
Imperfect Forward Secrecy: 
How Diffie-Hellman Fails in Practice 

 
Karthikeyan Bhargavan 
+ many, many others. 
(CNRS, INRIA, Microsoft Research, IMDEA, 
 Univ of Pennsylvania, Univ of Michigan, Johns Hopkins) 
 
  

http://weakdh.org 
http://mitls.org  



If deployed correctly, k enjoys many properties: 
•  authenticity, confidentiality, forward secrecy   
•  + resistance to UKS, KCI? future secrecy? 



Who chooses the group (p,g)?  
•  client? server? standard writers? 
 
What other protocols are running? 
•  do they use the same long-term keys (skA,skB)? 

Can the DH key shares be reused? 
•  do we need to validate public values (gx,gy)? 
 
How does the application use k? 
•  does k need to be unique for each session?  



DH key exchange is well-understood, but 
real-world protocols based on DH often broken 
•  buggy ADH implementations (SKIP) 
•  weak DH groups (Logjam) 
•  unexpected security requirements (3Shake) 

Understanding protocol details can make  
DLP-based attacks more practical 
 
Case study: Transport Layer Security (TLS) 
•  Only modp groups, not elliptic curves 



2015      TLS1.3? 

OpenSSL, SecureTransport, NSS,  
SChannel, GnuTLS, JSSE, PolarSSL, … 
many bugs, attacks, patches every year

 
mostly for small simplified models of TLS 



Client Server 



Client Server 



Who chooses the group (p,g)?  
•  server sends: sign(skS,cr | sr | p | g | gy) 
 
What other protocols are running? 
•  RSA key transport using same (skA,skB)? 

Can the DH key shares be reused? 
•  yes, and public values are not usually validated 
 
How does the application use k? 
•  fast session resumption, unique channel ids, … 



RSA + DHE + ECDHE 
+ Session Resumption 
+ Client Authentication

[S&P’13, Crypto’14
[see http://mitls.org] 

State machine  
for common 
Web configurations 



+ Fixed_DH  
+ DH_anon  
+ PSK  
+ SRP  
+ Kerberos 
+ *_EXPORT  
+ … 
 
All implemented 
in OpenSSL 



Unexpected state transitions 
in OpenSSL, NSS, Java, 
SecureTransport, … 
•  Required messages  

can be skipped 
•  Unexpected messages  

may be received 
•  CVEs for many libraries 
How come all these bugs? 
•  In independent code bases, 

sitting in there for years 
•  Are they exploitable? 



SKIP
Network attacker impersonates 
api.paypal.com to a JSSE client 
1.  Send PayPal’s cert 
2.  SKIP ServerKeyExchange 

bypass server signature: 
rsa-sign(skS,cr | sr | p | g | gy) 

3.  SKIP ServerCCS 
bypass encryption 

4.  Send ServerFinished 
using uninitialized MAC key 
bypass handshake integrity 

5.  Send ApplicationData 
unencrypted as S.com 



SKIP
•  A network attacker can impersonate 

any server (Paypal, Amazon, Google) 
to any Java TLS client (built with JSSE) 

•  Affects all versions of Java until Jan 2015 
(CVE-2014-6593) 

•  Similar bugs also found in: 
OpenSSL, wolfSSL, mono TLS, GNU classpath 

•  Reality check: our efforts in securing ADH can be 
made irrelevant by ridiculous implementation bugs 





Internet-wide scan of HTTPS servers (Zmap) 
•  14.3M hosts, 24% support DHE 
•  70,000 distinct groups (p,g) 
 
Composite-order groups with short exponents  
•  4,800 groups where (p-1)/2 was not prime 
•  Applied ECM to opportunistically factor (p-1)/2  
•  Got prime factors for 750 groups (40K connections) 
•  Some servers used short exponents: 128/160 bits 
•  Used Pohlig-Hellman to compute: 

full secret exponent for 159 servers 
(partial exponent for 460 servers) 



Internet-wide scan of HTTPS servers (using Zmap) 
•  14.3M hosts, 24% support DHE 
•  70,000 distinct groups (p,g) 
 
Small-sized safe primes 
•  84% (2.9M) servers use 1024-bit primes 
•  2.6% (90K) servers use 768-bit primes 
•  0.0008% (2.6K) servers use 512-bit primes 
•  But 512-bit DLP is solved since 2014, 

so can we break these connections? 





TLS 1.0 supported weakened ciphers to comply 
with export regulations in 1990s 

DHE_EXPORT deprecated in 2000

 
DHE_EXPORT handshake looks just like DHE 

 



Logjam

A man-in-the-middle attacker can: 
•  impersonate ANY server that supports DHE_EXPORT,  
•  at ANY client that accept 512-bit DHE groups 

512-bit discrete log needs to be  
computed in real-time! 



512-bit Discrete Logs with CADO-NFS



Logjam
Most DHE_EXPORT servers use the same groups 
•  92% of these use one of two 512-bit primes 
 
 
 
 
 

•  We performed pre-computation for these primes 
•  About 1 week each one 2000-3000 cores 
•  Per-connection descent computation: 30-150 seconds 
 



Logjam
Some web browsers start sending data too early 
•  Reason: optimize TLS performance for PFS ciphersuites 
•  But now no need to wait 150 seconds for DLP 
•  We can capture this early application data and 

compute DLP at leisure to read password/cookies 



For DHE_EXPORT connections 
•  Connections between Chrome/Firefox/IE and 8.4% of 

websites can be broken offline (no forward secrecy) 
For regular DHE, we need to break bigger groups 
•  For academics, probably needs algorithmic improvements 
•  For governments, 768 bits is definitely reachable.  
 
 
 
 
 

 



IKEv1, IKEv2, SSH all use 768-bit/1024-bit groups 
•  6% of IKEv2 servers use Oakley 1 (768-bits) 
•  64% of IKEv2 servers use Oakley 2 (1024-bits) 
•  26% of SSH servers use Oakley 2 (1024-bits) 
•  13% of HTTPS servers use 1024-bit Apache group 
 
 
 
 
 

 





Security updates to major TLS libraries, 
web browsers, websites, mail servers, … 
•  Disabling 512-bit, then 768-bit, then 1024 bit 
•  We recommend 2048-bit safe primes 

Fixes are surprisingly hard to deploy 
•  Many libraries hard-code DH parameters 
•  Hardware devices difficult to update 
•  May be easier to move to ECDHE 
 
 



Stronger key exchanges, fewer options 
•  ECDHE and DHE by default, no RSA key transport 
•  Fixed DH groups (> 2047 bits) and EC curves (> 255 bits) 
•  Only AEAD ciphers (AES-GCM), no CBC, no RC4 

 
Signatures, session keys bound to handshake params 
•  Server signature covers ciphersuite (preventing Logjam) 

 
Faster: lower latency with 1 round-trip 
•  0-round trip mode also available 
•  Many security analyses ongoing (!) 
 
  
 

 



 
Use formal methods! 

 
 

•  Use a type-safe programming language 
•  F#, OCaml, Java, C#,…  
•  (No buffer overruns, no Heartbleed) 

•  Verify the logical correctness of your code 
•  Use a software verifier: F7/F*, Why3, Boogie, Frama-C,… 

•  Link software invariants to cryptographic guarantees 
•  Use a crypto verifier: EasyCrypt, CryptoVerif, ProVerif 
•  Hire a cryptographer!  





Protocols use and compose Diffie-Hellman key 
exchanges in various (weird) ways 
•  Complex compositions lead to  

implementation bugs, downgrade attacks, … 
 

Don’t assume that servers know how to generate 
good DH groups or keys 
•  Most don’t validate groups or keys 
•  Off-curve and small-subgroup attacks are feasible 

Beware of cryptographic front-doors (EXPORT) 
•  Obsolete crypto can bite you decades later 

 
 

 
 

 



 
weakdh.org 

mitls.org  
smacktls.com  

 
 

Papers: 
•  Imperfect Forward Secrecy: How Diffie-Hellman Fails in 

Practice. ACM CCS, 2015 
•  A Messy State of the Union: Taming the Composite State 

Machines of TLS. IEEE S&P, 2015  


