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Categorical semantics

How to do denotational semantics in a category C :

Syntax Categorical semantics

Formulae A Object JAK of C

Proof π of A ⊢ B Morphism JπK : JAK → JBK in C

Cut elimination π ⇝ π′ Equality of morphisms JπK = JπK′

Additional syntactic constructions Additional categorical structure
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Intuitionistic linear logic

Formulas

F ::=A | B | . . .
| A& B

| A⊗ B

| A⊸ B

| 1 | ⊤
|!A
| . . .

Contexts Γ ::= A1, . . . ,An

Judgements Γ ⊢ B

Examples of rules

(ax)
A ⊢ A

Γ ⊢ A ∆,A ⊢ C
(cut)

Γ,∆ ⊢ C

Γ,A,B ⊢ C
(⊗L)

Γ,A⊗ B ⊢ C
Γ ⊢ A ∆ ⊢ B

(⊗R)
Γ,∆ ⊢ A⊗ B

Γ,Ai ⊢ B
(&Li )

Γ,A1 & A2 ⊢ B
Γ ⊢ A Γ ⊢ B

(&R)
Γ ⊢ A& B

Γ ⊢ A ∆,B ⊢ C
(⊸L)

Γ,∆,A⊸ B ⊢ C

Γ,A ⊢ B
(⊸R)

Γ ⊢ A⊸ B
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Categorical semantics of linear logic: ⊗

Formulas A interpreted as objects JAK ∈ C.
JA⊗ BK =?
Need a (symmetric) monoidal structure on C:
A functor −⊗− : C × C → C and an object 1 ∈ C with natural isomorphisms

X ⊗ Y ≃ Y ⊗ X ,

(X ⊗ Y )⊗ Z ≃ X ⊗ (Y ⊗ Z ),

X ⊗ 1 ≃ X ≃ 1⊗ X

satisfying some axioms.

Due to
Γ,A,B ⊢ C

(⊗L)
Γ,A⊗ B ⊢ C

, can define JA1, . . . ,AnK := JA1 ⊗ · · · ⊗ AnK = JA1K ⊗ · · · ⊗ JAnK
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Categorical semantics of linear logic: ⊸

We can use the rules

A,B ⊢ C
(⊗L)

A⊗ B ⊢ C

A,B ⊢ C
(⊸R)

A ⊢ B ⊸ C

to show we need bijections

HomC(JAK ⊗ JBK, JCK) ≃ HomC(JAK, JB ⊸ CK)

Ask for C to be monoidal closed : (X ⊗−) ⊣ (X ⊸ −).

HomC(X ⊗ Y ,Z ) ≃ HomC(X ,Y ⊸ Z )
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Categorical semantics of linear logic: &

The proofs

(ax)
Ai ⊢ Ai

(&Li )
A1 & A2 ⊢ Ai

will be interpreted as “projection” morphisms πi : JA1 & A2K → Ai .
Thus we interpret & as the cartesian product in C.

JA& BK := JAK × JBK
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Linear and non-linear implications

Linear implication:
A⊸ B

Cannot duplicate or erase hypothesis A in proof

Non-linear (intuitionistic) implication:
!A⊸ B

Can duplicate or erase hypothesis A in proof.
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Categorical semantics of linear logic: !

Rules for the exponential

Γ,A ⊢ B
(der)

Γ, !A ⊢ B

!Γ ⊢ A
(prom)

!Γ ⊢!A

Γ, !A, !A ⊢ B
(contr)

Γ, !A ⊢ B

Γ ⊢ B
(weak)

Γ, !A ⊢ B

The exponential ! ⇝ a functor ! : C → C.
Promotion and dereliction rules ⇝ ! is a comonad.

(ax)
!A ⊢!A

(ax)
!A ⊢!A

(⊗R)
!A, !A ⊢!A⊗!A

(contr)
!A ⊢!A⊗!A

Similarly, !A ⊢ 1.
Cut elimination shows that this gives a comonoid structure
on J!AK.
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Example: the relational model

The category Rel :

Objects: sets X ,Y , . . .

Morphisms: relations R ⊆ X × Y

Tensor product: cartesian product of underlying sets X × Y

Linear implication: also cartesian product of underlying sets, since

Rel(X × Y ,Z ) ≃ Rel(X ,Y × Z )

Cartesian product: disjoint union of underlying sets X ⊔ Y

Exponential comonad: multisets Mul(X ) on X (finite lists up to reordering, finite subsets
with repetitions)

is a sound model of linear logic.
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Example: the bicategorical model of species [Fio+08; FGH24]

Objects: categories C,D, . . .

Morphisms: profunctors F ,G : C × Dop → Set

2-morphisms: natural transformations F ⇒ G

Tensor product: cartesian product of underlying categories C × D
Linear implication: Cop ×D
Cartesian product: disjoint union of underlying categories C ⊔ D
Exponential comonad: free symmetric monoidal category on underlying category Sym(C)

is a sound bicategorical model of linear logic.
Bicategory: hom-categories instead of hom-sets.
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Example: the homotopical model of template games [Mel19a; Mel19b]

(with trivial template for simplicity)

Objects: categories C,D, . . .

Morphisms: spans of isofibrations C X DF G

2-morphisms: morphisms of spans

X

C D

Y

F G

α

F ′ G ′

Tensor product: cartesian product of underlying categories C × D
Linear implication: same as tensor product C × D
Cartesian product: disjoint union of underlying categories C ⊔ D
Exponential comonad: free symmetric monoidal category on underlying category Sym(C)

is a sound “homotopical model of linear logic”.
“Homotopical model”: Quillen model structure on hom-categories.
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The goal

Increasing interest in homotopical structures in models of linear logic.
→ find a general framework to fit such new models ?

Idea: work directly with ∞-categories.

∞-categories: the language of homotopy theory.

Goal: find how to axiomatize models of linear logic in ∞-categories.

In ∞-categories, computational definitions don’t work well: the property of a diagram
commuting is replaced by the data of a higher isomorphism.
→ need a way to package the categorical structure of models of LL in an abstract, “unbiased”
way.
Multiple axiomatizations exist.
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Seely categories

Definition ([See97])

A Seely category is a

1 symmetric monoidal closed category (C,⊗, 1,⊸)

2 with finite products (& and ⊤),

3 a comonad (!, δ, ε) : C → C,
4 isomorphisms m2

A,B : !(A& B) ≃ !A⊗ !B and m0 : !⊤ ≃ 1 so that ! : (C,&) → (C,⊗) is a
symmetric monoidal functor

5 such that the following diagram commutes

!A⊗!B !!A⊗!!B

!(A& B) !!(A& B) !(!A&!B)

δA⊗δB

m2
A,B m2

!A,!B

δA&B !⟨!π1,!π2⟩

Point 5 is too ad hoc to have a natural ∞-categorical generalization.
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Linear categories

Definition ([Ben+97])

A linear category is :

a symmetric monoidal closed category (L,⊗, 1),

together with a lax symmetric monoidal comonad ((!,m), δ, ε),

and a natural commutative comonoid structure dA :!A →!A⊗!A, eA :!A → 1,

such that dA and eA are coalgebra morphisms for ! and δ is a comonoid morphism.

Less ad hoc, but still a lot of structure.
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Linear-non-linear adjunctions

Every linear category (L,⊗, 1, !, . . . ) induces (L!,×) (L,⊗).⊣

L! category of coalgebras for the comonad !.
The morphisms in L! represent the non-linear morphisms of linear logic (!A⊸ B).

Definition ([Ben95])

A linear-non-linear adjunction is an adjunction

(M,×) (L,⊗)
L

M

⊣

between a cartesian category M and a symmetric monoidal closed category L, where the left
adjoint L : M → L is strongly monoidal L(X × Y ) ≃ LX ⊗ LY .

L “linear” category, M “multiplicative” (non-linear) category.
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Linear-non-linear adjunctions

(M,×) (L,⊗)
L

M

⊣

Induced comonad LM : L → L makes L into linear category.
Multiple choices of M may yield the same comonad : there is more structure than strictly
needed.
But it is packaged in a more minimalistic way.
Only notions needed: monoidal functor, cartesian products, adjunctions.

Elies Harington ∞-categorical models of linear logic June 19 2025 17 / 56



A special case : Lafont categories

!A must be a (commutative) comonoid.

Definition

(L,⊗, !) is a Lafont category if !A is the cofree commutative comonoid on A for every A.

Definition

Write Comon(L) for the category of commutative comonoids in L.

Proposition

The category Comon(L) is cartesian. If L is Lafont, there is a linear-non-linear adjunction

(Comon(L),×) (L,⊗).⊣
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Example: the relational model

The relational model Rel is Lafont.

Proposition

(Rel,×,Mul) is Lafont.
i.e. Mul(X ) is the cofree commutative comonoid X in Rel.
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Outline

1 Categorical semantics of linear logic

2 The theory of ∞-categories

3 Linear logic in ∞-categories

Almost all results in this section are from Joyal and Lurie’s work [Joy08; Lur09; Lur17; Lur18]
or straightforward corollaries.
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Shapes for higher morphisms

In categories, there is a unique way to compose morphisms.
In an ∞-category, various compositions may exist, and they are only related by higher
isomorphisms between them.
To define ∞-categories, we need “shapes” for morphisms (cells) of arbitrary dimensions, and
how they relate to one another.

Many possible choices, but the most developed one is that of simplices.

• • •

• • • • • • •
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Simplicial sets

Definition (Simplex category)

∆ denotes the category with objects the linear orders [n] = {0 < · · · < n} with n ∈ N, and
monotonous maps between them.

Definition

A simplicial set is a functor X : ∆op → Set. Their category is written sSet.

elements of X0 are thoughts of as vertices of X
f ∈ X1 is thought of as an edge. The inclusions {0} ↪→ {0, 1} and {1} ↪→ {0, 1} give F a
source and target vertices d0f and d1f .
σ ∈ X2 is thought of as a filled triangle witnessing that “h is a composition of f and g”

y

x z

gf

h

σ
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Simplicial sets: a drawing
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Examples of simplicial sets

Definition

For every n ∈ N there is a simplicial set ∆n such that

∀X ,Hom(∆n,X ) ≃ Xn.

∆n is called the standard n-simplex.

Definition

Let n > 1, 0 ≤ k ≤ n. The horn Λn
k is the subsimplicial set of ∆n obtained by removing the

unique cell of dimension n and the cell of dimension (n − 1) opposite to the vertex k .
The horn is an inner horn if 0 < k < n, and an outer horn if k = 0 or k = n.

Λ2
0 1

0 2

Λ2
1 1

0 2

Λ2
2 1

0 2
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Categories as simplicial sets

Definition

Every category C determines a simplicial set NC called its nerve.
The n-simplices in NC are given by sequences of composable morphisms in C.

d0σ d1σ dn−1σ dnσ

The action of morphisms in ∆ is given by composition and discarding in C.

Example

The inclusion {0, 1, 2} ≃ {1, 2, 4} ↪→ {0, 1, 2, 3, 4} gives the action

x0 x1 x2 x3 x4 7→ x1 x2 x4
f g h k g h◦k
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Categories as simplicial sets

Proposition

A simplicial set X is isomorphic to the nerve of a category if and only if for every 0 < k < n,
n > 1, and morphism D : Λn

k → X , there exists a unique cell σ ∈ Xn making the following
diagram commute.

Λn
k X

∆n

D

∃!σ

It is the nerve of a groupoid if and only if this condition also applies when 0 ≤ k ≤ n, n > 0.

y y

x z x z

Λ2
1 h = g ◦ f Λ2

0 f = g−1 ◦ h

g gf

h

f

h

σ σ
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∞-categories, ∞-groupoids

Definition

An ∞-category is a simplicial set X such that there exists a (non-necessarily unique) lift
with respect to every inclusion of inner horn Λn

k ↪→ ∆n :

Λn
k X

∆n

D

∃σ

It is an ∞-groupoid if it admits lifts also for outer horn inclusions.
The vertices of an ∞-category are called objects, its edges are called morphisms.

Example

The nerve of a category is an ∞-category, the nerve of a groupoid is an ∞-groupoid.
The nerve functor N : Cat → ∞Cat is fully faithful.
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Composition of morphisms

Definition

In an ∞-category C, given a triangle σ ∈ C2
y

x z

gf

h

σ

we say that σ witnesses that h is a composition of g and f.

Proposition

In an ∞-category C, composition of morphisms always exists, and is generally not unique.
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Homotopy between morphisms

Let C be an ∞-category.

Definition

Let x ∈ C0. There is an identity morphism idx : x → x given by the action of C on the only
map {0, 1} → {0}.

Let f , g : x → y be morphisms in C.

Definition

A homotopy between f and g is a 2-cell σ ∈ C2 of the following shape

y or x

x y x y

idy ff

g

idx

g

σ σ

f and g are homotopic (written f ∼ g) if there exists a homotopy between f and g .
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Homotopies and composition

Proposition

Let f : x → y , g : y → z , and h, h′ : x → z two compositions of g and f . Then h ∼ h′.

Proof.
z

y y

x z x z

idz

g

g

filling Λ3
1

idz

h′

f

h

h′

h

idgσ′

σ ∃σ′′
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Homotopies and composition

Proposition

The relation ∼ is an equivalence relation.

Proposition

Composition is unique up to homotopy.

Proposition

Composition is associative and unital up to homotopy.

All proofs: playing with horn filling conditions
In particular, can define the homotopy category hC with same objects as C, and morphisms
are morphisms in C up to homotopy.
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Functor ∞-categories

A functor between ∞-categories is just a morphism of simplicial sets.

Proposition

The category sSet is cartesian closed (as a presheaf category), with internal hom given by

Fun(X ,Y )n := HomsSet(∆
n × X ,Y )

Proposition

If Y is an ∞-category (resp. ∞-groupoid), then Fun(X ,Y ) is an ∞-category (resp.
∞-groupoid).

The objects of Fun(X ,Y ) are exactly the morphisms of simplicial sets X → Y .
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Natural transformations, equivalences

Definition

Let F ,G : X → Y be morphisms of simplicial sets, with Y an ∞-category.
A natural transformation is morphism α : F → G in Fun(X ,Y ).
Equivalently, α : ∆1 × X → Y such that α|{0}×X = F and α|{1}×X = G .

Definition

A functor F : C → D is an equivalence of ∞-categories if there exists G : D → C and natural
isomorphisms G ◦ F → idC , F ◦ G → idD.
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Hom ∞-groupoid

Let x , y be objects of an ∞-category C. Write HomC(x , y) or simply Hom(x , y) for the
following pullback in sSet.

HomC(x , y) Fun(∆1,X )

∆0 Fun(∆0 ⊔∆0,X )

⌟
restriction to endpoints

(x ,y)

Proposition

HomC(x , y) is an ∞-groupoid whose objects are given by morphisms f : x → y in C and whose
morphisms are given by homotopies.

Proposition

The existence of composite of morphisms in C can be enhanced to the choice of a functor
Hom(x , y)× Hom(y , z) → Hom(x , z).
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Adjunctions

Let F : C → D, G : D → C be functors between ∞-categories, and η : idC → G ◦ F ,
ε : F ◦ G → idD be natural transformations.

Definition

(η, ε) is a unit-counit pair for F and G if there exist compositions

F ◦ G ◦ F G ◦ F ◦ G

F F G G

ε◦idF idG◦εidF ◦η

idF

η◦idG

idG

σ τ

in Fun(C,D) and Fun(D, C).

Definition

F is left adjoint to G (and G right adjoint to F ) if there exists a unit-counit pair for F and G .
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(Co)limits

Let x , y ∈ C and ∞-category. A product of x and y is a diagram

z

x y

π1 π2

such that for all z ′ ∈ C, the induced map

Hom(z ′, z) → Hom(z ′, x)× Hom(z ′, y)

is an equivalence of ∞-groupoids.

Remark

The universal property is up to equivalence, while in 1-categories it’s up to isomorphism.

General limits and colimits can be defined along those lines.
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Summary of ∞-category theory so far

∞-categories have objects, morphisms, homotopies

existence of compositions

uniqueness up to homotopy

Hom-∞-groupoids instead of Hom-sets

universal properties are up to equivalence

adjunctions can be defined as usual
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Monoids in categories

In a category C with finite products, a commutative monoid is an object M together with
maps µ : M ×M → M, η : 1 → M, such that the following commute.

associativity unitality commutativity

M ×M ×M M ×M M M ×M M M ×M M ×M

M ×M M M M

idM×µ

µ×idM µ

idM×η

idM

η×idM

idM

⟨π2,π1⟩

µ
µ

µ

In an ∞-category, need further coherence conditions on the data of homotopies, in every
dimension.
How to specify everything in a homogeneous way ?
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Monoids in categories

The previous definition of commutative monoid is biased : many other operations than µ and
η exist in monoids.

M5 → M2

(x1, x2, x3, x4, x5) 7→ (µ(x3, x1), µ(x2, x5))

Every partial map f : {1, . . . ,m} → {1, . . . , n} induces a map

Mm → Mn

(xi )1≤i≤m 7→
( ∏
f (i)=j

xi
)
1≤j≤n

Write FinSet∗ for the category of finite sets {1, . . . , n} and partial maps.

Proposition

Commutative monoids in C correspond to functors F : FinSet∗ → C such that
F ({1, . . . , n}) ≃ F ({1})n.
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Monoids in ∞-categories

Definition

A commutative monoid in an ∞-category C is a functor F : NFinSet∗ → C such that
F ({1, . . . , n}) ≃ F ({1})n.

This is for monoids with respect to cartesian products.
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Symmetric monoidal ∞-categories

Fun fact

A symmetric monoidal category is exactly a commutative (pseudo)monoid in the bicategory of
categories.

Proposition

There is an ∞-category ∞Cat whose objects are ∞-categories, morphisms are functors,
homotopies are natural isomorphisms, etc.
This ∞-category admits cartesian products, given by the cartesian product of the underlying
simplicial sets.

Definition

A symmetric monoidal ∞-category is a commutative monoid M in ∞Cat, i.e.
M : NFinSet∗ → ∞Cat. Its underlying ∞-category is M(1).
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Monoidal functors and monoids

With more effort, possible to define :

commutative monoids in symmetric monoidal ∞-categories

strong monoidal functors (F (x ⊗ y) ≃ F (x)⊗ F (y) + higher structure)

lax monoidal functors (with maps F (x)⊗ F (y) → F (x ⊗ y) + higher structure)

and show (lax) monoidal functors preserve monoids.
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Outline

1 Categorical semantics of linear logic

2 The theory of ∞-categories

3 Linear logic in ∞-categories

Content of our article [HM25]
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∞-linear-non-linear adjunction

Definition

An LNL adjunction in ∞-categories is an adjunction

(M,×) (L,⊗)
L

M

⊣

between a cartesian ∞-category M and a symmetric monoidal closed ∞-category L⊗, such
that the left adjoint L is strong monoidal.

Proposition

The right adjoint is lax monoidal.
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Sanity check : comonoid structure on !A

Proposition

In a cartesian ∞-category, every object admits a unique commutative comonoid structure.
(comultiplication is given by the diagonal map X → X × X )

Since strongly monoidal functors preserve commutative comonoids, we get

Corollary

In an LNL adjunction between ∞-categories,

(M,×) (L,⊗)
L

M

⊣
For every object x ∈ L, !x := LMx inherits a canonical commutative comonoid structure.
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Sanity check : Seely isomorphisms

Let

(M,×) (L,⊗)
L

M

⊣

be an LNL adjunction between ∞-categories, where C has cartesian products.
Since right adjoints preserve limits, M is strongly monoidal from (L,×) to (M,×). Hence the
composite ! = LM : L → L is strongly monoidal (L,×) → (L,⊗).

In particular this gives Seely isomorphisms !(A× B) ≃!A⊗!B, !⊤ = 1.
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Lafont ∞-categories

A monoidal structure on an ∞-category C determines a monoidal structure on Cop via the
self-equivalence op : ∞Cat → ∞Cat.

Definition (Commutative comonoids)

Given a SM∞C C, the ∞-category Comon(C) is defined as Mon(Cop)op.

Theorem

The ∞-category Comon(C) is cartesian and the forgetful functor Comon(C) → C is strongly
monoidal from the cartesian structure to the monoidal one.

Corollary

If Comon(C) → C has a right adjoint, it induces an LNL adjunction (Comon(C),×) (C,⊗)⊣

Definition

In that case, we say that C is a Lafont ∞-category.
Elies Harington ∞-categorical models of linear logic June 19 2025 47 / 56



An explicit formula for cofree comonoids

The following has been shown in 1-category theory by [MTT].

Theorem

Let (L,⊗) be a symmetric monoidal ∞-category, and X ∈ C.
If for all A ∈ C,

A⊗
∏
n∈N

(X⊗n)Sn →
∏
n∈N

(A⊗ X⊗n)Sn

is an equivalence, then ∏
n∈N

(X⊗n)Sn

is the cofree commutative comonoid on X .

It follows easily from more general results of Lurie [Lur17].
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Example : ∞-categorical generalized species

(∞)-category Rel Prof

Objects Sets X ,Y ∞-categories C,D

Linear morphisms
Relations

R : X × Y → Bool
∞-profunctors

C × Dop → ∞Grpd

Lafont exponential
Mul(X ) multisets
on underlying set

Sym(C) free symmetric
monoidal ∞-category

Non-linear morphisms
“multi-relations”

Mul(X )× Y → Bool
“∞-generalized species”
Sym(C)×Dop → ∞Grpd

Extensional objects
Complete lattices

P(X ) = BoolX
Presheaf ∞-categories

P(C) := Fun(Cop,∞Grpd)

Extensional morphisms
Maps P(X ) → P(Y ) that
preserve arbitrary joins

Functors P(C) → P(D) that
preserve small colimits

Extensional non-linear morphisms ? Analytic functors ?
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Another criterion for existence of cofree comonoids

Definition

An ∞-category C is presentable if

it is closed under small colimits

there is a small set of objects S ⊂ C0 such that every object is a filtered colimit of objects
of S

Theorem

Let C be a symmetric monoidal presentable ∞-category such that ∀x ∈ C, the functor
x ⊗− : C → C preserves small colimits. Then C is Lafont (it admits cofree comonoids).

But in general there is no nice formula in this context.

Example

Spectra (abelian groups), module spectra (modules).
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Conclusion

Building upon the heavy machinery of ∞-categories developed, we generalized two
notions of models of linear logic to the ∞-categorical setting (Lafont categories and LNL
adjunctions).

We constructed new such models analogous to variants of the relational model and
bicategorical models of species and polynomials.
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Future work

Give direct definitions of linear ∞-categories and Seely ∞-categories, and show they
induce LNL adjunctions.

Explicit comparison of our generalized ∞-species and analytic functors.

Generalize Mellies’ span model (template games) to this new setting (in connection with
polynomial functors [HM24])

Generalize to (∞, 2)-categorical setting to model differential linear logic.

Try to fit advanced homotopical constructions with linear flavour (Goodwillie calculus ?)
into this new setting.
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A reminder on the 1-categorical story

Intensional Extensional

category Rel full subcat of SupLat on the P(X ), X ∈ Set

category Porel full subcat of SupLat on the P(X ), X ∈ Poset

Mul(X ) free commutative
monoid on underlying (po)set

free commutative comonoid in SupLat

non-linear maps Mul(X ) → Y ?

FC(X ) free poset with
finite joins on X

!SP(X ) exponential induced by LNL adjunction

Scott SupLat⊣

non-linear maps FC(X ) → Y Scott-continuous maps P(X ) → P(Y )
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∞-categories with colimits

Let K be a class of simplicial sets. Write ∞CatK for the sub-∞-category of ∞Cat on
∞-categories that admit colimits indexed by simplicial sets in K, and functors that preserve
such colimits.
Special cases : ∞Catcc for K = all simplicial sets (“cc” for cocontinuous), ∞Catfiltr for
filtered simplicial sets, ∞Catsift for sifted simplicial sets.

Proposition

The ∞-category ∞CatK admits a symmetric monoidal closed structure whose tensor products
classifies functors C × D → E that preserve K-colimits independently in both variables.
Moreover, if K ⊆ K′, the forgetful functor ∞CatK′ → ∞CatK admits a strongly monoidal left
adjoint.

Proposition

If K consists only of sifted simplicial sets, then the previous monoidal structure is cartesian.
That is the case for ∞Cat = ∞Cat∅, ∞Catfiltr and ∞Catsift.
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Cocompletion-based LNLs

There is a chain of strongly monoidal left adjoints

S ∞Cat ∞Catfiltr ∞Catsift ∞Catcc

⊣ ⊣ ⊣ ⊣

where the monoidal structures on all but ∞Catcc are cartesian.
Moreover they are all monoidal closed, in particular we get 4 LNL adjunctions, and hence 4
exponential comonads on ∞Catcc.
Write !f for the one induced by the adjunction with ∞Catfiltr and similarly for !s and ∞Catsift.

Theorem

For a small ∞-category C, !sP(C) = P(C⊔), where C⊔ is the free cocompletion of C under
finite coproducts.

Theorem

For a small ∞-category C, !fP(C) = P(Cfin), where Cfin is the free cocompletion of C under
finite colimits.
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Intensional point of view

We defined !s and !f at the extensional level (cocomplete ∞-categories).

Intensional Extensional

Profunctors C × Dop → S Cocontinuous functor P(C) → P(D)

Completion under finite coproducts comonad on Prof !s comonad on ∞Catcc

Completion under finite colimits comonad on Prof !f comonad on ∞Catcc
At the level of posets, finite coproducts and finite colimits coincide. Hence we have two
generalizations of the comonad FC on Porel.
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Free exponential on ∞Catcc

Theorem

The full sub-∞-category of ∞Catcc on presheaf ∞-categories admits cofree commutative
comonoids.
Moreover, the presheaf construction ∞Cat → ∞Catcc maps free commutative monoids to
cofree commutative comonoids : !P(C) = P(Sym(C)), where Sym(C) :=

∐
n∈N Cn//Sn is the

free symmetric monoidal ∞-category on C.

Intensional Extensional

Profunctors C × Dop → S Cocontinuous functors P(C) → P(D)

Free symmetric monoidal category
comonad on Prof

Cofree commutative comonoid on ∞Catcc

Non-linear morphisms

Genralized ∞-species Sym(C)×Dop → S Analytic ∞-functors ?
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0-∞ analogy

0-categories ∞-categories

set X ∈ Set ∞-groupoid X ∈ S

poset E ∞-category C

Fibred relation R ⊆ X × Y Span Z → X × Y

Indexed relation X × Y → Bool Functor X × Y → S

Monotonous relations E × F op → Bool Profunctor C × Dop → S

Free suplattice P(E ) := (E op → Bool) Presheaf ∞-category P(C) := Fun(Cop,S)

Suplattice morphism Small colimit-preserving functor

Scott-continuous map
Filtered-colimit preserving functor

(or sifted-colimit preserving)
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