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Computing the smallest
fixed point of
nonexpansive mappings
arising in game theory
and static analysis of
programs

Assalé Adjé‡,∗ Stéphane Gaubert†, Eric Goubault‡

Abstract

The problem of computing the smallest fixed point of a monotone map arises classically in the study of
zero-sum repeated games. It also arises in static analysis of programs by abstract interpretation. In this
context, the discount rate may be negative. We characterize the minimality of a fixed point in terms
of the nonlinear spectral radius of a certain semi differential. We apply this characterization to design
a policy iteration algorithm, which applies to the case of finite state and action spaces. The algorithm
returns a locally minimal fixed point, which turns out to be globally minimal when the discount rate is
nonnegative.

Keywords: Game theory, policy iteration algorithm, negative discount, static analysis, nonex-

pansive mappings, semidifferentials.

1 Introduction
Zero-sum repeated games can be studied classically by means of dynamic program-
ming or Shapley operators. When the state space is finite, such an operator is a
map f from Rd to Rd, where d is the number of states. Typically, the operator f
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can be written as:
fi(x) = min

a∈Ai

max
b∈Bi,a

P a,bi x+ ra,bi

Here, Ai represents the set of actions of Player I (Minimizer) in state i, Bi,a rep-
resents the set of actions of Player II (Maximizer) in state i, when Player I has
just played a (the information of both players is perfect), ra,bi is an instantaneous
payment from Player I to Player II, and P a,bi = (P abij )j is a substochastic vector,
giving the transition probabilities to the next state, as a function of the current
state and of the actions of both players. The difference 1−

∑
j P

a,b
ij gives the prob-

ability that the game terminates as a function of the current state and actions.
The operator f will send Rd to Rd if for instance the instantaneous payments are
bounded. We may consider the game in which the total payment is the expectation
of the sum of the instantaneous payments of Player I to Player II, up to the time
at which the game terminates. This includes the discounted case, in which for all i,∑
j P

a,b
ij = α < 1, for some discount factor α. Then, the fixed point of f is unique,

and its ith-coordinate gives the value of the game when the initial state is i, see [1].
In more general situations [2], the value is known to be the largest (or dually, the
smallest) fixed point of certain Shapley operators, and it is of interest to compute
this value, a difficulty being that Shapley operators may have several fixed points.

The same problem appears in a totally different context. Static analysis of
programs by abstract interpretation [3] is a technique to compute automatically
invariants of programs, in order to prove them correct. The fixed point operators
arising in static analysis include the Shapley operators of stochastic games as special
cases. However, the “discount factor” may be larger than one, which is somehow
unfamiliar from the game theoretic point of view. In this context, the existence of
the smallest fixed point is guaranteed by Tarski-type fixed point arguments, and
this fixed point is generally obtained by a monotone iteration (also called Kleene
iteration) of the operator f . This method is often slow. Some accelerations based
on “widening” and “narrowing”[4] are commonly used, which may lead to a loss of
precision, since they only yield an upper bound of the minimal fixed point. Some
of the authors introduced alternative algorithms based on policy iteration instead
[5, 6], which are often faster and more accurate. However, the fixed point that is
returned is not always the smallest one.

The purpose of the present work is to refine these policy iteration algorithms
in order to reach the smallest fixed point of f even in degenerate situations. In
order to so, the present work is partly inspired by [7], where the uniqueness (rather
than the minimality) problem for the fixed point of a nonexpansive maps is studied
using semidifferentiability techniques.

2 Basic notions
In this paper, we will work in Rd equipped with the sup-norm ‖ · ‖. We consider the
natural partial order on Rd defined as: x ≤ y if for all i, 1 ≤ i ≤ d, xi ≤ yi where
xi indicates the ith coordinate of x. We write x < y when x ≤ y and there exists a
j such that xj < yj . We denote by R+ (resp. R−) the set of real nonnegative (resp.
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nonpositive) numbers. All vectors of Rd such that f(x) = x are called fixed points
of the map f . We denote by Fix(f) the set of fixed points of f .

When the action spaces are finite, dynamic programming operators are not
differentiable, and they may even have empty subdifferentials or superdifferentials.
However, their local behavior can be analyzed by means of a non-linear analogue of
the differential, the semidifferential. In order to define it, let us recall some basic
notions concerning cones.

Definition 1. A subset C of Rd is called a cone if for all λ ≥ 0 and for all x ∈ C,
λx ∈ C. A cone C is said to be pointed if C ∩ −C = {0}.

Definition 2. Let C be cone and g be a self-map on C. The function g is said to
be homogeneous (of degree one), if for all strictly positive real numbers λ, g(λx) =
λg(x).

Closed convex pointed cones are precisely what we need to define spectral
radii of homogeneous continuous self-maps g on C.

Definition 3 (Spectral radius). Let C be a closed convex pointed cone. Let g be
a homogeneous continuous self-map on C. We define the spectral radius ρC(g) to
be the nonnegative number:

ρC(g) = sup{λ ≥ 0 | ∃ x ∈ C\{0}, g(x) = λx}

A vector x ∈ C\{0} such that g(x) = λx is a non-linear eigenvector of g, and
λ is the associated non-linear eigenvalue. The existence of non-linear eigenvectors
is guaranteed by standard fixed point arguments [8].

We next recall the notion of semidifferential, see [9] for more background.

Definition 4 (Semidifferential). Let u ∈ Rd and f be a self-map on Rd. We say
that f is semidifferentiable at u if there exists a homogeneous continuous map g on
Rd and a neighborhood V of 0 such that for all h ∈ V:

f(u+ h) = f(u) + g(h) + o(‖h‖)

We call g the semidifferential of f at u and we note it f ′u.

If f is semidifferentiable at u, we have for all t > 0 and for h in a small enough
neighborhood of 0:

f(u+ h) = f(u) + tf ′u(h) + o(t‖h‖)
This implies

f ′u(h) = lim
t→0+

f(u+ th)− f(u)
t

and the semidifferential coincides with the directional derivative of f at u in direc-
tion h (on the positive side). The following result shows that semi-differentiability
requires the latter limit to be uniform in the direction h.
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Proposition 5 (see [9, Theorem 7.21]). Let f be a self-map on Rd. Let u be
in Rd. f ′u, the semidifferential of f at u exists if and only if for all vectors h, the
following limit exists:

lim
t→0+

h′→h

f(u+ th′)− f(u)
t

3 Main Results

Definition 6. Let u ∈ Fix(f). We say that u is a locally minimal fixed point if
there is a neighborhood V of u such that for all v ∈ V ∩ Fix(f), v ≤ u =⇒ v = u.

Now, for a semidifferentiable map f at u, we denote Fix|Rd
−

(f ′u) the set of the
negative fixed points of f ′u.

Theorem 7. Let u ∈ Fix(f). Consider the following statements:

1. u is a locally minimal fixed point.

2. Fix|Rd
−

(f ′u) = {0}.

3. ρRd
−

(f ′u) < 1.

Then 3 =⇒ 2 =⇒ 1.

Proof. Point 3 implies point 2 indeed. In order to show that 2 implies 1, assume
that u is not a locally minimal fixed point. Then, there exists a sequence hn of
non-zero vectors in Rd− tending to the zero vector such that u+ hn is a fixed point
of f . After replacing hn by a subsequence, we may assume that yn := ‖hn‖−1

hn
has a limit y. Then, ‖y‖ = 1 and y ∈ Rd−. Writing u+ hn = u+ ‖hn‖yn, and using
Prop. 5, we conclude that y = f ′u(y), showing that f ′u has a non-zero fixed point in
Rd−.

In the previous theorem, there are no restrictive conditions on the map, but
we only get a sufficient condition for the local minimality of a fixed point. We next
consider the special case of piecewise affine maps.

Definition 8. Let f be a map on Rd. We say that f is piecewise affine if for all
j ∈ {1, · · · , d} there exists finite sets Aj, {Ba}a∈Aj and a family {ga,b}(a,b)∈Aj×Ba

of affine maps such that
fj = min

a∈Aj

max
b∈Ba

ga,b

It is shown in [10] that the set of piecewise affine maps that we define is the
same as the set of functions f for which there exists a family of convex closed sets
with non empty interior which covers Rd and such that the restriction of f on each
element of this family is affine.
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Proposition 9. Let f be a piecewise affine self-map on Rd. Then f is semidiffer-
entiable at all u ∈ Rd. Moreover for all u ∈ Rd:

1. Let Āj = {a ∈ Aj | fj(u) = maxb∈Ba
ga,b(u)} and B̄a = {b̄ ∈ Ba | ga,b̄(u) =

maxb∈Ba
ga,b(u)}, then

(f ′u)j = min
a∈Āj

max
b∈B̄a

∇ga,b·

2. There is neighborhood V of u such that, for all u+ h ∈ V, f(u+ h) = f(u) +
f ′u(h).

The first assertion may be deduced by applying the rule of the “differentiation”
of a max see Exercise 10.27 of [9]. The following proof that we provide for the
convenience of the reader, is a variation of this argument.

Proof. We set, for all a ∈ Aj , ga(x) = maxb∈Ba ga,b(x). By definition of B̄a, there
exists a neighborhood Va of u such that: ga(u+ h) = maxb∈B̄a

ga,b(u+ h), for all h
such that u+ h ∈ Va. Since ga,b is affine, we have: ga,b(u+ h) = ga,b(u) +∇ga,b · h.
It follows that, for all b̄ ∈ B̄a,:

ga(u+ h) = ga,b̄(u) + max
b∈B̄a

∇ga,b · h (1)

By definition of Āj , there exists a neighborhood of u, V ⊂
⋂
a Va, such that: fj(u+

h) = mina∈Āj
ga(u + h) if u + h ∈ V. Applying (1), we get: fj(u + h) = fj(u) +

mina∈Āj
maxb∈B̄a

∇ga,b · h if u+ h ∈ V, which shows the two assertions.

Corollary 10. Let f be a piecewise affine map on Rd and let u ∈ Fix(f), then u
is a locally minimal fixed point if and only Fix|Rd

−
(f ′u) = {0}.

The second part of the previous proposition is the basis of a “descent” algo-
rithm given in the section 4. If a fixed point u is not locally minimal, then there
exists a strictly negative fixed point h for f ′u which may be thought of as a descent
direction such that u+ h is a fixed point of f .

In order to pass from local minimality to global minimality, we shall need the
following nonexpansiveness condition.

Definition 11. Let f be a map on Rd: f is nonexpansive (with respect to the
sup-norm) if for all x, y ∈ Rd, ‖f(x)− f(y)‖ ≤ ‖x− y‖.

Proposition 12. Let f be a nonexpansive map on Rd and let u ∈ Rd, then
Fix|Rd

−
(f ′u) = {0} if and only if ρRd

−
(f ′u) < 1.

Proof. It suffices to show that ρRd
−

(f ′u) ≤ 1. Firstly, f ′u is nonexpansive because
it is a pointwise limit of nonexpansive mappings. Assume by contradiction that
ρRd
−

(f ′u) > 1, so there exists µ > 1 and v ∈ Rd− such that f ′u(v) = µv, then
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‖f ′u(v)− f ′u(0)‖ = µ‖v‖ > ‖v − 0‖ which contradicts the nonexpansiveness of f ′u.

The main result of this paper is the following theorem, which will allow us to
check the global minimality of a fixed point.

Theorem 13. Let f be a monotone nonexpansive self-map on Rd. Let u be a fixed
point of f . Then, u is locally minimal if and only if it is the smallest fixed point of
f . If in addition f is piecewise affine, the following assertions are equivalent:

1. u is the smallest fixed point of f .

2. Fix|Rd
−

(f ′u) = {0}.

3. ρRd
−

(f ′u) < 1.

The proof of this theorem relies on the existence of a monotone and non-
expansive retract on the fixed point set of f . This idea was already used in [5].
The existence of nonexpansive retracts on the fixed point set is a classical topic
in the theory of nonexpansive mappings, see Nussbaum [8]. In the present finite
dimensional case, the result of the next lemma is an elementary one.

Lemma 14. Let f be a nonexpansive monotone map on Rd. Let u be in Fix(f).
We suppose Fix(f) 6= ∅. Then there is a nonlinear monotone and nonexpansive
map P such that P (Rd) = Fix(f) and Fix(P ) = Fix(f).

Proof. Following the idea of [11], we shall construct the map P as follow: P (x) =
limk→+∞ fk(y) where y = lim supl→+∞ f l(x). Since f is nonexpansive and u ∈
Fix(f), {fk(x)}k≥0 is bounded for all x ∈ Rd. We can now write, for all x ∈ Rd,
Q(x) = lim supk→+∞ fk(x). Moreover, given k ≥ 0, we have, for all m ≥ k,
supn≥k fn(x) ≥ fm(x) and since f is monotone, for all m ≥ k, f(supn≥k fn(x)) ≥
f(fm(x)) so, f(supn≥k fn(x)) ≥ supm≥k f(fm(x)), we conclude, by taking the
limit when k tends to +∞ and using the continuity of f , f(Q(x)) ≥ Q(x), so
{f l(Q(x)}k≥0 is an increasing sequence. Moreover, since f is nonexpansive, the
limit P (x) = liml→+∞ f l(Q(x)) is finite. Observe that the map P is monotone
and nonexpansive since it is the pointwise limit of monotone and nonexpansive
maps. Furthermore, f(P (x)) = f(lim f l(Q(x)) = lim f l+1Q(x) = P (x) so P (Rd) ⊂
Fix(f). Moreover, it is easy to see that P fixes every fixed point of f . It follows
that P is a projector.

Proof of Theorem 13. Suppose that u is a locally minimal fixed point but not
the smallest fixed point. Then, there is fixed point v such that inf(v, u) < u.
For all scalars t ≥ 0, define ωt := inf(v + t, u). Let us take P as in Lemma 14.
Since P is nonexpansive for the sup-norm, ‖P (v + t)− P (v)‖ ≤ t for all t ≥ 0 and
so P (v + t) ≤ P (v) + t. Using the monotonicity of P , we deduce that P (ωt) ≤
inf(P (v + t), P (u)) ≤ inf(P (v) + t, P (u)) = ωt. Let t0 = inf{t ≥ 0 | ωt = u}.
Then, for 0 < t < t0, P (ωt) is a fixed point of f , which is such that P (ωt) < u.
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Since P is continuous, P (ωt) tends to P (ωt0) = P (u) = u as t tends to t−0 , which
contradicts the local minimality of u. Hence, u is the smallest fixed point. Define
by 1′ the property that u is locally minimal fixed point. We just showed 1⇔ 1′, by
Theorem 7, we had 3 =⇒ 2 =⇒ 1′. By Corollary 10, 1′ =⇒ 2 and by Prop 12
we got 2 =⇒ 3.

4 A policy iteration algorithm to compute the
smallest fixed point

The previous results justify the following policy iteration algorithm which returns
the smallest fixed point of a nonexpansive monotone piecewise affine map. Assume
that f is a map from Rd to Rd, every coordinate of which is given by

fj(x) = inf
a∈Aj

fa(x) (2)

whereAj is finite and every fa is a supremum of monotone nonexpansive affine maps.
A strategy π is a map from {1, · · · , d} to A =

⋃
1≤j≤dAj such that π(j) ∈ Aj . We

define fπ = (fπ(1), · · · , fπ(j), · · · , fπ(d)). The algorithm, needs two oracles. Oracle
1 returns the smallest fixed point in Rd of a map fπ. Oracle 2 checks whether the
restriction of f ′u over the convex cone Rd− has a spectral radius equal to 1, and if
this is the case, returns a vector h ∈ Rd−\{0} such that f ′u(h) = h. We discuss below
the implementation of these oracles for subclasses of maps.

Algorithm 4.1
INPUT: f in the form (2). OUTPUT: The smallest fixed point of f in Rd.

INIT: Select a strategy π0, k = 0.
VALUE DETERMINATION (Dk): Call Oracle 1 to compute the smallest fixed
point uk of fπ

k

.
POLICY IMPROVEMENT (I1k): If f(uk) < uk define πk+1 such that f(uk) =
fπ

k+1
(uk) and go to Step (Dk+1).

POLICY IMPROVEMENT (I2k): If f(uk) = uk, call Oracle 2 to compute
αk := ρ(f ′uk). If αk < 1, returns uk, which is the smallest fixed point. If αk = 1, take
h ∈ Rd−\{0} such that f ′uk(h) = h. Define πk+1(j) to be any action a which attains
the minimum in (f ′uk)j(h) = mina∈Ãj

(f ′a)uk(h) where Āj = {a | fa(uk) = f(uk)}.
Then go to (Dk+1).

To show that the algorithm terminates, it suffices to check that the sequence
u0, u1, · · · is strictly decreasing, because the corresponding policies must be distinct
and the number of policies is finite. If an improvement of type I1

k arises, then, the
proof of the Theorem 3 from [6] shows that uk+1 < uk. If an improvement of type
I2
k arises, then by Prop 10 assertion 2, fπ

k+1
(uk + th) = uk + th for t > 0 small

enough. It follows that uk+1 ≤ uk + th < uk.
The following proposition identifies a situation where Oracle 1 can be imple-

mented by solving a linear programming problem.
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Proposition 15. Let g be a monotone nonexpansive map that is the supremum of
finitely many affine maps. Assume, furthermore, that g has a smallest fixed point
in Rd. Then this fixed point is the unique optimal solution of the linear program:
min{

∑
1≤i≤d xi | x ∈ Rd, g(x) ≤ x}.

Proof. Let x̄ denote the smallest fixed point. The vector x̄ is clearly feasible.
If x is an another feasible point, consider y = limk g

k(x). Since g is monotone,
nonexpansive and has a fixed point, gk(x) is a bounded decreasing sequence so
y ≤ x and y is a finite fixed point of g so y ≥ x̄. We get

∑
i x̄i ≤

∑
i yi ≤

∑
i xi.

Since this holds for all feasible x, it follows that x̄ is an optimal solution. If x is an
arbitrary optimal solution, we must have

∑
i x̄i =

∑
i xi and we deduce from y ≤ x

and y ≥ x̄ that x̄ ≤ x. It follows that x̄ = x.

The implementation of Oracle 2 raises the issue of computing the spectral
radius. Let g be a monotone, homogeneous and continuous self-map of Rd−. It is
known that:

ρRd
−

(g) = inf
x∈int(Rd

−)
sup

1≤i≤d

gi(x)
xi

(3)

ρRd
−

(g) = sup
x∈Rd

−

lim sup
k→+∞

‖gk(x)‖
1
k (4)

The first equality, which is a generalization of the Collatz-Wielandt property in
Perron-Frobenius theory, follows from a result of Nussbaum [12] Theorem 3.1. The
second characterization is shown by Mallet-Paret and Nussbaum in [13] under more
general conditions. We deduce, for any vector x ∈ int(Rd−):

ρRd
−

(g) ≤
(

sup
1≤i≤d

gki (x)
xi

) 1
k

. (5)

Moreover, the latter upper bound converges to ρRd
−

(g) as k tends to infinity. This
yields an obvious method to check whether ρRd

−
(g) < 1, which consists in computing

the upper bound in (5) for successive values of k as long as the upper bound is not
smaller than 1. This algorithm will not stop when ρRd

−
(g) = 1. However, we describe

a simple situation where this idea leads to a terminating algorithm.

Definition 16. We call a homogeneous min-max function of a vector h ∈ Rd a
term in the grammar: X 7→ min(X,X),max(X,X), h1, · · · , hn, 0.

For instance, the term min(h1,max(h2, h3, 0)) is produced by this grammar.
More generally, we shall say that a map from Rd to Rd is a homogeneous min-max
map if its coordinates are the form of Def 16. This definition is inspired by the
min-max functions considered by Gunawardena [14] and Olsder [15]. The terms of
this form comprise the semidifferentials of the min-max map considered there. For
simple classes of programs, like the one we shall consider in the next section, the
semidifferential at any fixed point turns out to be a homogeneous min-max map. In
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this case, the spectral radius can be computed efficiently by using to the following
integrity argument: g(Zd) ⊂ Zd.

Proposition 17. Let g be a monotone homogeneous min-max nonexpansive map
on Rd, then ρRd

−
(g) ∈ {0, 1}. Moreover ρRd

−
(g) = 0 iff limk→+∞ gk(−e) = 0, where

e is the vector all the entries of which are equal to 1. The latter limit is reached in
at most d steps.

Proof. Since g is nonexpansive and monotone g(−e) ≥ −e. We deduce that
{gk(−e)}k≥0 is a nondecreasing sequence bounded from above by 0. Moreover,
g preserves the set of integral vectors. So this sequence converges in at most d steps
to b ∈ Zd−. Let us suppose that b = 0. For all h ∈ Rd−, there exists t ≥ 0 such that,
0 ≥ h ≥ t(−e), since g is homogeneous and monotone, 0 ≥ gk(h) ≥ tgk(−e) = 0
for all k ≥ d which implies that ρRd

−
(g) = 0. If b < 0 we have g(b) = b 6= 0, and so

ρRd
−
≥ 1, and since g is nonexpansive, we also have ρRd

−
(g) ≤ 1.

5 Example
We next illustrate our results on an example from static analysis. We take a simple
but interesting program with nested loops (Figure 1). From this program, we create
semantic equations on the lattice of intervals [3] (Figure 2) that describe the outer
approximations of the sets of values that program variables can take, for all possible
executions. For instance, at control point 4, the value of variable y can come either
from point 3 or point 5 (hence the union operator), as long as the condition y ≥ 5
is satisfied (hence the intersection operator). An interval I is written as [−i−, i+]
in order to get fixed point equations of monotone maps in ii and i+. The equations
we derive on bounds are monotone piecewise affine maps, to which we can apply
our methods.

int x,int y,
x=[0,2];y=[10,15] //1
while (x<=y) { //2
x=x+1; //3
while (5<=y) { //4
y=y-1; //5

} //6
} //7

Figure 1. A simple C program

(x1, y1) = ([0, 2], [10, 15])
x2 = (x1 ∪ x6) ∩ [−∞, (y1 ∪ y6)+]
y2 = (y1 ∪ y6) ∩ [(x1 ∪ x6)−,+∞]

(x3, y3) = (x2 + [1, 1], y2)
(x4, y4) = (x3, (y3 ∪ y5) ∩ [5,+∞])
(x5, y5) = (x4, y4 + [−1,−1])
(x6, y6) = (x5, (y3 ∪ y5) ∩ [−∞, 4])

x7 = (x1 ∪ x6) ∩ [(y1 ∪ y6)− + 1,+∞]
y7 = (y1 ∪ y6) ∩ [−∞, (x1 ∪ x6)+ − 1]

Figure 2. Its abstract
semantic equations in intervals
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The monotone nonexpansive piecewise affine map f for the bounds of these
intervals is:

f

(
x
y

)
= f



x−2
x+

2

x−7
x+

7

y−2
y+

2

y−4
y+

4

y−6
y+

6

y−7
y+

7



=



0 ∨ (x−2 − 1)
2 ∨ (x+

2 + 1) ∧ 15 ∨ y+
6

0 ∨ (x−2 − 1) ∧ (−10 ∨ y−6 )− 1
0 ∨ (x+

2 + 1)
0 ∨ (x−2 − 1) ∧ −10 ∨ y−6

15 ∨ y+
6

y−2 ∨ (y−4 + 1) ∧ −5
y+

2 ∨ y+
4 − 1

y−2 ∨ y−4 + 1
y+

2 ∨ (y+
4 − 1) ∧ 4

−10 ∨ y−6
15 ∨ y+

6 ∧ (2 ∨ (x+
2 + 1))− 1


In the equations for the intervals x2, y2, y4, y6, x7 and y7, an intersection ap-

pears, which gives a min (∧) in the corresponding coordinate of f . Choosing a
policy is the same as replacing every minimum of terms by one of the terms, which
yields a simpler “minimum-free” non-linear map, which can be interpreted as the
dynamic programming operator of a one-player problem. The underlined terms
represent the initial policy. We next illustrate the Algorithm 4. From this policy,
we compute the smallest fixed point and we check whether this fixed point is a fixed
point of f , see [5] for details.

We find (x̄, ȳ) = (0, 15,−1, 16, 0, 15,−5, 15, 0, 4, 0, 15)ᵀ: it is a fixed point of f ,
and so policy iteration terminates in one step. Now, we use our method to determine
if (x̄, ȳ) is the smallest fixed point. First, we calculate the semidifferential at (x̄, ȳ)
in the direction (δx, δy), using the first point of Prop 9:

f ′(x̄,ȳ) (δx̄, δȳ)ᵀ =
(
0, 0, δȳ−6 , δx̄

+
2 , 0 ∧ δȳ

−
6 , 0, 0, δȳ

+
2 , δȳ

−
2 , 0, δȳ

−
6 , 0 ∧ δx̄

+
2

)ᵀ
By using Prop 17, computing in three steps a fixed point for f ′(x̄,ȳ) that we call
h = (0, 0,−1, 0,−1, 0, 0, 0,−1, 0,−1, 0)ᵀ. By this fixed point we choose a new policy.
We only change the fifth coordinate of the previous policy, we replace 0 ∨ (x−2 − 1)
by −10 ∨ y−6 and we compute the smallest fixed point of this new policy.

We find a new fixed point (ũ, ṽ) = (0, 15,−5, 16,−4, 15,−5, 15,−4, 4,−4, 15)ᵀ

for f . The semidifferential at (ũ, ṽ) is then:

f ′(ũ,ṽ) (δũ, δṽ)ᵀ =
(
0, 0, δṽ−6 , δũ

+
2 , δṽ

−
6 , 0, 0, δṽ

+
2 , δṽ

−
2 ∨ δṽ

−
4 , 0, δṽ

−
6 , 0 ∧ δũ

+
2

)ᵀ
By Prop 17, we find ρRd

−
(f ′(ũ,ṽ)) = 0, we conclude that (ũ, ṽ) is the smallest

fixed point of f .
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