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2-DIMENSIONAL ISING MODEL

e Planar graph G = (V, E), its dual graph G* = (V*, E¥).




2-DIMENSIONAL ISING MODEL

e Planar graph G = (V, E), its dual graph G* = (V*, E*).

e Edges of G* are assigned positive coupling constant, (Jex)erep*.
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2-DIMENSIONAL ISING MODEL

e Spin configuration: o € {—1,1}"".

e Ising Boltzmann measure:

1
Pline(0) = =—————ex ( Je*au*av*>,
0= Z 2



PARTITION FUNCTION EXPANSIONS (KRAMERS-WANNIER)

e Normalizing constant is the partition function:

Zising(J) = > exp( 3 o Oy gv*>,

oe{-1,1}V* {e*=u*v*€E}
e Low temperature expansion (LT)
o Based on the identity:

Jex Oyxoyx GJE*(

€ 5{‘7u*:‘7v*} + 672Je* 5{‘7u*?é0'v*})'

o Geometric interpretation: polygons separate £1 clusters.
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PARTITION FUNCTION EXPANSIONS (KRAMERS-WANNIER)

o Partition function can be rewritten as:

Zann=2(I1 &) 3 (L)
)

e*eE* PeP(G) eeP

o P(Q) is the set of polygonal configuration of G: edge config. P
such that each vertex of G is incident to an even number of edges
of P.

e High temperature expansion (HT)
o Based on the identity:

elerTur7v = cosh(Je- ) (1 + 0y 0y tanh(Je-)).

o Partition function can be rewritten as:

Ziging(1) = 2V (I cosh(se)) D7 (] tanh(Je)).

e*€E* P*eP(G*) e €E*




PARTITION FUNCTION EXPANSIONS (KRAMERS-WANNIER)

e Writing

ZLT(G J Z He 2J*

PEP(G) ecP

Zur(G*,J) = Z ( H tanh(Je*))

P*eP(G*) e*cE*
yields Kramers & Wannier duality relation:

Z11(G, J) = C(G) Zur (G, J).



2-DIMENSIONAL ISING MODEL WITH DEFECTS

e Assume G is embedded on the torus T.

e 71, 2 are cycles in the graph G, winding around the torus in
the 2 possible directions.

(v1,72): representative of a basis of Hy(T,Z/27) ~ (7Z./27)>.
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Fix ¢ = (e1,e2) € {0,1}2.
e Change sign of coupling constants of edges crossing ~; iff ¢; = 1.

= Ising model with coupling constants (J.+) and defect e.
Partition function: Zf;, . (J).



LOW TEMPERATURE EXPANSION OF Zp; . (J)

e Polygonal configurations, P*(G): edge configurations P of G s.t.

o each vertex is incident to even number of edges of P,
o P has homology class € in Hy(T,Z/27Z).

e Low temperature expansion
2 —2J
Ve e {Ov 1} ’ Zfsing(‘]) = ( H Z H
e*eE* PePe(G) ecP

e Geometric interpretation: polygons ‘separate’ clusters of +1
spins.
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Low temperature representation of o.



DOUBLE ISING MODEL

e Take 2 copies (red/blue) of an Ising model on G*, with coupling
constants (Je+), having the same defect condition.

e LT representation of the partition function:

0,0 1,0 0,1 1,1
Z2-Ising(<]) = (Zl(sing))2 + (ZI(sing))2 + (Zl(sing2)2 + (ZI(sing))z‘

e Interested in the probability measure Py fging:

o defined on, P?:= |J 7P(GQ)xP(G),

e€{0,1}2
C2( 11 672J6*)( I 672Je*)
e€eP ecP

o by, Paoising(P, P) = Zo-15ing ()
-Ising



XOR-CONFIGURATIONS

Let (P, P) € P?, and consider spin configurations (o, o)
corresponding to (P, P). Define XOR-spin configuration &:

Yo* € V*, &;* = Op*Ogp*.

CONJECTURE (WILSON, IKHLEF, PICCO, SANTACHIARA)

The scaling limit of polygonal configurations separating +1 clusters
of the critical XOR model are contour lines of the Gaussian free
field, with the heights of the contours spaced \/2 times as far apart as
they are for [...] the double dimer model on the square lattice.

GoAL: partial proof of this conjecture.



DOUBLE ISING MODEL

Let (P, P) € P2, and consider the superimposition P U P.
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Superimposition of 2 polygonal configurations P U P.

Define 2 new edge configurations:
e Mono(P, P): monochromatic edges.
e Bi(P, P): bichromatic edges.



MONOCHROMATIC EDGES

[

Monochromatic edge configuration of P U P.

LEMMA
Mono(P, P) is the polygonal configuration separating £1 clusters of
the corresponding XOR-configuration.

= Mono(P, P) € POO(@).

GOAL: understand the law of monochromatic edge configurations.



THEOREM (BOUTILLIER, DT)

1. Monochromatic edge configurations have the same distribution
as a family of ‘contours’ in a bipartite dimer model.

2. This family of ‘contours’ are the 1/2-integer level lines of a
restriction of the height function of this bipartite dimer model.
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e When the double Ising model is critical, so is the bipartite
dimer model.

e Using results of [dT] on the convergence of the height function,
we give a partial proof of Wilson’s conjecture.



BICHROMATIC EDGE CONFIGURATIONS

Let € € {0,1}2, and let (P, P) € P*(G) x P*(G).

Mono(P, P) separates the torus into connected components

S0, 8

y “np

L,

[

X, T

LEMMA
For every i, the restriction of Bi(P, P) to %; is the LTE of an Ising
configuration on Gy, , with coupling constants (2Je+), and defect
condition Ily, (¢).

= Bi(P, P); € P (Gy)).



PROBABILITY OF MONOCHROMATIC CONFIG.

LEMMA

Let P € POONG), and for everyi € {1,--- ,np} let P; be a polygon
configuration of P=:)(Gy,).

Then, there are 2"F pairs (P, P) € P*(G) x P¢(G) having P as
monochromatic edges, and Py,--- , P,, as bichromatic edges.

For P € P00)(@), denote by W¢(P) the contribution of:
{(P,P) € P*(G) x P*(G) : Mono(P, P) = P},
to (ZIasing(J))z'

COROLLARY
n s,
o« We(P) = C([Lepe ) 115 (22057 (G, 20) ).
* Zasing(J) = 2 pepog) 266{0,1}2 We(P).

256{0,1}2 We(P)
Zo-1sing (J)

VP € PON(G), Pyising(Mono = P) =




MIXED CONTOUR EXPANSION

We(P) = C([Lepe ) 15 (22157 (G, 20) ).

IDEA (NIENHUIS): use Kramers and Wannier duality in each
connected component Y;.

2249 (G, 20) = c(x) 23O (6%, 27),

-~

(*)

where (1) = % (=)UM™=E) 57 ([ tanh(2-)).
TEHl(Zi,Z/QZ) P*EPT(G*ZZ») e*eP*
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Low temp. expansion on Gy, High temp. expansion on Gg;,




MIXED CONTOUR EXPANSION
Combining terms, and taking the sum over ¢ € {0, 1}2, yields:

PROPOSITION
For all monochromatic configuration P € POO(Q),
* 1— 6_4JC*
€ —
Z W H<1+674J ) Z H (14»674']6*)
e€{0,1}2 {P*eP(0,0)(G*): PNP*=)} e*€P*
L]
i Bin
— [ 9
—2J 4 AT
ecP 1?»6674‘15* ) Z | —4Jx )

(P*ep(0,0) () prpr—g} e*€P* 1T€

PQ.ISing(MOHO = P) =

pepr(0,0)(q)




6-VERTEX MODEL ON THE MEDIAL GRAPH

e Medial graph GM of G (or G*) [Ore]:
o vertices of GM « edges of G (or G*),
o vertices are joined by an edge if corresponding edges are incident.

Remark: vertices of the medial graph have degree 4.

e (-vertex configuration: at each vertex, one of the following:
N
A2 <X
1 2 3 4 5 6

o4k

_1l—e _
T 1re e wse = 1.

2 —2J
1+e_4‘]e* )

o Weights: wio = w34



6-VERTEX MODEL ON THE MEDIAL GRAPH

8280
g 0T

6-vertex configuration

Mapping:



LEMMA (NIENHUIS)

e G-vertex configuration — a pair (P, P*) of primal and dual
polygonal configurations of G and G*:

o P and P* do not intersect,
o homology class of P U P* in Hi(T,Z/2Z) is (0,0).

e Given (P, P*) as above — two 6-vertex configurations.




Let POO(G,G*) = {(P, P*) € P(G) x P(G) : hom(P U P*) = (0,0)}.
As a consequence of the above mapping, we have:

COROLLARY
The 6-vertex partition function can be expressed as:

ZG—vertex(J) =
_ o2 e 4Tex
2-1 Z H (13—6_4‘]6* ) H (}_,'_G—We* )

{(P,P*)eP©.0)(G,G*): PNP*=0} e€P erEP




(QUADRI-TILINGS

e Quadri-tiling graph G of G' (or G*): each vertex of the medial
graph is replaced by a quadrangle. It is bipartite.

ja

e Dimer configuration: subset of edges M such that each vertex is
incident to exactly on edge of M. Denote by M(G®) the set of
dimer configurations. At each decoration, one of the following:

A = R T H X
e Weights assigned to edges.

lo, 1
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(QUADRI-TILINGS

e REMARK: weights satisfy the free fermion condition :

5 o 2e7Fer N2 1
chtod = (o) + (e

—4J
e e* 2_ 9 1
—w56— .

e Dimer Boltzmann measure:

1
VM € M(G), Po(M)=—— I weight,,

ecM
where Zq is the partition function.
e Mapping [Wu & Lin, Dubédat]
o, o, ® o, 1 1
N
o YA X
o, |0, 1 2 3 4 5 6
10)12 l
O H o
o, o, ® O, 1
VEERN



e Let M be a dimer configuration of G¥:
o Poly(M) = (Poly, (M), Poly,(M)) is the pair of polygonal
configurations assigned by the mappings.
o Let (P, P*) € POY(G,G*) be such that PN P* = §.
o Denote by Wq (P, P*) the contribution to Zg of:

{M € M(G®) : Poly(M) = (P, P*)}.

As a consequence of the mappings we have:

COROLLARY
—2J % AT
o Wo(P,P*)=2"1 H66P<12+€e,74%*) [Le-cp- (ﬁ)
° Zq= > Wq(P, P*).

({P,P*)eP0.0)(GUG*): PNP*=0}

H 2¢ 2/ ex 1—[ 1—eHex
cep \14e™Hex e*epP* 1o e

(RP*)...

Pq(Poly = (P, P*)) =




WRAPPING UP

o MOO)(GQ): dimer configurations of G2 such that Poly; (M)
has (0,0) homology class.

. Pg) ), dimer probability measure on MO0(GR). Then:
V(P, P*) € PLO(G) x POO(G*) such that PN P* =0,

26— 2T o 1—e—4J o
H Tt Mo H Ite o

]ngo) (POly _ (P, P*)) _ ecP Ze"EP* ~
{(P,P*)eP©.0)(G)xP0.0)(G*): PNP*=0}
Wrapping everything together we obtain, the following:

THEOREM

vP e POO(@), Py 1sing (Mono = P) = IP’((S’O) (Poly, = P)




ISORADIAL GRAPHS

e A graph G = (V, E) is isoradial if it can be embedded in the
plane such that all faces are inscribed in a circle of radius 1.

e (7 isoradial = G* isoradial: vertices of G* = center of the
circumcircles.



ISORADIAL GRAPHS

vertices: V(G) UV (G¥)

e (°: associated rhombus graph, B )
edges: radii of the circles

o Edee e rhombus (or 1/2) a
N
g angle 0@ ‘W



CRITICAL 2-DIMENSIONAL ISING MODEL

e The Ising model on an isoradial graph G* is critical if the
coupling constants are given by, for every edge e*:

1 1 + sin @~
= —log [ ————= ).
J 9 %8 < €OS B x >

(Z-invariance + duality [Baxter|, proof in period. case [Cimasoni &
Duminil-Copin, Li])

Example: G = Z% V edge €, O« = T, Jor = £ log(1 +V/2).

+ - +

+ + o+ < < + +
/) + + + - - + +
. i + + i i

= critical temperature computed by Kramers and Wannier.




INFINITE VOLUME MEASURES
Corresponding quadri-tiling graph G is also isoradial, and
corresponding weights are the critical dimer weights (Kenyon):
sin®

1 1
cos 0 76):[ cos@

sin@

THEOREM (DT,BOUTILLIER-DT)

e There exists a probability measure ]P’OQO on M(GQ), respectively
P sing O P(G) x P(G), having explict expressions on cylinder
sets.

o When G is Z*-periodic, each of these measures is obtained as

weak limit of the Boltzmann measures.

COROLLARY
For every finite subset of edges £ of E, we have:

S1sing (€ C Mono) = PF (€ C Poly,).



HEIGHT FUNCTION ON QUADRI-TILINGS

e The height function is defined on faces of G?:

o If f and f’ are incident along an edge wb having rhombus
half-angle 0,,y, if from f to f’, b is on the left:

W) DY) = P g (M),

50
iy
Bifaa

o If f and f’ are not incident, M is defined inductively. Well
defined up to choice of value at base point.



HEIGHT FUNCTION ON QUADRI-TILINGS

o Faces of G9 are vertices of (G®)*, which consist of vertices of:

o the medial graph VM (green),
o the primal graph V (gray),
o the dual graph V (pink).

e Consider the restriction of h to vertices of V* (pink).

e J-integer level lines of the above restriction (live on G):
draw a primal edge e = uv iff hM (v*) — AM (u*) = £1.

-1 1 0 0
e/ .0 Qe ) o)
= s ol e
TN s 9
0 0 0 0
0



LEVEL LINES AND MONOCHROMATIC CONFIGURATIONS

LEMMA
Let M be a quadri-tiling of GO, then 1/2 integer level lines of the
restriction of hM to V* exactly consist of Poly,(M).

COROLLARY

Monochromatic configurations of the double critical Ising model have
the same law as 1/2-integer level lines of the restriction to V* of the
height function of quadri-tilings.

Define, H* : Cg3(R?*) — R
¢ = H¢g=e> 3 al(f)o(f)h(f).
feV(GE)
THEOREM (DT)
The random distribution H® converges weakly in distribution to ﬁ a
Gaussian free field in the plane.

The same holds for the restricted height function if a(f*) is replaced
by the area of the corresponding face of G*.



BACK TO WILSON’S CONJECTURE

Suppose we had strong form of convergence, allowing for
convergence of level lines. Then:

level lines of h® | — | level lines of GFF
(k.k € Z) (V7k,k € 7)
(k+ 31 kez) (Y (2k + 1),k € Z) | XOR loops

For the critical double dimer model. The height function is h] — h3,

where h; and ho are independent, and each converges weakly in
distribution to ﬁ a Gaussian free field. Thus, h; — he converges

V2

weakly in distribution to N Gaussian free field.
level lines of h] — h5 | — | level lines of GFF
VT
(k, k€ Z) (V5k: k€ Z)
(k+i ke (T@(Qk + 1),k € Z) | d-dimer loops




