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Abstract. In this article we carry on the study of the fundamental category
(Goubault and Raussen, 2002; Goubault, 2003) of a partially ordered topological
space (Nachbin, 1965; Johnstone, 1982), as arising in e.g. concurrency theory (Fa-
jstrup et al., 2006), initiated in (Fajstrup et al., 2004). The “algebra” of dipaths
modulo dihomotopy (the fundamental category) of such a po-space is essentially
finite in a number of situations. We give new definitions of the component category
that are more tractable than the one of (Fajstrup et al., 2004), as well as give
definitions of future and past component categories, related to the past and future
models of (Grandis, 2005). The component category is defined as a category of
fractions, but it can be shown to be equivalent to a quotient category, much easier
to portray. A van Kampen theorem is known to be available on fundamental cate-
gories (Grandis, 2003; Goubault, 2003), we show in this paper a similar theorem for
component categories (conjectured in (Fajstrup et al., 2004)). This proves useful for
inductively computing the component category in some circumstances, for instance,
in the case of simple PV mutual exclusion models (Goubault and Haucourt, 2005),
corresponding to partially ordered subspaces of IRn minus isothetic hyperrectangles.
In this last case again, we conjecture (and give some hints) that component categories
enjoy some nice adjunction relations directly with the fundamental category.

Keywords: partially ordered space, po-space, dihomotopy, fundamental category,
category of fractions, component, Yoneda morphism, Yoneda system, pure system

1. Introduction

Partially ordered spaces or po-spaces appeared in (Eilenberg, 1941).
Motivated by functional analysis, several results from general topology
have been extended to po-spaces by L.Nachbin (Nachbin, 1965). In the
meantime, E.W. Dijkstra has introduced the notion of progress graphs,
a particular case of po-spaces, as a natural model for concurrency
(Dijkstra, 1968).

The main motivation of this paper is to apply methods from alge-
braic topology, after several suitable modifications, to classify parallel
programs via their geometric representation. Concurrent processes nat-
urally define po-spaces, whose points are states of the parallel machine
and the partial-order is the causal ordering. Let us recap the now
classical example of (Fajstrup et al., 2004), where two processes share
two resources a and b:

T1 = Pa.Pb.V b.V a
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Figure 1. The Swiss Flag example - two processes sharing two resources

T2 = Pb.Pa.V a.V b

the geometric model is the “Swiss flag”, Figure 1, regarded as a sub-
set of IR2 with the componentwise partial order (x1, y1) ≤ (x2, y2) if
x1 ≤ y1 and x2 ≤ y2. The (interior of the) horizontal dashed rectangle
comprises global states that are such that T1 and T2 both hold a lock on
a: this is impossible by the very definition of a binary semaphore. Sim-
ilarly, the (interior of the) vertical rectangle consists of states violating
the mutual exclusion property on b. Therefore both dashed rectangles
form the forbidden region, which is the complement of the space X of
(legal) states.

This space with the inherited partial order provides us with a par-
ticular po-space X, as defined in Section 2. Moreover, legal execution
paths, called dipaths, are increasing maps from the po-space

−→
I (the

unit segment with its natural order) to X. The partial order on X thus
reflects (at least) the time ordering on all possible execution paths.

Po-spaces also appear in several other contexts, all having their own
mathematical interest:

− The positive cone P of any C∗-algebra A is naturally provided with
an order relation v and thus becomes a po-space (Takesaki, 2002).
Because P is a convex subset of A, its fundamental category is
isomorphic to the poset (P,v), where P is the underlying set of P.
Moreover, Sherman’s theorem claims the order v is a lattice if and
only if the C∗-algebra A is abelian. Since a poset is a lattice if and
only if its category of components (as introduced in (Fajstrup et al.,
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2004) and fully worked out in this paper) is trivial (Haucourt,
2007), the commutativity of a C∗-algebra is characterized by the
triviality of the category of components of its positive cone.

− Any physically reasonable spacetime (i.e. time-oriented connected
Lorentz manifold or globally hyperbolic spacetime) ordered by
causality (Dodson and Poston, 1997; Hawkins and Ellis, 1973)
is a po-space whose category of components can be thus seen as
an abstraction of the metric and differential structure preserving
causal information. In the same stream of ideas, K. Martin and P.
Panangaden have given an abstraction of any physically reasonable
spacetime M , based on causality, which is rich enough to recover
the topology of M from it (Martin and Panangaden, 2005).

− Given a closed Riemannian manifold M and a Morse-Smale func-
tion f : M → IR, Smale (Smale, 1961) defines a partial order < on
the set of critical points of f as follows: a < b if and only if there is
a flow line from a to b (which is a sub-partial order of the po-space
with the same order, but for all points of M). Note that, as noticed
by an anonymous referee, there should be some connections, yet
to formalize, between our notion of component category, and the
generalization of the <-partial order above, introduced in (Cohen
et al., 1995): the category Cf whose objects are critical points of
f , and whose morphisms between two critical points a and b are in
some sense “piecewise flow lines” of the gradient flow of f which
connect a to b.

To study progress graphs and po-spaces, we easily turn the notion
of fundamental groupoid of a topological space (Higgins, 1971) into
the notion of fundamental (loop-free) category of a po-space (Grandis,
2003; Goubault and Raussen, 2002; Goubault, 2003). The next step
consists in computing these invariants automatically (Goubault and
Haucourt, 2005). In order to do so, we need to “discretize” the represen-
tation of fundamental categories which often have uncountably many
objects. In classical algebraic topology, the fundamental groupoid of
a space X is entirely determined by the set of its arcwise connected
components and their fundamental groups which are, for spaces in
our scope of interest, finitely generated. The problem becomes highly
more intricate in the case of the fundamental category of a po-space.
Though the construction described in (Fajstrup et al., 2004) provides
the expected discretization in all “concrete” examples, it has severe
theoretical drawbacks, one of which is that we do not know whether the
construction makes sense in general cases (including all progress graphs
for instance). By slightly reformulating the definition of component
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Figure 2. The components of the Swiss flag

categories, we obtain much stronger results, although ending up with
the same component categories, at least in the case of progress graphs1.

For instance, the resulting components of the po-space of Figure 1
are shown on Figure 2 while its category of components is depicted by
the following diagram, is obtained with our new definition (Definition
5), and is the same as the one given as an example in (Fajstrup et al.,
2004):

5 // 8
g′2 // 10

7

g′1

OO

g1

// 9

g2

OO

3

OO

f ′
2 // 4

1

f ′
1

OO

f1

// 2

f2

OO

// 6

OO

together with relations g′2 ◦ g′1 = g2 ◦ g1 and f ′
2 ◦ f ′

1 = f2 ◦ f1.

Organization and contributions of the paper: We summarize the
main (classical) definitions of po-space, dihomotopy and fundamental
category in Section 2. We then introduce the first contribution of the
paper: Definition 5, which gives a set of axioms for “Yoneda-systems”.
A particular Yoneda-system of the fundamental category will be used
to define the component category, as the category of fractions of the
fundamental category with respect to this Yoneda-system, Definition
6.

We show that the family of Yoneda-systems of a particular type
of small categories (including fundamental categories of po-spaces),

1 or PV models which are special instances of progress graphs
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admits a maximal element under the subset ordering (of sets of mor-
phisms), consequence of Theorem 1: this will be the Yoneda-system
of interest for Definition 6. This theorem asserts even more in that it
shows that the set of Yoneda-systems, together with subset inclusion,
forms a locale: this is the second main contribution of this paper.

The third major contribution of the paper is Corollary 2 in which we
show that the component category just defined could instead have been
defined as a (much more “practical”) quotient construction, defined in
Section 4.1 and Section 4.2, after the work of (Bednarczyk et al., 1999).

The fourth contribution of the paper is a van Kampen theorem
for component categories, Proposition 4, which allow for practical,
inductive computations.

In Section 6 we refine our understanding of component categories
by splitting the axioms defining Yoneda-systems in two parts: one for
“future components” (Yoneda-f-systems), the other for “past compo-
nents” (Yoneda-p-systems). They still enjoy interesting lifting proper-
ties, like for component categories, Proposition 6 (this is the fifth major
contribution of the paper).

Last but not least, and sixth contribution of this article, we show
in Theorem 5 that a category very similar to the component category
(that we conjecture to be equivalent again), the orthogonal subcategory
of a category C with respect to its biggest Yoneda-f-systems, is reflective
in C.

Note: In order to avoid any confusion with the notion of weak
equivalences in algebraic topology, the terminology “weak(ly) invertible
morphism”, “system of weak equivalences”, that was used in (Fajstrup
et al., 2004), is replaced by “Yoneda morphism” and “Yoneda system”.
We also have slightly modified the notion of directed homotopy of
(Fajstrup et al., 2004), to take the one of (Grandis, 2003).

For a small category C, Ob(C) (respectively Mo(C)) denotes the set
of objects (respectively, morphisms) of C. For a morphism f ∈ Mo(C)
src(f) (respectively tgt(f)) denotes the source of f (respectively the
target of f).

2. Basic definitions

The framework for the applications we have in mind is mostly based
on the simple notion of a po-space:

DEFINITION 1.

1. A po-space is a topological space X with a (global) closed partial
order ≤ (i.e. ≤ is a closed subset of X×X). The unit segment [0, 1]
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with the usual topology and the usual order, is a po-space denoted
−→
I and called the directed interval.

2. A dimap f : X → Y between po-spaces X and Y is a continuous
map that respects the partial orders (is non-decreasing).

3. A dipath f :
−→
I → X is a dimap whose source is the interval

−→
I .

Po-spaces and dimaps form a complete and co-complete category de-
noted PoTop, see (Haucourt, 2005). To a certain degree, our methods
apply to the more general categories of lpo-spaces (Fajstrup et al., 2006)
(with a local partial order), of flows (Gaucher, 2002) and of d-spaces
(Grandis, 2003), but for the sake of simplicity, we stick to po-spaces in
the present paper.

Dihomotopies between dipaths f and g (with fixed extremities α

and β in X) are dimaps H :
−→
I ×

−→
I → X such that for all x ∈

−→
I ,

t ∈
−→
I ,

H(x, 0) = f(x), H(x, 1) = g(x), H(0, t) = α, H(1, t) = β.

Given two directed paths f and g, we write f v g when there exists
a dihomotopy from f to g, the relation v thus define a partial order on
the collection of directed paths of a given po-space

−→
X . Then we define

∼dih as the equivalence relation induced by v, its equivalence classes
are called dihomotopy classes. Let us insist on the important fact that,
given two directed paths f and g and their underlying continuous path
f ′ and g′, we might have a classical homotopy between f ′ and g′ though
f 6∼dih g. Furthermore, this situation is rather common, and is not by
any means an exception.

Now, we can define the main object of study of this paper:

DEFINITION 2. The fundamental category is the category −→π1(
−→
X ) with:

− as objects: the points of X,

− as morphisms, the dihomotopy classes of dipaths: a morphism
from x to y is a dihomotopy class [f ] of a dipath f from x to y.

Concatenation of dipaths factors over dihomotopy and yields the com-
position of morphisms in the fundamental category. A dimap f : X →
Y between po-spaces induces a functor f# : −→π1(

−→
X ) → −→π1(

−→
Y ), and we

obtain thus a functor −→π1 from the category of po-spaces to the category
of categories. The fundamental category of a po-space generalizes the
fundamental groupoid π1(X) of a topological space X (same set of

objects as −→π1(
−→
X ); morphisms from x to y are homotopy classes of paths
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from x to y). As indicated by its name, the fundamental groupoid of a
topological space is always a small category in which any morphism is
an isomorphism. It follows that π1 is a functor from Top (the category
of topological spaces and continuous maps between them) to Grpd (the
category of groupoids and functors between them). Given a po-space
−→
X , one can remark that −→π1(

−→
X ) satisfies:

− ∀x ∈ −→π1(
−→
X ) −→π1(

−→
X )[x, x] = {idx}

− ∀x, y ∈ −→π1(
−→
X ) x 6= y ⇒ (−→π1(

−→
X )[x, y] = ∅ or −→π1(

−→
X )[y, x] = ∅)

Any category L satisfying these properties are called loop-free2. The
small loop-free categories and functor between them form an epi-reflecti-
ve subcategory of Cat denoted LfCat. Hence −→π 1 is a functor from PoTop

to LfCat. In other words, the fundamental category of a po-space is
loop-free, this property will be helpful in the sequel.

The fundamental category is often an enormous gadget (with un-
countably many objects and morphisms) and possesses less structure
than a group. It is the aim of this paper to “shrink” the essential
information in the fundamental category to an associated component
category, that in many cases is finite and possesses a comprehensible
structure.

3. A convenient framework for components

The definition of components given in (Fajstrup et al., 2004) is strength-
ened in this section, and, from a theoretical point of view, improved.
We first define “Yoneda systems” in Section 3.1 and then consider the
category of fractions based on the fundamental category, where we
invert the morphisms of the maximal (see Section 3.2) Yoneda-system,
Definition 6.

“Pureness”, that was required as an axiom in (Fajstrup et al., 2004)
to have in particular the lifting property, Proposition 7 of (Fajstrup
et al., 2004) (and recapped as Proposition 5 in this article), becomes a
fairly easy consequence of the new set of axioms for Yoneda systems,
Definition 3. Recall that a subcategory Σ ⊆ C is pure if for all mor-
phisms f ∈ Σ, whenever f = g ◦ h with g, h ∈ C, g and h necessarily
belong to Σ.

2 Appeared in (Haefliger, 1992) as “small categories without loops” or “scwols”.
We also refer the reader to (Bridson and Haefliger, 1999) for details.
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3.1. Definition of Yoneda systems

First we recall the definition of Yoneda (invertible) morphisms (Fa-
jstrup et al., 2004): it expresses basic requirements for morphisms to
“bring no information”, leading to the lifting property, Proposition 7
of (Fajstrup et al., 2004) and Proposition 5 of this article.

DEFINITION 3. Given a (small) category C, a morphism x σ // y ∈
C is Yoneda (invertible) morphism when for each object z of C such that
C[y, z] 6= ∅, the following map3:

C[y, z]
−◦σ // C[x, z] is a bijection,

and for each object z of C such that C[z, x] 6= ∅, the following map4:

C[z, x]
σ◦− // C[z, y] is a bijection.

As showed in (Fajstrup et al., 2004), Yoneda morphisms do not nec-
essarily make good calculi of fractions, i.e. calculi having right and/or
left extension properties as defined below:

DEFINITION 4. Right Extension Property
Σ has the right extension property with respect to C iff for all γ : y ′ −→
x′, for all σ : x −→ x′ ∈ Σ, there exists σ′ : y −→ y′ ∈ Σ, there exists
γ′ : y −→ x such that σ ◦ γ ′ = γ ◦ σ′, i.e. the following diagram is
commutative:

y

∃σ′∈Σ

���
�

�
�

∃γ′

��>
>

>
>

y′

∀γ ��>
>>

>>
>>

x

∀σ∈Σ����
��

��
��

x′

Left Extension Property is obtained by “dualizing” Definition 4
This can be fixed, see Lemma 5 of (Fajstrup et al., 2004), by re-

stricting ourselves to the maximal subset of Yoneda morphisms which
has REP and LEP. Unfortunately, this does not provide us with a
pure calculus in general. To circumvent these problems, we strengthen
LEP and REP so that to have canonical extensions, by pushouts and
pullbacks:

3 This is a form of preservation of the future cone.
4 This is a form of preservation of the past cone.
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DEFINITION 5. Let C be a small category, Σ ⊆ Mo(C) is a Yoneda-
system if and only if:

(A1) Σ is stable under composition (of C)

(A2) Iso(C) ⊆ Σ ⊆ Y oneda(C)5

(A3) Σ is stable under pushouts (with any morphism in C).

(A4) Σ is stable under pullbacks (with any morphism in C).

The last two points mean that Σ has both REP and LEP with respect to
C and further the commutative squares provided by REP and LEP can
be chosen in order to be respectively pullback and pushout squares
in C.

Let us mention here that (private communication of Lisbeth Fa-
jstrup, Aalborg University), most of the following results would still
hold with weaker axioms, in particular, one can ask for only having
weak pushouts (no unicity required, only finiteness).

Any Yoneda-system of any small category C is pure and has left and
right extension properties:

LEMMA 1. Let C be a small category such that Iso(C) is pure in C.
Then any Yoneda-system of C is pure in C.

Proof. Take σ ∈ Σ and f1, f2 ∈ Mo(C) such that σ = f2 ◦ f1. By (A3)
of Definition 5, we have a σ′ ∈ Σ and f ′

1 which form a pushout square
and a unique g ∈ Mo(C) making the following diagram commutative.

g

OO

f ′
1

??�
�

�
�

id

88

σ′

__?
?

?
?

f2

ff

σ

__??????? f1

??�������

pushout

By pureness of Iso(C) in C, f ′
1 and g are isomorphisms, hence by (A2)

of definition 5, belong to Σ. So by (A1) of Definition 5, f2 = g ◦σ′ ∈ Σ.
In the same way, using the pullback (instead of pushout) extension
property, one proves that f1 ∈ Σ. Thus Σ is pure in C. �

5 Iso(C) and Y oneda(C) are subcategories of C respectively generated by
isomorphisms and Yoneda invertible morphisms of C.
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3.2. Locale of Yoneda-systems

In this section, we give several results which will be combined to prove
that the collection of Yoneda-systems of a small category C such that
Iso(C) is pure in C forms a locale (Theorem 1). We recall that a locale
is a poset (L,≤L) such that for all U ⊆ L, U has a least upper bound
and a greatest lower bound (it is a complete lattice) and ∀(bj)j∈J ∈

LJ ∀a ∈ L, a ∧
(

∨

j∈J bj

)

=
∨

j∈J(a ∧ bj) (see (Borceux, 1994b) or

(Johnstone, 1982)).

LEMMA 2. Let C be a small category, the collection Iso(C) is a Yoneda-
system of C.

Proof. It is routine verification which does not involve more category
theory than the fact that the pushout (respectively the pullback) of an
isomorphism along any morphism is an identity. �

LEMMA 3. If (Σj)j∈J is a non empty family of Yoneda systems of a
small category C then

⋂

j∈J Σj is a Yoneda-system of C.

Proof.
⋂

j∈J Σj obviously enjoys (A1) and (A2) of Definition 5. Sup-
pose σ ∈

⋂

j∈J Σj and f ∈ Mo(C) with src(f) = src(σ). Take j1, j2 ∈ J ,
since σ ∈ Σj1 we have a pushout square

x1
f ′
1

>>}
}

}
}

σ′
1
∈Σj1

``A
A

A
A

σ

aaDDDDDDDD f

==zzzzzzzz

pushout

and also
x2

f ′
2

>>}
}

}
}

σ′
1
∈Σj2

``A
A

A
A

σ

aaDDDDDDDD f

==zzzzzzzz

pushout

because σ ∈ Σj2 . By uniqueness (up to isomorphism) of the pushout,
we have an isomorphism τ from x2 to x1 such that σ′

1 = τ ◦σ′
2. By (A2)

of Definition 5, τ ∈ Σj2 which is stable under composition by (A1),
thus σ′

1 = τ ◦ σ′
2 ∈ Σj2 . By the same argument, for all j ∈ J, σ ′

1 ∈ Σj
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i.e. σ′
1 ∈

⋂

j∈J Σj and we have

f ′
1

??�
�

�
�

σ′
1
∈
⋂

j∈J
Σj

__?
?

?
?

σ∈
⋂

j∈J
Σj

__??????? f

??�������

pushout

The same proof holds for pullback squares. �

LEMMA 4. If (Σj)j∈J is a non empty family of Yoneda systems of a
small category C then

⊎

j∈J Σj is a Yoneda-system of C, where
⊎

j∈J Σj

is the least sub-category of C including all the Σj’s.

Proof. By definition,
⊎

j∈J Σj = {σn◦. . .◦σ1 | n ∈ N
∗ , {j1, . . . , jn} ⊆

J and for all k ∈ {1, . . . , n}, σk ∈ Σjk
}, property (A1) of Defini-

tion 5 immediately follows. The second one is obvious for the family
is non empty and because a composition of Yoneda invertible mor-
phisms is Yoneda invertible. Take σn ◦ . . . ◦ σ1 ∈

⊎

j∈J Σj with n ∈ N
∗,

{j1, . . . , jn} ⊆ J , for all k ∈ {1, . . . , n}, σk ∈ Σjk
and f ∈ Mo(C) with

src(σ1) = src(f). We have

f

OO

σ1∈Σj1

//
σn∈Σjn

//

By a finite induction (apply consecutively (A3) of Definition 5 for
Σj1, . . . ,Σjn), we have

σ′
1
∈Σj1//___

σ′
n∈Σjn//___

f

OO

σ1∈Σj1

//

p.o. f1

OO�
�
�

σn∈Σjn

//

fn−1

OO�
�
�

p.o. fn

OO�
�
�

Now, it is a general fact that a “composition” of push-out squares is a
push-out square (see (Mac Lane, 1971; Borceux, 1994a)) hence

σ′
n◦...◦σ

′
1
∈
⊎

j∈J
Σj

//____________

f

OO

σn◦...◦σ1∈
⊎

j∈J
Σj

//

pushout fn

OO�
�
�

This works analogously for pullback squares, thus property (A4) of
Definition 5 is satisfied. �
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LEMMA 5. Let C be a (small) category. If A is a pure subcategory

C then for all families (Cj)j∈J of subcategories of C, A∩
(

⊎

j∈J Cj

)

=
⊎

j∈J(A∩ Cj)

Proof. The inclusion A∩
(

⊎

j∈J Cj

)

⊇
⊎

j∈J(A ∩ Cj) is always sat-

isfied. Indeed, if f is an element of the right member, then one has
n ∈ N

∗, {j1, . . . , jn} ⊆ J , for all k ∈ {1, . . . , n}, σk ∈ A ∩ Σjk
and

f = σn ◦ . . . ◦ σ1. Now A is a subcategory of C and in particular, for
all k ∈ {1, . . . , n}, σk ∈ A, hence f ∈ Mo(A). Conversely, suppose that
we have n ∈ N

∗, {j1, . . . , jn} ⊆ J , for all k ∈ {1, . . . , n}, σk ∈ Σjk
and

f = σn ◦ . . . ◦σ1 ∈ Mo(A), by pureness of A, σn, . . . , σ1 ∈ Mo(A), then
for all k ∈ {1, . . . , n}, σk ∈ A ∩ Σjk

and f is an element of the left
member. �

In fact, having

A∩





⊎

j∈J

Cj



 =
⊎

j∈J

(A∩ Cj)

is equivalent to the existence of the right adjoint of the functor A∩ :
({subcategories of C},⊆) −→ ({subcategories of C},⊆), where the
continuous lattice ({subcategories of C},⊆) is seen as a complete and
co-complete small category. The equivalence directly comes from the
special adjoint functor theorem, see (Freyd and Scedrov, 1990). This
equivalence is related to the link between locales and complete Heyting
algebras, see (Borceux, 1994b) for further details.

COROLLARY 1. Let (Σj)j∈J be a family of Yoneda-systems of a small
category C such that Iso(C) is pure in C and Σ a Yoneda-system of C.

Then Σ ∩
(

⊎

j∈J Σj

)

=
⊎

j∈J(Σ ∩ Σj).

Proof. By Lemma 1, Σ is pure in C, the result follows by Lemma 5.
�

REMARK 1.
⋂

and
⊎

are associative over the family of subcategories
of a small category C.

We can now state:

THEOREM 1. Let C be a small category such that Iso(C) is pure in
C. Then, the family of Yoneda-systems of C is not empty and, together
with ⊆ it forms a locale whose l.u.b. operator is

⊎

and g.l.b operator is
⋂

. Moreover, the least element of this locale (“bottom”) is Iso(C).
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13

Proof. The collection of Yoneda-systems of C has a least element by
Lemma 2 and the other axioms of a locale are given by Lemmas 3, 4
and Corollary 1. �

Remark that Lemmas 2, 3 and 4 are satisfied for any small category
C, thus proving that the collection of Yoneda-systems of a small cate-
gory is not empty and, ordered by inclusion, forms a complete lattice;
the pureness of Iso(C) is only involved in Lemma 5 and its Corollary
1.
As explained in (Borceux, 1994b) and (Johnstone, 1982), the notion of
locale generalizes the notion of family of open subsets of a topological
space, thus, Theorem 1 gives us a kind of topology over C as soon as
Iso(C) is pure in C. This pureness hypothesis is actually very “natural”.
If we think about it, we want to consider an isomorphism of C as a
directed path, which is the case when C is a fundamental category.
It makes sense geometrically to expect that all its subpaths are also
dipaths i.e. are isomorphisms.

3.3. Components categories

We are now in position to fully define the main mathematical notion
we are describing in this article. We have seen that Yoneda systems
form a locale. Calling its greatest element >:

DEFINITION 6. The component category of a po-space
−→
X is defined as

the category of fractions (see (Gabriel and Zisman, 1967)) −→π1(
−→
X )[>−1].

Because of the obvious analogy with the set of arc-wise connected
components of a topological space, we denote the component category
of a po-space as −→π0(

−→
X ).

4. Relevant reduction of the size of a loop-free category

The previous section gives a theoretically satisfactory definition of the
component category. Still, it remains to show that it is a useful notion
for our purposes. The component category is designed to reduce the size
of the fundamental category without losing any “relevant” information.
The following result formalizes this idea and confirms an intuition that
was shared by the authors from the beginning.

Recalling in Section 4.1 the notion of generalized congruence (in-
troduced originally in (Bednarczyk et al., 1999) applied in Section 4.2
to define quotients of small categories by one of its subcategories, we

apcsII.tex; 15/09/2006; 13:35; p.13



14

can finally re-define the component category as the quotient of the
fundamental category by the biggest Yoneda system, Section 4.3.

4.1. Generalized congruences

This section is devoted to generalized congruences that have been
formalized in (Bednarczyk et al., 1999).

DEFINITION 7 (Generalized Congruences). A generalized congruence
on a small category C is an equivalence relation ∼o on Ob(C) and a
partial equivalence relation ∼m on Mo(C)+ (the set of all non-empty
finite sequences of morphisms of C), satisfying the following conditions
(· is the usual concatenation, the α’s, β’s and γ’s range over Mo(C)):

− (βn, . . . , β0) · (αp, . . . , α0) ∼m (γq, . . . , γ0) ⇒ tgt(αp) ∼o src(β0)

− (βn, . . . , β0) ∼m (αp, . . . , α0) ⇒ tgt(βn) ∼o tgt(αp) and src(β0) ∼o

src(α0)

− x ∼o y ⇒ idx ∼m idy

− (βn, . . . , β0) ∼m (αp, . . . , α0) and (δq, . . . , δ0) ∼m (γr, . . . , γ0)
and tgt(βn) ∼o src(δ0) ⇒ (δq, . . . , δ0)·(βn, . . . , β0) ∼m (γr, . . . , γ0)·
(αp, . . . , α0)

− src(β) = tgt(α) ⇒ (β ◦ α) ∼m (β, α)

PROPOSITION 1 (Quotient Category). Given (∼o,∼m) a generalized
congruence on a small category C, we define the quotient category
C/∼ by

− Ob(C/∼) := {[x]∼o |x ∈ Ob(C)}

− src([(γn, . . . , γ0)]∼m) = [src(γ0)]∼o

− tgt([(γn, . . . , γ0)]∼m) = [tgt(γn)]∼o

− [(βn, . . . , β0)]∼m◦[(αp, . . . , α0)]∼m = [(βn, . . . , β0)·(αp, . . . , α0)]∼m

Moreover, there is a quotient functor Q∼ : C → C∼, defined by Q∼(x) =
[x]∼o and Q∼(γ) = [γ]∼m . The functor Q∼ enjoys the following univer-
sal property, for any functor f : C → C2, if ∼⊆∼f then there exists a
unique g : C/∼ → C2 such that f = g ◦ Q∼. Still, we have the following
facts :

− g is a monomorphism iff ∼f=∼,

− ∼Q∼
=∼,
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− Q∼ is an extremal epimorphism.

LEMMA 6. (Bednarczyk et al., 1999) Generalized congruences on a
given small category, ordered by componentwise inclusion, form a com-
plete lattice whose meets are componentwise intersections. The total
relation which identifies all objects and all non-empty finite sequences of
morphisms is a generalized congruence, precisely > of the lattice, while
(=Ob(C), ∅) is ⊥. Thus, for an arbitrary pair of relations Ro on Ob(C)

and Rm on Mo(C)+, there is a least generalized congruence containing
(Ro, Rm).

4.2. Quotient of a small category by one of its

subcategories : C/Σ

Given Σ a subcategory of a small category C, we can define C/Σ := C/∼

where ∼ is the least generalized congruence on C containing

(∅, {(idtgt(σ), σ), (σ, idsrc(σ)) | σ ∈ Mo(Σ)})

(by Lemma 6).

PROPOSITION 2 (Description and universal property of C/Σ).
Given a small category C and Σ ⊆ Mo(C), closed under composition (in
fact, take Σ a subcategory of C). Let (∼o,Σ,∼m,Σ) be the least generalized
congruence containing (∅, {(idtgt(σ) , σ), (σ, idsrc(σ))|σ ∈ Σ}). Then:

− for all x, y ∈ Ob(C), x ∼o,Σ y if and only if there is a Σ-zig-zag
between x and y.

− for all (βn, . . . , β0), (αm, . . . , α0) ∼o,Σ-composable sequences (i.e.
src(αi+1) ∼o,Σ tgt(αi) and src(αi+1) ∼o,Σ tgt(αi)), we have

(βn, . . . , β0) ∼m,Σ (αm, . . . , α0)

if and only if there is a finite sequence of “elementary transfor-
mation” from (αm, . . . , α0) to (βn, . . . , β0), where an “elementary
transformation” is either

• (αn, . . . , αi+1, σ, αi−1, . . . , α0) ∼
1
m,Σ (αn, . . . , αi+1, idsrc(σ),αi−1,

. . . , α0) if σ ∈ Σ

• (αn, . . . , αi+1, σ, αi−1, . . . , α0) ∼
1
m,Σ (αn, . . . , αi+1, idtgt(σ) , αi−1,

. . . , α0) if σ ∈ Σ
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• (αn, . . . , αi+2, αi+1, αi, αi−1, . . . , α0) ∼
1
m,Σ (αn, . . . , αi+2, αi+1◦

αi, αi−1, . . . , α0) if src(αi+1) = tgt(αi).

C/Σ is characterized by the following universal property:
for all f ∈Cat[C, C ′], if for all σ ∈ Σ, f(σ) = id then there exists a

unique g ∈Cat[C/Σ, C′] such that f = g ◦ QΣ.

Moreover, if C1
f // C2 satisfies f(Σ1) ⊆ Σ2 then there exists a

unique h : C1/Σ1
// C2/Σ2 such that QΣ2

◦ f = h ◦ QΣ1
, where

QΣ is the quotient functor (refer to proposition 1) associated to the
generalized congruence induced by Σ.

The arrow h is also denoted f/Σ1,Σ2
, and in the same stream of

notation g is denoted f/Σ.

4.3. The component category as a quotient category

THEOREM 2. Given a loop-free category L and Σ a Yoneda-system

of L, L[Σ−1] is equivalent to L/Σ

Sketch of proof. By definition of calculus of fractions we have a
(canonical) functor IΣ : L −→ L[Σ−1] and by definition of general-
ized congruences, we have a (canonical) functor QΣ : L −→ L/Σ.
By definition of QΣ, for all σ ∈ Σ QΣ(σ) is an identity of L/Σ, it
follows, by the universal property of IΣ, that there is a unique functor
RΣ : L[Σ−1] −→ L/Σ such that QΣ = RΣ ◦ IΣ.
Now we prove that RΣ is an equivalence of category. Given an object x
of L/Σ we “choose” (implicitly applying the axiom of choice) x ∈ x (we
recall that, by definition, x is an equivalence class of L), thus we have

defined a mapping JΣ : Ob
(

L/Σ
)

−→ Ob
(

L[Σ−1]
)

. Given an object x

of L[Σ−1], RΣ(x) = QΣ(x) = x since QΣ = RΣ ◦ JΣ. It follows that
given an object x of L/Σ, RΣ(JΣ(x)) = x. Moreover, it is a general
fact that if L is a loop-free category and Σ is a Yoneda-system of L,
then L/Σ is still loop-free (see (Haucourt, 2005)). Thus, we conclude

x ∈ Ob
(

L/Σ
)

. Hence the only morphism of L/Σ from RΣ(JΣ(x)) = x

to x is idx.
Therefore the co-unit of the adjunction (if it exists) is necessarily

(εx = idx)x∈L/Σ. To check we actually have an adjunction, it suffices to
prove that for all objects x and y of L with x satisfying JΣ(RΣ(x)) = x,
the following mapping is a bijection:

L[Σ−1][y, x] // L/Σ[y, x]

f � // εx ◦ RΣ(f) = RΣ(f)
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It is obviously onto since QΣ is onto. The proof of the one-to-one
property is omitted because of space limitations, but can be found
in (Haucourt, 2005).

We thus actually have a bijection and the family (εx = idx)x∈L/Σ

is a natural transformation from RΣ ◦ JΣ to IdL/Σ
. To check that we

have an equivalence of categories, it remains to see that the unit of the

adjunction is also an isomorphism. Given x ∈ Ob
(

π1(
−→
X )[Σ−1]

)

, ηx is

a morphism of π1(
−→
X )[Σ−1] from x to IΣ(RΣ(x)) which are in the same

Σ-component, hence ηx is an isomorphism of L[Σ−1] (the pureness of
Σ is implicitly involved).

This completes the proof except for the technicality that we sig-
nalled. �

A complete proof of theorem 2 is available in (Haucourt, 2007)
together with several corollaries and illustrating examples.

It would be interesting to know whether the component category
construction is functorial or not, but it seems not to be so, as far as we
know.

Finally we state:

COROLLARY 2. Given a po-space
−→
X and Σ the biggest Yoneda sys-

tem of
−→
X , −→π1(

−→
X )[Σ−1] is equivalent to −→π1(

−→
X )/Σ (which is, by definition,

the component category of
−→
X ).

In the above Corollary, the quotient category −→π1(
−→
X )/>, is in fact

−→π1(
−→
X )/ ∼ where ∼ is the generalized congruence generated by σ ∼ id

for all σ ∈ >.
From a computer science point of view, Corollary 2 is exactly what

was expected of component categories. It gives a “smaller” model of
X, as far as dipaths modulo dihomotopy are concerned.

For example, considering the example of the square with a hole,
−→π1(

−→
X ) has the size of a continuum while its component category is

finite. It remains to establish an algorithm to determine, at least in the
cubical cases, the component category of a po-space (see (Goubault
and Haucourt, 2005) for the first few steps in that direction).

5. van Kampen theorem for component categories

The following proposition shows that loop-freeness is well-behaved with
respect to quotients. It is in fact necessary in the full proof of Theorem
2.
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PROPOSITION 3. Let C be a small category and Σ a wide subcategory
of C. If C is loop-free and Σ is a pure subcategory of Yoneda morphisms
admitting the left and right extension properties then C/Σ is loop-free.

The proof of Proposition 3 is given in (Haucourt, 2005). Theorem 3
gives the general framework in which the construction of the component
category is functorial. The idea is to equip any small category C in
our scope of interest with a subcategory of distinguished morphisms
(called “inessential” in (Fajstrup et al., 2004)) which are informally
those along which “nothing happens”. The theorem will be applied
with Yoneda-systems as subcategories of distinguished morphisms.

Let us denote LfCatSys the category whose objects are the cou-
ples (C,Σ) where Σ is a Yoneda system over C and the morphisms
from (C1,Σ1) to (C2,Σ2) are the elements of LfCat[C1, C2] such that
f(Σ1) ⊆ Σ2. In this case, for any couple (C,Σ), we choose a repre-
sentative of the quotient of C by Σ that we denote −→π0(C,Σ); if f is
a morphism of LfCatSys from (C1,Σ1) to (C2,Σ2), then by definition,
−→π0(f) is the unique small functor g from −→π0(C1,Σ1) to −→π0(C2,Σ2) such
that QΣ2

◦ f = g ◦ QΣ1
: the small functors QΣ1

, QΣ2
and g are given

by the universal property of the quotients and the functoriality of −→π0 is
thus a consequence of the uniqueness of g. Recall that the isomorphisms
of a loop-free category are its identities. Let us denote U the forgetful
functor from LfCatSys to LfCat.
Given any object C of LfCat, we set F (C) := (C, Iso(C)) and −→π0(C,Σ) :=
C/Σ, defining thus the objects parts of the functors F and −→π0.
Given a morphism f of LfCat[C1, C2], F (f) is the unique morphism in

LfCatSys
[

(C1, Iso(C1)), (C2, Iso(C2))
]

induced by f , meaning U(F (f)) =

f , and at last, for any morphism f of LfCatSys[(C1,Σ1), (C2,Σ2)], we
set −→π0(f) := fΣ1,Σ2

. Then we have:

THEOREM 3 (The component category functor).

The functor −→π0 is left adjoint to the
functor F , which is left adjoint to
the functor U . −→π0 a F a U

LfCatSys

U

��

−→π0

@@LfCat
Foo_ _ _ _ _ _ _ _ _

Proof. From Theorem 1, the smallest Yoneda system of C is its set of
isomorphisms. It follows that F is the left adjoint of U and the unit of
this adjunction is an identity.
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Let us prove that −→π0 is the left adjoint of F and that its unit is given
by the collection of quotient functors QΣ from C to C/Σ (Proposition
2) that induce morphisms of LfCatSys from (C,Σ) to (C/Σ, Iso(C/Σ)).

We have here to check that C/Σ is actually loop-free, which is
given by Proposition 3. If f is a morphism of LfCatSys from (C,Σ) to
(C′, Iso(C′)), then, still from Proposition 2, there exists a unique fonctor
g from C/Σ to C ′ such that f = g ◦ QΣ and it is clear that g induces
a unique morphism of LfCatSys[(C, Iso(C)), (C ′, Iso(C′))], whence the
expected adjunction. �

Remember that a van Kampen theorem about a functor F is the
statement that, under some particular conditions on a pushout square
(algebraic topologists would rather say “glueing”) this pushout square
is preserved by F . We already have a directed van Kampen theorem
for −→π 1 and theorem 3 shows that −→π0 is a left adjoint, hence preserves
all colimits and a fortiori pushout squares. It remains to find a way
to “include” LfCat in LfCatSys in such a way that the pushout square
we are interested in is preserved by the “inclusion”. To do so, we will
have to add hypotheses to the ones necessary already required by the
directed van Kampen theorem for fundamental categories.

PROPOSITION 4 (van Kampen theorem for fundamental categories).

Let
−→
X 1,

−→
X 2 be sub-objects of

−→
X (object of PoSpc) such that the underly-

ing topological space of
−→
X is the union of the interiors6 of the underlying

topological spaces of
−→
X 1 and

−→
X 2. Let

−→
X 0 be defined as

−→
X 1 ∩

−→
X 2 and

i1 :
−→
X 0 ↪→

−→
X 1, i2 :

−→
X 0 ↪→

−→
X 2, j1 :

−→
X 1 ↪→

−→
X and j2 :

−→
X 2 ↪→

−→
X be the

inclusion maps. Then we have the following pushout squares

−→
X π1(

−→
X )

−→
X 1

j1}}}

>>}}}

pushout −→
X 2

j2AAA

``AAA

π1(
−→
X 1)

π1(j1)
ttt

::ttt

pushout π1(
−→
X 2)

π1(j2)JJJ

ddJJJ

−→
X 0

i1AAA

``AAA
i2}}}

>>}}}

π1(
−→
X 0)

π1(i1)JJJ

ddJJJ
π1(i2)
ttt

::ttt

respectively in PoSpc and LfCat.

6 with respect to the underlying topology of
−→
X .
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Proof. The proof of Proposition 4 can be found in (Goubault, 2003)7

or in (Grandis, 2003). It is an adaptation of the proof of van Kampen
theorem for fundamental groupoid given in (Higgins, 1971). �

The following result was a conjecture in Section 7 of (Fajstrup et al.,
2004), and is the central result of this section:

THEOREM 4 (van Kampen for component category).

Let
−→
X 1,

−→
X 2 be sub-objects of

−→
X 3 (object of PoSpc) such that the un-

derlying topological space of
−→
X3 is the union of the interiors of the

underlying topological spaces of
−→
X 1 and

−→
X 2. Also let

−→
X 0 :=

−→
X 1 ∩

−→
X 2

and i1 :
−→
X 0 ↪→

−→
X 1, i2 :

−→
X 0 ↪→

−→
X 2, j1 :

−→
X 1 ↪→

−→
X3 and j2 :

−→
X 2 ↪→

−→
X3 be

the respective inclusion maps.
Moreover, suppose that

− Σ1 and Σ2 are respectively Yoneda-systems of π1(
−→
X 1) and π1(

−→
X 2),

− π1(j1)(Σ1)
⊎

π1(j2)(Σ2) (also denoted Σ3) is a Yoneda system of

π1(
−→
X 3)

− π1(i1)(Σ0) ⊆ (Σ1) and π1(i2)(Σ0) ⊆ (Σ2) (i.e. π1(i1), π1(i2) are
morphisms of LfCatSys).

then

the inclusions i1, i2, j1 and j2 give rise to i′1, i
′
2, j

′
1 and j′2 morphisms of

LfCatSys and we have

(π1(
−→
X 3),Σ3)

(π1(
−→
X 1),Σ1)

j′
1

77nnnnnnnnnnnn

pushout in (π1(
−→
X 2),Σ2)

j′
2

ggPPPPPPPPPPPP

(π1(
−→
X 0),Σ0)

i′
1

ggPPPPPPPPPPPP i′
2

77nnnnnnnnnnnn

LfCatSys

7 In a more restrictive case than in (Higgins, 1971), but with a stronger
dihomotopy relation.
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and

−→π0(π1(
−→
X 3),Σ3)

−→π0(π1(
−→
X 1),Σ1)

−→π0(j′
1
)

66mmmmmmmmmmmmm

pushout in −→π0(π1(
−→
X 2),Σ2)

−→π0(j′
2
)

hhQQQQQQQQQQQQQ

−→π0(π1(
−→
X 0),Σ0)

−→π0(i′
1
)

hhQQQQQQQQQQQQQ −→π0(i′
2
)

66mmmmmmmmmmmmm

LfCat

Proof. Theorem 4 gives us pushout squares in PoSpc and LfCat:

−→
X π1(

−→
X )

−→
X 1

j1}}}

>>}}}

pushout −→
X 2

j2AAA

``AAA

π1(
−→
X 1)

π1(j1)
ttt

::ttt

pushout π1(
−→
X 2)

π1(j2)JJJ

ddJJJ

−→
X 0

i1AAA

``AAA
i2}}}

>>}}}

π1(
−→
X 0)

π1(i1)JJJ

ddJJJ
π1(i2)
ttt

::ttt

We have to prove that π1(
−→
X 0), π1(

−→
X 1), π1(

−→
X 2) and π1(

−→
X 3) respec-

tively equiped with Σ0, Σ1, Σ2 and Σ3 give rise to a pushout square in
LfCatSys.

Given f1 : (π1(
−→
X 1),Σ1) −→ (L,Σ) and f1 : (π1(

−→
X 2),Σ2) −→ (L,Σ)

morphisms of LfCatSys such that f1 ◦ i1 = f2 ◦ i2, by hypothesis, there
exists a unique h : π1(

−→
X 3) −→ L (morphism of LfCat) such that f1 =

h ◦ j1 and f2 = h ◦ j2. It remains to see that h gives rise to a morphism
of LfCatSys i.e. h(Σ3) ⊆ Σ.

By hypothesis, Σ3 = j1(Σ1)
⊎

j2(Σ2) so any element of Σ3 can be
written j2(α2n+1) ·j1(α2n) · ... ·j2(α1) ·j1(α0) where for all k ∈ {0, ..., n},
α2k ∈ Σ1 and α2k+1 ∈ Σ2. It follows that h(j2(α2n+1) · j1(α2n) · ... ·
j2(α1) · j1(α0)) = (h ◦ j2)(α2n+1) · (h ◦ j1)(α2n) · ... · (h ◦ j2)(α1) · (h ◦
j1)(α0) = f2(α2n+1) · f1(α2n) · ... · f2(α1) · f1(α0) ∈ Σ since f1, f2 are
morphisms of LfCatSys, hence h gives rise to a morphism of LfCatSys

from (π1(
−→
X 3),Σ3) to (L,Σ). Thus we have a pushout square in LfCat-

Sys. Now by Theorem 3, we know that −→π0 is a left adjoint hence (see
for instance (Borceux, 1994a)) preserves colimits and, in particular,
pushout squares.�

Theorem 4 does not necessarily give the biggest Yoneda system
of π1(

−→
X 3), so one has to guess what this biggest Yoneda system is

in order to choose appropriate Σ1 and Σ2. The choice of Σ0 is not
relevant since once Σ1 and Σ2 are given, it is possible to take Σ0
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j2 j1

i1i2

PoSpc

push−out
in

LfCat

push−out
in

j2

i2

j1

i1

Figure 3. An application of the van Kampen theorem on component categories

as the biggest Yoneda-system of π1(
−→
X 0) satisfying π1(i1)(Σ0) ⊆ (Σ1)

and π1(i2)(Σ0) ⊆ (Σ2). Furthermore, given a po-space
−→
X , we write

−→π0(
−→
X ) instead of −→π0

(

−→π1(
−→
X ),Σ

)

where Σ is the biggest Yoneda system

of −→π1(
−→
X ). By definition, −→π0(

−→
X ) is the component category of

−→
X .

Let us examine the example of the rectangles with two holes, see
the left hand side of Figure 5, which gives, by Theorem 4 the category
depicted on the right hand side figure below.

In this figure, rectangles in grey color are not commutative. The
holes of the geometrical shape are represented by non-commutative
squares in the component category. The dashed line represent the bound-
aries of the components. The problem of knowing which component
these lines belong to is of topological nature and has been briefly studied
in (Fajstrup et al., 2004), Section 5.3 and 6.

Applying Theorem 4 we can also prove that the component category
of the cube with a centered cubical hole has 26 objects8 as already
noted in (Fajstrup et al., 2004). It can be represented in IR3 putting
an object in the “center” of each vertex, edge and face (8 vertices +
12 edges + 6 faces = 26 objects). Morphisms are generated by arrows
from a point to its “closer neighbours in the future”, for example those
of (0, 0, 0) are (0, 0, 1

2), (0, 1
2 , 0) and ( 1

2 , 0, 0) while (1, 1, 1) has no such
neighbours. In order to have the hypothesis of Theorem 4 satisfied, we
split the cube into two parts so that, following notation of Theorem 4,
X0 :=]12−ε, 1

2 +ε[×[0, 1]× [0, 1]. It is the analog of the previous example
in three dimensions.

8 Geometrically, picture the Rubik’s cube, the interior cube is the hole, all other
cubes give an object.
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6. Future and past components

In order to refine some of our results, and our understanding of com-
ponents, we define a notion of component category in the future, as
component categories of section 2, except we only keep “half” of the
axioms:

DEFINITION 8. Let C be a small category, Σ+ ⊆ Mo(C) is a Yoneda-
f-system if and only if Σ+ is stable under composition and satisfies

(Af1) for all objects z of C such that C[y, z] 6= ∅, the map:

C[y, z]
−◦σ // C[x, z] is a bijection,

(Af2) all σ in Σ+ are monos in C, and Σ+ contains Iso(C)

(Af3) Σ+ is stable under pushouts (with any morphim in C)

Remark that (Af1) of Definition 8 is equivalent to the preservation of
the future cone, see the first part of Definition 3. The idea, that we
will formalize in the rest of the section, is that we distinguish states,
or objects in the fundamental category, only up to the possible futures.
Dually we can define a Yoneda-system in the past as the other half of
the axiom of Section 2:

DEFINITION 9. Let C be a small category, Σ− ⊆ Mo(C) is a Yoneda-
p-system if and only if Σ− is stable under composition (of C) and
satisfies

− for all object z of C such that C[z, x] 6= ∅, the map:

C[z, x]
σ◦− // C[z, y] is a bijection.

− all σ in Σ− are epis in C, and Σ− contains Iso(C)

− Σ− is stable under pullbacks (with any morphim in C)

We will always denote in the following Yoneda-f-systems by Σ+

and Yoneda-p-systems by Σ−. Yoneda-f-systems (respectively Yoneda-
p-systems) form locales as Yoneda-systems did (similar arguments as
those of Section 3.2 apply). Future component categories (respectively
past component categories) are defined analogously as component cat-
egories, as the quotient of the fundamental category by the biggest
Yoneda-f-system (respectively Yoneda-p-system).

The main result of (Fajstrup et al., 2004) is the following lifting
property, as follows:
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PROPOSITION 5. (Proposition 7 of (Fajstrup et al., 2004)) Let C
be a category in which all endomorphisms are identities (this is true in
particular if C is loop-free). Let Σ be any pure left and right calculus of
Yoneda morphisms on C and C1, C2 ⊂ Ob(C) be two objects of C[Σ−1]
such that the set of morphisms (in C[Σ−1]) is finite. Then, for every
x1 ∈ C1 there exists x2 ∈ C2 such that the quotient map

C(x1, x2) → C/Σ(C1, C2), f 7→ [f ]

is bijective.

Now we have similar results (which are then true also for component
categories, since Yoneda-systems are in particular Yoneda-f-systems):

PROPOSITION 6. Let C be a category in which all endomorphisms
are identities (this is true in particular if C is loop-free). Let Σ+ (re-
spectively Σ−) be any Yoneda-f-system (respectively Yoneda-p-system)
on C and C1, C2 ⊂ Ob(C) be two future components (respectively past
components) such that the set of morphisms in C/Σ+ (or equivalently,
by Theorem 2, in C[Σ−1

+ ]) is finite. Then, for every x1 ∈ C1 (respectively
x2 ∈ C2) there exists x2 ∈ C2 (respectively x1 ∈ C1) such that the
quotient map

C(x1, x2) → C/Σ+
(C1, C2), f 7→ [f ]

is bijective.

Proof. It suffices to go through each different step of the proof of
Proposition 7 of (Fajstrup et al., 2004) for future components (the case
of past components is similar).

Proposition 3 of (Fajstrup et al., 2004) still holds since future com-
ponents form in particular a l-system (i.e. in the terminology of this
paper, it has LEP with respect to C, hence it has a left extension
property):

(B1) For every f ∈ C(x, y) and every x′ ∼o,Σ+
x there exists y′ ∼o,Σ+

y
and f ′ ∈ C(x′, y′) such that f ′ ∼m,Σ+

f .

(B2) Let [f ]m,Σ+
∈ ~π0(C; Σ+)([x]o,Σ+

, [y]o,Σ+
) and let x′ ∈ [x]0,Σ+

, where
[.]o,Σ+

denotes the equivalence class under ∼o,Σ+
for objects of C,

with the terminology of Section 4.2 (respectively, [.]m,Σ+
denotes

the equivalence class under ∼m,Σ+
for morphisms of C). Then there

exists y′ ∈ [y]Σ+
and f ′ ∈ C(x′, y′) such that [f ′]Σ+

= [f ]Σ+
.

The proof of Proposition 4 of (Fajstrup et al., 2004) used in the proof
of Proposition 7 of (Fajstrup et al., 2004) cannot be used here, because
for Yoneda-f -systems, we do not have the pureness necessary for this
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proposition to be true. In fact, this will be not necessary here. We have
a particular form of purity for future components that is sufficient. The
same argument than for Lemma 1 shows (using the pushout property)
that f2 ◦ f1 ∈ Σ+ implies f2 ∈ Σ+.

This is what we need to prove Proposition 5 of (Fajstrup et al., 2004)
that we recast below:

Let σ, τ ∈ Σ+(x,−). There exists a solution of the extension problem

· //___ σ′

·

x

τ

OO

σ
// ·

OO�
�
� τ

′

with both morphisms σ′, τ ′ ∈ Σ+.
Take σ : α → β ∈ Σ+ and τ : α → γ ∈ Σ+. Take their pushout:

· //___ σ̃ ·

x

τ

OO

σ
// ·

OO�
�
�
τ̃

We know σ̃ is in Σ+, and that σ̃ ◦ τ = τ̃ ◦σ. With our “half-purity”,
this also implies that τ̃ ∈ Σ+.

Let us now rephrase the proof of (Fajstrup et al., 2004).
Let g1, . . . , gn be the finitely many morphisms (by hypothesis) from

C1 to C2 in C/Σ+. By repeated application of (B2), they can be lifted

to f1, . . . , fn ∈ −→π1(
−→
X ) with fi : x1 ∈ C1 → yi ∈ C2.

All yi are in C2, i.e. y1 ∼o,Σ+
y2 ∼o,Σ+

. . . ∼o,Σ+
yn. By Proposition

2, we know that we have Σ+-zig-zag morphisms between yi and yi+1

(1 ≤ i ≤ n − 1). Taking repeated pushouts of these morphisms, we
deduce that there exists λi : yi → zi and µi : yi → zi both in Σ+.
Taking again repeated pushouts of the zig-zag morphisms constituted
by λ1, µ1, . . . , λn−1, µn−1, we find maps in Σ+, τi : yi → x2 ∈ C2.

The quotient map is onto, since τi ◦ fi ' fi, 1 ≤ i ≤ n.
To prove injectivity, assume fi ∈ C(x1, x2) with

[f1] = [f2] ∈ ~π0(C; Σ+)(C1, C2)

Then, there exist x0 ∈ C1, x3 ∈ C2 and morphisms σi ∈ Σ+(x0, x1), τi ∈
Σ+(x2, x3), 1 ≤ i ≤ 2, such that τ1◦f1◦σ1 = τ2◦f2◦σ2 ∈ C(x0, x3). By
(Af1), we find that there can only be a unique morphism between two
fixed objects within the same component, hence σ1 = σ2 and τ1 = τ2.
Since .◦σ1 is a bijection here by (Af1) again, we conclude τ1◦f1 = τ1◦f2.
Finally, by (Af2), τ1 is a mono, hence f1 = f2 ∈ C(x1, x2). �
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We can improve the result of Proposition 5, so that the hypothesis
of finiteness can be suppressed. We need the following notion:

DEFINITION 10. Given a set X ∪ {⊥} where ⊥ 6∈ X, we denote by
DX the poset X ∪ {⊥} ordered by the relation { (⊥, x) | x ∈ X } , so
⊥ is the least element of the poset. Let F be a functor from DX to a
category C. We name the colimit of F (DX) in C, when it exists, the X-
pushout of F . An X-pushout is a natural generalization of a (binary)
pushout.

Given two sets X and Y , DX and DY are isomorphic if and only if X
and Y have the same cardinality, it follows that if X and Y have the
same cardinality, C has X-pushouts if and only if it has Y -pushouts.
So, for any cardinal κ, we will say that C has κ-pushouts when it has
X-pushouts for some set X of cardinality κ. Given two cardinals κ1

and κ2 such that κ1 ≤ κ2, if C has κ2-pushouts, then it also has κ1-
pushouts. We say that C has infinite pushouts when C has κ-pushouts
for any cardinal κ, one easily checks that given a small category C, if
C has Ob(C)-pushouts, then C has infinite pushouts.

Now, if we ask for the subcategory Σ+ to have infinite pushouts then
the lifting property of Proposition 5 holds even if the set of morphisms
(in C/Σ+) between two objects is not finite.

We conjecture that in all “usual cases” of interest in concurrency
semantics, such as PV models, future components have automatically
infinite pushouts (respectively, past components have automatically
infinite pullbacks).

Let us complete our knowledge of future and past component cate-
gories. We first recall a useful notion of category theory:

DEFINITION 11. (Borceux, 1994a) Let C be a category and Σ a class
of morphisms of C. By the orthogonal subcategory of C determined by
Σ, we mean the full subcategory CΣ of C, whose objects are those X ∈ C
such that s ⊥ X for every s ∈ Σ, i.e., such that for every s : A → B ∈
Σ, for every morphism f : A → X, there exists a unique morphism
b : B → X such that b ◦ s = f .

A

∀f∈C
��

s∈Σ // B

∃!b~~}
}

}
}

X

THEOREM 5. Let Σ+ be a Yoneda-f-system in the small category C.
Suppose that Σ+ has infinite pushouts, then CΣ+

is reflective in C.
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Note that Theorem 5.4.7 of Borceux’s book (Borceux, 1994a) is of
a similar nature. This theorem shows that in a cocomplete category C
such that every object is presentable, for every set of morphism Σ+,
CΣ+

is reflective in C. But this does not apply in our context, since we

want to apply it with C =
→
π 1 which is in general not cocomplete nor

well-complete. Also, few objects are presentable in general in
→
π1 (just

consider categorical sums). But if we have hypotheses on Σ+ instead
of hypotheses on C, we get a very similar result.

Proof. We follow the proof of F. Borceux (Borceux, 1994a). By def-
inition of the orthogonal subcategory, we have an obvious inclusion
functor I from CΣ+

to C.
To prove that we have a reflective subcategory, we
need to construct the left adjoint to I which is de-
noted Γ. Let C ∈ C. For every pair (s, f) where
s : S → T ∈ Σ+ and f : S → C ∈ C, we have
a pushout diagram (call it a (s, f) pushout square)
where ts,f ∈ Σ+ (because Σ+ is a Yoneda-f-system).

S
s∈Σ+ //

f

��

T

gs,f

���
�
�

C
ts,f∈Σ+

//___ Ps,f

The diagram made of all the arrows ts,f is small because so are Σ+ and
C. Since Σ+ has infinite pushouts, the colimit of this diagram exists in

Σ+ and is denoted
(

ΓC, (us,f )s,f
)

, thus providing ΓC ∈ Σ+.

We have defined the object part of Γ. Now we
construct a family of morphisms of C, denoted
(γ

C
)

C∈ObC
, that will be the unit of the adjunc-

tion. Let us determine γ
C

: C −→ ΓC. Given two
(s, f)-pushout squares, by definition of a colimit,
we have us,f ◦ ts,f = us′,f ′ ◦ ts′,f ′ , hence we can set
γ

C
:= us,f ◦ ts,f since it does not depend on the

(s, f)-pushout square we have chosen. Moreover,
γ

C
∈ Σ+ for it is given by the composite of two

morphisms of Σ+.

S
s //

f

��

T

gs,f

��
Ps,f

us,f

>>

��>
>>

C

ts,f
��

AA��

ts′,f ′

<<

��<<

γ
C // ΓC

Ps′,f ′

us′,f ′

��

??���

S′
s′

//

f ′

OO

T ′

OO
gs′,f ′

OO

We determine the morphism part of Γ, this construction will implic-
itly prove that γ is a natural transformation from Id

C
to I ◦ Γ. Let

h : C1 −→ C2. For each pushout square

S
s //

f

��

T

g1
s,f

��

C1
t1
s,f

// P 1
s,f
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we have, by hypothesis on Σ+ and since ts,f ∈ Σ+, the commutative
diagram:

C1

h

��

t1
s,f // P 1

s,f

g2

t1
s,f

,h

��

u1
s,f // Γ(C1)

Γ(h)

��

C2
t2
t1
s,f

,h

// P 2
t1
s,f

,h
u2

t1
s,f

,h

// Γ(C2)

where the left square is a pushout square as in the beginning of the
proof with C := C2, s := t1s,f and f := h, whence the - heavy but
coherent - notation. The immediate consequence of this setting is that
γ is actually a natural transformation.

Now we prove that for all C ∈ C, Γ(C) ∈ CΣ+
.

Given (s, f) with s : S → T ∈ Σ+, src(f) = S and
tgt(f) = Γ(C), we have a unique g making the right
side diagram commutative. Precisely, g := us,f ◦ gs,f ,
indeed, us,f ◦ gs,f ◦ s = us,f ◦ ts,f ◦ f = γC ◦ f . The
uniqueness is due to the bijectivity of γ ∈ C[S, T ] −→
γ ◦s ∈ C[S,Γ(C)], because s preserves the future cone
(see Definitions 8 and 3). Thus, s ⊥ Γ(C) and Γ(C)
is in the orthogonal subcategory determined by Σ+.

S
s∈Σ+ //

f
��

T

g}}z
z

z
z

Γ(C)

Conversely, suppose that X ∈ CΣ+
. Given (s, f)

with s : S → T ∈ Σ+, src(f) = S and tgt(f) = X,
we have a unique g making the right side diagram
commutative, which is in fact a pushout square
since s is an epi. With the notation introduced at the
beginning of the proof, gs,f = g and ts,f = idX . Then
the colimit (Γ(X), us,f ) is the colimit of the family
(idX){(s,f) with s:S→T∈Σ+, src(f)=S and tgt(f)=X} .
Hence us,f

∼= idX for all such pairs (s, f) and
Γ(X) ∼= X in C.

S
s∈Σ+ //

f
��

T

g

���
�
�

X
idX

// X

The last part of the proof consists of seeing that

α ∈ CΣ+
[Γ(C), D] 7−→ I(α) ◦ γ

C
∈ C[C, I(D)]

is a bijection. Let us consider the canonical morphism γC : C → ΓC of
the colimit. Given D ∈ CΣ+

and m : C → D, we have to find a unique
n : ΓC → D such that n ◦ γC = m.

As D ∈ CΣ+
, it is orthogonal to all morphisms s ∈ Σ+. In particular,

for all pairs (s, f) as above, there exists a unique bs,f such that bs,f ◦s =
m ◦ f . By the pushout property defining Ps,f we deduce that there is
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a unique morphism as,f : Ps,f → D such that as,f ◦ ts,f = m and
as,f ◦ gs,f = bs,f . This is done for all pairs (s, f). Hence by the colimit
property defining ΓC, we find a unique morphism n : ΓC → D such
that n ◦ us,f = as,f . Hence

n ◦ γC = n ◦ us,f ◦ ts,f
= as,f ◦ ts,f
= m

which ends the proof. �

Similarly for Yoneda-p-systems, if we suppose Σ− to have infinite
pullbacks (take the dual of the definition of infinite pushouts), then

CΣ−
(the dual orthogonal category) is coreflective in

→
π 1 (X). In that

case, points that represent past components are the minimal points of
these components.

Note that, the construction of Γ done above is almost exactly the
same as the one that proves the adjoint functor theorem see (Borceux,
1994a) for details. The construction is made up to isomorphism, to have
a “concrete” Γ we would have to “choose” a family of us,f . In fact, CΣ+

is the image of Γ up to isomorphism, that is to say any object of CΣ+
is

isomorphic to an element of the image of a “concrete” Γ. This remark
is made to emphasize the fact that CΣ+

is a replete subcategory of C,
i.e. any object of C isomorphic to an object of CΣ+

is also in CΣ+
.

Refering to (Fajstrup et al., 2004), the co-completeness of the Yoneda-

f-system of π1(
→
X), namely Σ+, exactly implies that all the components

of
→
X have a reachable maximum element. Then intuitively, CΣ+

and
C/Σ+ should be isomorphic, CΣ+

being just a representation in C of
C/Σ+.

7. Conclusion, related and future work

The material of last section has to be compared with the notion of
future equivalence (and dually, past equivalence) due to Marco Grandis
(Grandis, 2005). Our approach consist in determining criteria that tell
which points should be identified according to some notion of “preser-
vation of the choices”. In Marco Grandis’ setting, one tries to find, for
any point p, a point p+9 which is the further point in the future before
the first choice: intuitively the first crossroad on the path. The point p+

should be, in our framework, the “last” (think about it as the greatest)

9 Think about p+ as Γp where the notation Γ refers to the proof of theorem 5.
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Figure 4 illustrates the construction
and the geometrical meaning of theo-
rem 5. The “•’s” represent the maxi-
mum elements of the - two - compo-
nents of the po-space and the - two
- wide arrows are the two arrows of
CΣ+

. The thin arrows starting from C
correspond to the ts,f of the proof,
while the thin dotted arrows are the
us,f . It clearly appears that Γ(C) is the
maximum element of the component
containing C.

ΓC

C

Figure 4. Ilustration of theorem 5

point of the future component of p. If one considers a Σ-component
C for some Σ as in Definition 5, it might happen that C neither has
greatest nor least element: see the components 5 and 6 of the swiss
flag on Figure 2. Even if C is a future component, the point p+ does
not necessarily exist as one can see on the example of the directed real
line, the pathology comes from the fact that the underlying topological
space is not “bounded”.
However, in the case where the underlying topology of a po-space

−→
X is

compact, we hope (it is actually a conjecture) that any future compo-

nent C of −→π1(
−→
X ) has a greatest element. In fact, we even expect that

p+ is the colimit (in −→π1(
−→
X )) of the full subcategory of −→π1(

−→
X ) whose

objects are the points of C, in other words the infinite pushout of the
family (fs,f) introduced in the proof of Theorem 5. While this property
is weaker than the existence of all infinite pushouts, it should be strong
enough to prove Theorem 5 as well as (it is another conjecture) to

guarantee the existence of the future spectra of −→π1(
−→
X ) in the sense of

(Grandis, 2005).
Let us mention also that the careful study of the structure of com-

ponents is of primary importance in practice. As an example, we refer
the reader to (Goubault and Haucourt, 2005), where a (still naive)
inductive computation of components, in the particular case of PV
models, is used for static analysis of concurrent programs, and shows
very good performances. The more we understand the structure of the
fundamental category (and of higher-order fundamental categories),
the better we can design practical methods for validation of concurrent
programs, and the better we can understand the structure of concurrent
and distributed computations.
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Cahiers Top. Géom. Diff. Catég 44, 281–316. Preliminary version: Dip. Mat.
Univ. Genova, Preprint 443 (Oct 2001). Revised: 5 Nov 2001, 26 p.

Grandis, M.: 2005, ‘The shape of a category up to directed homotopy’. Theory and
Applications of Categories 15(4), 95–146. available on the web.

apcsII.tex; 15/09/2006; 13:35; p.31



32

Haefliger, A.: 1992, ‘Extension of complexes of groups’. Annales de l’institut Fourrier
42(1-2), 275–311. available at http://www.numdam.org/.
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