
Aeleration of �xpoint omputations in statianalysis of programsby poliy iteration algorithmsA. Costan†, S. Gaubert∗, E. Goubault+, M. Martel+, S. Putot+
† Polytehnia Buarest
∗ INRIA Roquenourt

+ CEA SalayAbstratWe present a new method for solving the �xpoint equations that ap-pear in the stati analysis of programs by abstrat interpretation. Thismethod is based on poliy iteration algorithms and not Kleene like valueiteration algorithms. These algorithms have been introdued in the sixtiesfor solving optimal ontrol problems, and extended more reently to thease of games with two players and zero sum. We apply this tehnique tothe partiular ase of the interval abstration of values of variables, anddemonstrate the improvements over more lassial tehniques, inludingtraditional widening/narrowing aeleration meanisms.1 Introdution and related workOne of the important goals of stati analysis by abstrat interpretation is thedetermination of invariants of programs. They are generally desribed by overapproximation (abstration) of the sets of values that program variables antake, at eah ontrol point of the program. These are obtained by solving asystem of (abstrat) semanti equations, derived from the program to analyzeand from the domain of interpretation, or abstration, i.e. by solving a given�xpoint equation in an order-theoreti struture.Among the lassial abstrations, there are the non-relational ones, suhas the domain of intervals [CC77℄ (invariants are of the form vi ∈ [c1, c2]), ofonstant propagation (vi = c), of ongruenes [Gra90℄ (vi ∈ aZ + b). Amongthe relational ones we an mention polyedra [PH℄ (α1v1 + · · · + αnvn ≤ c),linear equalities [Kar76℄ (α1v1+ · · ·+αnvn = c), linear equalities modulo [Gra91℄(α1v1+· · ·+αnvn ≡ a) or more reently the otagon domain [Min01℄ (vi−vj ≤ c).All these domains are (order-theoreti) latties, for whih we ould think ofdesigning spei� �xpoint equation solvers instead of using the lassial, andyet not very e�ient value iteration algorithms, known as Kleene's �xpoint1

iteration. A lassial way to do this is to use widening/narrowing operators[CC91℄. There exists onrete widening/narrowing operators for all lassialdomains of interpretation suh as the one we mentioned above. They improvethe rapidity of �nding an over-approximated invariant at the expense of auraysometimes; i.e. they reah a �xpoint, but not always the least �xpoint of thesemanti equations (we review some elements of this method in Setion 2, andgive examples in the ase of the interval lattie).In this paper, we introdue a new algorithm, based on poliy iteration andnot value iteration, that orretly and e�iently solves this problem (Setion 3).It shows good performanes in general with respet to various typial programs,see Setion 4.4. We should add that this work started from the di�ulty to �ndgood widening and narrowing operators for domains used for haraterizingthe preision of �oating-point omputations, used by some of the authors in[GMP02℄.Poliy iteration algorithms were introdued by Howard [How60℄ to solvestohasti ontrol problems with �nite state and ation spae. In this on-text, a poliy is a feedbak strategy (whih assigns to every state an ation).Classial poliy iteration may be thought of as a generalization to monotonenon-di�erentiable onvex funtions of Newton's algorithm to ompute the �x-point of a funtion. We refer the reader to [Put94℄ for a detailed presentation ofpoliy iteration algorithms for stohasti ontrol. Poliy iteration is known tobe experimentally e�ient, although its omplexity is still not well understoodtheoretially. Poliy iteration an be extended to the ase of zero-sum games:at eah iteration, one �xes the strategy of one player, and solves a non-linear(optimal ontrol problem) instead of a linear problem. This idea goes bak atleast to [HK66℄, but restritive assumptions were made on transition probabil-ities to guarantee the onvergene, so that deterministi games ould not besolved along these lines. General versions of the poliy iteration algorithm forgames have been designed reently [GG98, CTGG99, CT01℄, exploiting preiseresults on the struture of the �xpoint set of dynami programming operatorsassoiated to optimal ontrol problems. In Setion 2, we present a new ver-sion of the poliy iteration algorithm, whih applies to monotone self-maps ofa omplete lattie, de�ned by the in�mum of a ertain family satisfying a se-letion priniple. Thus, poliy iteration is not limited to �nding �xpoint thatare numerial vetors or funtions, �xpoints an be elements of an abstrat lat-tie. This new generality allows us to handle latties whih are useful in statianalysis. In our ontext, we avoid yling by omputing at eah step the least�xpoint orresponding to the urrent poliy. The main idea of the proof is thatthe map whih assigns to a monotone map its least �xpoint is in some weaksense a morphism with respet to the inf-law, see Theorem 1.Other �xpoint aeleration tehniques have been proposed in the litterature.There are mainly three types of �xpoint aeleration tehniques, as used in statianalysis.The �rst one relies on spei� information about the struture of the programunder analysis. For instane, one an de�ne re�ned iteration strategies forloop nests [Bou93℄, or for interproedural analysis [Bou92℄. These methods are2

ompletely orthogonal to the method we are introduing here, whih does notuse suh strutural properties. However, they might be ombined with poliyiteration, for e�ient interproedural analyses for instane. This is beyond thesope of this paper.Another type of algorithm is based on the partiular struture of the abstratdomain. For instane, in model-heking, for reahability analysis, partiular it-eration strategies have been designed, so that to keep the size of the state spaerepresentation (using BDDs, or in stati analyzers by abstrat interpretation,using binary deision graphs, see [Mau99℄) small, by a ombination of breadth-�rst and depth-�rst stategies, as in [RS99℄. For boolean equations, some authorshave designed spei� representations whih allow for relatively fast least �x-point algorithms. For instane, [KL03℄ uses Be�ki-Leszzyloiwski theorem. Instritness analysis, representation of boolean funtions by �frontiers� has beenwidely used, see for instane [Hun91℄ and [CP85℄. Our method here is general,as hinted in Setion 3. It an be applied to a variety of abstrat domains, pro-vided that we an �nd a �seletion priniple�. This is exempli�ed here on thedomain of intervals, but we are on�dent this an be equally applied to otagonsand polyedra.Last but not least, there are some general purpose algorithms, suh as gen-eral widening/narrowing tehniques, [CC91℄, with whih we ompare our poliyiteration tehnique. There are also inremental or �di�erential� omputations(in order not to ompute again the funtional on eah partial omputations)[HE02℄, [FS98℄. In fat, this is muh like the stati partitioning tehnique someof the authors use in [PGM03℄. Related algorithms an be found in [Dam01℄,[O'K87℄ and [CH92℄. We have not been able to ompare these tehniques withour algorithm yet.The results of the present paper were announed in [Cos03℄.2 Kleene's iteration sequene, widenings and nar-rowingsIn order to ompare the poliy iteration algorithm with existing methods, webrie�y reall in this setion the lassial method based on Kleene's �xpointiteration, with widening and narrowing re�nements (see [CC91℄).Let (L,≤) be a omplete lattie. We write ⊥ for its lowest element, ⊤ forits greatest, ∪ and ∩ for the meet and join operations respetively. We say thata self-map f of a omplete lattie (L,≤) is monotone if x ≤ y ⇒ f(x) ≤ f(y).The omputation of the least �xpoint of f an be done using the following(maybe ountable) iteration sequene:
x0 = ⊥
x1 = x0 ∪ f(x0)
. . .

xn+1 = xn ∪ f(xn)
. . . 3

Then the least �xpoint (lfp) may be reahed as one of these xn or as thesupremum of all the xn (we say that the iteration sequene onverges to the lfpof f). Of ourse, this is une�ient, and may even be unomputable, in the aseof latties of in�nite height, suh as the simple interval lattie (that we use forabstrations in Setion 4). For this omputation to beome tratable, wideningand narrowing operators have been introdued, we refer the reader to [CC91℄for a good survey. As we will only show examples on the interval lattie, we willnot reall the general elements of the theory. Widening operators are binaryoperators ∇ on L that ensure at least that any iteration sequene of the form:
x0 = ⊥
x1 = x0 ∪ f(x0)
. . .

xk+1 = xk ∪ f(xk)
xk+2 = xk+1∇f(xk+1)

. . .
xn+1 = xn∇f(xn)

. . .onverges to a post-�xpoint of f (i.e. a point x suh that x ≥ f(x)), in a �nitetime, i.e. the iteration sequene above is eventually onstant, say at iteration
m on. Index k is in general a parameter of the least �xpoint solver. The bigger
k is the more preise it an be, but at the expense of time. In the sequel, wehoose k = 10.Narrowing operators are binary operators ∆ on L that ensure at least thatany iteration sequene starting from iteration m above:

xm+1 = xm∆f(xm)
. . .

xl+1 = xl∆f(xl)
. . .is eventually onstant, equal to a �xpoint of f , but not neessarily the least�xpoint.Consider �rst the example of Figure 1. The orresponding semanti equa-tions in the lattie of intervals are given in Figure 2. The funtional f for whihwe want a �xpoint of, is the right term of this set of equations. The standardKleene iteration sequene is eventually onstant after 100 iterations, reahingthe least �xpoint desribed in Figure 3. Now, using the lassial (see [CC91℄again) widening and narrowing operators that we are using here, as a referenefor omparison for our poliy iteration method, are:
[a, b]∇[c, d] = [e, f]with e =

{

a if a ≤ c
−∞ otherwise and f =

{

b if d ≤ b
∞ otherwise

[a, b]∆[c, d] = [e, f]4

with e =

{

c if a = −∞
a otherwise and f =

{

d if b = ∞
b otherwiseThe iteration sequene using widenings and narrowings is given in Figure 4.It takes 12 iterations beause we hose k = 10, and it reahes the least �xpointof f .3 Poliy iteration algorithm for self-maps of om-plete lattiesWe equip the set of self-maps of a omplete lattie L with the produt ordering:thus, f ≤ g if f(x) ≤ f(y) holds for all x ∈ L. In order to ompute a �xpointof f , it will be onvenient to assume that f is e�etively given as an in�mumof a �nite set of �simpler� maps. We wish to obtain a �xpoint of f from the�xpoints of these maps. To this end, the following notion will be useful.De�nition 1 (Lower seletion). We say that a set G of self-maps of L admitsa lower seletion if for all x ∈ L, there exists a map g ∈ G suh that g(x) ≤ h(x),for all h ∈ G.Setting f

def
= inf G, we see that the set G has a lower seletion if and only if forall x ∈ L, we have f(x) = g(x) for some g ∈ G. This seletion property originatesfrom optimal ontrol: the dynami programming operator orresponding to anoptimal ontrol problem with state spae {1, . . . , n} an be naturally writtenas an in�mum of a set of a�ne maps, every a�ne maps orresponding to afeedbak strategy, and in this ontext, the existene of a seletion is guaranteedby standard assumptions.Sine L is a omplete lattie, Tarski's �xpoint theorem shows that everymonotone self-map f of L has a least �xpoint. We denote it by f−.The essene of the poliy iteration algorithm in omplete latties is on-tained in the following abstrat result, whih shows that the least �xpoint ofa monotone map written as an in�mum of a set having a lower seletion anbe determined from the least �xpoints of the maps in this set. This result isinspired by a related result, proved in [CTGG01℄ for monotone self-maps of R

nthat are nonexpansive in the sup-norm (see also the last hapter of [CT01℄).Theorem 1. Let G denote a family of monotone self-maps of a omplete lattie
L with a lower seletion, and let f = inf G. Then,

f− = inf
g∈G

g− .Proof. By Tarski's theorem, the least �xpoint of a monotone self-map h of L is
h− = inf{x ∈ L | h(x) ≤ x}. Therefore, the map h 7→ h− is monotone. It followsthat f− ≤ infg∈G g−. Sine G has a lower seletion, we have f− = f(f−) =
h(f−) for some h ∈ G. Therefore, h− ≤ f−, whih shows that infg∈G g− ≤
f−. 5

This result motivates the following poliy iteration algorithm. The inputof the algorithm onsists of a �nite set G of self-maps of L. We assume thatwe have an orale returning g−, for every g ∈ G. The output is a �xpoint of
f

def
= inf G.Algorithm 1 (Poliy iteration in omplete latties).1. Initialisation. Selet any map g1 ∈ G. Set k = 1.2. Value determination. Compute g−k .3. Compute f(g−k).4. If f(g−k) = g−k return g−k .5. Poliy improvement. Take gk+1 suh that f(g−k) = gk+1(g

−

k). Inrement
k and goto Step 2.In the appliations that we shall onsider, the ardinality of the whole set Gwill be huge, but L will be a artesian produt of relatively simple latties, likethe lattie of intervals, and every oordinate of f will be represented e�ientlyby a ertain term in a grammar. The olletion of these terms will be the atualinput of the algorithm. Additionnally, an e�ient orale taking x ∈ L andreturning a map h ∈ G suh that f(x) = h(x) will be available.We all height of a subset X ⊂ L the maximal ardinality of a hain ofelements of X .Theorem 2 (Convergene of Poliy Iteration in omplete latties). Thenumber of iterations of Algorithm 1 is bounded by the height of {g− | g ∈ G},and a fortiori, by the ardinality of G.Proof. When the poliy is improved at step k, we have f(g−k) < g−k , and wehoose gk+1 suh that gk+1(g

−

k) = f(g−k), so that gk+1(g
−

k) ≤ g−k . By Tarski's�xpoint theorem, g−k+1 = inf{x ∈ L | gk+1(x) ≤ x}. It follows that g−k+1 ≤ g−k .Moreover, g−k+1 6= g−k , beause g−k is not a �xpoint of gk+1. Thus, the sequene
g−1 , g−2 , . . . produed by the algorithm is stritly dereasing, whih implies thatthe number of iterations is bounded by the height of {g− | g ∈ G}.Remark 1. Although the minimal �xpoints of a map g ∈ G is omputed at everyintermediate step, the poliy iteration algorithm need not return the minimal�xpoint of f .Remark 2. In some irumstanes, the least �xed point g−k may be di�ult toobtain, but a �xpoint uk of gk suh that uk ≤ gk(uk−1) may be available. Letus all Algorithm 1' the generalization of Algorithm 1 in whih g−k is replaedby suh a �xpoint uk. One readily heks that if f ommutes with the in�mumof a denumerable set, then, the in�mum v of the sequene uk produed byAlgorithm 1' is a �xpoint of f . 6

4 Appliation to the lattie of intervals in statianalysisIn the sequel, we shall onsider intervals of R. The set of intervals, I(R), orderedby inlusion, is a omplete lattie.4.1 The interval abstrationWe onsider a toy imperative language with the following instrutions:1. loops: while (ondition) instrution;2. onditionals: if (ondition) instrution [else instrution℄;3. assignment: operand = expression;We assume here that the arithmetiexpressions are built on a given set of variables (belonging to the set V ar),and use operators +, -, * and /, together with numerial onstants (onlyintegers here for more simpliity).We do not desribe the interproedural fragment, sine this is a ompletelyorthogonal issue to our problem here.There is a lassial [CC91℄ Galois onnetion relating the powerset of valuesof variables to the produt of intervals (one for eah variable). This is whatgives the orretion of the following abstrat semantis [[.]] , with respet to thestandard olleting semantis of this language. [[.]] is given by a set of equationsover the variables x1, . . . , xn of the program. Eah variable xi is interpreted asan interval [−x−
i ; x+

i]. x∁ denotes the least interval inluding the omplementin] −∞; +∞[of the set x.
[[(0) while c (1) p (2) ; (3)]] =

x1
i = [[c]] ∩ (x0

i ∪ x2
i) ∧ x3

i = [[c]]∁ ∩ (x0
i ∪ x2

i) ∧ [[p]]

[[(0) if c (1) p1 (2) else (3) p2 (4); (5)]] =

x1
i = x0

i ∩ [[c]] ∧ x3
i = x0

i ∩ [[c]]∁ ∧ x5
i = x2

i ∪ x4
i ∧ [[p1]] ∧ [[p2]]

[[(0) xi = e (1)]] = x1
i = [[e]]For onditions, we have:

[[(0) xi = a (1)]] = x1
i = [a, a]

[[(0) xi = xj (1)]] = x1
i = x0

i ∩ x0
j ∧ x1

j = x0
i ∩ x0

j

[[(0) xi < a (1)]] = x1
i = x0

i ∩] −∞; a[

[[(0) xi < xj (1)]] = x1
i = x0

i ∩]−∞; x0+
j − 1] ∧ x1

j = x0
j ∩ [x0−

i + 1; +∞[

7

4.2 Min-max funtions and the seletion prinipleFor an interval I = [−a, b], we set ↑ I
def
= [−a,∞[and ↓ I

def
=] − ∞, b]. Andif J = [−c, d], we also de�ne l(I, J) = I, r(I, J) = J , m(I, J) = [−a, d] and

mop(I, J) = [−c, b]. These four operators will de�ne the four possible poliieson intervals, as shown by Proposition 2.J. Gunawardena [Gun94℄ introdued the lass of min-max funtions from
R

n to R
n, after a work of Olsder [Ols91℄ onerning a sublass of min-maxfuntions. Min-max funtions are preisely dynami programming operatorsof deterministi zero-sum repeated games with perfet information, state spae

{1, . . . , n}, and �nite ation spae. We de�ne here a similar lass, for mapsde�ned on (I(R))n, whih ould be extended, but orresponds here preisely towhat the abstrat semanti equations of the previous setion give us.De�nition 2. A min-max funtion of intervals, (I(R))n → (I(R))p, is a mapwhose oordinates are terms of grammar G:
CSTE ::= [−a, b]
V AR ::= xi

EXPR ::= CSTE | V AR |
EXPR + EXPR | EXPR ∗ EXPR |
EXPR/EXPR | EXPR − EXPR

TEST ::= ↑ EXPR ∩ EXPR | ↓ EXPR ∩ EXPR |
CSTE ∩ EXPR

G ::= EXPR | TEST |
G ∪ Gfor all 1 ≤ i, j ≤ n, and where a, b ∈ Z , and xi ∈ V ar takes its value in theinterval [−x−

i , x+
i] ∈ I(R).We write M for the set of suh funtions. Non-terminals CSTE, V AR,

EXPR and TEST do orrespond to the semantis of onstants, variables, arith-meti expressions, and (simple) tests.Let G∪ be the grammar given by the same prodution rules as G exept thatwe annot produe terms with ∩.
G∪ ::= EXPR | ↑ EXPR | ↓ EXPR |

G∪ ∪ G∪ | l(G∪, G∪) | r(G∪, G∪) |
m(G∪, G∪) | mop(G∪, G∪)We write M∪ for the set of funtions de�ned by this grammar. Terms l(G, G),

r(G, G), m(G, G) and mop(G, G) represent respetively the left, right, m and
mop poliies.The intersetion of two intervals, and hene, of two terms of the grammar,interpreted in the obvious manner as intervals, is given by the following formula:

xi ∩ xj = l(xi, xj) ∩ r(xi, xj) ∩ m(xi, xj) ∩ mop(xi, xj) (1)8

To a min-max funtion of intervals f ∈ M , we assoiate a family Π(f) offuntions of M∪ obtained in the following manner: we replae eah ourreneof a term xi ∩ xj by l(xi, xj), r(xi, xj), m(xi, xj) or mop(xi, xj). Suh a hoieis a poliy.Proposition 1. We have
f =

⋂

h∈Π(f)

h (2)and the seletion priniple is satis�ed.In Equation (2), we denote by intersetion the inf law with respet of theprodut ordering of the maps in M.Proof. This follows readily from the fat that the intersetion is attained by oneof the four terms in Equation (1): we have either xi ∩ xj = l(xi, xj) = x1 or
xi ∩ xj = r(xi, xj) = xj or xi ∩ xj = m(xi, xj) or xi ∩ xj = mop(xi, xj). This isruial to apply the seletion priniple mentioned earlier.4.3 Implementation priniples of the poliy iteration al-gorithmA simple stati analyzer has been implemented in C++. It onsists of a parserfor a simple imperative language (a very simpli�ed C), a generator of abstratsemanti equations using the interval abstration, and the orresponding solver,using the poliy iteration algorithm desribed in Setion 3.A poliy is a table that assoiates to eah intersetion node in the semantiabstration, a value modelling whih poliy is hosen among l, r, m or mop, inEquation (1). There is a number of heuristis that one might hoose onerningthe initial poliy, whih should be a guess of the value of x1 ∩ x2 in Equation(1), when the �xpoint is reahed for x1 and x2. The hoie of the initial poliymay be ruial, sine some hoies of the initial poliy may lead eventually to a�xpoint whih is not minimal. We will study suh problems in detail elsewhere.The urrent prototype makes a sensible hoie: when a term G1 ∩ G2 isenountered, if a �nite onstant bound appears in G1 or G2, this bound isseleted. Moreover, if a +∞ upper bound or −∞ lower bound appears in G1 or
G2, then, this bound is not seleted, unless no other hoie is available (in otherwords, hoies that give no information are avoided). When the appliations ofthese rules is not enough to determine the initial poliy, we hoose the boundarising from the left hand side term. Thus, when G1 = [−a,∞[, the initialpoliy for G1 ∩ G2 is m(G1, G2), whih keeps the lower bound of G1 and theupper bound of G2.The way the equations are onstruted, when the terms G1 ∩G2 orrespondto a test on a variable (and thus no onstant hoie is available for at least onebound), this initial hoie means hoosing the onstraint on the urrent variablebrought on by this test, rather than the equation expressing the dependene of9

urrent state of the variable to the other states. These hoies often favour as�rst guess an easily omputable system of equations.This hoie is stati, and does not use the values of the variables knownwhen getting to an intersetion. Another hoie that looks attrative, onsists,when we have to hoose between two variable quantities, in evaluating thesequantities when enountering the intersetion node, and in taking the quantitywhih value is the best, depending whether we want the lower or upper bound.However, the poliy that looks the best at a given �xpoint iteration may notbe the poliy that leads to the least �xpoint. It looks sensible to make a fewiterations on the system with no poliy before hoosing the initial poliy, usingthe evaluation of the terms. We will brie�y show an example of this dynamipoliy hange in Setion 4.4, but most of the disussion here is left for futurework.We then solve the �xpoint equation of the redued equations, using possiblyspei� algorithms (Ford-Bellman if the redued equations are very simple, an-other poliy iteration algorithm for the ∪ part, spei� numerial solvers et.).For the time being, we only use a lassial Kleene like value iteration algorithm,disussed in Setion 4.4.We then proeed to the improvement of the poliy, as explained in Setion3. In short, we hange the poliy at eah node for whih a �xpoint of theomplete system of equations is not reahed, and ompute the �xpoint of thenew equations, until we �nd a �xpoint of the omplete system of equations.In the following examples, we ount the number of poliies the algorithmhad to onsider in order to reah the least �xpoint, and the ost of solving theremaining equations, without intersetion. But the overall speedup of poliy it-eration algorithms should be improved if we use one of the possibly very e�ientalgorithm for those more spei� equations.4.4 Examples and omparison with Kleene's algorithmIn this setion, we disuss a few typial examples, that are experimented usingour prototype implementation, disussed in the previous setion. We omparethe poliy iteration algorithm with Kleene's iteration sequene with wideningsand narrowings (the very lassial one of [CC91℄), alled algorithm A here. Forthese two algorithms, we ompare the auray of the results, and the numberof �xpoint iterations.We did not experiment spei� algorithms for solving equations in G∪ (mean-ing, without intersetions), as we onsider this to be outside the sope of thispaper, so we hose to use an iterative solver (algorithm B) for eah poliy. Algo-rithm B is exatly the same solver as algorithm A, but used on a smaller lass offuntions, for one poliy. We deided to widen intervals, in both ases, only afterten standard Kleene iterations. This hoie is ompletely onventional, and inmost examples below, one ould argue that an analyzer with only two standardKleene iterations would have found the right result. In this ase, the speedupobtained by the poliy iteration algorithm would be far less; but it should be10

argued that in most stati analyzers, there would be a ertain unrolling beforetrying to widen the result.A simple typial (integer) loop would be the one of Figure 1. The equationsgenerated by the analyzer are the ones of Figure 2. The ontrol points in theexamples to follow are indiated as omments in the C ode.void main() {int x;x=0; // 1while (x<100) { // 2x=x+1; // 3} // 4} Figure 1: A simple integer loop
x1 = [0, 0]
x2 =] − oo, 99] ∩ (x1 ∪ x3)
x3 = x2 + [1, 1]
x4 = [100, +oo[∩(x1 ∪ x3)Figure 2: Semanti equationsThe original poliy is mop in equation 2 in Figure 2 (by equation i, we meanthe equation whih determines the state of variables at ontrol point i, here

x2), and m in the equation determining x4, sine we always hoose a min ormax that gives information (∞ as a max, or −∞ as a min do not give anyinformation). This is atually the right poliy on the spot, and we �nd in oneiteration, the orret result (the least �xpoint), see Figure 3. In the sequel, weput upper indies to indiate at whih iteration the abstrat value of a variableis shown. Lower indies are reserved as before to the ontrol point number.
x1 = [0, 0]
x2 = [0, 99]
x3 = [1, 100]
x4 = [100, 100]Figure 3: The �rst and only it-eration by algorithm B leads tothe least �xpoint (loop of Fig-ure 1)

x1
1 = [0, 0]

x1
2 = [0, 0]

x1
3 = [1, 1]

x1
4 = ⊥

x2
1 = [0, 0]

x2
2 = [0, 1]

x2
3 = [1, 2]

x2
4 = ⊥

. . .

x9
1 = [0, 0]

x9
2 = [0, 8]

x9
3 = [1, 9]

x9
4 = ⊥

(widening)
x10

1 = [0, 0]
x10

2 = [0,∞[
x10

3 = [1,∞[
x10

4 = [100,∞[
(narrowing)
x11

1 = [0, 0]
x11

2 = [0, 99[
x11

3 = [1, 100]
x11

4 = [100, 100]Figure 4: Iterations of algo-rithm A (loop of Figure 1)This is to be ompared with the 12 iterations of algorithm A, of Figure 4.11

void main(int n) {int i;int j;i=1; // 1j=10; // 2while (j >= i) { // 3i = i+2; // 4j = -1+j; // 5} // 6}Figure 5: A more omplex loop
(i1, j1) = ([1, 1],⊤)
(i2, j2) = (i1, [10, 10])
(i3, j3) = (] − oo, max(j2, j5)] ∩ (i2 ∪ i5),

[min(i2, i5), +oo[∩(j2 ∪ j5))
(i4, j4) = (i3 + [2, 2], j3])
(i5, j5) = (i4, [−1,−1] + j4)
(i6, j6) = ([min(j2, j5) + 1, +oo[∩(i2 ∪ i5),

] − oo, max(i2, i5) − 1] ∩ (j2 ∪ j5))Figure 6: Its semanti equationsThe analysis of the program shown on Figure 5 leads to an atual poliy im-provement. The algorithm starts with poliy mop for variable i in equation 3,
m for variable j in equation 3, m for variable i equation 6 and mop in equation6, variable j.The �rst iteration using algorithm B with this poliy, �nds the values ofFigure 7. But the value for variable j given by equation 6, given using theprevious result, is [0, 10] instead of [0, 11], meaning that the poliy on equation6 for j should be improved. The minimum (0) for j at equation 6 is reahed asthe minimum of the right argument of ∩. The maximum (10) for j at equation6 is reahed as the maximum of the right argument of ∩. Hene the new poliyone has to hoose for variable j in equation 6 is r. In one iteration of algorithmB for this poliy, one �nds the least �xpoint of the system of semanti equations,see Figure 8.

(i11, j
1
1) = ([1, 1],⊤)

(i12, j
1
2) = ([1, 1], [10, 10])

(i13, j
1
3) = ([1, 10], [1, 10])

(i14, j
1
4) = ([3, 12], [1, 10])

(i15, j
1
5) = ([3, 12], [0, 9])

(i16, j
1
6) = ([1, 12], [0, 11])Figure 7: Result of the initial poliy forthe loop of Figure 5

(i21, j
2
1) = ([1, 1],⊤)

(i22, j
2
2) = ([1, 1], [10, 10])

(i23, j
2
3) = ([1, 10], [1, 10])

(i24, j
2
4) = ([3, 12], [1, 10])

(i25, j
2
5) = ([3, 12], [0, 9])

(i26, j
2
6) = ([1, 12], [0, 10])Figure 8: Result with the seond poliyfor the loop of Figure 5Algorithm A takes ten iterations to reah the same result.We now onsider the program of Figure 9. It ontains �ve loops, and their�xpoint are omputed sequentially : the ode after a loop is ignored as long asthe �xpoint is not reahed for the given loop.The algorithm using poliy iteration uses only one widening of algorithm B(i.e. only on one of the �ve loops). It atually onverges to the least �xpoint,12

int main(int n) {int i, j, k, l, m;i = 0; // 1j = 100; // 2k = 1000; // 3l = 10000; // 4m = 100000; // 5while (i < 1000) // 6i = i+1; // 7// 8while (j < 1000) // 9j = j+k; // 10
// 11while (k > 100) // 12k = k-j; // 13// 14while (l > 1000) // 15l = l+k; // 16// 17while (m > 1) // 18m = m-l; // 19// 20}Figure 9: Multiple loopsusing 13 value iterations and 0 poliy iteration. Algorithm A needs 43 iterationsto onverge to the same result. For lak of spae, we do not reprodue theorresponding semanti equations nor the omplete value of the lfp for thisexample, but only what is found for line 20:

(i20, j20, k20, l20, m20) = (1000, [1000, 1999], [−1898, 100], [−897, 1000], [−998, 1])Finally we look at a typial bad ase example for our poliy iteration method,where the number of iterations needed to reah the least �xpoint is at least equalwhen using the poliy and the value iteration algorithm, and where the end re-sult for the poliy iteration method is a �xpoint, but not the least �xpoint ofthe system of semanti equations.Consider the program of Figure 10, that we want to analyze. The originalint x;x=0; // 0while (x<100) { // 1x=-1-x; // 2} // 3Figure 10: A bad ase
x0 = [0, 0]
x1 =] −∞, 99] ∩ (x0 ∪ x2)
x2 = [−1,−1]− x1

x3 = [100,∞[∩(x0 ∪ x2)Figure 11: Its semanti equationspoliy our algorithm hooses is mop for equation 2, variable x and m for equation4, variable x. It does so beause of the −∞ as the minimum of the left argumentof ∩ in equation 2, and beause of the ∞ as the maximum of the right argumentof ∩ in equation 4. Then we �nd in two iterations of algorithm B for this poliythe �xpoint of Figure 12, whih is not the least �xpoint, and thus is ratherimpreise.By algorithm A, we �nd the least �xpoint (see Figure 13) in only two itera-tions. 13

x0 = [0, 0]
x1 = [−100, 99]
x2 = [−100, 99]
x3 = ⊥Figure 12: The �xpoint found by thepoliy iteration algorithm, for loop Fig-ure 10

x0 = [0, 0]
x1 = [−1, 0]
x2 = [−1, 0]
x3 = ⊥Figure 13: The least �xpoint, found byalgorithm AIf we used the dynami poliy iteration mentioned in Setion 4.3, then wewould have found, after just one iteration of the funtional, that the orretpoliy for variable x in equation 2 is r, and reahed the least �xpoint. This willbe developped elsewhere.5 Future workWe have shown in this paper that poliy iteration algorithms an lead to fast andaurate solvers for abstrat semanti equations, suh as the ones oming fromlassial problems in stati analysis. We still have some heuristis in the hoieof initial poliies we would like to test (suh as the dynami poliy iterationmehanism, and other ideas).One of our aims is to generalize the poliy iteration algorithm to more om-plex latties of properties, suh as the one of otagons (see [Min01℄). We wouldlike also to apply this tehnique to symboli latties (using tehniques to transfernumeri latties, see for instane [Ven02℄).Finally, we should insist on the fat that a poliy iteration solver should ide-ally rely on better solvers than value iteration ones, for eah of its iterations (i.e.for a hoie of a poliy). The idea is that, hoosing a poliy simpli�es the set ofequations to solve, and the lass of suh sets of equations an be solved by betterspei� solvers. In partiular, we would like to experiment the poliy iterationalgorithms again on grammar G∪, using a dual method, so that we would beleft with solving, at eah step of the algorithm, purely numerial onstraints,at least in the ase of the interval abstration. For numerial onstraints, weould then use very fast numerial solvers, for large lasses of funtions (linearequations but not only).Referenes[Bou92℄ F. Bourdonle. Abstrat interpretation by dynami partitioning.Journal of Funtional Programming, 2(4):407�435, 1992.

14

[Bou93℄ F. Bourdonle. E�ient haoti iteration strategies with widenings.Number 735, pages 128�141. Leture Notes in Computer Siene,Springer-Verlag, 1993.[CC77℄ P. Cousot and R. Cousot. Abstrat interpretation: A uni�ed lattiemodel for stati analysis of programs by onstrution of approxima-tions of �xed points. Priniples of Programming Languages 4, pages238�252, 1977.[CC91℄ P. Cousot and R. Cousot. Comparison of the Galois onne-tion and widening/narrowing approahes to abstrat interpretation.JTASPEFL '91, Bordeaux. BIGRE, 74:107�110, Otober 1991.[CH92℄ Baudouin Le Charlier and Pasal Van Hentenryk. A universal top-down �xpoint algorithm. Tehnial Report CS-92-25, Departmentof Computer Siene, Brown University, May 1992. Mon, 11 Sep100 15:20:30 GMT.[Cos03℄ A. Costan. Analyse statique et itération sur les politiques. Tehni-al report, CEA Salay, report number DTSI/SLA/03-575/AC, andEole Polytehnique, August 2003.[CP85℄ Chris Clak and Simon L. Peyton Jones. Stritness Analysis � APratial Approah. In Jean-Pierre Jouannaud, editor, FuntionalProgramming Languages and Computer Arhiteture, volume 201 ofLeture Notes in Computer Siene, pages 35�49, Nany, Frane,September 16�19, 1985. Springer, Berlin.[CT01℄ J. Cohet-Terrasson. Algorithmes d'itération sur les politiques pourles appliations monotones ontratantes. Thèse, spéialité mathé-matiques et automatique, Éole des Mines, De. 2001.[CTGG99℄ J. Cohet-Terrasson, S. Gaubert, and J. Gunawardena. A onstru-tive �xed point theorem for min-max funtions. Dynamis and Sta-bility of Systems, 14(4):407�433, 1999.[CTGG01℄ J. Cohet-Terrasson, S. Gaubert, and J. Gunawardena. Poliy iter-ation algorithms for monotone nonexpansive maps. Draft, 2001.[Dam01℄ D. Damian. Time stamps for �xed-point approximation, 2001.[FS98℄ C. Feht and H. Seidl. Propagating di�erenes: An e�ient new�xpoint algorithm for distributive onstraint systems, 1998.[GG98℄ S. Gaubert and J. Gunawardena. The duality theorem for min-maxfuntions. C. R. Aad. Si. Paris., 326, Série I:43�48, 1998.[GMP02℄ E. Goubault, M. Martel, and S. Putot. Asserting the preision of�oating-point omputations: A simple abstrat interpreter. LetureNotes in Computer Siene, 2305, 2002.15

[Gra90℄ P. Granger. Analyse de ongruenes. PhD thesis, Eole Polyteh-nique, 1990.[Gra91℄ P. Granger. Stati analysis of linear ongruene equalities amongvariables of a program. In Samson Abramsky and T. S. E. Maibaum,editors, TAPSOFT '91: Proeedings of the International Joint Con-ferene on Theory and Pratie of Software Development, Volume 1:Colloquium on Trees in Algebra and Programming (CAAP'91), vol-ume 493 of Leture Notes in Computer Siene, pages 169�192.Springer-Verlag, 1991.[Gun94℄ J. Gunawardena. Min-max funtions. Disrete Event Dynami Sys-tems, 4:377�406, 1994.[HE02℄ Kwangkeun Yi Hyunjun Eo. An improved di�erential �xpoint iter-ation method for program analysis. November 2002.[HK66℄ A. J. Ho�man and R. M. Karp. On nonterminating stohasti games.Management Si., 12:359�370, 1966.[How60℄ R. Howard. Dynami Programming and Markov Proesses. Wiley,1960.[Hun91℄ L. S. Hunt. Abstrat Interpretation of Funtional Languages: FromTheory to Pratie. Ph.D. thesis, Department of Computing, Impe-rial College, London, UK, 1991.[Kar76℄ M. Karr. A�ne relationships between variables of a program. AtaInformatia, (6):133�151, 1976.[KL03℄ Viktor Kunak and K. Rustan M. Leino. On omputing the �xpointof a set of boolean equations. Tehnial Report MSR-TR-2003-08,Mirosoft Researh (MSR), Deember 2003.[Mau99℄ Laurent Mauborgne. Binary deision graphs. In A. Cortesi andG. Filé, editors, Stati Analyis Symposium (SAS'99), volume 1694 ofLeture Notes in Computer Siene, pages 101�116. Springer-Verlag,1999.[Min01℄ A. Miné. The otagon abstrat domain in analysis, sliing and trans-formation. pages 310�319, Otober 2001.[O'K87℄ R. A. O'Keefe. Finite �xed-point problems. In Jean-Louis Lassez,editor, Proeedings of the Fourth International Conferene on LogiProgramming (ICLP '87), pages 729�743, Melbourne, Australia,May 1987. MIT Press.[Ols91℄ G. J. Olsder. Eigenvalues of dynami max-min systems. DisreteEvent Dyn. Syst., 1(2):177�207, 1991.16

[PGM03℄ S. Putot, E. Goubault, and M. Martel. Stati analysis-based valida-tion of �oating-point omputations. Springer-Verlag, 2003.[PH℄ P. and N. Halbwahs. Disovery of linear restraints among variablesof a program.[Put94℄ Martin L. Puterman. Markov deision proesses: disrete stohastidynami programming. Wiley Series in Probability and Mathemat-ial Statistis: Applied Probability and Statistis. John Wiley &Sons In., New York, 1994. A Wiley-Intersiene Publiation.[RS99℄ K. Ravi and F. Somenzi. E�ient �xpoint omputation for invariantheking. In International Conferene on Computer Design (ICCD'99), pages 467�475, Washington - Brussels - Tokyo, Otober 1999.IEEE.[Ven02℄ A. Venet. Nonuniform alias analysis of reursive data struturesand arrays. In Stati Analysis, 9th International Symposium, SAS2002, Madrid, Spain, September 17-20, 2002, volume 2477 of LetureNotes in Computer Siene, pages 36�51. Springer, 2002.

17

