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Abstract

We present a new method for solving the fixpoint equations that ap-
pear in the static analysis of programs by abstract interpretation. This
method is based on policy iteration algorithms and not Kleene like value
iteration algorithms. These algorithms have been introduced in the sixties
for solving optimal control problems, and extended more recently to the
case of games with two players and zero sum. We apply this technique to
the particular case of the interval abstraction of values of variables, and
demonstrate the improvements over more classical techniques, including
traditional widening/narrowing acceleration mecanisms.

1 Introduction and related work

One of the important goals of static analysis by abstract interpretation is the
determination of invariants of programs. They are generally described by over
approximation (abstraction) of the sets of values that program variables can
take, at each control point of the program. These are obtained by solving a
system of (abstract) semantic equations, derived from the program to analyze
and from the domain of interpretation, or abstraction, i.e. by solving a given
fixpoint equation in an order-theoretic structure.

Among the classical abstractions, there are the non-relational ones, such
as the domain of intervals [CC77] (invariants are of the form v; € [cl,¢2]), of
constant propagation (v; = c), of congruences [Gra90] (v; € aZ + b). Among
the relational ones we can mention polyedra [PH| (cyv1 + -+ + anv, < ¢ ),
linear equalities [Kar76| (aqvi +- - -+ anvy, = ¢), linear equalities modulo [Gra91]
(aqv1+- - -+anv, = a) or more recently the octagon domain [Min01] (v;—v; < ¢).

All these domains are (order-theoretic) lattices, for which we could think of
designing specific fixpoint equation solvers instead of using the classical, and
yet not very efficient value iteration algorithms, known as Kleene’s fixpoint



iteration. A classical way to do this is to use widening/narrowing operators
[CCI1]. There exists concrete widening/narrowing operators for all classical
domains of interpretation such as the one we mentioned above. They improve
the rapidity of finding an over-approximated invariant at the expense of accuracy
sometimes; i.e. they reach a fixpoint, but not always the least fixpoint of the
semantic equations (we review some elements of this method in Section 2, and
give examples in the case of the interval lattice).

In this paper, we introduce a new algorithm, based on policy iteration and
not value iteration, that correctly and efficiently solves this problem (Section 3).
It shows good performances in general with respect to various typical programs,
see Section 4.4. We should add that this work started from the difficulty to find
good widening and narrowing operators for domains used for characterizing
the precision of floating-point computations, used by some of the authors in
[GMP02].

Policy iteration algorithms were introduced by Howard [How60] to solve
stochastic control problems with finite state and action space. In this con-
text, a policy is a feedback strategy (which assigns to every state an action).
Classical policy iteration may be thought of as a generalization to monotone
non-differentiable convex functions of Newton’s algorithm to compute the fix-
point of a function. We refer the reader to [Put94] for a detailed presentation of
policy iteration algorithms for stochastic control. Policy iteration is known to
be experimentally efficient, although its complexity is still not well understood
theoretically. Policy iteration can be extended to the case of zero-sum games:
at each iteration, one fixes the strategy of one player, and solves a non-linear
(optimal control problem) instead of a linear problem. This idea goes back at
least to [HK66], but restrictive assumptions were made on transition probabil-
ities to guarantee the convergence, so that deterministic games could not be
solved along these lines. General versions of the policy iteration algorithm for
games have been designed recently [GG98, CTGG99, CT01], exploiting precise
results on the structure of the fixpoint set of dynamic programming operators
associated to optimal control problems. In Section 2, we present a new ver-
sion of the policy iteration algorithm, which applies to monotone self-maps of
a complete lattice, defined by the infimum of a certain family satisfying a se-
lection principle. Thus, policy iteration is not limited to finding fixpoint that
are numerical vectors or functions, fixpoints can be elements of an abstract lat-
tice. This new generality allows us to handle lattices which are useful in static
analysis. In our context, we avoid cycling by computing at each step the least
fixpoint corresponding to the current policy. The main idea of the proof is that
the map which assigns to a monotone map its least fixpoint is in some weak
sense a morphism with respect to the inf-law, see Theorem 1.

Other fixpoint acceleration techniques have been proposed in the litterature.
There are mainly three types of fixpoint acceleration techniques, as used in static
analysis.

The first one relies on specific information about the structure of the program
under analysis. For instance, one can define refined iteration strategies for
loop nests [Bou93], or for interprocedural analysis [Bou92]. These methods are



completely orthogonal to the method we are introducing here, which does not
use such structural properties. However, they might be combined with policy
iteration, for efficient interprocedural analyses for instance. This is beyond the
scope of this paper.

Another type of algorithm is based on the particular structure of the abstract
domain. For instance, in model-checking, for reachability analysis, particular it-
eration strategies have been designed, so that to keep the size of the state space
representation (using BDDs, or in static analyzers by abstract interpretation,
using binary decision graphs, see [Mau99]) small, by a combination of breadth-
first and depth-first stategies, as in [RS99]. For boolean equations, some authors
have designed specific representations which allow for relatively fast least fix-
point algorithms. For instance, [KL03] uses Bekic-Leszczyloiwski theorem. In
strictness analysis, representation of boolean functions by “frontiers” has been
widely used, see for instance [Hun91] and [CP85]. Our method here is general,
as hinted in Section 3. It can be applied to a variety of abstract domains, pro-
vided that we can find a “selection principle”. This is exemplified here on the
domain of intervals, but we are confident this can be equally applied to octagons
and polyedra.

Last but not least, there are some general purpose algorithms, such as gen-
eral widening/narrowing techniques, [CC91], with which we compare our policy
iteration technique. There are also incremental or “differential” computations
(in order not to compute again the functional on each partial computations)
[HEO02], [FS98]. In fact, this is much like the static partitioning technique some
of the authors use in [PGMO03]. Related algorithms can be found in [Dam01],
[O’K87] and [CH92]. We have not been able to compare these techniques with
our algorithm yet.

The results of the present paper were announced in [Cos03].

2 Kleene’s iteration sequence, widenings and nar-
rowings

In order to compare the policy iteration algorithm with existing methods, we
briefly recall in this section the classical method based on Kleene’s fixpoint
iteration, with widening and narrowing refinements (see [CC91]).

Let (£,<) be a complete lattice. We write L for its lowest element, T for
its greatest, U and N for the meet and join operations respectively. We say that
a self-map f of a complete lattice (£, <) is monotone if z <y = f(x) < f(y).

The computation of the least fixpoint of f can be done using the following
(maybe countable) iteration sequence:

g = 1
ry = x0U f(20)
Tnt1 = xp U f(zn)



Then the least fixpoint (Ifp) may be reached as one of these z,, or as the
supremum of all the z,, (we say that the iteration sequence converges to the lfp
of f). Of course, this is unefficient, and may even be uncomputable, in the case
of lattices of infinite height, such as the simple interval lattice (that we use for
abstractions in Section 4). For this computation to become tractable, widening
and narrowing operators have been introduced, we refer the reader to [CC91]
for a good survey. As we will only show examples on the interval lattice, we will
not recall the general elements of the theory. Widening operators are binary
operators V on L that ensure at least that any iteration sequence of the form:

ro = 1

vy = x0U f(20)
Try1 = XU f(xk)
Try2 = Trr1Vf(Zry1)
Tp4+1 = xnvf(xn)

converges to a post-fixpoint of f (i.e. a point  such that x > f(z)), in a finite
time, i.e. the iteration sequence above is eventually constant, say at iteration
m on. Index k is in general a parameter of the least fixpoint solver. The bigger
k is the more precise it can be, but at the expense of time. In the sequel, we
choose k = 10.

Narrowing operators are binary operators A on L that ensure at least that
any iteration sequence starting from iteration m above:

Tm+1 = mmAf(mm)

Ti4+1 = xlAf(xl)

is eventually constant, equal to a fixpoint of f, but not necessarily the least
fixpoint.

Consider first the example of Figure 1. The corresponding semantic equa-
tions in the lattice of intervals are given in Figure 2. The functional f for which
we want a fixpoint of, is the right term of this set of equations. The standard
Kleene iteration sequence is eventually constant after 100 iterations, reaching
the least fixpoint described in Figure 3. Now, using the classical (see [CCI]]
again) widening and narrowing operators that we are using here, as a reference
for comparison for our policy iteration method, are:

[CL, b]V[C, d] = [ea f]

. a ifa<e b ifd<db
with e = { —oo otherwise nd f = { oo otherwise

[CL, b]A[Ca d] = [ea f]



¢ ifa=- d ifb=o0
a otherwise and f = { b otherwise

The iteration sequence using widenings and narrowings is given in Figure 4.
It takes 12 iterations because we chose & = 10, and it reaches the least fixpoint
of f.

with e =

3 Policy iteration algorithm for self-maps of com-
plete lattices

We equip the set of self-maps of a complete lattice £ with the product ordering;:
thus, f < g if f(x) < f(y) holds for all z € £. In order to compute a fixpoint
of f, it will be convenient to assume that f is effectively given as an infimum
of a finite set of “simpler” maps. We wish to obtain a fixpoint of f from the
fixpoints of these maps. To this end, the following notion will be useful.

Definition 1 (Lower selection). We say that a set G of self-maps of £ admits
a lower selection if for all © € L, there exists a map g € G such that g(z) < h(x),
for all h € G.

Setting f 4l inf G, we see that the set G has a lower selection if and only if for
allz € £, we have f(x) = g(z) for some g € G. This selection property originates
from optimal control: the dynamic programming operator corresponding to an
optimal control problem with state space {1,...,n} can be naturally written
as an infimum of a set of affine maps, every affine maps corresponding to a
feedback strategy, and in this context, the existence of a selection is guaranteed
by standard assumptions.

Since £ is a complete lattice, Tarski’s fixpoint theorem shows that every
monotone self-map f of £ has a least fixpoint. We denote it by f~.

The essence of the policy iteration algorithm in complete lattices is con-
tained in the following abstract result, which shows that the least fixpoint of
a monotone map written as an infimum of a set having a lower selection can
be determined from the least fixpoints of the maps in this set. This result is
inspired by a related result, proved in [CTGGO1] for monotone self-maps of R™
that are nonexpansive in the sup-norm (see also the last chapter of [CTO01]).

Theorem 1. Let G denote a family of monotone self-maps of a complete lattice
L with a lower selection, and let f =infG. Then,
T =infg" .
7=t
Proof. By Tarski’s theorem, the least fixpoint of a monotone self-map h of L is
h~ =inf{x € L | h(z) < x}. Therefore, the map h — h~ is monotone. It follows
that f~ < infgegg~. Since G has a lower selection, we have f~ = f(f™)

h(f~) for some h € G. Therefore, h~ < f~, which shows that inf,cg g~ <
I O



This result motivates the following policy iteration algorithm. The input
of the algorithm consists of a finite set G of self-maps of £. We assume that

we have an oracle returning ¢g—, for every g € G. The output is a fixpoint of
def .

f=infgG.

Algorithm 1 (Policy iteration in complete lattices).
1. Initialisation. Select any map g1 € G. Set k= 1.

Value determination. Compute g, .

Compute f(g; )-

If f(9x ) = g, return g, .

AR I

Policy improvement. Take gipi1 such that f(g, ) = gr+1(g), ). Increment
k and goto Step 2.

In the applications that we shall consider, the cardinality of the whole set G
will be huge, but £ will be a cartesian product of relatively simple lattices, like
the lattice of intervals, and every coordinate of f will be represented efficiently
by a certain term in a grammar. The collection of these terms will be the actual
input of the algorithm. Additionnally, an efficient oracle taking x € £ and
returning a map h € G such that f(x) = h(x) will be available.

We call height of a subset X C L the maximal cardinality of a chain of
elements of X

Theorem 2 (Convergence of Policy Iteration in complete lattices). The
number of iterations of Algorithm 1 is bounded by the height of {g~ | g € G},
and a fortiori, by the cardinality of G.

Proof. When the policy is improved at step k, we have f(g, ) < g5, and we
choose gi+1 such that gr11(g,) = f(gy ), so that gry1(9; ) < g5 - By Tarski’s
fixpoint theorem, g, = inf{x € L | gr+1(z) < x}. It follows that g, , < g;
Moreover, g, # g, , because g, is not a fixpoint of gr+1. Thus, the sequence
91,95 ,- .. produced by the algorithm is strictly decreasing, which implies that
the number of iterations is bounded by the height of {¢~ | g € G}. O

Remark 1. Although the minimal fixpoints of a map g € G is computed at every
intermediate step, the policy iteration algorithm need not return the minimal
fixpoint of f.

Remark 2. In some circumstances, the least fixed point g, may be difficult to
obtain, but a fixpoint uy of g such that ux < gr(ur—1) may be available. Let
us call Algorithm 1’ the generalization of Algorithm 1 in which g, is replaced
by such a fixpoint ug. One readily checks that if f commutes with the infimum
of a denumerable set, then, the infimum v of the sequence wi produced by
Algorithm 1’ is a fixpoint of f.



4 Application to the lattice of intervals in static
analysis

In the sequel, we shall consider intervals of R. The set of intervals, Z(R), ordered
by inclusion, is a complete lattice.

4.1 The interval abstraction
We consider a toy imperative language with the following instructions:
1. loops: while (condition) instruction;
2. conditionals: if (condition) instruction [else instruction];

3. assignment: operand = expression; We assume here that the arithmetic
expressions are built on a given set of variables (belonging to the set Var),
and use operators +, -, * and /, together with numerical constants (only
integers here for more simplicity).

We do not describe the interprocedural fragment, since this is a completely
orthogonal issue to our problem here.

There is a classical [CC91] Galois connection relating the powerset of values
of variables to the product of intervals (one for each variable). This is what
gives the correction of the following abstract semantics [.] , with respect to the
standard collecting semantics of this language. [.] is given by a set of equations
over the variables x1, ..., x, of the program. Each variable x; is interpreted as
an interval [~z ;2;]. 2® denotes the least interval including the complement

in ] — oo; +00[ of the set x.

[(0) while ¢ (1) p (2) ; ()] =
wl=[]n@ua?) Az =[N @ uaz?) A ]

K2

[€C0) if ¢ (1) p1 (2) else (3) py (4); (B)] =
al=20n]c A a?=29n[c]® A 2P =220zt A [pi] A [p2]

[C0) z; = e (D] = z; = [e]

For conditions, we have:

[(0) z; =a (V)] = =z =[a,d

[0 2 =2; (V] = zt=2)n x]Q A x;:x? N x?
[0 z; <a W] = z; =29 N]—o00;a]
[0z < z; (V)] = x%:x?ﬁ]—oo;x?Jr—l] A le-:x? N (297 415 +oo]



4.2 Min-max functions and the selection principle

For an interval I = [—a,b], we set T I f [—a,00[ and | I d:ef] — 00,b]. And
it J = [—¢,d], we also define I(I,J) = I, r(I,J) = J, m(I,J) = [—a,d] and
mPP(I,J) = [—c,b]. These four operators will define the four possible policies
on intervals, as shown by Proposition 2.

J. Gunawardena [Gun94| introduced the class of min-max functions from
R™ to R™, after a work of Olsder [Ols91] concerning a subclass of min-max
functions. Min-max functions are precisely dynamic programming operators
of deterministic zero-sum repeated games with perfect information, state space
{1,...,n}, and finite action space. We define here a similar class, for maps
defined on (Z(R))™, which could be extended, but corresponds here precisely to
what the abstract semantic equations of the previous section give us.

Definition 2. A min-maz function of intervals, (Z(R))® — (Z(R))?, is a map
whose coordinates are terms of grammar G:

CSTE := [—a,b)
VAR = Z;

EXPR := CSTE | VAR |
EXPR+EXPR | EXPRxEXPR |
EXPR/EXPR | EXPR—-EXPR

TEST := {EXPRNEXPR | |EXPRNEXPR |
CSTENEXPR

G == FEXPR | TEST |
GuG

for all 1 < 4,5 < n, and where a,b € Z , and x; € Var takes its value in the
interval [—x; 2] € Z(R).

We write M for the set of such functions. Non-terminals CSTE, VAR,
EXPR and TEST do correspond to the semantics of constants, variables, arith-
metic expressions, and (simple) tests.

Let Gy be the grammar given by the same production rules as G except that
we cannot produce terms with N.

Gy == EXPR |  1EXPR | | EXPR |
GU U GU | Z(Gu,Gu) | T(Gu,Gu) |
m(Gu, Gu) | mOp(Gu, Gu)

We write My for the set of functions defined by this grammar. Terms (G, G),
r(G,Q), m(G,G) and m°P(G,G) represent respectively the left, right, m and
mP°P policies.

The intersection of two intervals, and hence, of two terms of the grammar,
interpreted in the obvious manner as intervals, is given by the following formula:

i Ny = Uz, z5) Nr(xg, z;) Nmx;, ;) Nm°P(z;, x;) (1)



To a min-max function of intervals f € M , we associate a family II(f) of
functions of M, obtained in the following manner: we replace each occurrence
of a term x; Nx; by I(xs, z;), r(zi,x;), m(zs,z;) or m°P(x;,x;). Such a choice
is a policy.

Proposition 1. We have

f=1n (2)

and the selection principle is satisfied.

In Equation (2), we denote by intersection the inf law with respect of the
product ordering of the maps in M.
Proof. This follows readily from the fact that the intersection is attained by one
of the four terms in Equation (1): we have either ; Nx; = I(z;,2;) = 21 or
ziNa; =71z, z;) =x; or & Na; =m(x, ;) or x; Nx; = mP(x;, ;). This is
crucial to apply the selection principle mentioned earlier.

4.3 Implementation principles of the policy iteration al-
gorithm

A simple static analyzer has been implemented in C++. It consists of a parser
for a simple imperative language (a very simplified C), a generator of abstract
semantic equations using the interval abstraction, and the corresponding solver,
using the policy iteration algorithm described in Section 3.

A policy is a table that associates to each intersection node in the semantic
abstraction, a value modelling which policy is chosen among I, r, m or m°P, in
Equation (1). There is a number of heuristics that one might choose concerning
the initial policy, which should be a guess of the value of x; N z2 in Equation
(1), when the fixpoint is reached for 1 and 3. The choice of the initial policy
may be crucial, since some choices of the initial policy may lead eventually to a
fixpoint which is not minimal. We will study such problems in detail elsewhere.

The current prototype makes a sensible choice: when a term G; N Gs is
encountered, if a finite constant bound appears in G; or Ga, this bound is
selected. Moreover, if a +o0o upper bound or —oo lower bound appears in G or
G2, then, this bound is not selected, unless no other choice is available (in other
words, choices that give no information are avoided). When the applications of
these rules is not enough to determine the initial policy, we choose the bound
arising from the left hand side term. Thus, when G; = [—a, oo[, the initial
policy for G; N Gg is m(G1,G2), which keeps the lower bound of G; and the
upper bound of Gs.

The way the equations are constructed, when the terms G; NG correspond
to a test on a variable (and thus no constant choice is available for at least one
bound), this initial choice means choosing the constraint on the current variable
brought on by this test, rather than the equation expressing the dependence of



current state of the variable to the other states. These choices often favour as
first guess an easily computable system of equations.

This choice is static, and does not use the values of the variables known
when getting to an intersection. Another choice that looks attractive, consists,
when we have to choose between two variable quantities, in evaluating these
quantities when encountering the intersection node, and in taking the quantity
which value is the best, depending whether we want the lower or upper bound.
However, the policy that looks the best at a given fixpoint iteration may not
be the policy that leads to the least fixpoint. It looks sensible to make a few
iterations on the system with no policy before choosing the initial policy, using
the evaluation of the terms. We will briefly show an example of this dynamic
policy change in Section 4.4, but most of the discussion here is left for future
work.

We then solve the fixpoint equation of the reduced equations, using possibly
specific algorithms (Ford-Bellman if the reduced equations are very simple, an-
other policy iteration algorithm for the U part, specific numerical solvers etc.).
For the time being, we only use a classical Kleene like value iteration algorithm,
discussed in Section 4.4.

We then proceed to the improvement of the policy, as explained in Section
3. In short, we change the policy at each node for which a fixpoint of the
complete system of equations is not reached, and compute the fixpoint of the
new equations, until we find a fixpoint of the complete system of equations.

In the following examples, we count the number of policies the algorithm
had to consider in order to reach the least fixpoint, and the cost of solving the
remaining equations, without intersection. But the overall speedup of policy it-
eration algorithms should be improved if we use one of the possibly very efficient
algorithm for those more specific equations.

4.4 Examples and comparison with Kleene’s algorithm

In this section, we discuss a few typical examples, that are experimented using
our prototype implementation, discussed in the previous section. We compare
the policy iteration algorithm with Kleene’s iteration sequence with widenings
and narrowings (the very classical one of [CC91]), called algorithm A here. For
these two algorithms, we compare the accuracy of the results, and the number
of fixpoint iterations.

We did not experiment specific algorithms for solving equations in G, (mean-
ing, without intersections), as we consider this to be outside the scope of this
paper, so we chose to use an iterative solver (algorithm B) for each policy. Algo-
rithm B is exactly the same solver as algorithm A, but used on a smaller class of
functions, for one policy. We decided to widen intervals, in both cases, only after
ten standard Kleene iterations. This choice is completely conventional, and in
most examples below, one could argue that an analyzer with only two standard
Kleene iterations would have found the right result. In this case, the speedup
obtained by the policy iteration algorithm would be far less; but it should be
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argued that in most static analyzers, there would be a certain unrolling before
trying to widen the result.

A simple typical (integer) loop would be the one of Figure 1. The equations
generated by the analyzer are the ones of Figure 2. The control points in the
examples to follow are indicated as comments in the C code.

void main() {

int x;

x=03; // 1 T = [0,0]

while (x<100) { // 2 rz = ]=00,99]N (21 Ua3)
x=x+1; // 3 r3 = T2 + [la 1]

} /] 4 Ty = [100, +00[ﬁ($1 U x3)

}

Figure 2: Semantic equations
Figure 1: A simple integer loop & d

The original policy is m°P in equation 2 in Figure 2 (by equation 4, we mean
the equation which determines the state of variables at control point ¢, here
x2), and m in the equation determining x4, since we always choose a min or
max that gives information (co as a max, or —oo as a min do not give any
information). This is actually the right policy on the spot, and we find in one
iteration, the correct result (the least fixpoint), see Figure 3. In the sequel, we
put upper indices to indicate at which iteration the abstract value of a variable
is shown. Lower indices are reserved as before to the control point number.
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This is to be compared with the 12 iterations of algorithm A, of Figure 4.
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void main(int n) {

int 1i; (i1,71) = (1,1, T
int j; (i2,J2) = (i1,[10,10]
i=1; // 1 (ig,jg) = (] —oo,max(jg,j5)] ﬁ(ig Ui5)
j=10; // 2 [min(iz, is), +00[N(j2 U js5)
while (j >= 1) { // 3 (i4,74) = (i3 + [2,2], 73]
i-= 1+2; // 4 (i5,j5) = (i4,[ 1 —1]+]
jo= -1+ /15 (i6,36) = ([min(ja, j5) + 1, +00[ (12 Uis)
} // 6 | — 00, max(ia,i5) — 1] N (j2 U J5)

}

Figure 5: A more complex loop Figure 6: Its semantic equations

The analysis of the program shown on Figure 5 leads to an actual policy im-
provement. The algorithm starts with policy m°P for variable ¢ in equation 3,
m for variable j in equation 3, m for variable i equation 6 and m°P in equation
6, variable j.

The first iteration using algorithm B with this policy, finds the values of
Figure 7. But the value for variable j given by equation 6, given using the
previous result, is [0, 10] instead of [0, 11], meaning that the policy on equation
6 for j should be improved. The minimum (0) for j at equation 6 is reached as
the minimum of the right argument of N. The maximum (10) for j at equation
6 is reached as the maximum of the right argument of N. Hence the new policy
one has to choose for variable j in equation 6 is r. In one iteration of algorithm
B for this policy, one finds the least fixpoint of the system of semantic equations,
see Figure 8.

(i1,41) = (1,1, 7) (i1,77) = (1,1, T)
(Z%a.bl) = ([171]7[10710]) (237]3) = ([1,1],[10,10])
(Zéaj?}) = ([1710]7[1710]) (237]5%) = ([151 ]5[1510])
(7’4117]4}) = ([3712]7[1710]) (14217]2) = ([3712]7[1710])
(7/%,]%) = ([3712]7[079]) (zgng) = ([3712]7[079])
(léa]é) = ([1712]7[0711]) (z%,]é) = ([1712]7[0710])

Figure 7: Result of the initial policy for Figure 8: Result with the second policy
the loop of Figure 5 for the loop of Figure 5

Algorithm A takes ten iterations to reach the same result.

We now consider the program of Figure 9. It contains five loops, and their
fixpoint are computed sequentially : the code after a loop is ignored as long as
the fixpoint is not reached for the given loop.

The algorithm using policy iteration uses only one widening of algorithm B
(i.e. only on one of the five loops). It actually converges to the least fixpoint,

12
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int main(int n) {

. o . // 11
1“2 Sf okt m’// ! while (k > 100) // 12
j= 160; /] 2 k = k-j; // 13
k = 1000; // 3 _ // 14
1 = 10000; /] 4 while (1 > 1000) // 15
m = 100000; // 5 1 = 1+k; // 16
while (i < 1000) // 6 ' // 17
i = i+1: // 7 while (m > 1) // 18
’ /8 m = m-1; /7 19
while (j < 1000) // 9 ' // 20
Jj = Jjtk; // 10

Figure 9: Multiple loops

using 13 value iterations and 0 policy iteration. Algorithm A needs 43 iterations
to converge to the same result. For lack of space, we do not reproduce the
corresponding semantic equations nor the complete value of the lfp for this
example, but only what is found for line 20:

(i20, 320, k20, l20, m20) = (1000, [1000, 1999], [—1898, 100], [-897, 1000], [—998, 1])

Finally we look at a typical bad case example for our policy iteration method,
where the number of iterations needed to reach the least fixpoint is at least equal
when using the policy and the value iteration algorithm, and where the end re-
sult for the policy iteration method is a fixpoint, but not the least fixpoint of
the system of semantic equations.

Consider the program of Figure 10, that we want to analyze. The original

int x;

x=0; // 0 v = [0,0

while (x<100) { // 1 ry = ]—00,99]N (2o Ux2)
x=-1-x; /2 2 = [-1L-1]-m

} // 3 xg = [100,c0[N(zo U x2)

Figure 10: A bad case Figure 11: Its semantic equations

policy our algorithm chooses is m°P for equation 2, variable z and m for equation
4, variable z. It does so because of the —co as the minimum of the left argument
of N in equation 2, and because of the co as the maximum of the right argument
of N in equation 4. Then we find in two iterations of algorithm B for this policy
the fixpoint of Figure 12, which is not the least fixpoint, and thus is rather
imprecise.

By algorithm A, we find the least fixpoint (see Figure 13) in only two itera-
tions.
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ro =

0,0 o

0o - [07 0]
xrT = [—100, 99] r = [_1’ 0]
To = [—100, 99] Ty = [_17 0]
r3 = L T3 = L

Figure 12: The fixpoint found by the
policy iteration algorithm, for loop Fig-
ure 10

Figure 13: The least fixpoint, found by
algorithm A

If we used the dynamic policy iteration mentioned in Section 4.3, then we
would have found, after just one iteration of the functional, that the correct
policy for variable z in equation 2 is r, and reached the least fixpoint. This will
be developped elsewhere.

5 Future work

We have shown in this paper that policy iteration algorithms can lead to fast and
accurate solvers for abstract semantic equations, such as the ones coming from
classical problems in static analysis. We still have some heuristics in the choice
of initial policies we would like to test (such as the dynamic policy iteration
mechanism, and other ideas).

One of our aims is to generalize the policy iteration algorithm to more com-
plex lattices of properties, such as the one of octagons (see [Min01]). We would
like also to apply this technique to symbolic lattices (using techniques to transfer
numeric lattices, see for instance [Ven02]).

Finally, we should insist on the fact that a policy iteration solver should ide-
ally rely on better solvers than value iteration ones, for each of its iterations (i.e.
for a choice of a policy). The idea is that, choosing a policy simplifies the set of
equations to solve, and the class of such sets of equations can be solved by better
specific solvers. In particular, we would like to experiment the policy iteration
algorithms again on grammar Gy, using a dual method, so that we would be
left with solving, at each step of the algorithm, purely numerical constraints,
at least in the case of the interval abstraction. For numerical constraints, we
could then use very fast numerical solvers, for large classes of functions (linear
equations but not only).
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