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Abstract. Finite precision computations can severely affect the accu-
racy of computed solutions. We present a complete survey of a static
analysis based on abstract interpretation, and a prototype implement-
ing this analysis for C code, for studying the propagation of rounding
errors occurring at every intermediary step in floating-point computa-
tions. In the first part of this paper, we briefly present the domains
and techniques used in the implemented analyzer, called FLUCTUAT.
We describe in the second part, the experiments made on real indus-
trial codes, at Institut de Radioprotection et de Sûreté Nucléaire and at
Hispano-Suiza, respectively coming from the nuclear industry and from
aeronautics industry. This paper aims at filling in the gaps between some
theoretical aspects of the static analysis of floating-point computations
that have been described in [13, 14, 21], and the necessary choices of al-
gorithms and implementation, in accordance with practical motivations
drawn from real industrial cases.
Keywords. Static analysis, floating-point computations, control systems

1 Introduction

The use of floating-point arithmetic as a computable approximation of real arith-
metic may introduce rounding errors at each arithmetic operation in a compu-
tation. Even though each of these errors is very small, their propagation in
further computations, for example in loops, can produce a dramatic imprecision
on a critical output. We propose an analysis that computes for each variable an
over-approximation of the difference between a same computation in real and
in floating-point arithmetic. Moreover, we decompose this difference over the
operations that introduced errors, thus pointing out the operations responsible
for the main losses.

Principal contributions This paper essentially surveys the different abstract in-
terpretation domains and techniques used in the static analyzer FLUCTUAT.
The emphasis is not put on the theoretical details of the main domain used for
abstracting floating-point values, which can be found in [14]. But it describes
the main techniques and answers to the difficulties we had to address in the
practical use of these domains in an analyzer. Also, a large part is dedicated to
some examples of the analysis which was led on industrial examples.



2 Eric Goubault, Sylvie Putot, Philippe Baufreton, and Jean Gassino

Related work Few complete static analyzers of C programs are fully described
in the literature. This paper tries to match some of the available descriptions
of the ASTREE analyzer [1, 2] which is probably the most complete analyzer
today, with respect to the number of techniques and domains implemented,
in particular. Also, some commercial abstract interpreters like CodeSonar [24]
and PolySpace [25] are now available. All these tools analyze run-time errors
mostly, whereas we analyze a subtle numerical property, namely the discrepancy
introduced by the use of floating-point numbers instead of real numbers, in C
programs. This requires very fine and specific abstract domains, and the difficulty
lies mostly in the numerical subtleties of small parts of a code, and not in the
size of the program.

Overview This paper is divided in two parts. In Section 2, we present the abstract
domains and main techniques used in the FLUCTUAT analyzer. In subsection
2.1, we briefly introduce the abstract domain for representing floating point
variables, which is described in more details in [14]. Then in subsection 2.2, we
detail how this domain is extended to integer variables, and the specificities and
difficulties of handling integers. We then describe in subsection 2.3, the simple
aliasing model we are using, when it comes to abstract pointers, structures and
arrays. The iteration strategy which is used to solve the semantic equations
(and in particular specific widening operators), is described in subsection 2.4.
Finally, some assertions in a language specific to the analyzer, allow us to specify
properties of variables, such as set of possible input values, but also more subtle
properties such as bounds on the gradient of an input over iterations in a loop.
These are presented in subsection 2.5.

We then discuss in Section 3 some experiments conducted with FLUCTUAT
on industrial codes. We first describe the analysis of some programs developed
at Hispano-Suiza in the aeronautics industry. We first concentrate on some in-
teresting specific sub-functions, and then come to a full control application. In
a second part, we describe the analysis of a code from the nuclear industry that
IRSN has to expertise.

2 Abstract domains and techniques used in FLUCTUAT

2.1 Floating-point variables

General principles The analysis bounds at each operation the error committed
between the floating-point and the real result. It relies for this on a model of the
difference between the result x of a computation in real numbers, and the result
fx of the same computation using floating-point numbers, expressed as a sum
of error terms

x = fx +
⊕

ℓ∈L∪{hi}

ωx
ℓ . (1)

We assume that a control point of a program is annotated by a unique label
ℓ ∈ L. In this relation, a term ωx

ℓ , ℓ ∈ L, denotes the contribution to the global
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error of the first-order error introduced by the operation labeled ℓ. It expresses
both the rounding error committed at label ℓ, and its propagation due to further
computations on variable x. Errors of order higher than one, coming from non-
affine operations, are grouped in one term associated to special label hi. We let
L be the union of L and hi.

Let F be either the set of single or double precision floating-point numbers.
Let ↑◦: R → F be the function that returns the rounded value of a real number
r, with respect to the rounding mode ◦. The function ↓◦: R → F that returns
the roundoff error is then defined for all f ∈ R, by ↓◦ (f) = f− ↑◦ (f). The
result of an arithmetic operation ♦ℓi contains the combination of existing errors
on the operands, plus a new roundoff error term ↓◦ (fx♦fy)εℓi

. For addition and
subtraction, the existing errors are added or subtracted componentwise, and a
new error ↓◦ (fx + fy) is associated to control point ℓi :

x +ℓi y =↑◦ (fx + fy) +
⊕

ℓ∈L

(ωx
ℓ + ω

y
ℓ )+ ↓◦ (fx + fy) .

The multiplication introduces higher order errors, we write :

x ×ℓi y =↑◦ (fxfy) +
⊕

ℓ∈L

(fxω
y
ℓ + fyωx

ℓ ) +
∑

(ℓ1,ℓ2)∈L2

ωx
ℓ1ω

y
ℓ2

+ ↓◦ (fxfy) .

We refer the reader to [10, 19] for more details on this domain.

Unstable tests Our approach is that of abstract interpretation [7], and all
control flows due to sets of possible inputs are considered. But there is one
specific difficulty due to floating-point computations. Indeed, in tests, the branch
followed by the floating-point and the corresponding real value of a variable can
be different, we then call them unstable tests (as in [26]). Consider for example
the following portion of code, supposing input x is in interval [1,3] with an error
equal to 1.0e-5 :

if (x <= 2) x = x+2;

Then, for x equal to 2 for example, the floating-point result after this test is
4, whereas the result of this program if it were executed on the real semantics
would be 2.00001. But handling this divergence in control flow in the general
case would be complicated and costly, and quickly very imprecise. For example
here, if we consider the different control flows, we find the floating-point value of
x in [2, 4], with an error in interval [1.0e−5, 2]. Without any additional relation
between values and errors, this result is highly imprecise.

We thus made the choice in the Fluctuat analyzer to make the assumption
that the real and floating-point flows take the same branches. The result given
here at the end of the program would thus be x = [2, 4] with an error equal to
1.0e−5 (if we neglect the additional rounding error due to the addition).

However, when the analyzer detects, as is the case here, that the control flows
may be different, it issues a warning.
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Relational domain A natural abstraction of the coefficients in expression (1),
is obtained using intervals. The machine number fx is abstracted by an interval
of floating-point numbers, each bound rounded to the nearest value in the type of
variable x. The error terms ωx

i ∈ R are abstracted by intervals of higher-precision
numbers, with outward rounding. However, results with this abstraction suffer
from the over-estimation problem of interval methods. If the arguments of an
operation are correlated, the interval computed with interval arithmetic may be
significantly wider than the actual range of the result.

We thus proposed and implemented a relational domain, relying on affine
arithmetic [5, 22] for the computation of the floating-point value fx. Affine arith-
metic uses affine correlation between real variables, and allows us to get much
tighter results than classical interval arithmetic (the concretisation forms zono-
topes : center-symmetric bounded convex polytopes). It relies on a representation
of a quantity x by an affine form, which is a polynomial of degree one in a set
of noise terms εi :

x̂ = αx
0 + αx

1ε1 + . . . + αx
nεn, with εi ∈ [−1, 1] and αx

i ∈ R. (2)

Each noise symbol εi stands for an independent component of the total uncer-
tainty on the quantity x, its value is unknown but bounded in [-1,1]; the corre-
sponding coefficient αx

i is a known real value, which gives the magnitude of that
component. The sharing of noise symbols between variables expresses implicit
dependencies. The full semantics is described in [14], and linearizes floating-
point expressions dynamically (and not statically as in [20]). The semantics is
memory-efficient: it needs only a small factor of the size that an (economic) in-
terval analysis would take. No a priori decided packing of variables [2] is needed
since the representation of relations is implicit [14]. Nevertheless, we use a sparse
representation of the global environment, akin to the one described in Section 5
of [1].

The coefficients αx
i have no meaning relevant to our analysis, the decomposi-

tion is a mean for a more accurate computation. This is different from expression
(1), where coefficient ωx

ℓ represent the contribution of control point ℓ to the to-
tal rounding error. However, they can be used for an analysis of the sensibility
of a program to an input : when an input is taken in a small interval, a new
noise symbol εi is created. The evolution of the corresponding αx

i in further
computations indicates how this initial uncertainty is amplified or reduced [23].

These affine forms allow us to represent results of real arithmetic. The anal-
ysis must be adapted to the case of floating-point arithmetic, where symbolic
relations true in real arithmetic do no longer hold exactly. We thus decompose
the floating-point value fx of a variable x resulting from a trace of operations,
in the real value of this trace of operations rx, plus the sum of errors δx accu-
mulated along the computation, fx = rx + δx. The real part is computed using
affine arithmetic, and the error is computed using three intervals that respec-
tively bound the error on the lower and upper bounds of the set of real values
rx, and the maximum error on all this set. Without going into too much detail,
we can say that these errors on bounds allow us to improve the estimates for the
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floating-point bounds, compared to using the maximum error. But the maximum
error is still needed at each step to estimate the results of further computations.

This domain for the values of variables, is of course more expensive than
interval arithmetic, but comparable to the domain used for the errors. And it
allows us to accurately analyze non trivial numerical computations, as we will
show in Section 3. We also plan to introduce a relational computation for errors,
along the lines of [15]. First ideas on these relational semantics were proposed
in [13], [21]. The relational semantics for the value fx is described in detail in
[14], with in particular the lattice operations such as join and meet.

2.2 Integer variables

We implemented modular integer arithmetic semantics, and a domain consisting
of value (coded by affine forms) plus sum of errors is used as for floating-point
variables. For example, when adding one to the greatest integer that can be
represented in the int type, say INT MAX, the value of the result is the smallest
integer represented by an int, say INT MIN, and an error of INT MAX-INT MIN+1

is associated to this variable. Conversions between integers and floating-points
are supported, and the errors are propagated.

Bitwise operations Some attention must be paid to the propagation of errors
on operands in order to avoid losing too much precision. Indeed, the behavior of
the and, or and xor operators is non affine with respect to the operands. In the
general case, the errors on the operands x and y are propagated as follows:

– we compute the result of ⋄ on the sets of floating-point values, fz = fx ⋄ fy,
– we compute the result of the same operation on the interval bounds for the

real values, rz = rx ⋄ ry, with rx = fx +
∑

l ω
x
l and ry = fy +

∑
l ω

y
l ,

– then the propagated error on z is rz − fz, and it is associated to the label
of the current operation.

There are two consequences. First, we lose the decomposition of errors on opera-
tions executed before bitwise operations. Second, the larger the intervals fx and
fy, the more over-approximated the propagated errors are. We thus propose an
option of the analyzer to locally subdivide one of these intervals in the propa-
gation of errors : the cost of a bitwise operation is approximately multiplied by
the number of subdivisions, but this cost is in general negligible compared to
the full analysis, and the results can be greatly improved.

Error terms are agglomerated for the same reason for the division and modulo
operators on integers. The error is also computed as the difference between the
floating-point interval result and the real interval result : local subdivisions can
again greatly improve the estimation of errors.

Conversions The semantics for the conversion between floating-point numbers,
and with integers differ by the meaning we give to each :
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– in the conversion from double precision to single precision floating-point
numbers, we consider the difference between the initial double precision value
and the result of the conversion, as an error on the result.

– in the conversion from a floating-point number to an integer, we consider
that the truncation is wanted by the user, and is thus not an error. A new
error can be introduced by such a conversion only when the floating-point
number exceeds the capacity of the integer type. However, all errors are
grouped in one integer term corresponding to the label of the conversion.

– in the conversion from an integer to a floating-point number, most of the
time no precision is lost, and the sum value plus errors is transmitted as is.
However, this is not always the case, and an error still has to be added in some
cases : for example a 32 bits integer with all bits equal to 1 cannot exactly
represented by a single precision floating-point number, which mantissa is
represented on 23 bits.

We encountered some other cast operations that we included in the set of
instructions understood by the analyzer, such as the ones used to decode and
encode IEEE 754 format, directly by bitwise operations. Take for instance the
following piece of code (assuming 64 bits little endian encoding for double):

double Var = ...; signed int *PtrVar = (signed int *) (&Var);

int Exp = (signed int) ((PtrVar[0] & 0x7FF00000) >> 20) - 1023;

We cast variable Var into an array of 32 bits types. Then we extract the first
32 bits of the 64 bits word. The rest of the manipulation of the program above,
masks the bits of the mantissa, and shifts the value, to get in Exp the binary
exponent in IEEE754 format of the value stored in Var.

In the interpretation of this case by FLUCTUAT, all error terms are agglom-
erated in one corresponding to the label of the cast, and local subdivisions of
the values can be applied to improve the bounds for the errors, as for bitwise
operations.

2.3 Aliases and arrays

Our alias and array analysis is based on a simple points-to analysis, like the
ones of [18], or location-based alias analyses. An abstract element is a graph of
locations, where arcs represent the points-to relations, with a label (which we
call a selector) indicating which dereferencing operation can be used. Arrays are
interpreted in two different ways, as already suggested by some of the authors
in [8]: all entries are considered to be separate variables (called “expanded” in
[1]) or the same one (for which the union of all possible values is taken - called
“smash” in [1]). These abstractions have proven sufficient typically for SCADE
generated C programs.

2.4 Iteration strategy

Loops The difficulty in loops is to get a good over-approximation of the least
fixpoint without too many iterations of the analyzer. For that, we had to design
adapted iteration strategies :
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– in the case of nested loops, a depth first strategy was chosen : at each iteration
of the outer loop, the fixpoint of the inner loop is computed,

– a loop is unfolded a number of times (similar to the “semantic loop unrolling”
of [1]), before starting Kleene iterations (unions over iterations),

– some particularities of our domain require special care in loops : for example,
noise symbols are potentially introduced at most operations, and there are
new noise symbols for each iteration of a loop. But we can choose to reduce
the level of correlation we want to keep, and for example keep correlations
only between the last n iterations of a loop, where n is a parameter of the
analyzer. Also, we can choose to agglomerate or not some noise symbols
introduced in a loop when getting out of it. This allows us to reduce the cost
of the analysis while keeping accurate results.

– acceleration techniques (widenings) adapted to our domain had to be de-
signed. In particular, widenings are not always performed at the same time
on integer or floating-point variables, and on values or error terms. Also, we
have designed a widening specially adapted to floating-point numbers, by
gradually reducing the precision of the numbers used to bound the terms :
this accelerates the convergence of Kleene iteration compared to iteration
with fixed precision, and allows us to get very accurate results. This should
be thought of as an improved method than the “staged widening with thresh-
olds” of [1], in the sense that thresholds are dynamically chosen along the
iterations, depending on the current values of the iterates. After a number
of these iterations, a standard widening is used.

To illustrate this last point (progressive widening by reduction of the precision),
let us consider the fixpoint computation of

while () x = 0.1*x;

with no unrolling of the loop, starting from x0 ∈ [0, 1]. With our simple (non
relational) semantics, we have, with ulp(1) denoting the machine rounding error
around 1,

x1 = [0, 1] + δε2, δ = 0.1[−ulp(1), ulp(1)]

x2 = [0, 1] + (0.1δ + δ)ε2

xn = [0, 1] + (
n∑

k=0

0.1k)δε2.

If real numbers are used to compute the error term, without any widening the
computation does not terminate even though the error term remains finite. Now
if floating point numbers are used to bound the error term, the convergence
depends on the number of bits used to represent the mantissa. For simplicity’s
sake, let us consider δ = [−1, 1], and radix 10 numbers. With 3 significant digits,
a fixpoint is got in 4 iterations :

ω1 = δ = [−1, 1]

ω2 = ↑∞ ([−0.1, 0.1] + [−1, 1]) = [−1.1, 1.1]
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ω3 = ↑∞ ([−0.11, 0.11] + [−1, 1]) = [−1.11, 1.11]

ω4 = ↑∞ ([−0.111, 0.111] + [−1, 1]) = ↑∞ [−1.111, 1.111] = [−1.12, 1.12]

ω5 = ↑∞ ([−0.112, 0.112] + [−1, 1]) = ↑∞ [−1.112, 1.112] = [−1.12, 1.12]

More generally, we can show that with N significant digits, a fixpoint is got in
N+1 iterates. Thus reducing the precision of numbers accelerates the convergence
towards a (larger) fixpoint.

Of course, this is a toy example, in practice the fixpoint is computed by
unrolling the loop a certain number of times before beginning the unions, which
here solves the problem. But we are confronted with this kind of computations in
the general case. And in more complicated examples, when the optimal unrolling
was not chosen, this widening allows us to still compute an interesting fixpoint.

Interprocedural analysis In critical embedded systems, recursion is in general
prohibited. Hence we chose to use a very simple interprocedural domain, with
static partitioning, based on [17].

2.5 Assertions

A number of assertions can be added to the analyzed C source code, to specify
the behavior of some variables of the program. For a single precision floating-
point variable x, the assertion :

x = __BUILTIN_DAED_FBETWEEN(a,b);

indicates that x can take any floating-point value in the interval [a, b]. The same
assertions exist to define the range of double precision or integer variables.

One can also specify an initial error together with the range of values for a
variable. For example,

x = __BUILTIN_DAED_FLOAT_WITH_ERROR(a,b,c,d);

specifies that variable x of type float takes its value in the interval [a, b], and
that is has an initial error in the interval [c, d].

In some cases, bounds on the values are not sufficient to describe accurately
the behavior of a system : we thus added an assertion that allows us to bound,
in a loop indexed by an integer variable i, the variation between two successive
values of an input variable x :

for (i=i0 ; i<N ; i++)

x = __BUILTIN_DAED_FGRADIENT(x0min,x0max,gmin(i),gmax(i),xmin,xmax,i,i0);

In this assertion, i0 is the value of variable i at first iteration. The value of x

at first iteration is in the interval [x0min,x0max], the difference between two
successive iterates is in the interval [gmin(i),gmax(i)], which bounds may de-
pend on the iterate, and the value of x is always bounded by [xmin,xmax].
Thus x(i0) =[x0min,x0max], and for all i ∈ {i0, . . . , N}, we have x(i) = (x(i −
1)+[gmin(i),gmax(i)])

⋂
[xmin,xmax]. Our relational domain (subsection 2.1) is

specially well adapted to dealing with these relations between iterates in a loop.
An example of the use of this assertion is given in the worst-case scenario part
of example presented in subsection 3.2.
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Subdivisions of inputs In the example SqrtR of subsection 3.1, even with the
relational domain, non-linearities of the studied iterative scheme produce too
much imprecision, and the solver of the abstract equations does not prove the
termination of the analyzed algorithm. A solution to this is to restrict the range
of values of the inputs, for which we want to analyze the program, so that we are
close enough to linear behaviors. This is done in FLUCTUAT by subdividing the
domain of some inputs whose ranges are already bounded by assertions of the
type BUILTIN DAED FBETWEEN. The user can select one or two such variables
to be subdivided by pointing in the program the corresponding assertions.

FLUCTUAT analyzes independently the program as many times as we sub-
divide some of the inputs. Suppose we subdivide n times an input variable x

which has range, defined by an assertion, in [a, b]: the analyzer will analyze the
program with x in [a, a+ b−a

n ], then in [a+ b−a
n , a+2 b−a

n ], . . ., [a+(n−1) b−a
n , b].

Hence it does not need more memory than needed for one analysis, but takes
about n times the duration of one analysis, where n is the number of subdivi-
sions. In the case when we subdivide two such assertions, the subdivisions are
completely independent, hence leading to a quadratic factor time increase of the
analysis. We chose not to offer the user the possibility to subdivide the values of
more than two input variables because it would lead to too slow analyses. This
would become reasonable only for parallel versions of FLUCTUAT.

This kind of subdivision cannot be used for an assertion in a loop, because it
would be equivalent to choosing at all iterates of the loop the values of x to be
in the same sub-interval. Indeed, subdividing independently all iterates would
be far too costly, and maybe not either what is really intended by the user. We
thus proposed the special assertion BUILTIN DAED FGRADIENT for these cases
of reactive programs, where inputs are acquired cyclically over time.

3 Experiments on control systems

3.1 Hispano-Suiza

The Full Authority Digital Engine Control, better known as a FADEC, is one
of the largest electronic control units on an aircraft. The FADEC continuously
processes and analyzes key engine parameters (up to 70 times a second), to
make sure the engine operates at maximum potential. It manages the startup
phase (which takes only about 40 seconds on the latest models), and then the
entire operating envelope, from idle to full throttle. The following test cases
for FLUCTUAT are extracted from pieces of code which have been written
during the development of reusable libraries, designed for the FADEC. They are
representative of the code of the FADEC, and some of them present some hard
numerical difficulties for static analyzers.

Experiments on elementary symbols We examined several elementary sym-
bols used in applications at Hispano-Suiza. Elementary symbols are manually
developed and coded independently from SCADE which is used as a design tool.
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Among these symbols was the following code (slightly changed for convenience),
which is intended to return Output equal to the square root of Input by a
Householder method. This involves the iteration, until some residue is less than
a small value EPS=e−6, of a fifth-order polynomial. The number of iterates for

the algorithm to converge is thus not given by the syntax of the program and

must be the result of an accurate analysis.

void SqrtR (double Input, double *Output)

{ double xn, xnp1, residu, lsup, linf;

int i, cond;

Input = __BUILTIN_DAED_DOUBLE_WITH_ERROR(0.1,20.0,0,0);

if (Input <= 1.0) xn = 1.0; else xn = 1.0/Input;

xnp1 = xn; residu = 2.0*_EPS*(xn+xnp1);

lsup = _EPS * (xn+xnp1); linf = -lsup;

cond = ((residu > lsup) || (residu < linf)) ;

i = 0;

while (cond)

{ xnp1 = xn * (15S8 + Input*xn*xn*(-5S4+3S8*Input*xn*xn));

residu = 2.0*(xnp1-xn); xn = xnp1;

lsup = _EPS * (xn+xnp1); linf = -lsup;

cond = ((residu > lsup) || (residu < linf)) ; i++; }

*Output = 1.0 / xnp1; }

When Input is in [0.1, 20] as above, FLUCTUAT with 100000 subdivisions
converges to a finite and precise estimate of the floating-point value of Output
and of the number of iterates of the studied algorithm. Indeed, it finds Output to
be in [3.16e−1, 4.48] with global error in [−2.56e−13, 2.56e−13]. And the number
of iterates in the main loop i is found to be within 1 and 6. This number
of iterates is an exact result, as can be confirmed by using FLUCTUAT in
the symbolic execution mode for Input equal to 1 and to 20 respectively (or
alternatively, by checking the execution of the real binary file). Note that no
other static analyzer we know of is able to find even a good approximation of
the floating-point enclosure of Output.

When perturbing the input by a small error, by the assertion

__BUILTIN_DAED_FLOAT_WITH_ERROR(0.1,20.0,-0.00000001,0.00000001)

and still subdividing 100000 times, we find in 603 seconds and 4Mb of memory
on a 1 Ghz laptop PC, the same floating-point enclosure, and a global error in
[−3.06e−6, 3.06e−6] which is mainly due to the initial error of the order of e−8.
This shows the good behavior of the algorithm. Even though the results on the
global error seem satisfying, we hope to be able to improve them a lot with a
new relational domain on the error terms, as sketched in [13].

In fact, FLUCTUAT does not need to subdivide equally for all ranges of the
input. For instance, with Input restricted to [16,20], it needs only 133 subdivi-
sions to converge. Whereas, with Input restricted to [0.1,1], it needs about 4500
subdivisions. Hence a dynamic subdivision mode is planned for a future version.
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These results indicate a good behavior of the algorithm for Input in the
range [0.1, 20]. However, this function was designed to be used for Input in
[1e−50, 1e50]. Symbolic execution shows that the algorithm is much less satisfying
for this extended range, and may need up to 95 iterations, which is too large for
practical use, because of timing constraints. Since then, the algorithm for the
square root has been changed.

Representative code The following test case for FLUCTUAT is extracted
from pieces of SCADE code which have been generated during the development
of a military engine controller. The control law named asservxn2 is aimed to
control the speed of the Low-Pressure Compressor called a fan. Therefore, the
control loop should be stable inside the whole flight domain, including the fuel
flow wf32cb and the motor regime xn2.

Value (float) Global error

Fig. 1. Evolution of the fuel flow wf32cb for a given target motor regime

The code is 2358 lines long in C (44 functions, among which filters, inter-
polators, integrators etc.), uses complex nested compound structures containing
arrays and pointers, and has 167 integer variables and 269 floating-point vari-
ables known at the end of the main function (and many more local variables).

We have first used the static analyzer as an abstract interpreter (hence de-
livering information about precision loss) on the test scenarios that have been
used to certify the program. As an example, the first test scenario consists in
showing that the rotation regime xn2 is well controlled by the command on
the flow wf32cb. FLUCTUAT has been run in symbolic execution mode (i.e.
with the semantics described in Section 2.1, but on one control flow only) on
the sequence of 2500 consecutive inputs, on a 50 seconds duration. The sce-
nario corresponds to a target low pressure regime shown in Figure 2 for the first
650 inputs. The control program computes the fuel flow necessary to reach this
regime, see Figure 1. As shown in the excerpt of the test scenario, the motor
regime is well controlled by wf32cb: when wf32cb increases, xn2 increases as
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well until it reaches its target value xn2cs, in which case wf32cb stabilizes. At
iteration 500, the target regime is increased and the control begins. The error in
the command wf32cb is shown to be always bounded by 10−3 in absolute value,
which indicates a good (relative) precision of the control algorithm.

Other similar tests have been carried out. We are in the process of studying
the code for more general inputs (i.e. infinite sets of inputs, corresponding to
ranges of target motor regimes), in a similar manner as done in next section
(using gradient constraints on the inputs). It is to be noted though that the
control mechanism uses an integrator, which is known to be hard to analyze, see
for instance [12] for more explanations.

xn2 xn2cs

Fig. 2. Evolution of the motor regime xn2, and of its target xn2cs

3.2 Institut de Radioprotection et Sûreté Nucléaire (IRSN)

Computer systems are increasingly used for safety purposes in research and in-
dustrial nuclear reactors. For example, on the latest French power reactor series,
representing 24 units, software is used to perform safety functions including
critical ones like protection. The Protection System does not control the pro-
cess but monitors it, by continuously acquiring parameters like water pressure,
temperatures in different pipes, neutron flux in different locations, positions of
control rods, and so on. From these inputs, the system computes tens of values
using classical data processing techniques: filters, arithmetic and logic opera-
tions, non-linear functions, thresholds and so on. The system then checks that
these computed values remain within the authorized domain. If not, it has to
automatically shutdown the reactor within half a second, and to trigger safety
systems like water injection or spraying, depending on the nature of the incident
or accident.

The following test case (mean-square filter), was taken from a representa-
tive piece of code that IRSN has to give expertise on, for the French nuclear
certification body.
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Several key process parameters are sampled every 50 milliseconds by the
protection system, which stops the reactor if a given threshold is exceeded. Un-
fortunately, the readings are affected by noise, which could delay a necessary
stop or, on the contrary, cause a spurious one. Simply reducing the actual power
of the plant below the threshold to provide a noise margin is not adequate for
obvious economic reasons. On the other hand a spurious stop is also undesirable
because it induces strong promptings to the mechanical structures and prevents
the plant to produce electricity for several hours. Thus, a least-square linear re-
gression filter is applied to improve the estimate of the most sensitive parameter.
It is important however to make sure that this filtering step does not add too
much numerical error due to rounding, we thus used FLUCTUAT to bound the
error committed in it, and study the propagation of existing errors.

The filter is adaptative, that means its depth Dk can vary at each cycle k,
according to a formula that depends on parameters which are known exactly,
but can take different values, depending on the signal value. The input sample
(ik)k is in an interval [1e2, 1.5e8], and is transformed to give the input of the
filter, by Yk = log(aik + b). In this transformation, only ranges are known for
parameters a and b, with nominal values.

Worst-case scenario. We first consider a reduced version of the filter, using the
fact that the filter can be written in such a way that outputs are independent,
except that the depth of the filter depends on the previous values. It can be
shown that, with the parameters used, the depth of the filter is always bounded.
We thus study a worst-case scenario, that allows us to get bounds for the outputs
and errors on the outputs that hold true for any step of the filter. For that, we
take a bounded filter depth, and the inputs in the maximum possible range, that
is Yk ∈ [8.42, 22.4].
- We first suppose all inputs are independent and can take any value in this
range at any step, by

for (int k=1 ; k<=N ; k++) {

Yk = __BUILTIN_DAED_FBETWEEN(8.42,22.4); ... }

Then we get with the relational domain, the following enclosures of the filtered
value O, and of a value S related to the variation speed :

O = [3.912, 26.907] + [−1.91e−4, 1.91e−4]ε

S = [−0.350, 0.350] + [−5.37e−6, 5.37e−6]ε

In these two expressions, the first interval bounds the floating-point value, the
second one bounds the rounding error, the filter being implemented using single
precision floating-point numbers.
- In order to have a more representative model of the inputs, we then used the
assertion on the gradient to limit the variation between two successive inputs : we
still take the range of inputs equal to [8.42, 22.4], but also bound the difference
between two successive inputs by [0, 0.01], by
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for (int k=1 ; k<=N ; k++) {

Yk = __BUILTIN_DAED_FGRADIENT(8.42,22.4,0,0.01,8.42,22.4,k,1);...}

Then we get, with the relational domain, much tighter enclosures :

O = [8.33, 22.5] + [−1.91e−4, 1.91e−4]ε

S = [−1.18e−5, 0.01] + [−5.34e−6, 5.34e−6]ε

The error is of the same order as previously, but now the bounds for the value of
the output are very close to the input bounds, and we get back the information
on the variation speed.

Complete filter. We now want to study more closely the behavior of the
output. We choose here a plausible scenario for the inputs, that is a sampling of
function i(x) defined by

x ≤ 0 : i(x) = 1.e2,

x > 0 and i(x) ≤ 1.5e8 : i(x) = i(0) ∗ 250∗x/60.

We take intervals for the coefficients of the transformation, and add a perturba-
tion to the input of the filter thus obtained (note that we could also have taken
small intervals around these inputs). We present in Figures 3 and 4, the results
got with FLUCTUAT, for the evolution over time of the bounds on the values
and errors on the input Yk of the filter, and of its output.

The error on the input is due partly to the logarithm computation, partly to
the addition of a perturbation depending on previous inputs. For the time being,
we have parameterized the error due to the logarithm computation, which is not
yet specified in the IEEE 754 norm.

The output is approximately in the same range as the input and looks indeed
smoothed. We represent in Figure 4 right, the evolution of the depth of the
filter, it must be noted that the range at a given time depends on the values
of the parameters, it does not have one fixed value. The error on the output is
overestimated (relational analysis for errors not implemented), but we can still
observe that the error is not too much amplified. We can also note that the
variation of the error on the output is related to the variation of the filter depth.

Finally, we can note that the magnitude of the maximum error on the output,
is of the same order as the magnitude on the output by the worst-case analysis.
This confirms the relevance of the worst-case analysis.

4 Conclusion and Future Work

We have shown in this paper how we designed a static analyzer for bounding the
imprecision error in numerical programs. This design relied on a careful study of
the semantics of the IEEE754 standard, of numerical convergence of the kind of
iterative schemes we encountered in control systems, and of specificities of the
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Yk ≤ 23.55 error on Yk ≤ 2.55e
−05

Fig. 3. Evolution of the filter input over time

filter output ≤ 23.02 error on output ≤ 1.8e
−04 depth of the filter

Fig. 4. Evolution of the filter output over time

programming of these systems (SCADE generated code in general). Some real
industrial examples were given, which were sufficiently simple to explain in a
few pages. The analyzer has already been used (on a low-end PC with 512Mb
of memory) for code of the order of 10 thousand lines of C code, and seems to
scale up well.

In the future, we plan to invest more on domains dealing precisely with
integrators, which make precision analysis hard to carry out, see [12] for example.
We also plan to experiment with relational domains for error computations as
briefly sketched in [13, 15]. We also would like to improve the precision of the
least fixed point computation of the abstract equations in our tool, using policy
iteration mechanisms, see [6, 9]. Last but not least, our abstract domain can be
adapted to under-approximations as well, see [16]. A combination of under- and
over-approximations will indeed allow us to assess the quality of the results, and
give some indications in some cases that the control system under analysis is
definitely not implemented in a sufficiently accurate way.
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