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Abstract

The global states of complex systems often form pospaces, topological spaces equipped with compatible
partial orders reflecting causal relationships between the states. The calculation of tractable invariants
on such pospaces can reveal critical system behavior unseen by ordinary invariants on the underlying
spaces, thereby sometimes cirumventing the state space problem bedevilling static analysis. We introduce
a practical technique for calculating future path-components, algebraic invariants on pospaces of states and
hence tractable descriptions of the qualitative behavior of concurrent processes.
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1 Introduction

Subtle design flaws in large, critical systems of simultaneously executing processes -
such as the internet, modern microprocessors, and national air traffic networks - can
induce catastrophic consequences. Researchers typically recast the behavior of such
a system as traversals inside a directed graph or some other discrete“state space.”
As the scales of time shrink and the numbers of processes increases, the sizes of these
directed graphs explode. This combinatorial explosion renders industrial validation
of critical systems incomplete in practice; system designers often must accept either
a certain level of risk or reduced performance from a simplified design. A directed
space, a topological space equipped with some structure of time, represents the limit
of ever more intricate directed graphs representing ever finer observations in time.
Classical algebraic topology gives effective methods for classifying reasonable spaces,
irrespective of size, typically up to continuous deformation. Recent research [2] has
shown that critical behavior corresponds to properties of directed spaces invariant
under continuous deformation respecting time flow. Directed algebraic topology, an
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adaptation of algebraic topology for directed spaces, thus provides the natural set-
ting for circumventing combinatorial explosion in designing and validating complex
systems.

In such a passage from discrete to continuous models of state spaces, a geomet-
ric intepretation to the semantics of concurrent processes emerges: discrete steps of
program executions become continuous paths respecting the causal structure, and
sequences of steps yielding equivalent results correspond to such paths which can
be “deformed” into one another. Consider a system of two persons concurrently
performing transactions on a shared bank account. In particular, suppose that the
first person decides to withdraw the entire account balance, while the second person
decides to withdraw a fixed sum of $40.00. The order in which a centralized bank
decides to execute both instructions plays a crucial role in the amount of money that
the first person receives. We can think of the global state space as some product of
two linear state spaces minus some forbidden regions corresponding to constraints
on performing conflicting transactions simultaneously. Figure 1 illustrates how dis-
crete models of this two-person system, after finer and finer sampling, leads to a
topological state space.

A technique for capturing tractable algebraic information from an uncountably
large space X is to translate some of the topological structure of X into an algebraic
but uncountable form and then use algebraic operations to extract the tractable and
salient data. As a first step, we can convert a space X into its fundamental groupoid,
a groupoid (=undirected graph equipped with extra structure) whose: vertices are
the points of X; edges are “deformation classes” of paths on X; and extra structure
corresponds to the concatenation of adjacent paths. Fundamental groupoids of
spaces are uncountable yet admit unique (up to isomorphism) smallest equivalent
fundamental groups, groupoids with only one vertex, or equivalently, sets equipped
with suitable multiplications. Fundamental groups detect 1-dimensional holes in
spaces; for example, the fundamental groups of a circle and torus are the respective
groups Z of integers and Z × Z.

We calculate an analogue of fundamental groups for pospaces in order to capture
the essential schedules and non-determinism exhibited in concurrent systems. As a
first step, we can first convert the geometric data of a pospace X into its fundamental
category Π1X, a category (=digraph equipped with extra structure) whose: vertices
are the points of X; edges are “deformation classes” of monotone paths on X; and
extra structure corresponds to the concatenation of paths. As a second step, we

Fig. 1. From discrete to continuous. As we make finer and finer samples of posets of states, we arrive
at a pospace of states; execution chains become monotone paths. Two monotone paths continuously “de-
formable” represent executions resulting in identical computations.
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Fig. 2. We can regard directed graphs, as above, as presentations of small free categories. The first two
corresponding categories are future equivalent to one another but not to the third category. None of the
categories are equivalent to one another in the classical sense.

• �� • �� • �� · · ·
Fig. 3. The free category presented by the above digraph admits no future-minimal model.

wish to collapse Π1X into a tractable form that nonetheless captures the qualitative
behavior of the system associated to X. A future equivalence [6] is a generalization of
an equivalence of groupoids which identifies categories which model similar “flows
through time”; see Figure 2 for some intuition. A complete “future invariant”
on a category C would be a future-minimal model, a “smallest” future-equivalent
subcategory M ⊂ C from which every future equivalence is an embedding; for
example, the first category is a future-minimal model for the second category in
Figure 2. Not all categories admit future-minimal models (see Figure 3), even if all
categories admit skeletal subcategories.

Our main result suggests a technique for collapsing fundamental categories to
tractable sizes (adapting techniques [3], [4], [9] developed by the first two named
authors and others for quotienting categories while preserving their essential shape)
directly from the order-topological data of pospaces, after which brute-force can
then yield future-minimal models (see Figure 4 for some sample calculations); in
particular, the theorem proves that such future-minimal models exist for pospaces
- such as ordered hypercubes minus open isothetetic hyperrectangles of constraints
on the simultaneous access of resources - built as certain unions of topological sup-
semilattices. For a partial order �X on a set X and subset A ⊂ X, we write ↓X A

for the set of all x ∈ X for which there exists a ∈ A such that x �X a.

Theorem 5.1 Consider the following data.

(i) A compact order-dense metrizable pospace X.

(ii) A finite cover O of X consisting of compact, order-convex subpospaces forming
topological sup-semilattices such that for all A, B ∈ O,

(A ∩ B), A ∩ ↓X (A ∩ B) ∈ O.

There exists a strong future deformation retraction from Π1X to the full subcategory
whose objects are the maxima of the pospaces in O.

We recall basic definitions and properties of pospaces in §2 and fundamental
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Fig. 4. Categories of future path-components. The top row illustrates non-interleaving yet uncountably
large models X of concurrent processes. The bottom row gives tractable descriptions π0X of their dynamics.
Examples (b) and (c) illustrate the sensitivity of π0 to the relative locations of holes. Examples (d) and (e)
illustrate how π0 measures exactly 0-dimensional changes in topology through time.

categories in §3. In §4, we recall the definition of future equivalences from [6] and
define future-minimal models. In §5, we present our theorem and elaborate on some
of the calculations in Figure 4. In §6, we conclude with an outline of future goals
for our theory.

2 Pospaces

A pospace is a poset X topologized (not necessarily in the weakest possible way)
so that the graph of the partial order, which we write as �X , on X is closed in
the standard product space X × X. We refer the reader to [5] and [10] for the
basic theory of pospaces. Pospaces are automatically Hausdorff [10, Theorem 2].
Compact pospaces exhibit special order-theoretic properties.

Lemma 2.1 Compact pospaces are directed complete.

Proof. Fix a compact pospace K. Consider a monotone map ν : D → K from a
directed poset D to K. There exists a directed subposet D′ of D such that every
point in D lies below a point in D′ and the restriction ν ′ of ν to D′ converges to a
unique point p because K is compact Hausdorff. Thus ν(d) �K p for each d ∈ D

because graph(�K) is closed.
Suppose there exist another point q such that ν(d) �K q for each d ∈ D. Let

κ be the constant function D′ → K assuming the value q. Then p = lim ν �K

lim κ �K= q because ν(d) �K κ(d) for each d ∈ D′ and graph(�K) is closed. �

A topological sup-semilattice, a sup-semilattice topologized so that the binary
supremum operator is jointly continuous, is a pospace if it is Hausdorff. We re-
gard Euclidean space R

n as a topological sup-semilattice whose binary supremum
operator is the coordinate-wise max function R

n × R
n → R

n. An order arc is a
compact connected pospace A such that A contains more than one point and �A is
a total order (for each pair x, y ∈ A, either x �A y or y �A x). We regard the unit
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Fig. 5. The state pospace of two processes accessing a binary semaphore. The arrows indicate the flow of
time. Hazard stripes indicate an unsafe region, points from which the machine is doomed to deadlock.

interval I as equipped with its standard total order. A subpospace of a pospace X

is a subposet A of X equipped with the subspace topology.

Example 2.2 Every connected compact subpospace of I is a singleton or an order
arc.

A monotone map is a continuous monotone function between pospaces. An
example is a dipath, a monotone map of the form

I → X.

We adopt the following non-standard terminology throughout the note.

Definition 2.3 Fix a pospace X. We call X . . .

(i) . . . path-ordered if for each pair x �X y, there exists a dipath x � y on X.

(ii) . . . order-dense if for each pair x �X z of distinct points in X, there exists
y ∈ X distinct from x and z such that x �X y �X z.

A subset A ⊂ X is order-convex in X if y ∈ A whenever x, z ∈ A and x �X y �X z.

Example 2.4 For each pospace X and subset A ⊂ X, the subset

↓X A

is order-convex in X.

Consider a pospace X. A well-known characterization of I as the unique separa-
ble order arc and an observation [5, Proposition VI-5.6] that compact order-dense
pospaces are “arc-wise connected” yields the following straightforward consequence.

Lemma 2.5 Compact order-dense metrizable pospaces are path-ordered.

3 Fundamental categories

Fix a pospace X. For each pair α, β of dipaths on X, we write α � β if there exists
a monotone map h : I × I → X such that h(−, 0) = α, h(−, 1) = β, and h(0,−),
h(1,−) are constant. We write � for the equivalence relation on dipaths generated
by � and [γ] for the �-class of a dipath γ on X, thus introducing an analogue [6]
of the classical “homotopy relation” for pospaces.
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Fig. 6. The state pospace of three concurrent processes, subject to certain constraints in the simultaneous
access of shared resources. This pospace is order-dense and metrizable.

Lemma 3.1 For each topological sup-semilattice L, all monotone paths

α, β : I → L

starting and ending at the same points are �-equivalent.

Proof. Write ∨ for the continuous binary supremum operator L×L → L. Consider
dipaths α, β on L. The rule h(x, t) = α(x) ∨ β(tx) defines a homotopy relative
endpoints from α to α ∨ β monotone in x and t. Thus α � α ∨ β and similarly
β � α ∨ β. Moreover, all morphisms which factor endomorphisms in Π1L are
constant because �L is antisymmetric. �

Lemma 3.2 For each pospace X and dipaths α, β on X,

α � β

if α and β share the same image.

Proof. In the case α(I) = β(I) a singleton, α, β are both constant and hence
α(I) = α(0) = β(0) = β(I). It suffices to consider the case α(I) not a singleton. We
can assume α is surjective, and hence a quotient map because I is compact and X is
Hausdorff, without loss of generality. Hence X is an order arc. Lemma 3.1 implies
the result because order arcs are examples of topological sup-semilattices. �

Example 3.3 An analogous statement in classical homotopy theory does not hold.
Two paths “winding” (e.g. e2iπ(−) and e4iπ(−)) a different number of times around
a circle have the same image but do not both belong to a single family {ht}t∈[0,1] of
such paths continuous in t.

The fundamental category, written Π1X, of a pospace X is the category having
the points of X as objects, �-classes [α] of dipaths α on X as morphisms, and
source, target, identity, and composition maps

s : [α] �→ α(0), t : [α] �→ α(1), id : x �→ [t �→ x], [β] ◦ [α] = [α ∗ β],

where α ∗ β denotes the concatenated path defined on [0, 1
2 ] by t �→ α(2t) and (1

2 , 1]
by t �→ β(2t− 1). Following the terminology of [3], we call a category C loop-free if
in C , the only morphisms which factor endomorphisms are identity morphisms.
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Example 3.4 Fundamental categories of pospaces are loop-free [3].

Example 3.5 Lemma 3.1 amounts to saying that the hom-sets of fundamental
categories of topological sup-semilattices consist of singletons or empty sets.

4 Future equivalences

We recall the definition of a future equivalence, a symmetric version of an adjunction
investigated in [7], [6] and a strong future deformation retraction, a categorical
analogue of a strong deformation retraction and a special case of a split future
equivalence from [6].

Definition 4.1 A future inverse to a functor F : C → D is a functor

G : D → C

such that there exist natural transformations η : idC → GF and η′ : idD → FG,
which we call units to the pair F,G, satisfying Fη = η′F and Gη′ = ηG. A future
equivalence is a functor admitting a future inverse. A strong future deformation
retraction is a future equivalence which is a retraction R to a future inverse I such
that the unit of R, I of the form id → IR = id is the identity natural transformation.

Future equivalences and strong future deformation retractions are both closed
under composition. A reflection is a left adjoint to an embedding of categories.

Example 4.2 Categorical equivalences and reflections are future equivalences.

Example 4.3 Strong future deformation retractions are reflections.

The ultimate categorical invariant preserved by future equivalences is a future-
minimal model. Recall that a functor is an embedding if it never identifies distinct
morphisms.

Definition 4.4 A category M is future-minimal if every future equivalence

M → C

is an embedding. A future-minimal category M is a future-minimal model for a
category C if there exists a future equivalence C → M .

Example 4.5 For a category C , the functor

C → �

to the terminal category is a future equivalence if and only if C contains a terminal
object.

Example 4.6 Finite categories have future-minimal models.

Example 4.7 Loop-free categories C have future-minimal models if ob C is finite.
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5 Future path-components

We now state our main result, a practical tool for recognizing when future-minimal
models of fundamental categories exist and calculating such models.

Theorem 5.1 Consider the following data.

(i) A compact order-dense metrizable pospace X.

(ii) A finite cover O of X consisting of compact, order-convex subpospaces forming
topological sup-semilattices such that for all A, B ∈ O,

(A ∩ B), A∩ ↓X (A ∩ B) ∈ O.

There exists a strong future deformation retraction from Π1X to the full subcategory
whose objects are the maxima of the pospaces in O.

Proof. Each L ∈ O is a compact sup-semilattice and hence has a unique maximum
by Lemma 2.1. Let C be the fundamental category of X, M be the full subcategory
whose objects are the maxima of the pospaces in O, and I be the inclusion

M ↪→ C .

Consider x ∈ X. There exists a unique smallest pospace, which we write as
M(x), in O containing x because O is closed under intersections. We can let ωx be
a choice of dipath, unique up to � by Lemma 3.1, on M(x) from x to max M(x)
by Lemma 2.5. Consider a dipath γ : x � y on X. There exist minimal n such
that im γ = im(γ1 ∗ · · · ∗ γn), and hence [γ] = [γ1 ∗ · · · ∗ γn] by Lemma 3.2, and
there exist L0, · · · , Ln ∈ O for which γ0([0, 1]) ⊂ Li, . . . , γn([0, 1]) ⊂ Lm because I

is compact. We show by induction on n that we can choose a dipath Q(γ) on X

such that γ ∗ ωy � ωx ∗ Q(γ).
Consider the base case n = 1. The paths ωx and ωy lie in L1 by the minimality

of M(x). Then x ∈�−1
L1

[M(y)], hence M(x) ⊂�−1
L1

[M(y)] by minimality of M(x),
and hence max M(x) �X max M(y). The base case then follows from Lemmas 2.5
and 3.1. Assume n > 1 and there exist dipath Q(γ1 ∗ · · · ∗ γn−1) on X such that

(γ1 ∗ · · · γn−1) ∗ ωγn−1(1) � ωx ∗ Q(γ1 ∗ · · · ∗ γn−1).

We have γn ∗ ωy � ωγn−1(1) ∗ Q(γn) by our base case and hence

Q(γ) = Q(γ1 ∗ · · · γn−1) ∗ Q(γn)

is our desired dipath. We can thus define a functor [Q] : C → M as sending
each morphism [γ] to [Q(γ)] and a natural transformation η : idC → I[Q] by the
rule ηx = [ωx] for each x ∈ X. For each x ∈ X, [Q]ηx = [Q][ωx] = idx because
Q(ωx) : Qx � Qx, �X is antisymmetric, and hence Q(ωx) is constant. Thus [Q] is
a strong future deformation retraction. �
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Example 5.2 Ordered hypercubes minus finite unions of open isothetic hyper-
rectangles admit such covers and hence their fundamental categories admit future-
minimal models because loop-free categories with finite object set admit future-
minimal models.

We now demonstrate how the theorem allows us to make calculations.

Example 5.3 [Annulus] Let X be the subpospace of R
2 having points

[0, 3]2 \ (1, 2)2.

Applying the theorem to the cover consisting of the subsets

I
2, I × [0, 3] ∪ [0, 3] × [2, 3], [0, 3] × I ∪ [2, 3] × [0, 3], [2, 3]2,

•
π0X =

•

�� ��

Example 5.4 [Higher versions] Let X be the subpospace of R
n having points

[0, 3]n \ (1, 2)n, n = 3, 4, . . .

The category Π1X has as a terminal object (3, . . . , 3) and hence we can conclude
π0X = •.
Example 5.5 Let X be the subpospace of R

n having points

[0, 5]2 \ (1, 2) × (3, 4) ∪ (3, 4) × (1, 2).

Applying the theorem to the smallest cover containing the subsets

I × [0, 5] ∪ [0, 5] × [4, 5], [0, 5] × I ∪ [4, 5] × [0, 5], [0, 3]2, [2, 5]2

and closed under the binary operations (A, B) �→ A ∩ B and (A, B) �→ A ∩ ↓X

(A∩B), we can reduce Π1X to the category on the left hand side of (1) and hence
conclude π0X is the category on the right hand side of (1).

• ��

�

• •

• ����

�

•

��

�� •

��

•

�� ��

� •

�� ��

•

��

�� •

�� ��

•

�������������

											

(1)

Example 5.6 [2-Semaphore] Let X be the subpospace of R
2 having points

[0, 5]2 \ (2, 4) × (1, 4) ∪ (1, 4) × (2, 4).
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Applying the theorem to the smallest cover containing the subsets

[0, 2]2, I × [0, 5] ∪ [0, 5] × [4, 5], [0, 5] × [4, 5]

and closed under the binary operations (A, B) �→ A ∩ B and (A, B) �→ A ∩ ↓X

(A ∩ B), we can conclude

•

π0X = •

��

��

�

•

•

��

�� •

��

��

6 Future work

Our note illustrates how to extract tractable, algebraic information about the qual-
itative behavior of complex systems from certain state spaces - when the systems do
not loop through identical states and when those state spaces admit suitable finite
covers of compact topological sup-semilattices. Firstly, we seek general point-set cri-
teria for pospaces X to admit categories π0X of future-path components. Secondly,
we expect that Theorem 5.1 generalizes to versions of state spaces where time travel
is possible; future-minimal models of fundamental categories for local pospaces of-
ten give concise descriptions of looping processes. Thirdly, we plan to generalize
π0 to higher πn by considering “future-minimal models” of higher homotopy cat-
egories. Fourthly, we hope to relate our invariant π0 with other “0-dimensional”
homotopical invariants on state spaces of concurrent processes. For example, the
covers described in Theorem 5.1 should roughly correspond to suitable generaliza-
tions of “Yoneda systems” [3], [4], [9] on small categories. For another example, we
expect the objects of trace categories [11] to coincide with future path-components
on a large class of pospaces.
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