Boucles dans le modèle XOR-Ising

Béatrice de Tilière Université Pierre et Marie Curie, Paris

en collaboration avec Cédric Boutillier

Journée Cartes Ecole Polytechnique, le 6 Février 2013

2-DIMENSIONAL ISING MODEL

• Planar graph G = (V, E), its dual graph $G^* = (V^*, E^*)$.

2-DIMENSIONAL ISING MODEL

- Planar graph G = (V, E), its dual graph $G^* = (V^*, E^*)$.
- Edges of G^* are assigned positive coupling constant, $(J_{e^*})_{e^* \in E^*}$.

2-DIMENSIONAL ISING MODEL

• Spin configuration: $\sigma \in \{-1, 1\}^{V^*}$.

• Ising Boltzmann measure:

$$\mathbb{P}_{\mathrm{Ising}}(\sigma) = \frac{1}{Z_{\mathrm{Ising}}(J)} \exp\Bigl(\sum_{\{e^* = u^*v^* \in E^*\}} J_{e^*} \sigma_{u^*} \sigma_{v^*}\Bigr),$$

PARTITION FUNCTION EXPANSIONS (KRAMERS-WANNIER)

• Normalizing constant is the partition function:

$$Z_{\text{Ising}}(J) = \sum_{\sigma \in \{-1,1\}^{V^*}} \exp\left(\sum_{\{e^* = u^*v^* \in E\}} J_{e^*} \sigma_{u^*} \sigma_{v^*}\right).$$

- Low temperature expansion (LT)
 - Based on the identity:

$$e^{J_{e^*}\sigma_{u^*}\sigma_{v^*}} = e^{J_{e^*}} (\delta_{\{\sigma_{u^*} = \sigma_{v^*}\}} + e^{-2J_{e^*}} \delta_{\{\sigma_{u^*} \neq \sigma_{v^*}\}}).$$

• Geometric interpretation: polygons separate ± 1 clusters.

PARTITION FUNCTION EXPANSIONS (KRAMERS-WANNIER)

• Partition function can be rewritten as:

$$Z_{\text{Ising}}(J) = 2\left(\prod_{e^* \in E^*} e^{J_{e^*}}\right) \sum_{P \in \mathcal{P}(G)} \left(\prod_{e \in P} e^{-2J_{e^*}}\right),$$

- $\mathcal{P}(G)$ is the set of polygonal configuration of G: edge config. P such that each vertex of G is incident to an even number of edges of P.
- High temperature expansion (HT)
 - Based on the identity:

$$e^{J_{e^*}\sigma_{u^*}\sigma_{v^*}} = \cosh(J_{e^*})(1 + \sigma_{u^*}\sigma_{v^*}\tanh(J_{e^*})).$$

• Partition function can be rewritten as:

$$Z_{\text{Ising}}(J) = 2^{|V^*|} \Big(\prod_{e^* \in E^*} \cosh(J_{e^*}) \Big) \sum_{P^* \in \mathcal{P}(G^*)} \Big(\prod_{e^* \in E^*} \tanh(J_{e^*}) \Big).$$

PARTITION FUNCTION EXPANSIONS (KRAMERS-WANNIER)

• Writing

$$Z_{\mathrm{LT}}(G,J) = \sum_{P \in \mathcal{P}(G)} \left(\prod_{e \in P} e^{-2J_{e^*}} \right),$$
$$Z_{\mathrm{HT}}(G^*,J) = \sum_{P^* \in \mathcal{P}(G^*)} \left(\prod_{e^* \in E^*} \tanh(J_{e^*}) \right),$$

yields Kramers & Wannier duality relation:

$$Z_{\mathrm{LT}}(G,J) = \mathcal{C}(G)Z_{\mathrm{HT}}(G^*,J).$$

2-dimensional Ising model with defects

- Assume G is embedded on the torus \mathbb{T} .
- γ_1 , γ_2 are cycles in the graph G, winding around the torus in the 2 possible directions.

 (γ_1, γ_2) : representative of a basis of $H_1(\mathbb{T}, \mathbb{Z}/2\mathbb{Z}) \simeq (\mathbb{Z}/2\mathbb{Z})^2$.

Fix
$$\varepsilon = (\varepsilon_1, \varepsilon_2) \in \{0, 1\}^2$$
.

- Change sign of coupling constants of edges crossing γ_i iff $\varepsilon_i = 1$.
 - \Rightarrow Ising model with coupling constants (J_{e^*}) and defect ε .

Partition function: $Z_{\text{Ising}}^{\varepsilon}(J)$.

Low temperature expansion of $Z_{\text{Ising}}^{\varepsilon}(J)$

- Polygonal configurations, $\mathcal{P}^{\varepsilon}(G)$: edge configurations P of G s.t.
 - \circ each vertex is incident to even number of edges of P,
 - P has homology class ε in $H_1(\mathbb{T}, \mathbb{Z}/2\mathbb{Z})$.
- Low temperature expansion

$$\forall \varepsilon \in \{0,1\}^2, \quad Z_{\mathrm{Ising}}^{\varepsilon}(J) = \left(\prod_{e^* \in E^*} e^{J_{e^*}}\right) \sum_{P \in \mathcal{P}^{\varepsilon}(G)} \prod_{e \in P} e^{-2J_{e^*}}.$$

• Geometric interpretation: polygons 'separate' clusters of ± 1 spins.

Low temperature representation of σ .

Double Ising Model

- Take 2 copies (red/blue) of an Ising model on G^* , with coupling constants (J_{e^*}) , having the *same* defect condition.
- LT representation of the partition function:

$$Z_{2\text{-Ising}}(J) = (Z_{\text{Ising}}^{(0,0)})^2 + (Z_{\text{Ising}}^{(1,0)})^2 + (Z_{\text{Ising}}^{(0,1)})^2 + (Z_{\text{Ising}}^{(1,1)})^2.$$

• Interested in the probability measure $\mathbb{P}_{2\text{-Ising}}$:

$$\circ \ \text{ defined on}, \quad \mathcal{P}^2 := \bigcup_{\varepsilon \in \{0,1\}^2} \mathcal{P}^\varepsilon(G) \times \mathcal{P}^\varepsilon(G),$$

$$\text{o by, } \mathbb{P}_{2\text{-Ising}}(\textcolor{red}{P},\textcolor{blue}{P}) = \frac{\mathcal{C}^2 \left(\prod\limits_{e \in \textcolor{blue}{P}} e^{-2J_{e^*}}\right) \left(\prod\limits_{e \in \textcolor{blue}{P}} e^{-2J_{e^*}}\right)}{Z_{2\text{-Ising}}(J)}.$$

XOR-CONFIGURATIONS

Let $(P, P) \in \mathcal{P}^2$, and consider spin configurations (σ, σ) corresponding to (P, P). Define XOR-spin configuration ξ :

$$\forall v^* \in V^*, \ \xi_{v^*} = \sigma_{v^*} \sigma_{v^*}.$$

CONJECTURE (WILSON, IKHLEF, PICCO, SANTACHIARA)

The scaling limit of polygonal configurations separating ± 1 clusters of the critical XOR model are contour lines of the Gaussian free field, with the heights of the contours spaced $\sqrt{2}$ times as far apart as they are for [...] the double dimer model on the square lattice.

GOAL: partial proof of this conjecture.

Double Ising Model

Let $(P, P) \in \mathcal{P}^2$, and consider the superimposition $P \cup P$.

Superimposition of 2 polygonal configurations $P \cup P$.

Define 2 new edge configurations:

- Mono(P, P): monochromatic edges.
- Bi(P, P): bichromatic edges.

MONOCHROMATIC EDGES

Monochromatic edge configuration of $P \cup P$.

LEMMA

 $\operatorname{Mono}(P, P)$ is the polygonal configuration separating ± 1 clusters of the corresponding XOR-configuration.

$$\Rightarrow \operatorname{Mono}(P, P) \in \mathcal{P}^{(0,0)}(G).$$

Goal: understand the law of monochromatic edge configurations.

THEOREM (BOUTILLIER, DT)

- 1. Monochromatic edge configurations have the same distribution as a family of 'contours' in a bipartite dimer model.
- 2. This family of 'contours' are the 1/2-integer level lines of a restriction of the height function of this bipartite dimer model.

- When the double Ising model is *critical*, so is the bipartite dimer model.
- Using results of [dT] on the convergence of the height function, we give a partial proof of Wilson's conjecture.

BICHROMATIC EDGE CONFIGURATIONS

Let $\varepsilon \in \{0,1\}^2$, and let $(P,P) \in \mathcal{P}^{\varepsilon}(G) \times \mathcal{P}^{\varepsilon}(G)$.

Mono(P, P) separates the torus into connected components $\Sigma_1, \dots, \Sigma_{n_P}$

LEMMA

For every i, the restriction of Bi(P, P) to Σ_i is the LTE of an Ising configuration on $G_{\Sigma_i}^*$, with coupling constants $(2J_{e^*})$, and defect condition $\Pi_{\Sigma_i}(\varepsilon)$.

$$\Rightarrow \operatorname{Bi}({\color{blue}P},{\color{blue}P})_i \in \mathcal{P}^{\Pi_{\Sigma_i}(\varepsilon)}(G_{\Sigma_i}).$$

PROBABILITY OF MONOCHROMATIC CONFIG.

LEMMA

Let $P \in \mathcal{P}^{(0,0)}(G)$, and for every $i \in \{1, \dots, n_P\}$ let P_i be a polygon configuration of $\mathcal{P}^{\prod_{\Sigma_i}(\varepsilon)}(G_{\Sigma_i})$.

Then, there are 2^{n_P} pairs $(P, P) \in \mathcal{P}^{\varepsilon}(G) \times \mathcal{P}^{\varepsilon}(G)$ having P as monochromatic edges, and P_1, \dots, P_{n_P} as bichromatic edges.

For
$$P \in \mathcal{P}^{(0,0)}(G)$$
, denote by $W^{\varepsilon}(P)$ the contribution of: $\{(P,P) \in \mathcal{P}^{\varepsilon}(G) \times \mathcal{P}^{\varepsilon}(G) : \operatorname{Mono}(P,P) = P\},$ to $(Z_{\operatorname{Ising}}^{\varepsilon}(J))^{2}$.

COROLLARY

- $W^{\varepsilon}(P) = \mathcal{C}\left(\prod_{e \in P} e^{-2J_{e^*}}\right) \prod_{i=1}^{n_P} \left(2Z_{\mathrm{LT}}^{\Pi_{\Sigma_i}(\varepsilon)}(G_{\Sigma_i}, 2J)\right).$
- $Z_{2\text{-Ising}}(J) = \sum_{P \in \mathcal{P}^{(0,0)}(G)} \sum_{\varepsilon \in \{0,1\}^2} W^{\varepsilon}(P)$.

$$\forall P \in \mathcal{P}^{(0,0)}(G), \ \mathbb{P}_{2\text{-Ising}}(\text{Mono} = P) = \frac{\sum_{\varepsilon \in \{0,1\}^2} W^{\varepsilon}(P)}{Z_{2\text{-Ising}}(J)}.$$

MIXED CONTOUR EXPANSION

$$W^{\varepsilon}(P) = \mathcal{C}\left(\prod_{e \in P} e^{-2J_{e^*}}\right) \prod_{i=1}^{n_P} \left(2Z_{\mathrm{LT}}^{\Pi_{\Sigma_i}(\varepsilon)}(G_{\Sigma_i}, 2J)\right).$$

IDEA (NIENHUIS): use Kramers and Wannier duality in each connected component Σ_i .

$$Z_{\mathrm{LT}}^{\Pi_{\Sigma_{i}}(\varepsilon)}(G_{\Sigma_{i}}, 2J) = \mathcal{C}(\Sigma_{i}) \underbrace{Z_{\mathrm{HT}}^{\Pi_{\Sigma_{i}}(\varepsilon)}(G_{\Sigma_{i}}^{*}, 2J)}_{(*)},$$

where
$$(*) = \sum_{\tau \in H_1(\Sigma_i, \mathbb{Z}/2\mathbb{Z})} (-1)^{(\tau|\Pi_{\Sigma_i}(\varepsilon))} \sum_{P^* \in \mathcal{P}^{\tau}(G^*_{\Sigma_i})} \left(\prod_{e^* \in P^*} \tanh(2J_{e^*})\right).$$

Low temp. expansion on G_{Σ_i} High temp. expansion on $G_{\Sigma_i}^*$

MIXED CONTOUR EXPANSION

Combining terms, and taking the sum over $\varepsilon \in \{0,1\}^2$, yields:

Proposition

For all monochromatic configuration $P \in \mathcal{P}^{(0,0)}(G)$,

$$\sum_{\varepsilon \in \{0,1\}^2} W^\varepsilon(P) = \mathcal{C} \prod_{e \in P} \left(\frac{2e^{-2J_{e^*}}}{1 + e^{-4J_{e^*}}}\right) \sum_{\{P^* \in \mathcal{P}^{(0,0)}(G^*): \, P \cap P^* = \emptyset\}} \prod_{e^* \in P^*} \left(\frac{1 - e^{-4J_{e^*}}}{1 + e^{-4J_{e^*}}}\right)$$

$$\mathbb{P}_{2\text{-Ising}}(\text{Mono} = P) = \frac{\prod\limits_{e \in P} \left(\frac{2e^{-2J_e*}}{1 + e^{-4J_e*}}\right) \sum\limits_{\substack{\{P^* \in \mathcal{P}^{(0,0)}(G^*): P \cap P^* = \emptyset\}\\P \in \mathcal{P}^{(0,0)}(G)}} \prod\limits_{e^* \in P^*} \left(\frac{1 - e^{-4J_e*}}{1 + e^{-4J_e*}}\right)}{\sum\limits_{P \in \mathcal{P}^{(0,0)}(G)} \dots}$$

6-VERTEX MODEL ON THE MEDIAL GRAPH

- Medial graph G^M of G (or G^*) [Ore]:
 - vertices of $G^M \leftrightarrow \text{edges of } G \text{ (or } G^*),$
 - $\, \bullet \,$ vertices are joined by an edge if corresponding edges are incident.

Remark: vertices of the medial graph have degree 4.

• 6-vertex configuration: at each vertex, one of the following:

$$\underset{1}{\cancel{\times}}\underset{2}{\cancel{\times}}\underset{3}{\cancel{\times}}\underset{4}{\cancel{\times}}\underset{5}{\cancel{\times}}\underset{6}{\cancel{\times}}$$

• Weights: $\omega_{12} = \frac{2e^{-2J_e*}}{1+e^{-4J_e*}}$, $\omega_{34} = \frac{1-e^{-4J_e*}}{1+e^{-4J_e*}}$, $\omega_{56} = 1$.

6-VERTEX MODEL ON THE MEDIAL GRAPH

6-vertex configuration

Mapping:

LEMMA (NIENHUIS)

- 6-vertex configuration \rightarrow a pair (P, P^*) of primal and dual polygonal configurations of G and G^* :
 - \circ P and P^* do not intersect,
 - homology class of $P \cup P^*$ in $H_1(\mathbb{T}, \mathbb{Z}/2\mathbb{Z})$ is (0,0).
- Given (P, P^*) as above \rightarrow two 6-vertex configurations.

Let
$$\mathcal{P}^{(0,0)}(G,G^*) = \{(P,P^*) \in \mathcal{P}(G) \times \mathcal{P}(G) : \text{hom}(P \cup P^*) = (0,0)\}.$$

As a consequence of the above mapping, we have:

COROLLARY

The 6-vertex partition function can be expressed as:

$$\begin{split} Z_{6-\text{vertex}}(J) &= \\ 2^{-1} \sum_{\{(P,P^*) \in \mathcal{P}^{(0,0)}(G,G^*): \, P \cap P^* = \emptyset\}} \prod_{e \in P} \left(\frac{2e^{-2J_{e^*}}}{1 + e^{-4J_{e^*}}}\right) \prod_{e^* \in P^*} \left(\frac{1 - e^{-4J_{e^*}}}{1 + e^{-4J_{e^*}}}\right). \end{split}$$

QUADRI-TILINGS

• Quadri-tiling graph G^Q of G (or G^*): each vertex of the medial graph is replaced by a quadrangle. It is *bipartite*.

• Dimer configuration: subset of edges M such that each vertex is incident to exactly on edge of M. Denote by $\mathcal{M}(G^Q)$ the set of dimer configurations. At each decoration, one of the following:

• Weights assigned to edges.

$$0 \\ \omega_{34} \\ \omega_{34} \\ \omega_{34} \\ \omega_{34}$$

QUADRI-TILINGS

• Remark: weights satisfy the free fermion condition:

$$\omega_{12}^2 + \omega_{34}^2 = \left(\frac{2e^{-2J_{e^*}}}{1 + e^{-4J_{e^*}}}\right)^2 + \left(\frac{1 - e^{-4J_{e^*}}}{1 + e^{-4J_{e^*}}}\right)^2 = \omega_{56}^2 = 1.$$

• Dimer Boltzmann measure:

$$\forall M \in \mathcal{M}(G), \quad \mathbb{P}_{\mathbf{Q}}(M) = \frac{1}{Z_{\mathbf{Q}}} \prod_{e \in M} \mathrm{weight}_e,$$

where $Z_{\rm Q}$ is the partition function.

• Mapping [Wu & Lin, Dubédat]

- Let M be a dimer configuration of G^Q :
 - $\operatorname{Poly}(M) = (\operatorname{Poly}_1(M), \operatorname{Poly}_2(M))$ is the pair of polygonal configurations assigned by the mappings.
- Let $(P, P^*) \in \mathcal{P}^{(0,0)}(G, G^*)$ be such that $P \cap P^* = \emptyset$.
 - Denote by $W_Q(P, P^*)$ the contribution to Z_Q of:

$$\{M \in \mathcal{M}(G^Q) : \operatorname{Poly}(M) = (P, P^*)\}.$$

As a consequence of the mappings we have:

COROLLARY

•
$$W_Q(P, P^*) = 2^{-1} \prod_{e \in P} \left(\frac{2e^{-2J_{e^*}}}{1 + e^{-4J_{e^*}}} \right) \prod_{e^* \in P^*} \left(\frac{1 - e^{-4J_{e^*}}}{1 + e^{-4J_{e^*}}} \right)$$

•
$$Z_{\mathbf{Q}} = \sum_{(\{P,P^*) \in \mathcal{P}^{(0,0)}(G \cup G^*): P \cap P^* = \emptyset\}} W_Q(P,P^*).$$

$$\mathbb{P}_{\mathbf{Q}}(\text{Poly} = (P, P^*)) = \frac{\prod_{e \in P} \left(\frac{2e^{-2J_{e^*}}}{1 + e^{-4J_{e^*}}}\right) \prod_{e^* \in P^*} \left(\frac{1 - e^{-4J_{e^*}}}{1 + e^{-4J_{e^*}}}\right)}{\sum_{(P, P^*)} \dots}$$

Wrapping up

- $\mathcal{M}^{(0,0)}(G^Q)$: dimer configurations of G^Q such that $\operatorname{Poly}_1(M)$ has (0,0) homology class.
- $\mathbb{P}_{\mathcal{Q}}^{(0,0)}$: dimer probability measure on $\mathcal{M}^{(0,0)}(G^{\mathcal{Q}})$. Then:

$$\forall (P, P^*) \in \mathcal{P}^{(0,0)}(G) \times \mathcal{P}^{(0,0)}(G^*) \text{ such that } P \cap P^* = \emptyset,$$

$$\mathbb{P}_{Q}^{(0,0)}(\text{Poly} = (P, P^*)) = \frac{\prod_{e \in P} \left(\frac{2e^{-2J_{e^*}}}{1 + e^{-4J_{e^*}}}\right) \prod_{e^* \in P^*} \left(\frac{1 - e^{-4J_{e^*}}}{1 + e^{-4J_{e^*}}}\right)}{\sum_{\{(P, P^*) \in \mathcal{P}^{(0,0)}(G) \times \mathcal{P}^{(0,0)}(G^*): P \cap P^* = \emptyset\}} \cdots$$

Wrapping everything together we obtain, the following:

THEOREM

$$\forall P \in \mathcal{P}^{(0,0)}(G), \quad \mathbb{P}_{2\text{-Ising}}(\text{Mono} = P) = \mathbb{P}_{Q}^{(0,0)}(\text{Poly}_1 = P)$$

ISORADIAL GRAPHS

• A graph G = (V, E) is isoradial if it can be embedded in the plane such that all faces are inscribed in a circle of radius 1.

• G isoradial $\Rightarrow G^*$ isoradial: vertices of G^* = center of the circumcircles.

ISORADIAL GRAPHS

• G^{\diamond} : associated rhombus graph, $\begin{cases} \text{vertices: } V(G) \cup V(G^*) \\ \text{edges: radii of the circles} \end{cases}$

• Edge $e \to \begin{cases} \text{rhombus (or } 1/2) \\ \text{angle } \theta_e \end{cases}$

Critical 2-dimensional Ising model

• The Ising model on an isoradial graph G^* is critical if the coupling constants are given by, for every edge e^* :

$$J_{e^*} = \frac{1}{2} \log \left(\frac{1 + \sin \theta_{e^*}}{\cos \theta_{e^*}} \right).$$

 $(Z\mbox{-invariance} + \mbox{duality [Baxter], proof in period. case [Cimasoni & Duminil-Copin, Li])}$

Example: $G = \mathbb{Z}^2$: \forall edge e^* , $\theta_{e^*} = \frac{\pi}{4}$, $J_{e^*} = \frac{1}{2} \log(1 + \sqrt{2})$.

⇒ critical temperature computed by Kramers and Wannier.

Infinite volume measures

Corresponding quadri-tiling graph G^Q is also isoradial, and corresponding weights are the critical dimer weights (Kenyon):

$$\cos \theta$$
 $\cos \theta$
 $\cos \theta$
 $\cos \theta$
 $\cos \theta$

THEOREM (DT,BOUTILLIER-DT)

- There exists a probability measure \mathbb{P}_{Q}^{∞} on $\mathcal{M}(G^{Q})$, respectively $\mathbb{P}_{2\text{-Ising}}^{\infty}$ on $\mathcal{P}(G) \times \mathcal{P}(G)$, having explict expressions on cylinder sets.
- When G is \mathbb{Z}^2 -periodic, each of these measures is obtained as weak limit of the Boltzmann measures.

COROLLARY

For every finite subset of edges \mathcal{E} of E, we have:

$$\mathbb{P}^{\infty}_{2\text{-Ising}}(\mathcal{E} \subset \mathrm{Mono}) = \mathbb{P}^{\infty}_{Q}(\mathcal{E} \subset \mathrm{Poly}_{1}).$$

HEIGHT FUNCTION ON QUADRI-TILINGS

- The height function is defined on faces of G^Q :
 - If f and f' are incident along an edge wb having rhombus half-angle θ_{wb} , if from f to f', b is on the left:

• If f and f' are not incident, h^M is defined inductively. Well defined up to choice of value at base point.

HEIGHT FUNCTION ON QUADRI-TILINGS

- Faces of G^Q are vertices of $(G^Q)^*$, which consist of vertices of:
 - the medial graph V^M (green),
 - the primal graph V (gray),
 - \circ the dual graph V (pink).
- Consider the restriction of h^M to vertices of V^* (pink).
- $\frac{1}{2}$ -integer level lines of the above restriction (live on G): draw a primal edge e = uv iff $h^M(v^*) - h^M(u^*) = \pm 1$.

LEVEL LINES AND MONOCHROMATIC CONFIGURATIONS

LEMMA

Let M be a quadri-tiling of G^Q , then 1/2 integer level lines of the restriction of h^M to V^* exactly consist of $Poly_1(M)$.

COROLLARY

Monochromatic configurations of the double critical Ising model have the same law as 1/2-integer level lines of the restriction to V^* of the height function of quadri-tilings.

Define,
$$H^{\varepsilon}: C^{\infty}_{c,0}(\mathbb{R}^2) \to \mathbb{R}$$

$$\phi \mapsto H^{\varepsilon}\phi = \varepsilon^2 \sum_{f \in V(G_Q^*)} a(f^*)\phi(f)h(f).$$

THEOREM (DT)

The random distribution H^{ε} converges weakly in distribution to $\frac{1}{\sqrt{\pi}}$ a Gaussian free field in the plane.

The same holds for the restricted height function if $a(f^*)$ is replaced by the area of the corresponding face of G^* .

BACK TO WILSON'S CONJECTURE

Suppose we had strong form of convergence, allowing for convergence of level lines. Then:

level lines of h^{ε}	\longrightarrow	level lines of GFF	
$(k, k \in \mathbb{Z})$		$(\sqrt{\pi}k, k \in \mathbb{Z})$	
$(k + \frac{1}{2}, k \in \mathbb{Z})$		$\left(\frac{\sqrt{\pi}}{2}(2k+1), k \in \mathbb{Z}\right)$	XOR loops

For the critical double dimer model. The height function is $h_1^{\varepsilon} - h_2^{\varepsilon}$, where h_1 and h_2 are independent, and each converges weakly in distribution to $\frac{1}{\sqrt{\pi}}$ a Gaussian free field. Thus, $h_1 - h_2$ converges weakly in distribution to $\frac{\sqrt{2}}{\sqrt{\pi}}$ a Gaussian free field.

level lines of $h_1^{\varepsilon} - h_2^{\varepsilon}$	\rightarrow	level lines of GFF	
$(k, k \in \mathbb{Z})$		$(\frac{\sqrt{\pi}}{\sqrt{2}}k, k \in \mathbb{Z})$	
$(k + \frac{1}{2}, k \in \mathbb{Z})$		$\left(\frac{\sqrt{\pi}}{2\sqrt{2}}(2k+1), k \in \mathbb{Z}\right)$	d-dimer loops