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Abstract. Synthesizing NeRFs under arbitrary lighting has become a
seminal problem in the last few years. Recent efforts tackle the prob-
lem via the extraction of physically-based parameters that can then be
rendered under arbitrary lighting, but they are limited in the range of
scenes they can handle, usually mishandling glossy scenes. We propose
RRM, a method that can extract the materials, geometry, and environ-
ment lighting of a scene even in the presence of highly reflective objects.
Our method consists of a physically-aware radiance field representation
that informs physically-based parameters, and an expressive environ-
ment light structure based on a Laplacian Pyramid. We demonstrate
that our contributions outperform the state-of-the-art on parameter re-
trieval tasks, leading to high-fidelity relighting and novel view synthesis
on surfacic scenes.

Keywords: Image-based rendering· Reflectance modeling · Reconstruc-
tion · Computational photography· Machine learning

1 Introduction

The use of fully optimizable models as 3D scene representations to address novel
view synthesis problems has led in the last years to impressive results: trained
on a set of multiple photographs of a scene, these models can infer unseen view
angles while using as sole prior the three-dimensionality of the underlying scene.
Initially based on neural network overfitting (Neural Radiance Fields [15]), later
approaches focused on improving the positional encoding fed as input to the
networks (Fourier features [19], hash-grids of InstantNGP [16]), leading lately
to neuron-free representations like TensoRF [3] (when used with Spherical Har-
monics decoding) or 3D Gaussian Splatting [8].

The effectiveness of such overfit representation at retrieving 3D information
even in the presence of transparent elements or strong specular effects makes it a
strong competitor of traditional photogrammetry when it comes to acquiring 3D
scenes from pictures. However, overfit representations usually encode only the
radiance emitted by a scene, in a way that is hard to disentangle from their envi-
ronment lighting at the time of acquisition. Hence a series of recent work focuses
on relighting such overfit scenes, either by directly processing radiance data [20,



2 D. Gomez et al.

Normal

Roughness Albedo Reflectance

Environment lighting

EXTRACTION

RELIGHTING

Input images

Novel-Light Synthesis

New input environment

Fig. 1. We take as input a collection of photographs from a scene, and extract a model
with physically-based parameters from which we can set a new lighting condition.
In comparison to NMF [13] and TensoIR [7], our method is more robust to glossy
materials and better handles self-reflection, as it is able to reconstruct more accurate
surface normals.
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24] or by extracting parameters compatible with physically-based 3D rendering
pipelines [29, 7, 13]. Our work builds on the latter, improving the extraction ca-
pability of the model thanks to a more powerful representation of environment
lighting. In particular, we better reconstruct the local surface normal from
its appearance, even in the presence of highly glossy materials. Overall our key
contributions are:

– The introduction of a physically aware radiance module that extracts coarse
normals and a notion of roughness, while splitting the predicted radiance
signal into view dependent and independent components.

– A novel way to represent environment maps based on a Laplacian Pyramid
powered by a multiple importance sampling (MIS) algorithm that enables
the retrieval of highly specular effects on complex geometry;

– A novel use of a radiance field as a guide to learning physically-based pa-
rameters. More specifically, a supervision loss on diffuse and glossy effects
and the sharing of both explicit (normal, roughness) and underlying (ap-
pearance, 3D scalar fields) parameters allows disambiguating the incoming
information, leading to the extraction of high-quality parameters.

2 Previous Work

Neural Scene Representation. Following their wide success in machine learning
tasks, neural networks started being used as a means to encode high-dimensional
data through overfitting. Typically applied to spatial fields (2D images, 3D
signed distance fields, etc.), this approach has shown to be very good at compres-
sion and interpolation while providing fully differentiable random access look-up,
hence being compatible with optimization tasks [17, 14]. It was thus a good fit
to encode 5D radiance fields, whose storage had been a longstanding challenge
of computer graphics [9, 4]. NeRF [15] demonstrated the use of neural network
overfitting to optimize a volumetric representation whose (differentiable) ren-
der match predefined views and was soon followed by many similar approaches,
progressively shifting the model’s architecture towards positional encoding [16,
3].

A prominent challenge however lies in the user editing of such models. Re-
cent efforts tackle the geometric transformations of neural representations or
appearance editing of some kind [21, 6, 26]. A particularly important problem
that has received attention in the past years is that of relighting [29, 18]. Some
approaches attempt to tackle this by assuming known lights and parameterizing
this information as an input of the model [20, 24]. Our work lies in the family of
light-agnostic approaches, that involve leveraging inverse rendering to retrieve
relightable assets [7, 13].

Neural Material Prediction. In the context of material generation, there exists
precedent of predicting albedo, specular, normal and roughness parameters in or-
der to render them into the desired result, for example GAN-based methods [31].
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This is related to our physically-based module (see Fig. 2). Our physically-aware
radiance module is then used to complement and inform the former. The radiance
module inputs appearance related features and normals, to produce a radiance
signal that we split into its view dependent and independent components.

Inverse Rendering. Inverse Rendering, the translation of observed images into
global geometric, material, and lighting properties is a long-standing problem in
computer vision and graphics. Being an extremely under-constrained problem it
requires the introduction of several priors to achieve interesting results. These
priors are typically provided by the structure of the differentiable renderer used
to approach the task and the underlying scene representation. Some differentiable
renderers are based on rasterization [5], point splatting [25], path tracing of
globally illuminated meshes [1], ray marching through emissive volumes [15].
The usage of the differentiable renderer of choice dictates the priors that will
be introduced to the system. In the case of NeRFs, the only prior is the 3-
dimensionality of the scene, while in the case of rasterization one assumes a
surfacic mesh. In our work two differentiable renderers are leveraged to perform
the inverse rendering task. A physically-based one and a radiance-based one.

NeRFactor [29] and NeRV [18] present approaches that distill the information
learned by a NeRF into a set of separate MLPs that predict geometric, visibil-
ity, and material information. These methods, however, have their limitations.
NeRV requires the use of a dataset with known lighting conditions to incor-
porate indirect lighting information during training, whereas NeRFactor does
not account for indirect lighting and self-reflections at all. TensoIR [7] greatly
outperforms these previous methods in the task of inverse rendering. This is
achieved by leveraging TensoRF [3] to replace the inaccurate prediction of the
visibility parameter done by its predecessors. These methods, however, are not
able to tackle scenes with specular objects.

PhySG [27] presents an inverse rendering pipeline that specializes in such
objects. Nevertheless, this work does not take into account indirect illumination
and thus fails at accounting for inter-reflection. The paper also restricts itself to
using constant and monochrome specular BRDFs. Our method on the contrary
handles both diffuse and glossy scenes, while enabling the modeling of inter-
reflection and a BSDF that is spatially-varying on all components. This enables
the retrieval of complex objects, such as the toaster in Fig. 1.

Neural Microfacet Fields (NMF) for Inverse Rendering [13] takes a similar
approach to extend previous works to these challenging scenes. They do this by
embedding in the 3D representation introduced by TensoRF [3] a microfacet
representation. We however retrieve higher quality parameters thanks to
our contributions which allow to better disentangle the incoming signal. The
superior quality of the parameters we retrieve can be seen in the comparison we
do in glossy scenes on the relighting task and our normal comparison quantitative
results.

The recent work of NeRO [11] is able to faithfully reconstruct the geometry
and the BRDF of real-life reflective objects. Their approach consists of two
stages. First the geometry of the scene is retrieved with a neural SDF; then,
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with the geometry fixed, an accurate BRDF of the object is computed. Our work
in contrast consists of a pipeline that is end-to-end optimizable. Moreover,
NeRO leverages radiance fields exclusively to learn the geometry of the scene.
We show that these models are capable of providing much more than reliable
geometry, indeed with the proper parameterization they can provide insightful
information about physical properties.

3 Overview
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Fig. 2. Overview of our model. At each ray-marching step, we evaluate a density σ,
which weights physically-based material properties and radiance information as we
integrate these quantities along the marched ray. Physically-based properties are pro-
cessed by our PBR fixed module to compute the final radiance. Grey boxes are fixed
functions, while colored boxes are the learnable scene representation. Orange boxes
and arrows are used for supervision only and dropped when evaluating with a new
environment lighting. See other figures for zooms of each component.

We introduce a novel method to tackle the inverse rendering problem by lever-
aging efficient ray marching, neural radiance fields, as well as classical light trans-
port knowledge. This combination allows our method to retrieve high-quality ge-
ometry and material in scenes with both highly glossy and rough surfaces. Our
method takes as input a set of images of the same scene, with known camera po-
sitions under one or more unknown lighting conditions, and outputs parameters
that allow to render novel views using an arbitrary new environment map.

Our method is composed of multiple learnable components and fixed mod-
ules that we describe in Section 4 and which constitute an end-to-end trainable
architecture (Fig. 2). It includes, in particular, a physically-aware radiance
module (Section 4.2) that bootstraps the method by retrieving coarse geom-
etry and appearance. This module then informs a physically-based module
which learns material and fine geometry information by leveraging a physically-
aware sampling algorithm (Section 4.5). This sampling algorithm queries from
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our expressive environment map structure (Section 4.4) based on a Laplacian
Pyramid. Finally, the radiance and physically-based modules can collaborate to
further disambiguate complex information in the scene (Section 5.1).

4 Architecture

We represent the optimized 3D scene through 4 learnable components (see
Fig. 2.). The first 2 components are typical of NeRF-inspired methods: a density
field encodes the coarse 3D geometry of the scene (Sec. 4.1), and a radiance
field stores pre-integrated light information through the whole space (Sec. 4.2).
The last 2 components are a material field (Sec. 4.5) and the environment
lighting (Sec. 4.4): these encode quantities meant for physically based rendering.

The learnable components are connected together through differentiable fixed-
function modules. The Physically Based Rendering (PBR) module turns
physical material properties into radiance (Sec. 4.5), this requires the use of the
Lighting module to estimate local irradiance (Sec. 4.4).

4.1 Density

The geometry of the scene is modeled as a density field. To encode this 3D
scalar field, we use the TensoRF [3] representation. This enables highly efficient
ray marching while being much faster to overfit than neuron-based models like
NeRF [15].

The TensoRF representation decomposes 3D grids into a set of vectors and
matrices. For any quantity s, we can apply bilinear interpolation on a grid Gs to
associate to any position x ∈ R3, we note it sx = Gs(x).Our 3D density tensor Gσ

is thus encoded using the following decomposition Gσ =
∑

k

∑
m∈XY Z vmσ,k◦M m̃

σ,k

where vmσ,k,M
m̃
σ,k is the learnable decomposition. We call m̃ the corresponding

complementary axes (e.g. X̃ = Y Z).
From this scalar field we predict the density σx at a given 3D location x as:

σx = Gσ(x) (1)

4.2 Physically-Inspired Radiance

Our radiance model relies on two essential ideas (Fig. 3). The decomposition of
the radiance into its view dependent and independent components. The use of
the directional encoding proposed by Ref-NeRF [21] to enable retrieval of correct
geometry and density of specular objects. The latter enhances the former, not
only we isolate the view dependent effects, but we model them in a manner that
informs the predicted normals and roughness.
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Fig. 3. Our radiance component decodes the latent appearance vector coming from the
material component into view-dependent and view-independent (diffuse) terms. This is
done using two isolated neural networks, only one of which receives the view direction
as input. The view-dependent network is made more robust to reflections by using a
directional encoding based on the prediction of the material component. A drop-out
on the view-dependent term ensures that the diffuse term gets as much magnitude as
possible.

Latent appearance. The radiance component inputs a latent appearance descrip-
tor ax shared with the material component (section 4.3). Similarly to Ten-
soIR, we store this latent appearance information in a TensoRF field Ga =∑

k

∑
m∈XY Z vma,k ◦M m̃

a,k ◦ bmk The additional bmk basis vectors express the multi-
channel nature of appearance (RGB). We call ax = Ga(x) the latent appearance
at x.

Radiance Decomposition. We introduce a decomposition that allows us to isolate
the view dependent and independent visual features of a scene and thus to
supervise separately the diffuse and specular terms of the PBR module (Section
5.1). As illustrated in Fig. 3, the decomposition is enforced structurally by using
a different decoding network for the view-independent radiance ci and the view-
dependent radiance cd:

ci(x) = Dci(ax)

cd(x, d) = Dcd(ax, d)
(2)

where x, d are coordinates and viewing direction of the current sample. Note that
in general, we denote Ds a dense neural network and Ds(y) its prediction for a
given input vector y. Unless otherwise stated Ds is a 3 layer MLP with ReLU
activations. The input dimension is the sum of the different inputs and their
respective Fourier features dimensions. The hidden dimensions are 128 for all
layers. The output activation is a Softplus function with parameter βsoft plus = 3,
the output dimension is the dimension of the concatenation of the predicted
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quantities. This split radiance can be seen in Fig. 4. We then obtain the final
radiance at training time with,

c(x, d) = ci(x) + cd(x, d) (3)

Importantly, the neural network Dcd contains a dropout layer during training.
This is crucial for the decomposition to work (see Supp.). Contrarily to previous
material prediction methods that infer albedo and specular parameters, we em-
phasize that we are not predicting any material properties here. Instead, through
this structural choice we make the hypothesis that the radiance signal can be
decomposed into view dependent and independent components. We will explore
the consequences of this choice in the following.

Directional Encoding. As highlighted by Ref-NeRF [21], feeding the raw view
direction d to the radiance decoding network Dcd leads to poor learning on
glossy surfaces. We use their re-parameterization, namely to work instead with
the reflected vector ωr with respect to the predicted normal n. In addition, we
use their so-called Integrated Directional Encoding (IDE) to account for the
aperture of the cone of reflection depending on an estimated roughness. We thus
rewrite the view-dependent radiance in equation 2 as,

cd(x, d) = Dcd

(
ax, ωr, ⟨ωr, nx⟩ , IDE(ωr, κx)

)
(4)

where the normal n and the roughness coefficient κ are local properties predicted
by our material component (Section 4.3). We refer the reader to the original Ref-
NeRF paper [21] for details about the IDE function.

4.3 Material

We encode the physically-based material parameters in a 3D field agnostic to the
current lighting condition (Fig. 5). These are used to characterize the BSDF
model used in the PBR module (Section 4.5): a surface normal nx, an albedo
γx, a reflectance (specular color) F0,x and a roughness ρx parameter; and to feed
the radiance module: κx, nx.

A function mapping κ to ρ. The integrated directional encoding that we import
from Ref-NeRF [21] learns its own notion of roughness κx as a means to provide
more sensibility to viewing direction in glossy areas than in rough ones. This IDE
roughness is related, but however not identical to the physically-based roughness
parameter ρx of our BSDF model (section 5). We could decode the physically-
based roughness ρx from the latent appearance independently from the IDE
roughness κx, but we found empirically that having two completely separate
roughness parameters may lead the model to stagnate in local-maxima (Fig. 11).
We input the Fourier features of the κx parameter and write,

ρx = Dρ(κx)

The Dρ differs from the introduced MLP in section 4.2, in that the hidden
dimension is 10, and the output activation is a sigmoid function, i.e. it is a much
smaller network.
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Fig. 4. Visualization of our radiance decomposition as described in Fig. 3 after over-
fitting on the helmet scene. This qualitatively corresponds to the diffuse and specular
terms of a PBR BSDF model.
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Fig. 5. The material component of our scene representation consists of a look-up in a
TensoRF Ga followed by a simple neural network to decode the sampled latent appear-
ance vector into physically-based material properties. This two-stage approach enables
the radiance-based component to guide the definition of a latent appearance without
learning a full mapping from physically-based parameters.

Leveraging appearance. We decode the remaining material quantities from the
latent appearance vector ax previously introduced in Section 4.2. More specifi-
cally:

nx = Dn(ax)

(γx, F0,x, κx) = Dβ(ax)
(5)

Like radiance, material properties are evaluated at each step of the ray-
marching, weighted by the local density σx, and integrated along the ray. When
the accumulated density reaches a threshold, we feed the integrated properties to
the PBR module. In other words, if the accumulated density is high enough, we
compute the corresponding depth. We then transform this quantity into a surface
point, for which we apply the PBR equation (described in section 4.5) using
the integrated parameters. In the case of a “missed" ray, the parameters are not
passed to the PBR module and thus are not updated. The corresponding pixel is
given a default background color. This contributes to lowering the computational
load. Moreover, similar to the radiance, this way of handling missed rays leads to
a better posed learning objective; as opposed to forcing the network to predict
the surrogate background value.
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Fig. 6. In our environment lighting representation, the parameters optimized by gradi-
ent descent are the levels of a Laplacian Pyramid. This multi-scale representation bet-
ter learns low frequencies than raw pixels and supports high frequencies that Spherical
Harmonics cannot grasp. Every 16 epochs, we re-balance the representation to ensure
that it is still a Laplacian Pyramid.

4.4 Environment Lighting

Our fourth and last learnable component encodes the retrieved environment
lighting. Similarly to concurrent work [22], our method introduces a novel way
to represent environment maps. However, in our case, we rely on a Laplacian
Pyramid (PoL).

To learn high-frequency lighting details we need a high-resolution represen-
tation, but, optimizing directly the pixels of an envmap does not allow us to
leverage the correlation in nearby regions. This leads to slow and noisy conver-
gence of the lighting, as seen in Fig. 9, leading to a rough optimization landscape
for the other parameters such as normals. We thus propose to optimize the levels
of a Laplacian pyramid instead, allowing us to learn both low and high frequency
simultaneously and to converge faster.

Given an initial envmap, we compute its Laplacian Pyramid and initialize a
set of learnable parameters with the different levels. Then during optimization,
at each step, we reconstruct the envmap from the parameters and bilinearly
sample the reconstruction when needed. As parameters are optimized, there is
no guarantee that the learned pyramid indeed represents the Laplacian Pyramid
of the reconstructed signal. To enforce this, at the end of every n=16 iteration,
we perform a re-projection step where we reconstruct the signal from the pa-
rameters and then compute the corresponding pyramid, reassigning the value of
the parameters to these levels (Fig. 6).

PoL vs SG discussion. Previous methods such as TensoIR [7] and NeRFactor [29]
represent environment maps with Spherical Gaussians (SG). Our PoL approach
is better suited than SG to learn high frequency effects efficiently. While compact,
SG struggle when learning high-frequency environments. Indeed, when learning
high frequency environment maps from glossy scenes one needs a large number
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Fig. 7. Reconstructed environment map and renderings for a scene made of a simple
specular sphere using different representations of the environment. SG (left) fail at
extracting fine details while our proposed Laplacian Pyramid (middle) gets much closer
to the ground truth (right).

of learnable parameters. In Fig. 8 we compare these approaches on the image
overfitting task. We can see from this figure that in such a case our PoL approach
is more memory efficient and converges faster than SG.

4.5 Physically-Based Module

Concurrently to the radiance component, the PBR module also predicts a diffuse
and a view-dependent radiance. However, it does it in a physically based way,
that can later be user-edited, in particular by changing the lighting condition.
This module is fully differentiable, so that the error gradient may flow up to the
representation of the material properties and environment light. It is summarized
in Fig. 10. Below we describe the fixed function renderer used. Note that, it
inputs surface parameters, whereas our PBR module predicts volumetric
ones. The surface point evaluated is predicted using the estimated depth, and
the physically-based parameters described in equation 5 are aggregated along
the associated marched ray to obtain the surface parameters.

We settled for such an approach to transfer the learning flexibility of ray-
marching, used by our radiance module, to the PBR module, which intends to
condense light-geometry interaction to surface by fitting a surfacic BSDF model.
This also mitigates the cost of indirect lighting evaluation. The accumulation-
based evaluation of normals and roughness ensures graceful degradation, either
when this hypothesis is wrong or while the model did not converge yet. Con-
sistency along a ray is progressively ensured by the alignment supervision, and
when the scene is indeed surfacic the density that weights accumulation is even-
tually null anywhere but on surfaces.
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Fig. 8. Experiment: Fitting the PoL and SG approaches on a given ground truth
image. This simplified task gives us insight on how these methods compare. Left: we
have a plot that shows the variation in allocated memory at train time as the number
of parameters of each method increases. Right: Elapsed training time plotted against
the test reconstruction score. Our PoL approach converges extremely fast, and larger
models lead to better test results. A SG approach with a large number of lobes is
challenging to train.
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Fig. 9. Directly optimizing the pixels of the envmap (top - corresponding to a single
level PoL) leads to a noisier envmap with boundaries artifacts (insets). Using a 6-level
PoL (bottom) provides a smoother estimate.
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Rendering. The physically-based radiance cPB is computed based on the ren-
dering equation:

cPB(x̂, ωo) =

∫
Ω

Li(x̂, ωi)fr(ωo, ωi;β) ⟨ωi, n⟩+ dωi (6)

where x̂ is the surface point, ωo = −d is the viewing direction, Li(x̂, ωi) is the
incident illumination coming from a direction ωi, β := (γ, F0, ρ) are the material
properties and n is the normal at x̂.

The BRDF fr can be split into diffuse and specular (view-dependent) terms:

fr(ωo, ωi;β) = fdiffuse(γ) + fspecular(ωo, ωi;β) (7)

We integrate these terms separately as cdif
PB and cspec

PB , to be able to supervise
them using respectively outputs ci and cd of the radiance component. In practice,
our spatially varying BRDF model is based on the Torrance–Sparrow model with
a normal distribution function based on the Beckmann–Spizzichino model [2] (see
Supp.).

Irradiance. For each light ray sampled by the MIS scheme (see Supp.), we eval-
uate the light intensity Li coming from that direction. We leverage the efficient
ray marching procedure of TensoRF [3] to query the incident illumination using
the radiance module if the ray hits the scene, or using our environment light
component otherwise.

When later evaluating the scene on a new unseen light condition for which
the radiance component has no information, this radiance component is replaced
by a recursive call to the PBR module, just like in a traditional ray tracer.

5 Optimization scheme

Our overall optimization procedure uses a typical machine learning approach: we
optimize our learnable components with a gradient descent using the common
AdamW optimizer [12] and evaluate gradients using the automatic differentia-
tion of PyTorch. This section details some mechanisms we used to improve the
convergence of our model.

5.1 Supervision

Overall the loss we optimize is a weighted sum of the following terms:

– lRF , lPB the photometric (l2) losses produced by the radiance and PB mod-
ules respectively.

– ldiffuse,lspecular which we call our supervision losses on the decomposition and
introduce below.

– ln =
∑

wj
||nj − nσ,j ||22, the normal alignment loss introduced by Ref-NeRF.

A loss term penalizing back-facing normals is used in addition.
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Fig. 10. Our Physically-Based Rendering module uses Multiple Importance Sampling
to estimate the incoming light at the shaded point. For each sampled light ray, we
use either the environment or the radiance component depending on a ray marching
through the density grid. For novel-light synthesis, the radiance component is replaced
by a recursive call to the PBR module.



16 D. Gomez et al.

– lβ to ensure local smoothness loss on the different PB parameters, a Total
Variation (TV) loss and l1 regularization on tensor factors from [7, 3]

The radiance loss lRF drives the training procedure so it is the loss with the
highest weight. While most of these terms were already used by TensoIR, we
introduce:

ldiffuse = ∥cdif
PB(x̂)− ci(x̂)∥2 and,

lspecular = ∥cspec
PB (x̂, d)− cd(x̂, d)∥2

Supervising the diffuse and specular terms of the BSDF independently helps the
disambiguation of intricate visual information from the input images. Although
the inverse rendering problem is inherently ambiguous, this physically motivated
prior results in higher quality retrieved parameters which in return improves the
relighting performance.

5.2 Radiance warm-up

Our physically-aware radiance module is capable of learning notions of normals
and roughness by itself, following Ref-NeRF. Moreover, our method heavily relies
on a radiance module that has “understood" the coarse geometry of the scene
before starting the PBR procedure. Indeed, it is the radiance module that man-
ages to process strong highlights and complex geometry in an efficient way. We
therefore warm-up our radiance module by training it for 30k iterations (∼1h)
before enabling the PBR module.

To obtain optimal results we let our PBR module then run for another 70k
iterations (∼20h) on an NVIDIA Tesla T4 GPU. We have not sought to optimize
this parameter and runtime in this paper. We empirically note that the time and
number of iterations needed to achieve the best result in each scene significantly
varies (∼1h-20h).

6 Experiments

Our method is capable of processing scenes comprised of both glossy and diffuse
elements. We thus compare it to two state-of-the-art similar inverse rendering
papers, TensoIR [7] which performs best on diffuse scenes and NMF [13] for
glossy ones. We use Fig. 12 to highlight the ability of our method to tackle
both types of scenes. We choose in this qualitative comparison objects for which
our method outperforms the aforementioned papers.

Additionally, we perform ablation studies that provide a quantitative justifi-
cation for our main contributions. Our method is tested on novel-view synthesis
(NVS) and relighting tasks on two synthetic datasets: the TensoIR Synthetic
dataset from [7], and the Shiny Blender dataset from Ref-NeRF [21]. For any
other shapes we use the pipeline introduced by NeRFactor [29]. Since these are
synthetic datasets the camera information is directly extracted from blender. To
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(a) (b)

Fig. 11. Visualizing ρ with (a) separate roughness parameters, and (b) using our κ 7→ ρ
map. The learnt environment map by each model is also visualized. We see that bad
learning of the (a) model leads to loss of information in the environment map.

evaluate performance on these two tasks we employ the standard metrics PSNR,
SSIM [23], and LPIPS [28]. The quality of our reconstructed normal is one
of the main features of our method, we measure it with the Mean Angular Error
(MAE◦).

Comparison with NMF. Our method is able to retrieve normals of much better
quality than NMF, as illustrated in Fig. 13 and confirmed numerically with the
MAE error in Table 6. This table also reports that our model does not match the
quantitative similarity scores performance presented by NMF on NVS task. Our
model under performing on the NVS task is likely linked to the use of a neural
components in NMF’s BSDF model. This is not a component that is pre-trained
on different materials, rather trained from scratch for each scene. This helps the
overfitting of the scene, which is helpful in reconstruction. However, it does not
generalize well to other light environments.

Nevertheless one can appreciate in Fig. 13 that our novel views feature more
consistent reflections. Indeed, we remark this qualitative improvement in multi-
ple scenes, and the benefits of our good normal extraction becomes clear when
it comes to relighting tasks: Table 6 shows that we outperform NMF on the
relighting task quantitatively on the shiny blender dataset that the NMF paper
focuses on. Figure 12 shows visual examples of such relighting.

When comparing results and figures one must note that NMF uses HDR
input files to train and test their model. We rather use LDR images as they are
a more commonly available in practical scenarios. Moreover, we would like to
highlight that the qualitative examples for NMF were directly provided by the
authors of the paper. This is because, at the time of our experiments, we were
unable to retrieve high quality results with the publicly available code.

Comparison with TensoIR. We ran TensoIR [7] on the same shiny blender
dataset as the NMF comparisons, and as we see on the bottom row of Table 6
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our method outperforms TensoIR in all metrics on NVS and normal extraction
tasks. As a matter of fact, TensoIR does not perform as well on shiny scenes
in general. Figure 14 shows that even on the more diffuse scenes that TensoIR
targets, we maintain PBR quality while slightly improving on the retrieved nor-
mals. In this figure we can see however, that the MIS algorithm comes with some
undesired noise. Indeed, whereas using fixed light sampling limits the rendering
of shiny materials, it produces less noisy results for diffuse objects than MIS for
the same number of samples.

TensoIR uses the learned radiance as a proxy for indirect lighting during
training. This however, cannot be done during testing on different lighting con-
ditions. Thus, the authors decided to omit indirect lighting during their evalua-
tion process. Our framework allows for evaluation of indirect lighting, thanks to
a slightly more sophisticated renderer. This is what we use for our teaser (figure
1), which explains why we can see reflections on the relit scene. For a proper
comparison on the relighting task we restrict our comparison to the TensoIRSyn-
thetic dataset and do not compute indirect lighting. Table 6 reports that our
method is slightly over performed by TensoIR, but manages to maintain high
quality results by achieving better results than other well-established methods
such as NeRFactor [29] and InvRender [30]. Given that important parameters,
such as the normals, are better predicted by our method we can attribute the
slight difference in performance to our noisier rendering pipeline, due to our
use of MIS to sample light directions as previously discussed.

Ablations. Table 6 shows results on a novel view synthesis task for different
ablations of our pipeline. Each ablation removes one of the building blocks of
the method. First, “w/ separate ρ" learns the PBR ρx directly as an output of
Dβ in equation 5, independently from the IDE roughness κx, “w/o Decomposi-
tion" replaces our decomposition introduced via equation 2 by the same radiance
map used by TensoRF. Finally, “w/o Supervision" omits the losses introduces in
section 5.1, ldiffuse,lspecular.

We can see in Table 6 our ablation results for the relighting tasks. Although
“Ours separate ρ" allows for slightly better normal reconstruction, we see ulti-
mately the benefit of our κ 7→ ρ map in relighting scores. Indeed, this mapping
is important to better retrieve the roughness in ambiguous scenes. In figure 11,
we can see how utilizing our κ 7→ ρ mapping allows to leverage the notion of
roughness learned by the radiance to avoid losing information. The “w/o Super-
vision" seems to yield quite similar results to our method. However, we can see in
the detailed tables presented in our supplemental section, that supervision helps
in scenes where the decomposition is the cleanest (figure 4) such as helmet or
toaster. In diffuse scenes our method without supervision performs better. One
could alleviate this by setting a smaller weight for the supervision. We decided
to use common weights among our tests to present a fair comparison.

Our Laplacian Pyramid model for environment lighting is compared to the
mixture of SG used by TensoIR in section 4.4. Although very flexible for learning
rough lighting, it eventually fails at grasping the fine details of the environment.
This is not a problem for rough objects, but as shown on the toy sphere exam-
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ple, it makes it impossible to properly learn very glossy materials and leads to
artifacts in the albedo and roughness. Lastly, Fig 9 highlights that the multi-
scale approach of the Laplacian Pyramid benefits to the final quality of the
environment reconstruction.

Table 1. Quantitative comparison on the shiny blender test. The PSNR, SSIM and
LPIPS scores measure the similarity between novel view synthesis and ground truth
under the same light condition. The MAE score characterizes the reconstruction of
the geometry, which is independent from any lighting. We highlight the best and the
second best scores.

PSNR ↑ SSIM↑ LPIPS ↓ MAE↓
Ours 31.635 0.941 0.098 2.262
w/ separate ρ 32.009 0.945 0.098 2.197
w/o Decomposition 31.235 0.936 0.108 2.809
w/o Supervision 32.289 0.947 0.098 2.260
TensoIR 31.296 0.939 0.089 4.390
NMF 33.599 0.958 0.046 3.659

Extracted lightingExtracted normals Novel-light

TensoIR

Ours

GT

Extracted lightingExtracted normals Novel-light

NMF

Ours

GT

Fig. 12. Comparison with TensoIR [7] and NMF [13] showing that our method better
retrieves PBR parameters like normals and environment lighting, and thus leads to
better relighting, especially on scenes featuring glossy surfaces.

7 Discussion

We have introduced a novel and powerful approach to tackle the ambiguous
problem of inverse rendering. Using a set of input images with their respective
camera information we can generate the geometry, environment illumination,
and material properties of the scene. We leverage both volumetric rendering
through the use of our radiance module, and physically-based rendering.
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Fig. 13. Comparison with NMF [13] showing that our method outperforms the state of
the art in novel-view synthesis for glossy surfaces. In particular, we avoid the ghosting
artifact seen in the self-reflections of NMF.

TensoIR Ours GT

Fig. 14. Comparison with TensoIR [7] showing that our method matches the state of
the art in novel-view synthesis for diffuse surfaces. Our rendering is slightly noisier due
to our importance sampling approach.
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Table 2. Quantitative comparison of the similarity between relighted scenes and
ground truth on the shiny blender dataset. We highlight the best and the second best
scores.

PSNR ↑ SSIM↑ LPIPS ↓
Ours 25.838 0.925 0.101
NMF 25.502 0.916 0.113

NVDiffRec 20.686 0.8312 0.191
NVDiffRecMC 22.196 0.874 0.2158

Table 3. Quantitative comparison ablation of relighting task. We highlight the best
and the second best scores.

PSNR ↑ SSIM↑ LPIPS ↓
Ours 25.261 0.924 0.096

w/ separate ρ 25.113 0.921 0.097
w/o Decomp 24.886 0.915 0.105

w/o Supervision 25.179 0.926 0.091

Table 4. Quantitative comparison between relighted scenes on the TensoIR Synthetic
dataset. We highlight the best and the second best scores.

PSNR ↑ SSIM↑ LPIPS ↓
Ours 28.144 0.929 0.085

TensoIR 28.58 0.944 0.081
NeRFactor 23.383 0.908 0.131
InvRender 23.973 0.901 0.101
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7.1 Properties and insights

We have shown in our quantitative and qualitative tests that our method is
suited for a wide a range of effects. It can capture scenes composed of complex
geometry (Fig. 14) and it excels at tackling glossy surfaces (Fig. 13).

In contrast to state-of-the-art methods such as NeRO [11], which advocate
for processing information through separate geometry and material stages, our
method tackles the problem with a single-stage, end-to-end optimizable archi-
tecture. One of NeRO’s limitation according to the authors is the failure of
retrieving subtle geometrical details. Even though our method is not put to the
test on real-life data, the quality of the normals we achieve on our tests seem to
indicate that our model does not have this limitation.

Our contributions advocate for similar methods. That is, end-to-end optimiz-
able radiance guided approaches to inverse rendering. We have showed on this
paper that NeRFs can provide good coarse features. Indeed, we achieve state-
of-the-art extraction of normals. This is a crucial step in scene understanding,
since given a neat normal, the learning of the other parameters is better con-
strained. Furthermore, NeRFs can help to disambiguate the inverse rendering
problem, our radiance decomposition leads to an increase in performance in all
our tests, and using the roughness predicted by the radiance can help to escape
local extrema. As opposed to methods that focus on rendering predicted PB
parameters (NMF [13], NeRO[11]) we show that dual rendering approaches can
help to better condition the ill posed problem of inverse rendering.

7.2 Limitations

Our model is not without limitations; each of its components may be limiting in
some situation. If the radiance component cannot “understand" the scene enough
to initiate the extraction, the PBR module cannot help it getting out of strong
local minima. Like the methods we compare to, we focused our tests on surfacic
scenes, with no semi-transmissive volumes. If the scene contains light scattering
effects that our PBR module cannot replicate (e.g., subsurface scattering, irides-
cence, etc.), it will only try to fit its BSDF model, which may notably mess up
with normal extraction. Our model will not perform optimally. Moreover, strong
inter-reflections are very hard to properly extract, and our method fails when
the far lighting assumption is not met (See Supp.).

Even if we could perfectly reconstruct the geometry of the scene, the envi-
ronment light and material properties are only retrieved up to a multiplicative
ambiguous parameter: multiplying the lighting by a fixed factor can be balanced
by globally reducing the albedo and reflectance. More generally, it is difficult to
find common ground for comparison in the space of physically-based parame-
ters, as they rely on different BSDF models, some of which are even partially
learned [13]. This is why we focused our efforts on normals. Ultimately, the choice
of BSDF model depends on downstream use of the extracted 3D. The quanti-
tative evaluation of the environment reconstruction is also a question: errors in
areas that do not contribute to the rendered images, or only contribute to rough
surfaces should not be penalized in the same way as sharp reflections.
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7.3 Future Work

Each of our components can be individually improved. Most insights of our
system are not specific to the TensoRF model for positional encoding, so other
learnable representations could be used. Our environment light component could
be augmented in order to support not only far directional light, but also near
distance light sources, like out-of-frustum surfaces, which we would typically
meet when applying our system to non-synthetic images. We could explore the
behavior of our approach in presence of transmissive surfaces, leading to multiple
calls to the PBR module per camera ray, or its interaction with rasterization-
based inverse rendering like 3D Gaussian Splatting paper [8]. Lastly, our method
still has a lot of room to be optimized. There exist optimized NeRF libraries from
which our method could benefit from [10].

Acknowledgments. We wish to warmly thank the authors of TensoIR [7] and NMF [13]
for providing details and results beyond what was available in the original publications.
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