From discrete to continuous
sem: 1 a sync: 1 b

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)

⊗

×

From discrete to continuous
sem: 1 a sync: 1 b

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)

⊗

×

From discrete to continuous
sem: 1 a sync: 1 b

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)

⊗

×

From discrete to continuous
sem: 1 a sync: 1 b

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)

⊗

×

From discrete to continuous
sem: 1 a sync: 1 b

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)

⊗

×

From discrete to continuous
sem: 1 a sync: 1 b

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)

⊗

×

From discrete to continuous
sem: 1 a sync: 1 b

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)

⊗

×

From discrete to continuous
sem: 1 a sync: 1 b

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)

⊗

×

Weakly directed homotopy of directed paths
L. Fajstrup, É. Goubault, and M. Raussen (1998)

A weakly directed homotopy is a continuous map h : [0, r]× [0, q]→ X such that

1) the mappings h(0,−) and h(r ,−) are constant

2) the mappings h(−, s) are directed paths

[0, r]

[0, q]
h

x y

h(, 0)

h(, r)

h

Weakly directed homotopy of directed paths
L. Fajstrup, É. Goubault, and M. Raussen (1998)

A weakly directed homotopy is a continuous map h : [0, r]× [0, q]→ X such that

1) the mappings h(0,−) and h(r ,−) are constant

2) the mappings h(−, s) are directed paths

[0, r]

[0, q]
h

x y

h(, 0)

h(, r)

h

Weakly directed homotopy of directed paths
L. Fajstrup, É. Goubault, and M. Raussen (1998)

A weakly directed homotopy is a continuous map h : [0, r]× [0, q]→ X such that

1) the mappings h(0,−) and h(r ,−) are constant

2) the mappings h(−, s) are directed paths

[0, r]

[0, q]
h

x y

h(, 0)

h(, r)

h

Weakly directed homotopy of directed paths
L. Fajstrup, É. Goubault, and M. Raussen (1998)

A weakly directed homotopy is a continuous map h : [0, r]× [0, q]→ X such that

1) the mappings h(0,−) and h(r ,−) are constant

2) the mappings h(−, s) are directed paths

[0, r]

[0, q]

h
x y

h(, 0)

h(, r)

h

Weakly directed homotopy of directed paths
L. Fajstrup, É. Goubault, and M. Raussen (1998)

A weakly directed homotopy is a continuous map h : [0, r]× [0, q]→ X such that

1) the mappings h(0,−) and h(r ,−) are constant

2) the mappings h(−, s) are directed paths

[0, r]

[0, q]
h

x y

h(, 0)

h(, r)

h

Weakly directed homotopy of directed paths
L. Fajstrup, É. Goubault, and M. Raussen (1998)

A weakly directed homotopy is a continuous map h : [0, r]× [0, q]→ X such that

1) the mappings h(0,−) and h(r ,−) are constant

2) the mappings h(−, s) are directed paths

[0, r]

[0, q]
h

x y

h(, 0)

h(, r)

h

Weakly directed homotopy of directed paths
L. Fajstrup, É. Goubault, and M. Raussen (1998)

A weakly directed homotopy is a continuous map h : [0, r]× [0, q]→ X such that

1) the mappings h(0,−) and h(r ,−) are constant

2) the mappings h(−, s) are directed paths

[0, r]

[0, q]
h

x y

h(, 0)

h(, r)

h

Substantiating the continuous models
Main theorem

Adequacy

The “actions” of weakly dihomotopic directed paths are the same.
A directed path is an execution trace iff it is weakly dihomotopic
with an execution trace.

Tetrahemihexacron
a.k.a. 3D Swiss Cross

sem: 1 a

proc:

XXp = P(a);V(a)

init: 3p

P(a) V(a)

P(a)

V(a)

P(a)

V(a)

Floating cube
influence of arity

sem: 2 a

proc:

XXp = P(a);V(a)

init: 3p

x

y

z

P(a) V(a)

P(a)

V(a)

P(a)

V(a)

The dining philosophers
with its deadlock attractor

sem: 1 a b c

proc:

XXx = P(a);P(b);V(a);V(b)

XXy = P(b);P(c);V(b);V(c)

XXz = P(c);P(a);V(c);V(a)

init: x y z

x

y

z

P(a) P(b) V(a) V(b)

P(c)

P(a)

V(c)

V(a)

P(b)

P(c)
V(b)
V(c)

The Lipski algorithm
has no deadlock

sem: 1 x y z u v w

proc:

XXp = P(x);P(y);P(z);V(x);P(w);V(z);V(y);V(w)

XXq = P(u);P(v);P(x);V(u);P(z);V(v);V(x);V(z)

XXr = P(y);P(w);V(y);P(u);V(w);P(v);V(u);V(v)

init: p q r p

q

r

Regions
over G1, . . . ,Gd

A one dimensional block over G is a finite union of connected
components of �G�.

A block of dimension d ∈ N over G1, . . . ,Gd is a Cartesian product
of one dimensional blocks Bk over Gk for k ∈ {1, . . . , d}.

A region of dimension d ∈ N over G1, . . . ,Gd is a finite union of
d-blocks over G1, . . . ,Gd .

If X and Y are regions over G1, . . . ,Gd and G ′1, . . . ,G
′
d ′ then

X × Y is a region over G1, . . . ,Gd ,G
′
1, . . . ,G

′
d ′ .

Regions
over G1, . . . ,Gd

A one dimensional block over G is a finite union of connected
components of �G�.

A block of dimension d ∈ N over G1, . . . ,Gd is a Cartesian product
of one dimensional blocks Bk over Gk for k ∈ {1, . . . , d}.

A region of dimension d ∈ N over G1, . . . ,Gd is a finite union of
d-blocks over G1, . . . ,Gd .

If X and Y are regions over G1, . . . ,Gd and G ′1, . . . ,G
′
d ′ then

X × Y is a region over G1, . . . ,Gd ,G
′
1, . . . ,G

′
d ′ .

Regions
over G1, . . . ,Gd

A one dimensional block over G is a finite union of connected
components of �G�.

A block of dimension d ∈ N over G1, . . . ,Gd is a Cartesian product
of one dimensional blocks Bk over Gk for k ∈ {1, . . . , d}.

A region of dimension d ∈ N over G1, . . . ,Gd is a finite union of
d-blocks over G1, . . . ,Gd .

If X and Y are regions over G1, . . . ,Gd and G ′1, . . . ,G
′
d ′ then

X × Y is a region over G1, . . . ,Gd ,G
′
1, . . . ,G

′
d ′ .

Regions
over G1, . . . ,Gd

A one dimensional block over G is a finite union of connected
components of �G�.

A block of dimension d ∈ N over G1, . . . ,Gd is a Cartesian product
of one dimensional blocks Bk over Gk for k ∈ {1, . . . , d}.

A region of dimension d ∈ N over G1, . . . ,Gd is a finite union of
d-blocks over G1, . . . ,Gd .

If X and Y are regions over G1, . . . ,Gd and G ′1, . . . ,G
′
d ′ then

X × Y is a region over G1, . . . ,Gd ,G
′
1, . . . ,G

′
d ′ .

Maximal blocks

Maximal blocks

Maximal blocks

Maximal blocks

Maximal blocks

Main results
Maximal subblocks and Boolean structure

Maximal subblocks

X ⊆�G1� × · · ·× �Gd� is a region iff it has finitely many maximal
subblocks.

Boolean structure

The collection of regions over G1, . . . ,Gd form a Boolean
subalgebra of the powerset of �G1� × · · ·× �Gd�.

Main results
Maximal subblocks and Boolean structure

Maximal subblocks

X ⊆�G1� × · · ·× �Gd� is a region iff it has finitely many maximal
subblocks.

Boolean structure

The collection of regions over G1, . . . ,Gd form a Boolean
subalgebra of the powerset of �G1� × · · ·× �Gd�.

Main results
Maximal subblocks and Boolean structure

Maximal subblocks

X ⊆�G1� × · · ·× �Gd� is a region iff it has finitely many maximal
subblocks.

Boolean structure

The collection of regions over G1, . . . ,Gd form a Boolean
subalgebra of the powerset of �G1� × · · ·× �Gd�.

Main results
Unique decomposition

Prime decomposition

Up to coordinates reordering, any region can be written as a
Cartesian product of irreducible regions in a unique way. This is
the prime decomposition of it.

Parallelization of code

The prime decomposition of the continuous model of some
program provides a decomposition of the program as a parallel
compound of “observationally independent” programs.

Main results
Unique decomposition

Prime decomposition

Up to coordinates reordering, any region can be written as a
Cartesian product of irreducible regions in a unique way. This is
the prime decomposition of it.

Parallelization of code

The prime decomposition of the continuous model of some
program provides a decomposition of the program as a parallel
compound of “observationally independent” programs.

Main results
Unique decomposition

Prime decomposition

Up to coordinates reordering, any region can be written as a
Cartesian product of irreducible regions in a unique way. This is
the prime decomposition of it.

Parallelization of code

The prime decomposition of the continuous model of some
program provides a decomposition of the program as a parallel
compound of “observationally independent” programs.

Main result
Effectiveness

An algorithm (Nicolas Ninin)

Let M1, . . . ,Mb be the maximal subblocks of
X c =�G1� × · · ·× �Gd� \X . Let ∼ be the equivalence relation on
{1, . . . , d} generated by i ∼ j when there exist k ∈ {1, . . . , b} such
that

proji (Mk) 6=�Gi� and projj(Mk) 6=�Gj�

The prime decomposition of X is given by the ∼-equivalence
classes.

Parallelizing a program

sem: 1 a b

sem: 2 c

proc:

p = P(a);P(c);V(c);V(a)

proc:

q = P(b);P(c);V(c);V(b)

init: 2p 2q

Parallelizing a program

sem: 1 a b

sem: 2 c

proc:

p = P(a);P(c);V(c);V(a)

init: 2p

sem: 1 a b

sem: 2 c

proc:

q = P(b);P(c);V(c);V(b)

init: 2q

