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A Toy Language
The Hasse / Syracuse algorithm

var: x = 7

proc:

p = ()+[x=1]+C(q)

proc:

q = (x:=x/2 ; C(p))+[x % 2 = 0]+

(x:=3*x+1; C(p))

init: p
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Tensor product
of precubical sets

Given precubical sets K and K ′ of dimension p and q, the set of
d-cubes for 0 6 d 6 p + q

(K ⊗ K ′)d =
⊔

i+j=d

Ki × K ′j

For x ⊗ y ∈ Ki × K ′j with i + j = d the kth face map, with
0 6 k < d , is given by

∂±k (x ⊗ y) =

{
∂±k (x)⊗ y if 0 6 k < i
x ⊗ ∂±k−py) if i 6 k < d



A Toy Language
Synchronization: the W( ) instruction

sync: 1 b

proc: p = W(b)

init: 2p
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Discrete path on a model of dimension N
A sequence of points p0, . . . , pK s.t. for all k ∈ {1, . . . ,K} one has

for all n ∈ {1, . . . ,N} ∂+pn(k − 1) = pn(k) or pn(k) = pn(k − 1)

or

for all n ∈ {1, . . . ,N} pn(k − 1) = ∂-pn(k) or pn(k) = pn(k − 1)
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Forbidden points
due to synchronization

Each point p = (p1, . . . , pd) such that

0 < card
{
k ∈ {1, . . . , d}

∣∣ label(pk) = W(b)
}
6 arity(b)

is forbidden.



A Toy Language
conflicting assignments

var: x = 0

proc: p = (x := 1)

proc: q = (x := 2)

init: p q
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Forbidden points
due to race conditions

A point p = (p1, . . . , pd) is a race condition when there exist i 6= j
such that
- both λi (pi ) and λj(pj) are assignments trying to alter the same
variable or
- λi (pi ) tries to alter a free variable of λj(pj) or λj(α) for some
arrow α such that ∂-α = pj .

In that case the point p is forbidden.



The replacement property
for admissible execution traces

Replacement

Any admissible execution trace that meets a race condition is
“equivalent” to an admissible execution trace which avoids all of
them.



A Toy Language
Desynchronization: the P( ) and V( ) instructions

sem: 1 a

proc: p = P(a);V(a)

init: 2p
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The potential functions
of processes and programs

A process π is conservative when for all paths and all semaphores
s, the amount of tokens of type s held by the process at the end of
the execution trace only depends on its arrival point. In that case
the process π comes with a potential function Fπ

Fπ : {semaphores} × {points} → N

A program Π is conservative when so are its processes π1, . . . , πd
and its potential function is given by

FΠ(s, (p1, . . . , pd)) =
d∑

k=1

Fπk (s, pk)

If FΠ(s, p) > arity(s) for some semaphore s, then p is forbidden.
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Directed atlas U

For all points p, for all directed neighborhoods A and B of p,
there exists a directed neighborhood C of p such that C ⊆ A ∩ B
and 6A |C =6C=6B |C .
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Directed geometric realization
Main property

� � :
{

Precubical sets
}
→
{

Locally ordered spaces
}

U(�K�) =
⊔
d∈N

Kd×]0, 1[d
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The continuous model
of a conservative program

Let G (1), . . . ,G (n) the control flow graphs of the program.

For all d ∈ N, the set Fd of forbidden points of dimension d .

K = G (1) ⊗ · · · ⊗ G (n)

The continuous model⊔
d∈N

(Kd \ Fd)×]0, 1[d
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Weakly directed homotopy of directed paths
L. Fajstrup, É. Goubault, and M. Raussen (1998)

A weakly directed homotopy is a continuous map h : [0, r ]× [0, q]→ X such that

1) the mappings h(0,−) and h(r ,−) are constant

2) the mappings h(−, s) are directed paths

[0, r ]

[0, q]
h

x y

h( , 0)

h( , r)

h
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Substantiating the continuous models
Main theorem

Adequacy

The “actions” of weakly dihomotopic directed paths are the same.
A directed path is an execution trace iff it is weakly dihomotopic
with an execution trace.



Tetrahemihexacron
a.k.a. 3D Swiss Cross

sem: 1 a

proc:

XXp = P(a);V(a)

init: 3p

P(a) V(a)

P(a)

V(a)

P(a)

V(a)



Floating cube
influence of arity

sem: 2 a

proc:

XXp = P(a);V(a)

init: 3p

x

y

z

P(a) V(a)

P(a)

V(a)

P(a)

V(a)



The dining philosophers
with its deadlock attractor

sem: 1 a b c

proc:

XXx = P(a);P(b);V(a);V(b)

XXy = P(b);P(c);V(b);V(c)

XXz = P(c);P(a);V(c);V(a)

init: x y z

x

y

z

P(a) P(b) V(a) V(b)

P(c)

P(a)

V(c)

V(a)

P(b)

P(c)
V(b)
V(c)



The Lipski algorithm
has no deadlock

sem: 1 x y z u v w

proc:

XXp = P(x);P(y);P(z);V(x);P(w);V(z);V(y);V(w)

XXq = P(u);P(v);P(x);V(u);P(z);V(v);V(x);V(z)

XXr = P(y);P(w);V(y);P(u);V(w);P(v);V(u);V(v)

init: p q r p

q

r



Regions
over G1, . . . ,Gd

A one dimensional block over G is a finite union of connected
components of �G�.

A block of dimension d ∈ N over G1, . . . ,Gd is a Cartesian product
of one dimensional blocks Bk over Gk for k ∈ {1, . . . , d}.

A region of dimension d ∈ N over G1, . . . ,Gd is a finite union of
d-blocks over G1, . . . ,Gd .

If X and Y are regions over G1, . . . ,Gd and G ′1, . . . ,G
′
d ′ then

X × Y is a region over G1, . . . ,Gd ,G
′
1, . . . ,G

′
d ′ .
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Main results
Maximal subblocks and Boolean structure

Maximal subblocks

X ⊆�G1� × · · ·× �Gd� is a region iff it has finitely many maximal
subblocks.

Boolean structure

The collection of regions over G1, . . . ,Gd form a Boolean
subalgebra of the powerset of �G1� × · · ·× �Gd�.



Main results
Maximal subblocks and Boolean structure

Maximal subblocks

X ⊆�G1� × · · ·× �Gd� is a region iff it has finitely many maximal
subblocks.

Boolean structure

The collection of regions over G1, . . . ,Gd form a Boolean
subalgebra of the powerset of �G1� × · · ·× �Gd�.



Main results
Maximal subblocks and Boolean structure

Maximal subblocks

X ⊆�G1� × · · ·× �Gd� is a region iff it has finitely many maximal
subblocks.

Boolean structure

The collection of regions over G1, . . . ,Gd form a Boolean
subalgebra of the powerset of �G1� × · · ·× �Gd�.



Main results
Unique decomposition

Prime decomposition

Up to coordinates reordering, any region can be written as a
Cartesian product of irreducible regions in a unique way. This is
the prime decomposition of it.

Parallelization of code

The prime decomposition of the continuous model of some
program provides a decomposition of the program as a parallel
compound of “observationally independent” programs.
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Main result
Effectiveness

An algorithm (Nicolas Ninin)

Let M1, . . . ,Mb be the maximal subblocks of
X c =�G1� × · · ·× �Gd� \X . Let ∼ be the equivalence relation on
{1, . . . , d} generated by i ∼ j when there exist k ∈ {1, . . . , b} such
that

proji (Mk) 6=�Gi� and projj(Mk) 6=�Gj�

The prime decomposition of X is given by the ∼-equivalence
classes.



Parallelizing a program

sem: 1 a b

sem: 2 c

proc:

p = P(a);P(c);V(c);V(a)

proc:

q = P(b);P(c);V(c);V(b)

init: 2p 2q



Parallelizing a program

sem: 1 a b

sem: 2 c

proc:

p = P(a);P(c);V(c);V(a)

init: 2p

sem: 1 a b

sem: 2 c

proc:

q = P(b);P(c);V(c);V(b)

init: 2q




