
A

eleration of �xpoint
omputations in stati
analysis of programsby poli
y iteration algorithmsA. Costan†, S. Gaubert∗, E. Goubault+, M. Martel+, S. Putot+
† Polytehni
a Bu
arest
∗ INRIA Ro
quen
ourt

+ CEA Sa
layAbstra
tWe present a new method for solving the �xpoint equations that ap-pear in the stati
 analysis of programs by abstra
t interpretation. Thismethod is based on poli
y iteration algorithms and not Kleene like valueiteration algorithms. These algorithms have been introdu
ed in the sixtiesfor solving optimal
ontrol problems, and extended more re
ently to the
ase of games with two players and zero sum. We apply this te
hnique tothe parti
ular
ase of the interval abstra
tion of values of variables, anddemonstrate the improvements over more
lassi
al te
hniques, in
ludingtraditional widening/narrowing a

eleration me
anisms.1 Introdu
tion and related workOne of the important goals of stati
 analysis by abstra
t interpretation is thedetermination of invariants of programs. They are generally des
ribed by overapproximation (abstra
tion) of the sets of values that program variables
antake, at ea
h
ontrol point of the program. These are obtained by solving asystem of (abstra
t) semanti
 equations, derived from the program to analyzeand from the domain of interpretation, or abstra
tion, i.e. by solving a given�xpoint equation in an order-theoreti
 stru
ture.Among the
lassi
al abstra
tions, there are the non-relational ones, su
has the domain of intervals [CC77℄ (invariants are of the form vi ∈ [c1, c2]), of
onstant propagation (vi = c), of
ongruen
es [Gra90℄ (vi ∈ aZ + b). Amongthe relational ones we
an mention polyedra [PH℄ (α1v1 + · · · + αnvn ≤ c),linear equalities [Kar76℄ (α1v1+ · · ·+αnvn = c), linear equalities modulo [Gra91℄(α1v1+· · ·+αnvn ≡ a) or more re
ently the o
tagon domain [Min01℄ (vi−vj ≤ c).All these domains are (order-theoreti
) latti
es, for whi
h we
ould think ofdesigning spe
i�
 �xpoint equation solvers instead of using the
lassi
al, andyet not very e�
ient value iteration algorithms, known as Kleene's �xpoint1

iteration. A
lassi
al way to do this is to use widening/narrowing operators[CC91℄. There exists
on
rete widening/narrowing operators for all
lassi
aldomains of interpretation su
h as the one we mentioned above. They improvethe rapidity of �nding an over-approximated invariant at the expense of a

ura
ysometimes; i.e. they rea
h a �xpoint, but not always the least �xpoint of thesemanti
 equations (we review some elements of this method in Se
tion 2, andgive examples in the
ase of the interval latti
e).In this paper, we introdu
e a new algorithm, based on poli
y iteration andnot value iteration, that
orre
tly and e�
iently solves this problem (Se
tion 3).It shows good performan
es in general with respe
t to various typi
al programs,see Se
tion 4.4. We should add that this work started from the di�
ulty to �ndgood widening and narrowing operators for domains used for
hara
terizingthe pre
ision of �oating-point
omputations, used by some of the authors in[GMP02℄.Poli
y iteration algorithms were introdu
ed by Howard [How60℄ to solvesto
hasti

ontrol problems with �nite state and a
tion spa
e. In this
on-text, a poli
y is a feedba
k strategy (whi
h assigns to every state an a
tion).Classi
al poli
y iteration may be thought of as a generalization to monotonenon-di�erentiable
onvex fun
tions of Newton's algorithm to
ompute the �x-point of a fun
tion. We refer the reader to [Put94℄ for a detailed presentation ofpoli
y iteration algorithms for sto
hasti

ontrol. Poli
y iteration is known tobe experimentally e�
ient, although its
omplexity is still not well understoodtheoreti
ally. Poli
y iteration
an be extended to the
ase of zero-sum games:at ea
h iteration, one �xes the strategy of one player, and solves a non-linear(optimal
ontrol problem) instead of a linear problem. This idea goes ba
k atleast to [HK66℄, but restri
tive assumptions were made on transition probabil-ities to guarantee the
onvergen
e, so that deterministi
 games
ould not besolved along these lines. General versions of the poli
y iteration algorithm forgames have been designed re
ently [GG98, CTGG99, CT01℄, exploiting pre
iseresults on the stru
ture of the �xpoint set of dynami
 programming operatorsasso
iated to optimal
ontrol problems. In Se
tion 2, we present a new ver-sion of the poli
y iteration algorithm, whi
h applies to monotone self-maps ofa
omplete latti
e, de�ned by the in�mum of a
ertain family satisfying a se-le
tion prin
iple. Thus, poli
y iteration is not limited to �nding �xpoint thatare numeri
al ve
tors or fun
tions, �xpoints
an be elements of an abstra
t lat-ti
e. This new generality allows us to handle latti
es whi
h are useful in stati
analysis. In our
ontext, we avoid
y
ling by
omputing at ea
h step the least�xpoint
orresponding to the
urrent poli
y. The main idea of the proof is thatthe map whi
h assigns to a monotone map its least �xpoint is in some weaksense a morphism with respe
t to the inf-law, see Theorem 1.Other �xpoint a

eleration te
hniques have been proposed in the litterature.There are mainly three types of �xpoint a

eleration te
hniques, as used in stati
analysis.The �rst one relies on spe
i�
 information about the stru
ture of the programunder analysis. For instan
e, one
an de�ne re�ned iteration strategies forloop nests [Bou93℄, or for interpro
edural analysis [Bou92℄. These methods are2

ompletely orthogonal to the method we are introdu
ing here, whi
h does notuse su
h stru
tural properties. However, they might be
ombined with poli
yiteration, for e�
ient interpro
edural analyses for instan
e. This is beyond thes
ope of this paper.Another type of algorithm is based on the parti
ular stru
ture of the abstra
tdomain. For instan
e, in model-
he
king, for rea
hability analysis, parti
ular it-eration strategies have been designed, so that to keep the size of the state spa
erepresentation (using BDDs, or in stati
 analyzers by abstra
t interpretation,using binary de
ision graphs, see [Mau99℄) small, by a
ombination of breadth-�rst and depth-�rst stategies, as in [RS99℄. For boolean equations, some authorshave designed spe
i�
 representations whi
h allow for relatively fast least �x-point algorithms. For instan
e, [KL03℄ uses Be�ki
-Lesz
zyloiwski theorem. Instri
tness analysis, representation of boolean fun
tions by �frontiers� has beenwidely used, see for instan
e [Hun91℄ and [CP85℄. Our method here is general,as hinted in Se
tion 3. It
an be applied to a variety of abstra
t domains, pro-vided that we
an �nd a �sele
tion prin
iple�. This is exempli�ed here on thedomain of intervals, but we are
on�dent this
an be equally applied to o
tagonsand polyedra.Last but not least, there are some general purpose algorithms, su
h as gen-eral widening/narrowing te
hniques, [CC91℄, with whi
h we
ompare our poli
yiteration te
hnique. There are also in
remental or �di�erential�
omputations(in order not to
ompute again the fun
tional on ea
h partial
omputations)[HE02℄, [FS98℄. In fa
t, this is mu
h like the stati
 partitioning te
hnique someof the authors use in [PGM03℄. Related algorithms
an be found in [Dam01℄,[O'K87℄ and [CH92℄. We have not been able to
ompare these te
hniques withour algorithm yet.The results of the present paper were announ
ed in [Cos03℄.2 Kleene's iteration sequen
e, widenings and nar-rowingsIn order to
ompare the poli
y iteration algorithm with existing methods, webrie�y re
all in this se
tion the
lassi
al method based on Kleene's �xpointiteration, with widening and narrowing re�nements (see [CC91℄).Let (L,≤) be a
omplete latti
e. We write ⊥ for its lowest element, ⊤ forits greatest, ∪ and ∩ for the meet and join operations respe
tively. We say thata self-map f of a
omplete latti
e (L,≤) is monotone if x ≤ y ⇒ f(x) ≤ f(y).The
omputation of the least �xpoint of f
an be done using the following(maybe
ountable) iteration sequen
e:
x0 = ⊥
x1 = x0 ∪ f(x0)
. . .

xn+1 = xn ∪ f(xn)
. . . 3

Then the least �xpoint (lfp) may be rea
hed as one of these xn or as thesupremum of all the xn (we say that the iteration sequen
e
onverges to the lfpof f). Of
ourse, this is une�
ient, and may even be un
omputable, in the
aseof latti
es of in�nite height, su
h as the simple interval latti
e (that we use forabstra
tions in Se
tion 4). For this
omputation to be
ome tra
table, wideningand narrowing operators have been introdu
ed, we refer the reader to [CC91℄for a good survey. As we will only show examples on the interval latti
e, we willnot re
all the general elements of the theory. Widening operators are binaryoperators ∇ on L that ensure at least that any iteration sequen
e of the form:
x0 = ⊥
x1 = x0 ∪ f(x0)
. . .

xk+1 = xk ∪ f(xk)
xk+2 = xk+1∇f(xk+1)

. . .
xn+1 = xn∇f(xn)

. . .
onverges to a post-�xpoint of f (i.e. a point x su
h that x ≥ f(x)), in a �nitetime, i.e. the iteration sequen
e above is eventually
onstant, say at iteration
m on. Index k is in general a parameter of the least �xpoint solver. The bigger
k is the more pre
ise it
an be, but at the expense of time. In the sequel, we
hoose k = 10.Narrowing operators are binary operators ∆ on L that ensure at least thatany iteration sequen
e starting from iteration m above:

xm+1 = xm∆f(xm)
. . .

xl+1 = xl∆f(xl)
. . .is eventually
onstant, equal to a �xpoint of f , but not ne
essarily the least�xpoint.Consider �rst the example of Figure 1. The
orresponding semanti
 equa-tions in the latti
e of intervals are given in Figure 2. The fun
tional f for whi
hwe want a �xpoint of, is the right term of this set of equations. The standardKleene iteration sequen
e is eventually
onstant after 100 iterations, rea
hingthe least �xpoint des
ribed in Figure 3. Now, using the
lassi
al (see [CC91℄again) widening and narrowing operators that we are using here, as a referen
efor
omparison for our poli
y iteration method, are:
[a, b]∇[c, d] = [e, f]with e =

{

a if a ≤ c
−∞ otherwise and f =

{

b if d ≤ b
∞ otherwise

[a, b]∆[c, d] = [e, f]4

with e =

{

c if a = −∞
a otherwise and f =

{

d if b = ∞
b otherwiseThe iteration sequen
e using widenings and narrowings is given in Figure 4.It takes 12 iterations be
ause we
hose k = 10, and it rea
hes the least �xpointof f .3 Poli
y iteration algorithm for self-maps of
om-plete latti
esWe equip the set of self-maps of a
omplete latti
e L with the produ
t ordering:thus, f ≤ g if f(x) ≤ f(y) holds for all x ∈ L. In order to
ompute a �xpointof f , it will be
onvenient to assume that f is e�e
tively given as an in�mumof a �nite set of �simpler� maps. We wish to obtain a �xpoint of f from the�xpoints of these maps. To this end, the following notion will be useful.De�nition 1 (Lower sele
tion). We say that a set G of self-maps of L admitsa lower sele
tion if for all x ∈ L, there exists a map g ∈ G su
h that g(x) ≤ h(x),for all h ∈ G.Setting f

def
= inf G, we see that the set G has a lower sele
tion if and only if forall x ∈ L, we have f(x) = g(x) for some g ∈ G. This sele
tion property originatesfrom optimal
ontrol: the dynami
 programming operator
orresponding to anoptimal
ontrol problem with state spa
e {1, . . . , n}
an be naturally writtenas an in�mum of a set of a�ne maps, every a�ne maps
orresponding to afeedba
k strategy, and in this
ontext, the existen
e of a sele
tion is guaranteedby standard assumptions.Sin
e L is a
omplete latti
e, Tarski's �xpoint theorem shows that everymonotone self-map f of L has a least �xpoint. We denote it by f−.The essen
e of the poli
y iteration algorithm in
omplete latti
es is
on-tained in the following abstra
t result, whi
h shows that the least �xpoint ofa monotone map written as an in�mum of a set having a lower sele
tion
anbe determined from the least �xpoints of the maps in this set. This result isinspired by a related result, proved in [CTGG01℄ for monotone self-maps of R

nthat are nonexpansive in the sup-norm (see also the last
hapter of [CT01℄).Theorem 1. Let G denote a family of monotone self-maps of a
omplete latti
e
L with a lower sele
tion, and let f = inf G. Then,

f− = inf
g∈G

g− .Proof. By Tarski's theorem, the least �xpoint of a monotone self-map h of L is
h− = inf{x ∈ L | h(x) ≤ x}. Therefore, the map h 7→ h− is monotone. It followsthat f− ≤ infg∈G g−. Sin
e G has a lower sele
tion, we have f− = f(f−) =
h(f−) for some h ∈ G. Therefore, h− ≤ f−, whi
h shows that infg∈G g− ≤
f−. 5

This result motivates the following poli
y iteration algorithm. The inputof the algorithm
onsists of a �nite set G of self-maps of L. We assume thatwe have an ora
le returning g−, for every g ∈ G. The output is a �xpoint of
f

def
= inf G.Algorithm 1 (Poli
y iteration in
omplete latti
es).1. Initialisation. Sele
t any map g1 ∈ G. Set k = 1.2. Value determination. Compute g−k .3. Compute f(g−k).4. If f(g−k) = g−k return g−k .5. Poli
y improvement. Take gk+1 su
h that f(g−k) = gk+1(g

−

k). In
rement
k and goto Step 2.In the appli
ations that we shall
onsider, the
ardinality of the whole set Gwill be huge, but L will be a
artesian produ
t of relatively simple latti
es, likethe latti
e of intervals, and every
oordinate of f will be represented e�
ientlyby a
ertain term in a grammar. The
olle
tion of these terms will be the a
tualinput of the algorithm. Additionnally, an e�
ient ora
le taking x ∈ L andreturning a map h ∈ G su
h that f(x) = h(x) will be available.We
all height of a subset X ⊂ L the maximal
ardinality of a
hain ofelements of X .Theorem 2 (Convergen
e of Poli
y Iteration in
omplete latti
es). Thenumber of iterations of Algorithm 1 is bounded by the height of {g− | g ∈ G},and a fortiori, by the
ardinality of G.Proof. When the poli
y is improved at step k, we have f(g−k) < g−k , and we
hoose gk+1 su
h that gk+1(g

−

k) = f(g−k), so that gk+1(g
−

k) ≤ g−k . By Tarski's�xpoint theorem, g−k+1 = inf{x ∈ L | gk+1(x) ≤ x}. It follows that g−k+1 ≤ g−k .Moreover, g−k+1 6= g−k , be
ause g−k is not a �xpoint of gk+1. Thus, the sequen
e
g−1 , g−2 , . . . produ
ed by the algorithm is stri
tly de
reasing, whi
h implies thatthe number of iterations is bounded by the height of {g− | g ∈ G}.Remark 1. Although the minimal �xpoints of a map g ∈ G is
omputed at everyintermediate step, the poli
y iteration algorithm need not return the minimal�xpoint of f .Remark 2. In some
ir
umstan
es, the least �xed point g−k may be di�
ult toobtain, but a �xpoint uk of gk su
h that uk ≤ gk(uk−1) may be available. Letus
all Algorithm 1' the generalization of Algorithm 1 in whi
h g−k is repla
edby su
h a �xpoint uk. One readily
he
ks that if f
ommutes with the in�mumof a denumerable set, then, the in�mum v of the sequen
e uk produ
ed byAlgorithm 1' is a �xpoint of f . 6

4 Appli
ation to the latti
e of intervals in stati
analysisIn the sequel, we shall
onsider intervals of R. The set of intervals, I(R), orderedby in
lusion, is a
omplete latti
e.4.1 The interval abstra
tionWe
onsider a toy imperative language with the following instru
tions:1. loops: while (
ondition) instru
tion;2.
onditionals: if (
ondition) instru
tion [else instru
tion℄;3. assignment: operand = expression;We assume here that the arithmeti
expressions are built on a given set of variables (belonging to the set V ar),and use operators +, -, * and /, together with numeri
al
onstants (onlyintegers here for more simpli
ity).We do not des
ribe the interpro
edural fragment, sin
e this is a
ompletelyorthogonal issue to our problem here.There is a
lassi
al [CC91℄ Galois
onne
tion relating the powerset of valuesof variables to the produ
t of intervals (one for ea
h variable). This is whatgives the
orre
tion of the following abstra
t semanti
s [[.]] , with respe
t to thestandard
olle
ting semanti
s of this language. [[.]] is given by a set of equationsover the variables x1, . . . , xn of the program. Ea
h variable xi is interpreted asan interval [−x−
i ; x+

i]. x∁ denotes the least interval in
luding the
omplementin] −∞; +∞[of the set x.
[[(0) while c (1) p (2) ; (3)]] =

x1
i = [[c]] ∩ (x0

i ∪ x2
i) ∧ x3

i = [[c]]∁ ∩ (x0
i ∪ x2

i) ∧ [[p]]

[[(0) if c (1) p1 (2) else (3) p2 (4); (5)]] =

x1
i = x0

i ∩ [[c]] ∧ x3
i = x0

i ∩ [[c]]∁ ∧ x5
i = x2

i ∪ x4
i ∧ [[p1]] ∧ [[p2]]

[[(0) xi = e (1)]] = x1
i = [[e]]For
onditions, we have:

[[(0) xi = a (1)]] = x1
i = [a, a]

[[(0) xi = xj (1)]] = x1
i = x0

i ∩ x0
j ∧ x1

j = x0
i ∩ x0

j

[[(0) xi < a (1)]] = x1
i = x0

i ∩] −∞; a[

[[(0) xi < xj (1)]] = x1
i = x0

i ∩]−∞; x0+
j − 1] ∧ x1

j = x0
j ∩ [x0−

i + 1; +∞[

7

4.2 Min-max fun
tions and the sele
tion prin
ipleFor an interval I = [−a, b], we set ↑ I
def
= [−a,∞[and ↓ I

def
=] − ∞, b]. Andif J = [−c, d], we also de�ne l(I, J) = I, r(I, J) = J , m(I, J) = [−a, d] and

mop(I, J) = [−c, b]. These four operators will de�ne the four possible poli
ieson intervals, as shown by Proposition 2.J. Gunawardena [Gun94℄ introdu
ed the
lass of min-max fun
tions from
R

n to R
n, after a work of Olsder [Ols91℄
on
erning a sub
lass of min-maxfun
tions. Min-max fun
tions are pre
isely dynami
 programming operatorsof deterministi
 zero-sum repeated games with perfe
t information, state spa
e

{1, . . . , n}, and �nite a
tion spa
e. We de�ne here a similar
lass, for mapsde�ned on (I(R))n, whi
h
ould be extended, but
orresponds here pre
isely towhat the abstra
t semanti
 equations of the previous se
tion give us.De�nition 2. A min-max fun
tion of intervals, (I(R))n → (I(R))p, is a mapwhose
oordinates are terms of grammar G:
CSTE ::= [−a, b]
V AR ::= xi

EXPR ::= CSTE | V AR |
EXPR + EXPR | EXPR ∗ EXPR |
EXPR/EXPR | EXPR − EXPR

TEST ::= ↑ EXPR ∩ EXPR | ↓ EXPR ∩ EXPR |
CSTE ∩ EXPR

G ::= EXPR | TEST |
G ∪ Gfor all 1 ≤ i, j ≤ n, and where a, b ∈ Z , and xi ∈ V ar takes its value in theinterval [−x−

i , x+
i] ∈ I(R).We write M for the set of su
h fun
tions. Non-terminals CSTE, V AR,

EXPR and TEST do
orrespond to the semanti
s of
onstants, variables, arith-meti
 expressions, and (simple) tests.Let G∪ be the grammar given by the same produ
tion rules as G ex
ept thatwe
annot produ
e terms with ∩.
G∪ ::= EXPR | ↑ EXPR | ↓ EXPR |

G∪ ∪ G∪ | l(G∪, G∪) | r(G∪, G∪) |
m(G∪, G∪) | mop(G∪, G∪)We write M∪ for the set of fun
tions de�ned by this grammar. Terms l(G, G),

r(G, G), m(G, G) and mop(G, G) represent respe
tively the left, right, m and
mop poli
ies.The interse
tion of two intervals, and hen
e, of two terms of the grammar,interpreted in the obvious manner as intervals, is given by the following formula:

xi ∩ xj = l(xi, xj) ∩ r(xi, xj) ∩ m(xi, xj) ∩ mop(xi, xj) (1)8

To a min-max fun
tion of intervals f ∈ M , we asso
iate a family Π(f) offun
tions of M∪ obtained in the following manner: we repla
e ea
h o

urren
eof a term xi ∩ xj by l(xi, xj), r(xi, xj), m(xi, xj) or mop(xi, xj). Su
h a
hoi
eis a poli
y.Proposition 1. We have
f =

⋂

h∈Π(f)

h (2)and the sele
tion prin
iple is satis�ed.In Equation (2), we denote by interse
tion the inf law with respe
t of theprodu
t ordering of the maps in M.Proof. This follows readily from the fa
t that the interse
tion is attained by oneof the four terms in Equation (1): we have either xi ∩ xj = l(xi, xj) = x1 or
xi ∩ xj = r(xi, xj) = xj or xi ∩ xj = m(xi, xj) or xi ∩ xj = mop(xi, xj). This is
ru
ial to apply the sele
tion prin
iple mentioned earlier.4.3 Implementation prin
iples of the poli
y iteration al-gorithmA simple stati
 analyzer has been implemented in C++. It
onsists of a parserfor a simple imperative language (a very simpli�ed C), a generator of abstra
tsemanti
 equations using the interval abstra
tion, and the
orresponding solver,using the poli
y iteration algorithm des
ribed in Se
tion 3.A poli
y is a table that asso
iates to ea
h interse
tion node in the semanti
abstra
tion, a value modelling whi
h poli
y is
hosen among l, r, m or mop, inEquation (1). There is a number of heuristi
s that one might
hoose
on
erningthe initial poli
y, whi
h should be a guess of the value of x1 ∩ x2 in Equation(1), when the �xpoint is rea
hed for x1 and x2. The
hoi
e of the initial poli
ymay be
ru
ial, sin
e some
hoi
es of the initial poli
y may lead eventually to a�xpoint whi
h is not minimal. We will study su
h problems in detail elsewhere.The
urrent prototype makes a sensible
hoi
e: when a term G1 ∩ G2 isen
ountered, if a �nite
onstant bound appears in G1 or G2, this bound issele
ted. Moreover, if a +∞ upper bound or −∞ lower bound appears in G1 or
G2, then, this bound is not sele
ted, unless no other
hoi
e is available (in otherwords,
hoi
es that give no information are avoided). When the appli
ations ofthese rules is not enough to determine the initial poli
y, we
hoose the boundarising from the left hand side term. Thus, when G1 = [−a,∞[, the initialpoli
y for G1 ∩ G2 is m(G1, G2), whi
h keeps the lower bound of G1 and theupper bound of G2.The way the equations are
onstru
ted, when the terms G1 ∩G2
orrespondto a test on a variable (and thus no
onstant
hoi
e is available for at least onebound), this initial
hoi
e means
hoosing the
onstraint on the
urrent variablebrought on by this test, rather than the equation expressing the dependen
e of9

urrent state of the variable to the other states. These
hoi
es often favour as�rst guess an easily
omputable system of equations.This
hoi
e is stati
, and does not use the values of the variables knownwhen getting to an interse
tion. Another
hoi
e that looks attra
tive,
onsists,when we have to
hoose between two variable quantities, in evaluating thesequantities when en
ountering the interse
tion node, and in taking the quantitywhi
h value is the best, depending whether we want the lower or upper bound.However, the poli
y that looks the best at a given �xpoint iteration may notbe the poli
y that leads to the least �xpoint. It looks sensible to make a fewiterations on the system with no poli
y before
hoosing the initial poli
y, usingthe evaluation of the terms. We will brie�y show an example of this dynami
poli
y
hange in Se
tion 4.4, but most of the dis
ussion here is left for futurework.We then solve the �xpoint equation of the redu
ed equations, using possiblyspe
i�
 algorithms (Ford-Bellman if the redu
ed equations are very simple, an-other poli
y iteration algorithm for the ∪ part, spe
i�
 numeri
al solvers et
.).For the time being, we only use a
lassi
al Kleene like value iteration algorithm,dis
ussed in Se
tion 4.4.We then pro
eed to the improvement of the poli
y, as explained in Se
tion3. In short, we
hange the poli
y at ea
h node for whi
h a �xpoint of the
omplete system of equations is not rea
hed, and
ompute the �xpoint of thenew equations, until we �nd a �xpoint of the
omplete system of equations.In the following examples, we
ount the number of poli
ies the algorithmhad to
onsider in order to rea
h the least �xpoint, and the
ost of solving theremaining equations, without interse
tion. But the overall speedup of poli
y it-eration algorithms should be improved if we use one of the possibly very e�
ientalgorithm for those more spe
i�
 equations.4.4 Examples and
omparison with Kleene's algorithmIn this se
tion, we dis
uss a few typi
al examples, that are experimented usingour prototype implementation, dis
ussed in the previous se
tion. We
omparethe poli
y iteration algorithm with Kleene's iteration sequen
e with wideningsand narrowings (the very
lassi
al one of [CC91℄),
alled algorithm A here. Forthese two algorithms, we
ompare the a

ura
y of the results, and the numberof �xpoint iterations.We did not experiment spe
i�
 algorithms for solving equations in G∪ (mean-ing, without interse
tions), as we
onsider this to be outside the s
ope of thispaper, so we
hose to use an iterative solver (algorithm B) for ea
h poli
y. Algo-rithm B is exa
tly the same solver as algorithm A, but used on a smaller
lass offun
tions, for one poli
y. We de
ided to widen intervals, in both
ases, only afterten standard Kleene iterations. This
hoi
e is
ompletely
onventional, and inmost examples below, one
ould argue that an analyzer with only two standardKleene iterations would have found the right result. In this
ase, the speedupobtained by the poli
y iteration algorithm would be far less; but it should be10

argued that in most stati
 analyzers, there would be a
ertain unrolling beforetrying to widen the result.A simple typi
al (integer) loop would be the one of Figure 1. The equationsgenerated by the analyzer are the ones of Figure 2. The
ontrol points in theexamples to follow are indi
ated as
omments in the C
ode.void main() {int x;x=0; // 1while (x<100) { // 2x=x+1; // 3} // 4} Figure 1: A simple integer loop
x1 = [0, 0]
x2 =] − oo, 99] ∩ (x1 ∪ x3)
x3 = x2 + [1, 1]
x4 = [100, +oo[∩(x1 ∪ x3)Figure 2: Semanti
 equationsThe original poli
y is mop in equation 2 in Figure 2 (by equation i, we meanthe equation whi
h determines the state of variables at
ontrol point i, here

x2), and m in the equation determining x4, sin
e we always
hoose a min ormax that gives information (∞ as a max, or −∞ as a min do not give anyinformation). This is a
tually the right poli
y on the spot, and we �nd in oneiteration, the
orre
t result (the least �xpoint), see Figure 3. In the sequel, weput upper indi
es to indi
ate at whi
h iteration the abstra
t value of a variableis shown. Lower indi
es are reserved as before to the
ontrol point number.
x1 = [0, 0]
x2 = [0, 99]
x3 = [1, 100]
x4 = [100, 100]Figure 3: The �rst and only it-eration by algorithm B leads tothe least �xpoint (loop of Fig-ure 1)

x1
1 = [0, 0]

x1
2 = [0, 0]

x1
3 = [1, 1]

x1
4 = ⊥

x2
1 = [0, 0]

x2
2 = [0, 1]

x2
3 = [1, 2]

x2
4 = ⊥

. . .

x9
1 = [0, 0]

x9
2 = [0, 8]

x9
3 = [1, 9]

x9
4 = ⊥

(widening)
x10

1 = [0, 0]
x10

2 = [0,∞[
x10

3 = [1,∞[
x10

4 = [100,∞[
(narrowing)
x11

1 = [0, 0]
x11

2 = [0, 99[
x11

3 = [1, 100]
x11

4 = [100, 100]Figure 4: Iterations of algo-rithm A (loop of Figure 1)This is to be
ompared with the 12 iterations of algorithm A, of Figure 4.11

void main(int n) {int i;int j;i=1; // 1j=10; // 2while (j >= i) { // 3i = i+2; // 4j = -1+j; // 5} // 6}Figure 5: A more
omplex loop
(i1, j1) = ([1, 1],⊤)
(i2, j2) = (i1, [10, 10])
(i3, j3) = (] − oo, max(j2, j5)] ∩ (i2 ∪ i5),

[min(i2, i5), +oo[∩(j2 ∪ j5))
(i4, j4) = (i3 + [2, 2], j3])
(i5, j5) = (i4, [−1,−1] + j4)
(i6, j6) = ([min(j2, j5) + 1, +oo[∩(i2 ∪ i5),

] − oo, max(i2, i5) − 1] ∩ (j2 ∪ j5))Figure 6: Its semanti
 equationsThe analysis of the program shown on Figure 5 leads to an a
tual poli
y im-provement. The algorithm starts with poli
y mop for variable i in equation 3,
m for variable j in equation 3, m for variable i equation 6 and mop in equation6, variable j.The �rst iteration using algorithm B with this poli
y, �nds the values ofFigure 7. But the value for variable j given by equation 6, given using theprevious result, is [0, 10] instead of [0, 11], meaning that the poli
y on equation6 for j should be improved. The minimum (0) for j at equation 6 is rea
hed asthe minimum of the right argument of ∩. The maximum (10) for j at equation6 is rea
hed as the maximum of the right argument of ∩. Hen
e the new poli
yone has to
hoose for variable j in equation 6 is r. In one iteration of algorithmB for this poli
y, one �nds the least �xpoint of the system of semanti
 equations,see Figure 8.

(i11, j
1
1) = ([1, 1],⊤)

(i12, j
1
2) = ([1, 1], [10, 10])

(i13, j
1
3) = ([1, 10], [1, 10])

(i14, j
1
4) = ([3, 12], [1, 10])

(i15, j
1
5) = ([3, 12], [0, 9])

(i16, j
1
6) = ([1, 12], [0, 11])Figure 7: Result of the initial poli
y forthe loop of Figure 5

(i21, j
2
1) = ([1, 1],⊤)

(i22, j
2
2) = ([1, 1], [10, 10])

(i23, j
2
3) = ([1, 10], [1, 10])

(i24, j
2
4) = ([3, 12], [1, 10])

(i25, j
2
5) = ([3, 12], [0, 9])

(i26, j
2
6) = ([1, 12], [0, 10])Figure 8: Result with the se
ond poli
yfor the loop of Figure 5Algorithm A takes ten iterations to rea
h the same result.We now
onsider the program of Figure 9. It
ontains �ve loops, and their�xpoint are
omputed sequentially : the
ode after a loop is ignored as long asthe �xpoint is not rea
hed for the given loop.The algorithm using poli
y iteration uses only one widening of algorithm B(i.e. only on one of the �ve loops). It a
tually
onverges to the least �xpoint,12

int main(int n) {int i, j, k, l, m;i = 0; // 1j = 100; // 2k = 1000; // 3l = 10000; // 4m = 100000; // 5while (i < 1000) // 6i = i+1; // 7// 8while (j < 1000) // 9j = j+k; // 10
// 11while (k > 100) // 12k = k-j; // 13// 14while (l > 1000) // 15l = l+k; // 16// 17while (m > 1) // 18m = m-l; // 19// 20}Figure 9: Multiple loopsusing 13 value iterations and 0 poli
y iteration. Algorithm A needs 43 iterationsto
onverge to the same result. For la
k of spa
e, we do not reprodu
e the
orresponding semanti
 equations nor the
omplete value of the lfp for thisexample, but only what is found for line 20:

(i20, j20, k20, l20, m20) = (1000, [1000, 1999], [−1898, 100], [−897, 1000], [−998, 1])Finally we look at a typi
al bad
ase example for our poli
y iteration method,where the number of iterations needed to rea
h the least �xpoint is at least equalwhen using the poli
y and the value iteration algorithm, and where the end re-sult for the poli
y iteration method is a �xpoint, but not the least �xpoint ofthe system of semanti
 equations.Consider the program of Figure 10, that we want to analyze. The originalint x;x=0; // 0while (x<100) { // 1x=-1-x; // 2} // 3Figure 10: A bad
ase
x0 = [0, 0]
x1 =] −∞, 99] ∩ (x0 ∪ x2)
x2 = [−1,−1]− x1

x3 = [100,∞[∩(x0 ∪ x2)Figure 11: Its semanti
 equationspoli
y our algorithm
hooses is mop for equation 2, variable x and m for equation4, variable x. It does so be
ause of the −∞ as the minimum of the left argumentof ∩ in equation 2, and be
ause of the ∞ as the maximum of the right argumentof ∩ in equation 4. Then we �nd in two iterations of algorithm B for this poli
ythe �xpoint of Figure 12, whi
h is not the least �xpoint, and thus is ratherimpre
ise.By algorithm A, we �nd the least �xpoint (see Figure 13) in only two itera-tions. 13

x0 = [0, 0]
x1 = [−100, 99]
x2 = [−100, 99]
x3 = ⊥Figure 12: The �xpoint found by thepoli
y iteration algorithm, for loop Fig-ure 10

x0 = [0, 0]
x1 = [−1, 0]
x2 = [−1, 0]
x3 = ⊥Figure 13: The least �xpoint, found byalgorithm AIf we used the dynami
 poli
y iteration mentioned in Se
tion 4.3, then wewould have found, after just one iteration of the fun
tional, that the
orre
tpoli
y for variable x in equation 2 is r, and rea
hed the least �xpoint. This willbe developped elsewhere.5 Future workWe have shown in this paper that poli
y iteration algorithms
an lead to fast anda

urate solvers for abstra
t semanti
 equations, su
h as the ones
oming from
lassi
al problems in stati
 analysis. We still have some heuristi
s in the
hoi
eof initial poli
ies we would like to test (su
h as the dynami
 poli
y iterationme
hanism, and other ideas).One of our aims is to generalize the poli
y iteration algorithm to more
om-plex latti
es of properties, su
h as the one of o
tagons (see [Min01℄). We wouldlike also to apply this te
hnique to symboli
 latti
es (using te
hniques to transfernumeri
 latti
es, see for instan
e [Ven02℄).Finally, we should insist on the fa
t that a poli
y iteration solver should ide-ally rely on better solvers than value iteration ones, for ea
h of its iterations (i.e.for a
hoi
e of a poli
y). The idea is that,
hoosing a poli
y simpli�es the set ofequations to solve, and the
lass of su
h sets of equations
an be solved by betterspe
i�
 solvers. In parti
ular, we would like to experiment the poli
y iterationalgorithms again on grammar G∪, using a dual method, so that we would beleft with solving, at ea
h step of the algorithm, purely numeri
al
onstraints,at least in the
ase of the interval abstra
tion. For numeri
al
onstraints, we
ould then use very fast numeri
al solvers, for large
lasses of fun
tions (linearequations but not only).Referen
es[Bou92℄ F. Bourdon
le. Abstra
t interpretation by dynami
 partitioning.Journal of Fun
tional Programming, 2(4):407�435, 1992.

14

[Bou93℄ F. Bourdon
le. E�
ient
haoti
 iteration strategies with widenings.Number 735, pages 128�141. Le
ture Notes in Computer S
ien
e,Springer-Verlag, 1993.[CC77℄ P. Cousot and R. Cousot. Abstra
t interpretation: A uni�ed latti
emodel for stati
 analysis of programs by
onstru
tion of approxima-tions of �xed points. Prin
iples of Programming Languages 4, pages238�252, 1977.[CC91℄ P. Cousot and R. Cousot. Comparison of the Galois
onne
-tion and widening/narrowing approa
hes to abstra
t interpretation.JTASPEFL '91, Bordeaux. BIGRE, 74:107�110, O
tober 1991.[CH92℄ Baudouin Le Charlier and Pas
al Van Hentenry
k. A universal top-down �xpoint algorithm. Te
hni
al Report CS-92-25, Departmentof Computer S
ien
e, Brown University, May 1992. Mon, 11 Sep100 15:20:30 GMT.[Cos03℄ A. Costan. Analyse statique et itération sur les politiques. Te
hni-
al report, CEA Sa
lay, report number DTSI/SLA/03-575/AC, andE
ole Polyte
hnique, August 2003.[CP85℄ Chris Cla
k and Simon L. Peyton Jones. Stri
tness Analysis � APra
ti
al Approa
h. In Jean-Pierre Jouannaud, editor, Fun
tionalProgramming Languages and Computer Ar
hite
ture, volume 201 ofLe
ture Notes in Computer S
ien
e, pages 35�49, Nan
y, Fran
e,September 16�19, 1985. Springer, Berlin.[CT01℄ J. Co
het-Terrasson. Algorithmes d'itération sur les politiques pourles appli
ations monotones
ontra
tantes. Thèse, spé
ialité mathé-matiques et automatique, É
ole des Mines, De
. 2001.[CTGG99℄ J. Co
het-Terrasson, S. Gaubert, and J. Gunawardena. A
onstru
-tive �xed point theorem for min-max fun
tions. Dynami
s and Sta-bility of Systems, 14(4):407�433, 1999.[CTGG01℄ J. Co
het-Terrasson, S. Gaubert, and J. Gunawardena. Poli
y iter-ation algorithms for monotone nonexpansive maps. Draft, 2001.[Dam01℄ D. Damian. Time stamps for �xed-point approximation, 2001.[FS98℄ C. Fe
ht and H. Seidl. Propagating di�eren
es: An e�
ient new�xpoint algorithm for distributive
onstraint systems, 1998.[GG98℄ S. Gaubert and J. Gunawardena. The duality theorem for min-maxfun
tions. C. R. A
ad. S
i. Paris., 326, Série I:43�48, 1998.[GMP02℄ E. Goubault, M. Martel, and S. Putot. Asserting the pre
ision of�oating-point
omputations: A simple abstra
t interpreter. Le
tureNotes in Computer S
ien
e, 2305, 2002.15

[Gra90℄ P. Granger. Analyse de
ongruen
es. PhD thesis, E
ole Polyte
h-nique, 1990.[Gra91℄ P. Granger. Stati
 analysis of linear
ongruen
e equalities amongvariables of a program. In Samson Abramsky and T. S. E. Maibaum,editors, TAPSOFT '91: Pro
eedings of the International Joint Con-feren
e on Theory and Pra
ti
e of Software Development, Volume 1:Colloquium on Trees in Algebra and Programming (CAAP'91), vol-ume 493 of Le
ture Notes in Computer S
ien
e, pages 169�192.Springer-Verlag, 1991.[Gun94℄ J. Gunawardena. Min-max fun
tions. Dis
rete Event Dynami
 Sys-tems, 4:377�406, 1994.[HE02℄ Kwangkeun Yi Hyunjun Eo. An improved di�erential �xpoint iter-ation method for program analysis. November 2002.[HK66℄ A. J. Ho�man and R. M. Karp. On nonterminating sto
hasti
 games.Management S
i., 12:359�370, 1966.[How60℄ R. Howard. Dynami
 Programming and Markov Pro
esses. Wiley,1960.[Hun91℄ L. S. Hunt. Abstra
t Interpretation of Fun
tional Languages: FromTheory to Pra
ti
e. Ph.D. thesis, Department of Computing, Impe-rial College, London, UK, 1991.[Kar76℄ M. Karr. A�ne relationships between variables of a program. A
taInformati
a, (6):133�151, 1976.[KL03℄ Viktor Kun
ak and K. Rustan M. Leino. On
omputing the �xpointof a set of boolean equations. Te
hni
al Report MSR-TR-2003-08,Mi
rosoft Resear
h (MSR), De
ember 2003.[Mau99℄ Laurent Mauborgne. Binary de
ision graphs. In A. Cortesi andG. Filé, editors, Stati
 Analyis Symposium (SAS'99), volume 1694 ofLe
ture Notes in Computer S
ien
e, pages 101�116. Springer-Verlag,1999.[Min01℄ A. Miné. The o
tagon abstra
t domain in analysis, sli
ing and trans-formation. pages 310�319, O
tober 2001.[O'K87℄ R. A. O'Keefe. Finite �xed-point problems. In Jean-Louis Lassez,editor, Pro
eedings of the Fourth International Conferen
e on Logi
Programming (ICLP '87), pages 729�743, Melbourne, Australia,May 1987. MIT Press.[Ols91℄ G. J. Olsder. Eigenvalues of dynami
 max-min systems. Dis
reteEvent Dyn. Syst., 1(2):177�207, 1991.16

[PGM03℄ S. Putot, E. Goubault, and M. Martel. Stati
 analysis-based valida-tion of �oating-point
omputations. Springer-Verlag, 2003.[PH℄ P. and N. Halbwa
hs. Dis
overy of linear restraints among variablesof a program.[Put94℄ Martin L. Puterman. Markov de
ision pro
esses: dis
rete sto
hasti
dynami
 programming. Wiley Series in Probability and Mathemat-i
al Statisti
s: Applied Probability and Statisti
s. John Wiley &Sons In
., New York, 1994. A Wiley-Inters
ien
e Publi
ation.[RS99℄ K. Ravi and F. Somenzi. E�
ient �xpoint
omputation for invariant
he
king. In International Conferen
e on Computer Design (ICCD'99), pages 467�475, Washington - Brussels - Tokyo, O
tober 1999.IEEE.[Ven02℄ A. Venet. Nonuniform alias analysis of re
ursive data stru
turesand arrays. In Stati
 Analysis, 9th International Symposium, SAS2002, Madrid, Spain, September 17-20, 2002, volume 2477 of Le
tureNotes in Computer S
ien
e, pages 36�51. Springer, 2002.

17

