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Overview

The situation:

Polynomials in a category are a categorification of ordinary polynomials

F (X ) = X × X + 1

They can be defined in any locally cartesian closed category

Similar to combinatorial species and their generalizations

Our contribution:

Show that polynomials are Kleisli morphisms for a comonad on spans

and fit in a model of linear logic

in order for this to work, we have to work up to homotopy!
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Semantics of linear logic

Decomposing (A =⇒ B) as (!A ⊸ B).

e.g. Poly(Rm,Rn) ≃ Lin(R[X1, . . . ,Xm],Rn) ≃ Lin(Sym(Rm),Rn)

in categorical models: ! is a comonad on a symmetric monoidal category, satisfying some
conditions

e.g. R-vector spaces, ! = Sym = free symmetric algebra

our result is a categorification of this example
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Polynomials in categories

A polynomial from I to J in a category C is a diagram

E B

I J

p

s t

When C = Set, it induces a polynomial functor

SetI → SetJ

(Xi )i∈I 7→
( ∑
b∈t−1(j)

∏
e∈p−1(b)

Xs(e)

)
j∈J

“B = monomials”

“E = exponents/arities”
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Example

{•} E B {•}

• e0 b •

e1 b′

s p t

Induced functor:

Set → Set

X 7→ X 2 + 1
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A more complicated example

{0, 1} E B {0, 1}

• •

x • •

y • • •

• •

s p t

Set2 → Set2

(X ,Y ) 7→ (XY ,X + Y )
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Composition of polynomials

E B F C

I J K

⌟

⌟

⌟
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Composition of polynomials

N M

I K

⌟

⌟

⌟
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Linear polynomials: spans

I E B Js p t

is linear when p is an isomorphism: the products are taken over singletons
Linear polynomials are isomorphic to spans

B B B

I J I J

s t

idB

s t

And they compose via pullbacks

B ×J C

B C

I J K

⌟

s t s′ t′
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The bicategory of polynomials

Composition of polynomials uses pullbacks and other universal properties

So it is not strictly associative/unital

Polynomials thus form a bicategory

But we need to further restrict it...
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Going back to our toy example

Poly(Rm,Rn) ≃ Lin(R[X1, . . . ,Xm],Rn)

A basis of R[X1, . . . ,Xm] is given by monomials.

In our categorified setting, we have arbitrary sets as exponents.

So we would get a proper class of monomials !

Thus we restrict ourselves to finitary polynomials.
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Finitary polynomials

I E B Js p t

is said to be finitary if ∀b ∈ B, p−1(b) is finite.
Examples:

X 7→ X 3 + X + 1 is finitary

X 7→ N× X is finitary

(Xi )i∈N 7→ ((Xi )
i )i∈N is finitary

X 7→ XN is not finitary

a linear polynomial is always finitary

(more generally, we could restrict to polynomials with arities in a fixed universe V of “small”
sets/types)
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Spans and polynomials

Span and Poly the bicategories of spans and finitary polynomials in sets.

We would like Poly(I , J) ≃ Span(!I , J)

Idea: monomials in R[X1, . . . ,Xm] are given by multisets over {1, . . . , n}
Can we hope for Poly(I , J) ≃ Span(Mul(I ), J) ?

Yes and no... At the level of sets, yes, but Poly and Span are bicategories, and those
groupoids of morphisms are not equivalent !
We need to :

replace multisets by homotopy multisets,

replace sets by groupoids.

To do that, we work in Homotopy Type Theory.
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Homotopy Type Theory

HoTT is an extension of Martin Löf Type Theory where types are thought of as spaces.

Spaces in the sense of homotopy theory.

Discrete types are sets.

Groupoids also are types, as are 2-groupoids, n-groupoids, ∞-groupoids.

In this context, Σ-types look like a Grothendieck construction.

Quotients are homotopy quotients : instead of identifying elements, they paths between
them.

Bool Bool {•} coequalizer

Bool Bool S1 homotopy coequalizer

id

¬

id

¬
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HoTT is an extension of Martin Löf Type Theory where types are thought of as spaces.

Spaces in the sense of homotopy theory.

Discrete types are sets.

Groupoids also are types, as are 2-groupoids, n-groupoids, ∞-groupoids.

In this context, Σ-types look like a Grothendieck construction.

Quotients are homotopy quotients : instead of identifying elements, they paths between
them.

Bool Bool {•} coequalizer

Bool Bool S1 homotopy coequalizer

id

¬

id

¬

Elies Harington Polynomials in homotopy type theory 4th of june 2024LHC days 2024 13 / 21



Homotopy Type Theory
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Spans and polynomials in HoTT

Ordinary multisets: Mul(X ) :=
∑

n:N X n/Σn

Equivalently, the free commutative monoid on X .

Homotopy multisets: HMul(X ) :=
∑

n:N X n//Σn (homotopy quotient).

In category theory, HMul(X ) is equivalently the free symmetric monoidal groupoid on
X .

Concretely in HoTT: HMul(X ) :=
∑

E :Fin X
E where Fin is the groupoid of finite sets

and bijections

With this last definition, and using spans and polynomials in types, we proved in HoTT:

Poly(I , J) ≃ Span(HMul(I ), J)
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Idea of proof

I E B Js p t

Poly(I , J) ≡
∑
E :U

∑
B:U

(E → I )× (E →Fin B)× (B → J)

≃
∑
B:U

(∑
E :U

(E →Fin B)× (E → I )
)
× (B → J)

≃
∑
B:U

( ∑
F :B→Fin

(ΣBF → I )
)
× (B → J)

≃
∑
B:U

(
B →

∑
F :Fin

(F → I )
)
× (B → J)

≃
∑
B:U

(B → HMul(I ))× (B → J)

≡ Span(HMul(I ), J)
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A higher categorical model

Switching from sets to groupoids makes Poly and Span into 3-categories.

Going to arbitrary types, we get an ∞-category : associativity and unitality up to
isomorphisms, themselves satisfying coherence laws, etc.

We cannot state or prove those infinite homotopy coherence laws in HoTT, so we work
with wild categories.

Wild categories have the standard definition of categories, but with sets replaced by types.

No pentagon or triangle isomorphisms required of the associators and unitors.

Remark

Not all coherences can be stated in HoTT, but some can be proven meta-theoretically. For
instance, we can prove a wild category has cartesian products, and know meta-theoretically
that the induced monoidal structure is homotopy coherent.
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A full model of classical linear logic

Poly is the Kleisli category of a comonad HMul on Span.

HMul makes Span into a Seely category: a model of intuitionistic linear logic.

Span is moreover compact closed, with self-dual objects.

This makes it ∗-autonomous, thus a full model of classical linear logic.

Span is monoidal closed, which gives a new proof that Poly is cartesian closed.

Elies Harington Polynomials in homotopy type theory 4th of june 2024LHC days 2024 17 / 21



A full model of classical linear logic

Poly is the Kleisli category of a comonad HMul on Span.

HMul makes Span into a Seely category: a model of intuitionistic linear logic.

Span is moreover compact closed, with self-dual objects.

This makes it ∗-autonomous, thus a full model of classical linear logic.

Span is monoidal closed, which gives a new proof that Poly is cartesian closed.

Elies Harington Polynomials in homotopy type theory 4th of june 2024LHC days 2024 17 / 21



A full model of classical linear logic

Poly is the Kleisli category of a comonad HMul on Span.

HMul makes Span into a Seely category: a model of intuitionistic linear logic.

Span is moreover compact closed, with self-dual objects.

This makes it ∗-autonomous, thus a full model of classical linear logic.

Span is monoidal closed, which gives a new proof that Poly is cartesian closed.

Elies Harington Polynomials in homotopy type theory 4th of june 2024LHC days 2024 17 / 21



A full model of classical linear logic

Poly is the Kleisli category of a comonad HMul on Span.

HMul makes Span into a Seely category: a model of intuitionistic linear logic.

Span is moreover compact closed, with self-dual objects.

This makes it ∗-autonomous, thus a full model of classical linear logic.

Span is monoidal closed, which gives a new proof that Poly is cartesian closed.

Elies Harington Polynomials in homotopy type theory 4th of june 2024LHC days 2024 17 / 21



A full model of classical linear logic

Poly is the Kleisli category of a comonad HMul on Span.

HMul makes Span into a Seely category: a model of intuitionistic linear logic.

Span is moreover compact closed, with self-dual objects.

This makes it ∗-autonomous, thus a full model of classical linear logic.

Span is monoidal closed, which gives a new proof that Poly is cartesian closed.

Elies Harington Polynomials in homotopy type theory 4th of june 2024LHC days 2024 17 / 21



Examples of higher polynomials - 1

{•} N
∑

n:N B(Z/nZ) {•}

n {1, . . . , n}

p

B(Z/nZ) is the groupoid with one point and Z/nZ as automorphisms

p−1({1, . . . , n}) ≃ Z/nZ
p−1 is taken in the sense of homotopy fiber

Induced polynomial : F (X ) =
∑

n:N X n//(Z/nZ)
The type of cyclic lists over X

Generally, summing over groupoids amounts to quotienting the summand
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Examples of higher polynomials - 2

{•} Fin∗ Fin {•}

(E , e) E

p

p−1(E ) ≃ E

Induced polynomial : F (X ) =
∑

E :Fin X
E =

∑
n:N X n//Σn

This gives homotopy multisets : our “!” is itself a polynomial.
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Examples of higher polynomials - The Hopf Fibration

{•} S3 S2 {•}h

The map H has fiber h(x), merely equivalent to S1, the circle.

F (X ) =
∑

x :S2 X h(x).

This locally looks like S2 × X S1
, but in a globally twisted way.

If you have any idea what this represents, please reach out !
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Conclusion/future work

We arranged the usual notions of spans and polynomials into a model of linear logic, using
ideas from homotopy type theory. What next?

Differential structure?

Exploring other “homotopifications” of vector spaces and polynomials:
spectra? stable ∞-categories?

Comparison with other span-based models of linear logic by Mellies, Clairambault, Forest

Comparison with generalized species of structure
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