
Policy Iteration within Logico-Numerical

Abstract Domains

Pascal Sotin1, Bertrand Jeannet1, Franck Védrine2, and Eric Goubault2

1 INRIA, {Pascal.Sotin,Bertrand.Jeannet}@inria.fr
2 CEA-LIST LMeASI, {Frank.Vedrine,Eric.Goubault}@cea.fr

Abstract. Policy Iteration is an algorithm for the exact solving of op-
timization and game theory problems, formulated as equations on min
max affine expressions. It has been shown that the problem of finding
the least fixpoint of semantic equations on some abstract domains can
be reduced to such optimization problems. This enables the use of Pol-
icy Iteration to solve such equations, instead of the traditional Kleene
iteration that performs approximations to ensure convergence.
We first show in this paper that under some conditions the concept of
Policy Iteration can be integrated into numerical abstract domains in
a generic way. This allows to widen considerably their applicability in
static analysis. We consider here the verification of programs manipulat-
ing Boolean and numerical variables, and we provide an efficient method
to integrate the concept of policy in a logico-numerical abstract domain
that mixes Boolean and numerical properties. Our experiments shows
the benefit of our approach compared to a naive application of Policy
Iteration to such programs.

1 Introduction

Kleene Iteration. Abstract Interpretation is a framework for solving verification
problems expressed by semantic equations on a (concrete) lattice. Typically, it
is used to compute an overapproximation of the reachable states of a program.
The computation is performed by a Kleene iteration which starts at the bottom
of an (abstract) lattice and applies the semantic equations until no new state
is reached. In order to ensure and accelerate the termination of this process,
an extrapolation operator (called widening) is used at the cost of some addi-
tional approximation. Eventually, the result can be refined in a process called
narrowing. The whole process is called accelerated Kleene iteration (pictured on
Fig. 3).

Running example. Consider the program of Fig. 1(a), taken from [CGG+05]. It
contains two loops and two integer variables. If the program reaches the program
point 5 , then i = 100. However, the accelerated Kleene iteration will fail to infer
it, because of the nested loops. In practice, performing abstract interpretation
using boxes (aka. intervals) will infer the invariant i ≥ 100. The reason is that
the Kleene iteration applies on the Control Flow Graph (CFG) of Fig. 1(b). In

int i=1; 0

while (i<100){ 1

int j=100; 2

while (j>1){
j = j-i; 3

}
i = i+1; 4

} 5

end

(a) Original Program

0 5

1

2

3

4

i≥100

i<100?

j =100

j >1?
j =j−i

j≤1?
i= i+1

(b) CFG

bool always,ext,inner;
int i=1;
while ((always||ext)&&i<100){
int j=100;
while ((always||inner)&&j>1){
j = j-i;

}
i = i+1;

}
end

(c) Addition of Booleans

Fig. 1. Two loops running example

this graph, imprecision introduced by the widening applied for the outer loop
is kept in the inner loop and prevents the narrowing from exploiting i<100.
The problem we face here is not a weakness of the abstract domain, since the
octagons or the polyhedra do not infer either this i = 100, but a weakness of
the accelerated Kleene Iteration.

Policy Iteration. Introduced in [CGG+05], the use of policy iteration techniques
for solving semantics equations with fixpoint allows to infer box-like invariants,
among which the correct invariant at program point 5 . This technique avoids
the inaccuracy issues faced by the accelerated Kleene iteration. The algorithm
of [CGG+05] combines an iteration on a set of policies, that defines sound vari-
ations of the semantic equations, with a linear programming solver.

The use of linear programming to solve the semantic equations is adapted for
linear programs, with linear guards. It is unfortunately not adapted to a wider
class of programs. For example, let consider the program of Fig. 1(c), which
introduces some Boolean variables in the program of Fig. 1(a).

– Linear programming does not handle the Boolean variables.
– Existing abstract domains do handle the Boolean variables, but the acceler-

ated Kleene iteration is inaccurate.

This article aims at taking the best of both world by performing policy iteration
on accelerated Kleene iterations. In particular we address the question of dealing
with programs having both Boolean and numerical variables (eg. Fig. 1(c)).

Contributions. We allow policy iteration on abstract semantic equations by in-
tegrating the policies for numerical abstract domains in the generic abstract do-
main library Apron (see Section 4). This enables the precise analysis of Fig. 1(a)
in the Abstract-Interpretation-based tools Interproc. We then prove the inter-
est of this integration by building policies for logico-numerical abstract domains
on top of our numerical policies. These policies have been implemented using
Mtbdds and integrated in the BddApron library (see Section 5). We could
eventually perform the analysis of Fig. 1(c), for which Kleene iteration is not
precise and for which policy iteration of [CGG+05] is not possible as is.

Outline. Section 2 recalls the basics of Abstract Interpretation, focusing on
the abstract domains. Section 3 details the use of Kleene iteration and policy
iteration for the resolution of semantic equations. Sections 4 and 5 present our
contributions. Section 6 provides experiments which illustrates the questions of
precision and efficiency. Section 7 will conclude and emphasize the interests of
integrating the precision improvements due to policy iteration into traditional
abstract interpretation frameworks.

2 Abstract Interpretation and Abstract Domains

Many static analysis problems come down to the computation of the least so-
lution of a fixpoint equation X = F (X), X ∈ C where C is a domain of con-
crete properties, and F a function derived from the semantics of the analysed
program. Abstract Interpretation [CC92] provides a theoretical framework for
reducing this problem to the solving of a simpler equation

Y = G(Y), Y ∈ A (1)

in a domain A of abstract properties. Having performed this static approximation,
one is left with the problem of solving Eqn. (1). The paper contributes to this
problem, which is detailed in the next section.

We need however to detail first how this general method will be instantiated.
– We consider simple programs without procedures that manipulate n scalar

variables taking their values in a set D, as exemplified by the programs of
Figs. 1(a) and 1(c). Their state-space has the structure S = K ×Dn, where
K is the set of nodes of the control flow graph (CFG).

– We focus on the inference of invariants. The domain of concrete properties
is C = P(S) = K → P(Dn): an invariance property is defined by the set of
possible values for variables at each node.

– The equation to be solved is X = F (X) = I ∪ post(X), where I is the set
of initial states and post is the successor-state function. The least solution
lfp(F) of this equation is the strongest inductive invariant of the program.
This equation is actually partitioned along the nodes and edges of the CFG:

Xk = Ik ∪
⋃

(k′,k)
Jop(k′,k)K(Xk′

) , Xk ∈ P(Dn) (2)

Jop(k′,k)K : P(Dn) → P(Dn) reflects the semantics of the program instruc-
tion op(k′,k) associated with the CFG edge (k′, k). We consider here for op
assignments x :=expr and tests bexpr?.

– Given an abstract domain A for P(Dn), abstracting Eqn. (2) in A consists
in substituting ∪ and JopK functions in it with their abstract counterpart
denoted with ∪♯, JopK♯. We obtain a system

Y k = I♯k ∪♯
⋃♯

(k′,k)
Jop(k′,k)K♯(Y k′

) , Y k ∈ A (3)

We refer to [CC92] for the conditions ensuring the soundness of the approach.

Numerical abstract domains. If the considered program manipulates only
numerical variables, D = Q, and C = K → P(Qn). Many numerical abstract
domains have been designed for approximating subsets of Qn:
– The box domain [CC76] approximates such subsets by their bounding boxes.

The abstract semantics of assignments and conditionals is based on classical
interval arithmetic.

– The octagons domain [Min06] approximates such subsets by conjunction of
O(n2) inequalities of the form aixi + ajxj ≥ b where ai, aj ∈ {−1, 0, 1} and
the bounds b’s are inferred. The abstract semantics of octagons relies on a
mixture of interval arithmetic and constraint propagation.

– These two domains are generalized by the template polyhedra domain [SSM05]
that considers conjunctions of M linear inequalities of the form T m · x ≥
bm, 1 ≤ m ≤ M , where the T m are linear expressions provided by some
external means and the bounds bm are inferred. The abstract semantics is
computed by linear programming.

Observe that some domains are more complex, like the convex polyhedra domain
[HPR97] that approximates numerical subsets by convex polyhedra: it infers not
only bounds, but also the (unbounded) set of linear expressions to be bounded.

Besides the three major operations mentioned above (union, assignments and
tests), other operations like existential quantification and intersection are needed
for the analysis of programs with scoping rules and procedure calls. The Apron

library [JM09] provides a common high-level API to such numerical domains,
and defines a rich concrete semantics (including non-linear and floating-point
expressions and constraints) that should be correctly abstracted by the compliant
abstract domains.

The BddApron logico-numerical abstract domain. The Apron concrete
semantics and the abstract domains provided with it do not provide the adequate
operations for programs that manipulate also Boolean and enumerated variables,
which may contain instructions like

x := if b and x<=5 then x+1 else 0 or b := b and x<=3

In this case D = B ⊎ Q and P(Dn) ≃ P(Bp × Qq). A naive solution is to
eliminate Boolean variables by encoding them in the control, so as to obtain
a purely numerical program. However this solution (i) is neither efficient – the
enumeration of Boolean valuations induces an exponential blow-up, (ii) nor it
provides a high-level view on invariants and their manipulation.

The BddApron library [Jea] addresses issue (ii) by offering support for
expressions and constraints that freely combine Boolean and numerical subex-
pressions and by leveraging any Apron-compliant numerical abstract domain
to a logico-numerical abstract domain for such a concrete semantics. Given a
numerical abstract domain A0 for P(Qq), it abstracts concrete properties in
P(Bp × Qq) ≃ Bp → P(Qq) with functions in Bp → A0. The efficiency issue
(i) is addressed by representing functions f : Bp → A0 with Mtbdds [Bry86],
see Fig. 2. This representation does not improve the worst-case complexity in
O(2p), but the complexity of the representation and of the operations becomes

b0

b2

[0, 2]

b1

b3

[1, 3] [−5, 0]

Represents the function

(¬b0 ∨ ¬b1)∧¬b2 7→ [0, 2]
(¬b0∧b2 ∨ b0∧b1)

∧¬b3 7→ [1, 3]
(¬b0∧b2 ∨ b0∧b1)

∧b3 7→ [−5, 0]

of signature B4 → I

Fig. 2. Example of Mtbdd

b

b

b b

b

b

b

b

b

G(Y) ⊆♯ Y

G(Y) ⊇♯ Y

G(Y) = Y

⊤

gfp(G)

lfp(G)

⊥

Y0

Y1

Y2

Y∞ Z0

Z1

Z2

Fig. 3. Kleene iteration with
widening and narrowing

b

b

b

b

b

b

⊤

lfp(Gπ0)

lfp(Gπ1)

lfp(Gπ2)

lfp(G)

⊥

⊆
♯

⊆
♯

⊆
♯

Fig. 4. Policy iteration

a function of the number of nodes of the Bdds/Mtbdds rather than a function
of the number of (reachable) Boolean valuations. As in many applications the
average number of nodes of Mtbdds is much smaller than the worst case 2p,
the practical complexity is significantly improved.

The contribution of this paper is to show how policy iteration solving tech-
niques, which are described in the next section and currently apply to equations
on numerical properties, can be efficiently leveraged to equations on logico-
numerical properties by integrating them in the abstract domain in a generic
way.

3 Abstract Equation Solving and Policy Iteration

The traditional way to solve the abstract semantic equation Y = G(Y), Y ∈ A

(e.g., Eqn. (1)) is Kleene iteration with widening and narrowing. This consists
in computing successively (c.f. Fig. 3)

– the ascending sequence Y0 = ⊥, Yn+1 = Yn∇G(Yn), which converges in a
finite number of steps to a post-fixpoint Y∞;

– the descending sequence Z0 = Y∞, Zn+1 = G(Zn), up to some rank N .

∇ : A × A → A is a widening operator that ensures convergence at the cost of
additional dynamic approximations. The problem is that such approximations
are often too strong, and that the descending sequence often fails to recover useful
information, as discussed in the introduction. This is why this paper focuses on
an alternative resolution method.

Policy iteration is an algorithm that has been developed originally in control
and game theory. It has been introduced by Howard [How60] and then extended
by Hoffman and Karp [HK66] for stochastic games. It basically finds the value
of a game, which is the unique fixpoint of the Shapley operator [Sha53], which
is the min of a max of certain affine functions.

int i=1; 0

while (i<100){ 1

int j=100; 2

while (j>1){
j = j-i; 3

}
i = i+1; 4

} 5

end

(a) Program

0 5

1

2

3

4

i≥100

i<100?

j =100

j >1?
j =j−i

j≤1?
i= i+1

(b) CFG

i0 = [1, 1] ∪♯ i4
i1 = Ji<100?K♯(i0)

(i2, j2) = (i1, [100, 100]) ∪♯ (i3, j3)
(i3, j3) = Jj =j−iK♯ ◦ Jj >1?K♯(i2, j2)

(i4, j4) = Ji= i+1K♯ ◦ Jj≤1?K♯(i2, j2)

i5 = Ji≥100?K♯(i0)

ik =[i−k , i+k] and jk =[j−k , j+

k] are the intervals
associated with var. i and j at CFG node k

(c) Abstract Box Semantics

i−0 = min(1, i−4) i+0 = max(1, i+4)

i−1 = i−0 i+1 = min(99, i+0)

i−2 = min(i−1 , i−3) i+2 = max(i+1 , i+3)
j−2 = min(100, j−3) j+

2 = max(100, j+

3)

i−3 = i−2 i+3 = i+2
j−3 = max(2, j−2) − i+2 j+

3 = j+

2 − i−2
i−4 = i−2 + 1 i+4 = i+2 + 1
j−4 = j−2 j+

4 = min(1, j+

2)

i−5 = max(100, i−0) i+5 = i+0
(min and max are min max policies)

(d) Equivalent equations on bounds

−i−0 = max(−1,−i−4)

−i−1 = −i−0
−i−2 = max(−i−1 ,−i−3)
−j−2 = max(−100,−j−3)

−i−3 = −i−2
−j−3 = min(−2,−j−2) + i−2
−i−4 = −i−2 − 1
−j−4 = −j−2
−i−5 = min(−100,−i−0)

(e) Normalizing equations on inf
bounds

Fig. 5. Abstract Interpretation and Game Theory views of semantic equations on boxes

Abstract semantic equations as min-max affine equations. As observed
in [CGG+05], the abstract box semantics of programs with linear assignments
and conditionals can be formulated as equations on lower and upper bounds,
in which each bound is the min of a max of affine functions. Fig. 5 illustrates
this point. Fig. 5(c) instantiates Eqn. (3) on the program of Fig. 5(a). Fig. 5(d)
reformulates this as equations on bounds. Selecting the least solution in Fig. 5(c)
is equivalent to maximizing lower and minimizing upper bounds in Fig. 5(d). In
order to regularize this problem, we replace lower bounds of intervals with upper
bounds by negating them, see Fig. 5(e), so as to manipulate only upper bounds
subject to minimization. Such a formulation can be viewed a deterministic game
problem between a min-player and a max-player. Several plays are possible, but
we are interested in the play that minimizes the bounds. Min policy iteration
provides a solution for this problem, by finding the optimal strategy (i.e. policy)
of the min player.

Policy and policy iteration. In the context of an equation Y = G(Y) where
Y is a vector of upper bounds and G a min of max of affine functions, a (min)
policy π is a choice of one argument per min in G, which results in a simpler
function Gπ ⊇♯ G which is the max of affine functions. By observing that for
any fixpoint of G and any min operator in G, the min will be reached by at least

one argument, one deduces that the least fixpoint of G is also the least fixpoint
of some Gπ.

The policy iteration algorithm, illustrated by Fig. 4, works by

1. choosing an initial policy π0;
2. at each step k, computing the least solution Yi = lfp(Gπi) of Y = Gπi(Y);
3. if Yi is a solution of Y = G(Y), the algorithm terminates, otherwise the

policy improvement step consists in choosing a new policy πi+1 such that
lfp(Gπi+1) ⊆♯ lfp(Gπi), and to go back to step 2.

How is it done ? As Gπi ⊇♯ G and Y 6= G(Y), Yi = Gπi(Yi))♯ G(Yi).
Therefore, for some pnth component of the vector Yi, we have

G(Yi)
(p) = min(e1, . . . , en) < Y

(p)
i = (Gπi(Yi))

(p) = ej

where j results from the choice performed by the policy πi, and e1, . . . , en

are the values of the max expressions evaluated on Yi. The principle is to
replace in πi+1 the choice j by a choice j′ such that ej′ = min(e1, . . . , en).
This ensures that Gπi+1(Yi) (♯ Yi = lfp(Gπi), hence lfp(Gπi+1) (♯ lfp(Gπi).

It is shown in [CGG+05] that for boxes, this method will terminate on a fixpoint
of G, which is guaranteed to be the least fixpoint (when taking care of degenerate
cases) when G is not expansive for the sup norm. Some improvements of the orig-
inal method of [CGG+05] have been made for dealing with degenerate cases in
an efficient manner in [AGG08]. Extensions of the method to deal with the zone,
octagon, linear and quadratic templates are discussed in [GGTZ07,AGG10].

Policy iteration can also be seen as a Newton method for solving a system of
min-max equation Y = G(Y). Any of the expressions under the min operator can
indeed be seen as a possible differential/linearization of G. A policy is the choice
of such a differential, and solving Y = Gπ(Y) is akin to solving the linearization
of G in one step in the classical Newton method. This view was exploited for
max policy iteration in [GS07b,GS07a,GS10].

Two methods for solving Y = G
π(Y). Once a (min) policy π is applied,

one have to compute the least solution of a simpler equation Y = Gπ(Y) where
G is the max of affine functions. This can be done either by linear programming
as in [GGTZ07], or by standard Kleene iteration as in [CGG+05].
1. Linear programming always computes the least solution, but presents some

shortcomings:
(a) It requires to write down the full equation system on bounds (whereas

Kleene iteration works in practice by incremental exploration);
(b) It does not allow to see the abstract domain (boxes, octagons, . . .) and

a policy linked to it as an abstract datatype (ADT).
(c) If the program contains non-linear expressions, these must be linearized

statically before the analysis (thus when no information is available. . .)
2. Kleene iteration with widening does not offer the guarantee of delivering the

least solution, thus theoretical guarantees about policy improvement does
not apply any more. However it exhibits better behaviour w.r.t. the points
mentioned above:

(a)(b) It integrates well in existing static analysers (such as Interproc,
[JM09,JAL]) that manipulates abstract properties as abstract datatypes
through normalized APIs (such as the Apron and the BddApron APIs
mentioned in Section 2).

(c) Linearization of non-linear expressions can be done dynamically as in
[Min02], using the (under)approximations provided by the current Kleene
iteration step.

One might object that as this technique still resorts to widening to ensure
convergence, it should not improve on traditional Kleene iteration (without
policies). The point is actually that here Kleene iteration is applied to sim-
pler equations, with fewer dependency cycles (hence less widening points)
and on which the descending sequences is likely to be more effective. The
experiments in [CGG+05] and Section 6 confirms this conjecture.
For example, on Fig. 5, if one chooses the left policy for all min equations,
like i+1 = 99 for the policy i+1 = min(99, i+0), the Kleene iteration solves the
simpler equations in one iteration and finds i1 = [100, 100] to be compared
to i1 = [100, +∞] obtained by the global box iterations without policies3.

In the next section, we show how the concept of policy can be integrated in
an abstract domain and can be viewed as an ADT. This allows in Section 5 to
leverage the use of policy iterations in logico-numerical domains.

4 Integrating Policies in Numerical Abstract Domains

Integrating policies in an abstract domain as described in Section 2 means in
practice to abstract the process of translating the equations of Fig. 5(c) to the
equations of Fig. 5(d) (in the case of the box abstract domain) and to “instru-
ment” the former equations with policies.

Instrumenting abstract operations with policies. The original seman-
tic equations are made of the three operators described in Section 2: (i) ∪♯,
(ii) Jbexpr?K♯, and (iii) Jx :=exprK♯. For all of the template-based numerical ab-
stract domains for which policies have been used, min operators are introduced
only by tests (ii) and assignments (iii). Hence only those two latter operations
needs to be equipped with a policy. We thus introduced in the Apron API two
new generic functions:

meet cond apply policy0 : P0 × A0 × Cond0 → A0

assign var apply policy0 : P0 × A0 × Var×Expr0 → A0
(4)

where P0 denotes the set of policies, A0 the numerical abstract domain, Expr0 the
set of (linear) numerical expressions, and Cond0 the set of Boolean formula on
(linear) numerical constraints under disjunctive normal form (DNF).

The exact structure of policies depends on the considered abstract domain.
We illustrate the case of the box abstract domain. In this domain, min ex-
pressions will be always decomposed into min expressions with two operands:

3 Appendix A unrolls in parallel the Kleene iteration and the best policy.

min(e1, e2). Therefore, the domain of a bound policy is {l, r}, which stands for
left and right: (l) if π = l, minπ(e1, e2) = e1, (r) if π = r, minπ(e1, e2) = e2.
Consider now the intersection of an abstract property a =

∏n
k=1 Ik with a single

numerical constraint c =
∑

k′∈K′

αk′xk′ −
∑

k′′∈K′′

αk′′xk′′ + β ≥ 0 with αk′ , αk′′ > 0

and K ′ ∩K ′′ = ∅. We want to express a′ = meet cond apply policy0(π, a, c). The
constraint c can be rewritten as

xk ≥ 1
αk

(

∑

k′∈K′\{k}

−αk′xk′ +
∑

k′′∈K′′

αk′′xk′′ + β
)

if k ∈ K ′

xk ≤ 1
αk

(

∑

k′∈K′

αk′xk′ −
∑

k′′∈K′′\{k}

αk′′xk′′ + β
)

if k ∈ K ′′

Hence a′ =
∏n

k=1 I ′k can be expressed as:

−(I ′k)− =







minπk,−

(

−I−k , 1
αk

(

−
∑

k′∈K′\{k}

αk′I−k′ +
∑

k′′∈K′′

αk′′I+
k′′ + β

))

if k ∈ K ′

−I−k otherwise

(I ′k)+ =







minπk,+

(

I+
k , 1

αk

(

∑

k′∈K′

αk′I+
k′ −

∑

k′′∈K′′\{k}

αk′′I−k′′ + β
))

if k ∈ K ′′

I+
k otherwise

In practice, we associate a bound policy πk,+/−
to each interval bounds, hence

π ∈ {l, r}2q for the intersection with a single linear inequality in q dimensions.
Equalities are handled as the conjunction of two inequalities. This “instrumen-
tation” with policies is generalized to conjunctions of m linear inequalities and
equalities, which results in a policy in {l, r}2qm. The meet of a with a general
Boolean formula under DNF form

∨p
i=1

∧

j ci,j is handled as the disjunction of
the meet of a with the p conjuncts

∧

j ci,j .
Assignments do not imply min operators in the box abstract domains. On

octagons an assignment like x1 = 2x2 + 4 is performed by introducing a primed
variable x′

1, intersecting the octagon with x′
1 = 2x2 + 4 (which implies min

operators), eliminating x1 and renaming x′
1 in x1. Still, ultimately only the

meet cond operation needs to be equipped with a policy. It is however not the
case for more general linear templates.

Improving policies. Remind from Section 3 that given a solution Y = Gπ(Y),
we need to improve the policy π if G(Y) (♯ Y . We thus introduce in the API
two new generic functions

meet cond improve policy0 : P0 × A0 × Cond0 → P0

assign var improve policy0 : P0 × A0 × Var×Expr0 → P0
(5)

meet cond improve policy(π, a, c) proceeds as follows (assign var improve policy0

proceeds exactly in the same way).

– it computes a′ = meet cond0(a, c) and a′′ = meet cond apply policy0(π, a, c);
– if a′ = a′′, it returns π; otherwise, it chooses a new policy π′ such that

a′ = meet cond apply policy0(π
′, a, c), following the principle explained in

Section 3, and it returns it.

Integration in the policy iteration process. Once abstract operations are
instrumented with policies, one parametrizes Eqn. (3) by associating to each
operation Jop(k′,k)K♯ a policy π(k′,k):

Y k = I♯k ∪♯
⋃♯

(k′,k)
op apply(k′,k)(π(k′,k), Y k′

, args . . .) (6)

We apply the process described in Section 3. We fix an initial global policy π0,
and at each policy iteration step i,
1. We solve Eqn. (6) with π = πi using Kleene iteration with widening and

narrowing; we obtain a solution Yi.

2. We compute the new policy with π
(k′,k)
i+1 = op improve(π

(k′,k)
i , Y

(k′)
i , args . . .).

If πi+1 6= πi, we iterate the process, otherwise we have a solution.

Implementation. Augmenting the Apron API with the 4 functions intro-
duced by Eqns. (4)-(5) allowed us to integrate nicely policy iteration in the
Interproc interprocedural analyser, based on the Apron numerical abstract
domain libraries and the Fixpoint generic equation solver [Jea10]. Currently,
we have implemented these functions only for the box abstract domain. In the
static analyser, we needed to add about 100 OCaml LOC to take care of the pol-
icy iteration process (creating policies, updating them and testing convergence).
Once a policy π is fixed, we reuse the existing code for solving the equation
Y = Gπ(Y).

As Interproc also addresses recursive programs, two additional abstract
operations appear in the semantic equations: (i) procedure call, which involves
projection and variable renaming, hence no policy; (ii) procedure returns, which
involves the meet of two abstract values. We did not yet instrument the meet
operation, but there is no theoretical problem to do it. Moreover, as we solve
Y = Gπ(Y) by Kleene iteration, we can deal with more complex functions Gπ

than if we were tight to problems expressed as linear programs.

5 Policy for Logico-Numerical Abstract Domain

We showed in Section 4 how the concept of policy can be integrated into a
numerical abstract domain in a generic way. The practical advantage was the
ability to add the boxpolicy domain to the Apron library, and ultimately to
the Interproc analyser, and to benefit for (almost) free from all the tech-
niques it implements (e.g., non-linear arithmetic and interprocedural analysis).
In this section we show that this integration can be pushed further to the Bd-

dApron logico-numerical abstract domain, which acts as a functor on top of
an Apron domain. Moreover, we show that this can be implemented efficiently
with Mtbdds.

BddApron abstract operation. As explained in Section 2, the BddApron

library proposes to abstract logico-numerical properties in P(Bp ×Qq) by func-
tions in A = Bp → A0. Extending the conditional and assignment operations
from A0 to A is easy under the following conditions:

meet cond : A × Cond → A

assign var : A × NVar×Expr → A

assign bvar : A × BVar×BExpr → A

meet cond(f, c) = λb . meet cond0

(

f(b), c(b)
)

assign var(f, xk, e) = λb . assign var0
(

f(b), xk, e(b)
)

assign bvar(f, bk, ϕ) = λb .

{

(if bk ⇔ ϕ+(b) then f+(b) else ⊥0)
∪♯

0 (if bk ⇔ ϕ−(b) then f−(b) else ⊥0)

where f = ite(bk, f+, f−) and φ = ite(bk, φ+, φ−)
are decomposed into their cofactors w.r.t. bk

Fig. 6. BddApron abstract operations

– Conditions in tests are put under the form Cond = Bp → Cond0 .
– Assigned expressions are

• either numerical expressions in Expr = Bp → Expr0 ;
• or purely Boolean expressions in BExpr = Bp → B.

In other words, they do not involve conditions on numerical variables. Exam-
ples are b0 = (b1 or (b2 and not b3)), x0 = (if b1 then x1+1 else x2-1).

Under these assumptions where the conditions and expressions are pointwise
extensions of the conditions and expressions considered in A0, tests and assign-
ments in A can be defined as in Fig. 6

Notice that “forbidden” assignements like x0 = (if x0>10 then 0 else x0+1)

or b0 = (x0>=0) can be emulated by replacing conditional expressions with con-
ditional assignments. The BddApron library actually handles them directly,
but this requires more complex algorithms that makes difficult their instrumen-
tation with policies discussed below.

Boolean extension of numerical operations with policies. Observe the
meet cond operation in Fig. 6: it applies pointwise the meet cond0 operation to
f(b) and c(b) for every b ∈ Bp. If we want to parameterize it with a policy, we
need one policy π(b) ∈ P0 for each b ∈ Bp. If we have such a logico-numerical
policy π : Bp → P0, we apply meet cond apply policy0 pointwise to π(b), f(b)
and c(b) for each b ∈ Bp. We get the following definition.

Definition 1 (Logico-numerical policy). If P0 denotes the set of policies
associated with the numerical abstract domain A0, the set of policies associated

with the logico-numerical domain A = Bp → A0 is P = Bp → P0 .

The op apply policy and op improve policy operations in A are defined in Fig. 7
by extending pointwise the corresponding operations in A0. As the operation
assign bvar involves only the numerical operation ∪♯

0, it is not need a policy.

We have set exactly the same framework than the one of Section 4. We can
thus analyse logico-numerical programs with the BddApron extension of any
numerical domain equipped with policies (like the box domain). In this new

meet cond apply policy : P × A × Cond → A

meet cond improve policy : P × A × Cond → P

assign var apply policy : P × A × Var×Expr → A

assign var improve policy : P × A × Var×Expr → P

meet cond apply policy(π, f, c) = λb . meet cond apply policy0

`

π(b), f(b), c(b)
´

meet cond improve policy(π, f, c) = λb . meet cond improve policy0

`

π(b), f(b), c(b)
´

assign var apply policy(π, f, xk, e) = λb . assign var apply policy0

`

π(b), f(b), xk, e(b)
´

assign var improve policy(π, f, xk, e) = λb . assign var improve policy0

`

π(b), f(b), xk, e(b)
´

Fig. 7. Parametrization of logico-numerical operations with policies

context, the solution Yi of Y = Gπi(Y) computed by Kleene iteration actually
provides two kind of informations: the set of reachable Boolean valuations at
node, and the numerical invariants associated with each of them.

Implementation with Mtbdds. Our operations involve functions of signature
Bp → T . If they are represented with a tabulated representation, the complexity
of abstract operations is in O(2p). In particular we need 2p numerical policies in
P0 at each edge of the program CFG.

The solution is to reuse the principle behind the BddApron library, which is
to represent functions of signature Bp → T with Mtbdds [Bry86]. As mentioned
in Section 2, the complexity of an operation defined as

op : (Bp → T1) × (Bp → T2) → (Bp → T)
(f1, f2) 7→ op(f1, f2) = λb . op0 (f1(b), f2(b))

with op0 : T1 × T2 → T

(7)

is O(2p) with a tabulated representation of f1 and f2, and O(|f1| · |f2|) with a
Mtbdd representation of f1 and f2 with |f1| and |f2| nodes. In the latter case
the function op is implemented by a parallel, recursive descent of the Mtbdds
f1 and f2, using memoization techniques to avoid exploring already explored
pairs of subgraphs. As the functions of Fig. 7 follow the pattern of Eqn. (7),
they benefit from such techniques.

The condition on a set T for representing functions in Bp → T with Mtbdds
is the ability (i) to test the equality of two elements in T , (ii) and to have a
reasonably efficient hash function. In the case of the box domain, policies are
elements of sets of the form {l, r}N , as discussed in Section 4, and meet these
requirements. It is also the case for policies for the octagon domain [GGTZ07].

Concerning the initial policy, our (naive) tactic is to associate to each opera-

tion op of the CFG a constant policy π
(k′,k)
0 = λb . p0∈P0. Later on, the Mtbdd

size of policies may vary during the policy iteration process. This depends on
the number of distinct numerical policies associated to Boolean valuations.

6 Experiments

This section presents experimental results showing that policy iteration on logico-
numerical abstract domains, as presented in Section 2, allows precise and tractable

Program Nesting #B #K
Boxes Boxes+policies
only No sharing Full sharing Prec.

test1’ 1 2 4 8ms 17ms 15ms (2 it.) =
test2’ 1 3 5 18ms 42ms 34ms (2 it.) =
test3’ 1 2 4 8ms 15ms 13ms (1 it.) =
test4’ 1 10 12 226ms 25 300ms 480ms (3 it.) =
test5’ 2 4 6 23ms 79ms 47ms (2 it.) >

test6’ 2 6 8 44ms 520ms 124ms (3 it.) >

test7’ 2 6 8 40ms 310ms 81ms (2 it.) >

test8’ 3 6 8 60ms 280ms 113ms (2 it.) =
test9’ 3 6 8 58ms 360ms 116ms (2 it.) >

Table 1. Experiments with modified examples of [CGG+05]

Program Threads, #B, #Q, #K
Boxes Boxes+policies
only No sharing Full sharing Disting. Prec.

BlueTooth 2T, 5B, 3Q, 87K 0.21s 0.99s 0.84s (3 it.) 17% =
Preemptive 2T, 9B, 1Q, 352K 0.83s 18.64s 1.37s (1 it.) 0.7% =
Barrier 2T, 5B, 2Q, 95K 0.79s 3.05s 1.96s (2 it.) 9.5% >

Loop2TML 2T, 1B, 6Q, 37K 0.10s 0.22s 0.21s (2 it.) 70% >

Table 2. Experiments with concurrent programs.

analysis of programs involving Boolean variables, numerical variables and even
concurrency. The experiments were performed with the ConcurInterproc anal-
yser, using BddApron and logico-numerical policies.

Analysis of the running example. We perform the analysis of the programs
shown on Figures 1(a) and 1(c). For these two programs, the analysis with boxes
(only) does not infer the most precise bounds for i and j while the analysis with
boxes and policies does. The use of policy iteration have little impact on the
analysis times. Thanks to the Mtbdds, the analysis times for the program of
Fig. 1(c) is of the same order of magnitude than the ones of Fig. 1(a), in spite
of the eight possible boolean valuations to consider.

Note also that these exact bounds found by boxes with policies cannot be
inferred by expansive abstract domains like the polyhedra or the octagons.

Examples from [CGG+05] plus Booleans. We modify the programs exper-
imented in [CGG+05] by introducing in a systematic way Boolean variables in
order to demonstrate that:
1. Policy Iteration on boxes is more precise than boxes only.
2. Analysis time does not increase as fast as the number of boolean valuations.

We added a Boolean variable for each loop, each conditional and each variable
modification. These Boolean variables are then used as additional condition to
enter the loop, enter the then branch and perform the modification. For example,
it introduces the uninitialized Boolean variables a and b in the following program:

while (x<100)

x=x+1;
−→

while (a && x<100)

if (b) x=x+1;

The results are shown in Table 1. The column program gives the name of
the original program with an additional ’ to recall the transformation. The
column nesting gives the maximum nesting depth of the loops. The columns #B

and #K count respectively the number of Boolean variables introduced and the
number of control points. The results obtained by our approach are shown in
the column boxes+policies, full sharing and are to be compared with the ones
without policies, taking into account whether the box abstract domain reach the
same precision as policies (=) or not (>).

We also experimented the loss of efficiency that could be endured if we do
not share the policies. The column no sharing indicates the analysis time when
we take one policy per Boolean valuation instead of a Mtbdd of policies.

All the analyses using policy iteration discover the best invariant one could
hope for boxes. The symbols > indicate cases where traditional boxes cannot in-
fer this optimal invariant. The experiments show that boxes with policy iteration
timings tends to be proportional to the timings using the classical BddApron

boxes multiplied by the number of iteration. The idea of applying the method
of [CGG+05] using one policy per boolean valuation does not scale. For example,
we need to consider one thousand policies per meet operation for test4’.

Analysis of concurrent programs. Table 2 shows the results of experiments
involving concurrent programs performing synchronisation using shared Boolean
variables. The columns have to be interpreted like the ones of Tab. 1, with
an additional column disting. containing the percentage of policies that truly
need to be distinguished. Note that procedures have been inlined, and that the
commutation between threads creates large control flow graphs with many cycles.

The results obtained by policy iterations can be far more precise than the
ones obtained without, as it is the case for the program Barrier (which explains
the increase of the analysis cost). The timings confirm that when both analysis
are equally precise, our implementation is slower by a factor close to the number
of policy explored. The experiments we have performed also showed that the
iterations tend to be faster as the policies get improved.

7 Conclusion

We first showed in this paper how to integrate in a generic way the concept of
policy and policy iteration into a numerical abstract domain. This is done at
the cost of giving up with the ability to solve exactly the equation Y = Gπ(Y)
parametrized with the policy π using linear programming4. However we believe
that this shortcoming is largely counter-balanced by the gains, which are

(i) the easy integration in existing static analysis tool ([Jea10]);
(ii) the ability to build more complex abstract domain on top of such policy-

equipped numerical domains and to address programs with other datatypes.

4 which is possible any way only when the program does not contain non-linear arith-
metic operation.

We demonstrated point (i) by equipping the box domain implemented in the
Apron library with policies, and by integrating it in the Interproc tool. Our
major contribution is however the demonstration of point (ii) in the case of
programs manipulating Boolean and numerical variables. Instead of assigning a
numerical policy to each Boolean valuation, we showed that we can use Mtbdds
techniques to assign a single policy to a (potentially large) set of Boolean valua-
tions. This efficient representation logico-numerical policy was integrated in the
BddApron library.

Our experiments illustrated two points. They first showed that this later tech-
nique improves in a spectacular way the efficiency of policies, compared to their
naive application, even for simple programs with a dozen of Boolean variables.
They also showed that despite the theoretical shortcoming of our approach men-
tioned above w.r.t. precision, in practice our combination of policy and Kleene
iteration delivers more precise results than the traditional approach that relies
only on Kleene iteration.

A first perspective of this work is the use of policy iteration in complex
abstract domains like the one proposed in [CR08] for dynamically allocated data-
structure, which is parametrized by a numerical abstract domain. Our approach
enables the use of policies in this context, whereas the traditional approach based
on translation to min-max equations as in Fig. 5(d) is totally infeasible.

Another perspective would be to investigate the use of max policy iteration
in a similar way as we did in this paper for min policy iteration. Max policy
methods were put forward by Gawlitza and Seidl [GS07b,GS07a,GS10] for the
same abstract domains: instead of selecting one argument of the min operators,
it selects one argument of the max operators. Max and min policy iteration
offer different advantages. Unlike min policy methods that over-approximate
lfp(G) until eventually reaching a fixpoint of G, max policy methods under-
approximates lfp(G); therefore they cannot be stopped before convergence, but
they are guaranteed to reach lfp(G) (and not just a fixpoint of G) for a larger
class of programs.

References

[AGG08] A. Adjé, S. Gaubert, and E. Goubault. Computing the smallest fixpoint
of nonexpansive mappings arising in game theory and static analysis of
programs, July 2008.

[AGG10] A. Adjé, S. Gaubert, and E. Goubault. Coupling policy iteration with
semi-definite relaxation to compute accurate numerical invariants in static
analysis. In European Symposium on Programming, ESOP’10, volume 6012
of LNCS, 2010.

[Bry86] R. E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Trans. on Computers, 35(8), 1986.

[CC76] P. Cousot and R. Cousot. Static determination of dynamic properties of
programs. In 2nd Int. Symp. on Programming. Dunod, Paris, 1976.

[CC92] P. Cousot and R. Cousot. Abstract interpretation and application to logic
programs. Journal of Logic Programming, 13(2-3), 1992.

[CGG+05] A. Costan, S. Gaubert, E. Goubault, M. Martel, and S. Putot. A policy
iteration algorithm for computing fixed points in static analysis of programs.
In Computer Aided Verification, CAV’05, volume 3576 of LNCS, 2005.

[CR08] Bor-Yuh Evan Chang and Xavier Rival. Relational inductive shape analysis.
In Principles of Programming Languages, POPL’08. ACM, 2008.

[GGTZ07] S. Gaubert, E. Goubault, A. Taly, and S. Zennou. Static analysis by policy
iteration on relational domains. In European Symposium on Programming,

ESOP’07, volume 4421 of LNCS, 2007.
[GS07a] T. Gawlitza and H. Seidl. Precise fixpoint computation through strategy

iteration. In European Symposium on Programming, ESOP’07, volume 4421
of LNCS, 2007.

[GS07b] T. Gawlitza and H. Seidl. Precise relational invariants through strategy
iteration. In Computer Science Logic, CSL’07, volume 4646 of LNCS, 2007.

[GS10] T. Gawlitza and H. Seidl. Computing relaxed abstract semantics w.r.t.
quadratic zones precisely. In Static Analysis Symposium, SAS’10, volume
6337 of LNCS, 2010.

[HK66] A. J. Hoffman and R. M. Karp. On nonterminating stochastic games. Man-

agement Sci., 12:359–370, 1966.
[How60] R. Howard. Dynamic Programming and Markov Processes. Wiley, 1960.
[HPR97] N. Halbwachs, Y.E. Proy, and P. Roumanoff. Verification of real-time sys-

tems using linear relation analysis. Formal Methods in System Design, 11(2),
August 1997.

[JAL] B. Jeannet, M. Argoud, and G. Lalire. The Interproc interprocedural
analyzer. http://pop-art.inrialpes.fr/interproc/interprocweb.cgi.

[Jea] B. Jeannet. The BDDAPRON logico-numerical abstract domains library.
http://www.inrialpes.fr/pop-art/people/bjeannet/bjeannet-forge/

bddapron%/.
[Jea10] B. Jeannet. Some experience on the software engineering of abstract inter-

pretation tools. In Int. Workshop on Tools for Automatic Program AnalysiS,

TAPAS’2010, volume 267 of ENTCS. Elsevier, 2010.
[JM09] B. Jeannet and A. Miné. APRON: A library of numerical abstract domains

for static analysis. In Computer Aided Verification, CAV’2009, volume 5643
of LNCS, 2009. http://apron.cri.ensmp.fr/library/.

[Min02] A. Miné. Symbolic methods to enhance the precision of numerical abstract
domains. In Verification, Model-Checking and Abstract Interpretation, VM-

CAI’06, volume 3855 of LNCS, 2002.
[Min06] A. Miné. The octagon abstract domain. Higher-Order and Symbolic Com-

putation, 19(1), 2006.
[Sha53] L. S. Shapley. Stochastic games. In Proceedings of the National Academy

of Sciences, volume 39, pages 1095–1100, 1953.
[SSM05] S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Scalable analysis of linear

systems using mathematical programming. In Verification, Model Checking,

and Abstract Interpretation, VMCAI’05, volume 3385 of LNCS, 2005.

A Comparison between box iteration and box policy

iteration

0 5

1

2

3

4

i≥100

i<100?

j=100

j>1?
j=j−i

j≤1?
i= i+1

Kleene box iteration

0 i ∈ [1, 1] 1 i ∈ [1, 1]
2 i ∈ [1, 1] 3 i ∈ [1, 1]

j ∈ [100, 100] j ∈ [99, 99]
2 i ∈ [1, 1] 3 i ∈ [1, 1]

j ∈ [99, 100] j ∈ [98, 99]
widen 2 i ∈ [1, 1] 3 i ∈ [1, 1]

j ∈ [−∞, 100] j ∈ [1, 99]
4 i ∈ [2, 2]

j ∈ [−∞, 1]
0 i ∈ [1, 2] 1 i ∈ [1, 2]

widen 0 i ∈ [1, +∞] 1 i ∈ [1, 99]
2 i ∈ [1, 99] 3 i ∈ [1, 99]

j ∈ [−∞, 100] j ∈ [1, 99]
widen 2 i ∈ [1, +∞] 3 i ∈ [1, +∞]

j ∈ [−∞, 100] j ∈ [1, 99]
4 i ∈ [2, +∞]

j ∈ [−∞, 1]
(stable)
narrow 0 i ∈ [1, +∞] 1 i ∈ [1, 99]
narrow 2 i ∈ [1, +∞] 3 i ∈ [1, +∞]

j ∈ [−∞, 100] j ∈ [1, 99]
(stable) 4 i ∈ [2, +∞] 5 i ∈ [100, +∞]

j ∈ [−∞, 1]

Local Kleene iteration for solv-
ing equations on π0 = left policy
for min

0 i ∈ [1, 1]
1 i ∈ [1, 99] 3 i ∈ [1, 99]

j ∈ [100, 100] j ∈ [1, 99]

2 i ∈ [1, 99] 3 stable
j ∈ [1, 100]

4 i ∈ [2, 100] 1 stable

5 i ∈ [100, 100]

no improvement with another
policy

