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Social Networks growth.. 

 Social networking accounts for 1 of every 6 minutes spent online 
[http://blog.comscore.com/]  

 One in every nine people on Earth is on Facebook  

 Each Facebook user spends on average 15 hours and 33 minutes 
a month on the site 

 30 billion pieces of content is shared on Facebook each month 

 300,000 users helped translate Facebook into 70 languages 

 People on Facebook install 20 million “Apps” every day 

---------------------------------------------------------- 

[http://www.jeffbullas.com/2011/09/02/20-stunning-social-media-

tatistics/#q3eTJhr64rtD0tLF.99] 
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Social Networks Growth.. 

 YouTube has 490 million unique users who visit every month (02/2011) 

 Users on YouTube spend a total of 2.9 billion hours per month (326,294 
years)! 

 Wikipedia hosts 17 million articles and has over 91,000 contributors 

 People upload 3,000 images to Flickr every minute and hosts over 5 billion 
images! 

 190 million average  Tweets per day occur on Twitter (May 2011) 

 Twitter is handling 1.6 billion queries per day 

 Google+ was the fastest social network to reach 10 million users at 16 days 
(Twitter took 780 days and Facebook 852 days) 

 
-------------------------- 

[http://www.jeffbullas.com/2011/09/02/20-stunning-social-media-statistics/#q3eTJhr64rtD0tLF.99] 

http://www.jeffbullas.com/2011/09/02/20-stunning-social-media-statistics/
http://www.jeffbullas.com/2011/09/02/20-stunning-social-media-statistics/
http://www.jeffbullas.com/2011/09/02/20-stunning-social-media-statistics/
http://www.jeffbullas.com/2011/09/02/20-stunning-social-media-statistics/
http://www.jeffbullas.com/2011/09/02/20-stunning-social-media-statistics/
http://www.jeffbullas.com/2011/09/02/20-stunning-social-media-statistics/
http://www.jeffbullas.com/2011/09/02/20-stunning-social-media-statistics/
http://www.jeffbullas.com/2011/09/02/20-stunning-social-media-statistics/
http://www.jeffbullas.com/2011/09/02/20-stunning-social-media-statistics/


6 C. Giatsidis, F. D. Malliaros, M. Vazirgiannis Tutorial – WWW 2013 

Graphs are everywhere 

 The WWW  is a directed graph 

 Social & citation Networks constitute inherently 
Graphs 

 Such graphs can be directed (WWW) and or 
signed (trust networks) 

 High dynamics: constantly changing in both 
“shape” and size”  
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Communities in social nets 

 Real networks are not random graphs (e.g., the Erdos-
Renyi random graph model) 

  Present fascinating patterns and properties:  

 The degree distribution is skewed, following a power-law   

 the average distance between the nodes of the network is short 
(the small-world phenomenon)    

 the edges between the nodes may not represent reciprocal 
relations, forming directed networks with non-symmetric links    

 edge density is inhomogeneous (groups of nodes with high 
concentration of edges within them and low concentration 
between different groups . This property is called clustering or 
community structure and is of great interest 
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Community detection 

 community detection in graphs aims to identify 
the modules and, possibly, their hierarchical 
organization, by only using the information 
encoded in the graph topology.  

 First attempt dates back to 1955 by Weiss and 
Jacobson searching for work groups within a 
government agency. 
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Communities – application domains 

 Social communities have been studied for a long time (Coleman, 
1964; Freeman, 2004; Kottak, 2004; Moody and White, 2003).  

 In biology - protein-protein interaction networks, communities are 
likely to group proteins having the same specific function within the 
cell (Chen, 2006; Rives and Galitski 2003; Spirin and Mirny, 2003),  

 World Wide Web: communities correspond to groups of pages 
dealing with the same or related topics (Dourisboure et al., 2007; 
Flake et al., 2002),  

 metabolic networks they may be related to functional modules such 
as cycles and pathways (Guimera and Amaral, 2005; Palla et al., 
2005), 

 in food webs they may identify compartments (Krause et al., 2003; 
Pimm, 1979) 
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Community evaluation 

 Community detection  and evaluation in graphs is a 
cornerstone issue . 

 Different metrics/ measurements /methods are used 

 Hub/authorities 

 Modularity 

 Density/Diameter/Link distribution etc…. 

 Centrality/Betweenness 

 Clustering coefficient 

 Structural cohesion  

 A thorough state of the art review is offered by Fortunato 

Santo Fortunato. Community detection in graphs. Physics Reports, 486(3-
5):75-174, 2010. 
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Basic graph notation 

• A graph consists of vertices and edges. 

• Edges can be directed/undirected, weighted/un weighted 

• The adjacency matrix W represents the graph:  
– wij =  0 if i and j are not connected 

– wij >  0 if i and j are connected 

• The degree f a vertex is the sum of all the adjacent edge 
weights: =  di =  𝑤𝑖𝑗𝑗  

• All vertices that can be reached pairwise by a path form a 
connected component.  
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Basic graph notation 

 W = (wij): adjacency matrix 

 di =  𝑤𝑖𝑗𝑗 : degree of a vertex 

 D = diag(d1, …dn):  degree matrix 

 |A| = # vertices in the graph A 

 Vol(A) =  𝑑𝑖𝑖∊𝐴  
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Graph Clusters & Communities 

 There is no widely accepted definition 

 Generally a community is a cluster of nodes in a 
social network graph 

 In general the graph has to be relatively sparse.  

 If the graph is too dense then there is no 
meaning in search of a cluster using the 
structural properties of the graph. 

  Many clustering algorithms or problems related 
to clustering are NP-hard 
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Common graph models 

 Random graph (Erdős–Rényi model -1959) 

 model for generating random graphs,  

 an edge is created between each pair of nodes with equal 
probability, independently of the other edges.  

 scale-free network  

 degree distribution follows a power law, at least asymptotically: 
the fraction P(k) of nodes in the network having k connections  is 
(for large values of k): P(k)~k-γ , 2<γ<3   

 Many real networks are conjectured to be scale-free, (World 
Wide Web links, biological networks, and social networks) 

 Preferential attachment and the fitness model have been 
proposed as mechanisms to explain conjectured power law 
degree distributions in real networks. 

 

 

http://en.wikipedia.org/wiki/Random_graph
http://en.wikipedia.org/wiki/Statistical_independence
http://en.wikipedia.org/wiki/Degree_distribution
http://en.wikipedia.org/wiki/Degree_distribution
http://en.wikipedia.org/wiki/Power_law
http://en.wikipedia.org/wiki/Preferential_attachment
http://en.wikipedia.org/wiki/Preferential_attachment
http://en.wikipedia.org/wiki/Fitness_model_(network_theory)
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Basics 

 The notion of community structure captures  the tendency of 
nodes to be organized into modules (communities, clusters, 
groups) 

 Members within a community are more similar among each other 

 Typically, the communities in graphs (networks) correspond to 
densely connected entities (nodes) 

 Set of nodes with more/better/stronger connections between 
its members, than to the rest of the network 

 Why this happens? 

 Individuals are typically organized into social groups (e.g., family, 
associations, profession) 

 Web pages can form groups according to their topic 

 … 
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Definition/notion of communities 

 How a community in graphs looks like? 

 The property of community structure is difficult to be defined 

 There is no universal definition of the problem 

 It depends heavily on the application domain and the properties 
of the graph under consideration 

 Most widely used notion/definition of communities is based on 
the number of edges within a group  (density) compared to the 
number of edges between different groups 

 

A community corresponds to a group of nodes with more intra-
cluster edges than inter-clusters edges 

*Newman ‘03+, *Newman and Girvan ‘04+, *Schaeffer ‘07+, *Fortunato ‘10+,  
*Danon et al. ‘05+, *Coscia et al. 11+ 
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Schematic representation of communities 

Example graph with three 
communities 
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Community detection in graphs 

 How can we extract the inherent communities of graphs? 

 Typically, a two-step approach 

1. Specify a quality measure (evaluation measure, objective 
function) that quantifies the desired properties of communities 

2. Apply algorithmic techniques to assign the nodes of graph into 
communities, optimizing the objective function 

 Several measures for quantifying the quality of communities 
have been proposed 

 They mostly consider that communities are set of nodes with 
many edges between them and few connections with nodes 
of different communities 

 Many possible ways to formalize it 
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Community evaluation measures 

 Focus on 

 Intra-cluster edge density (# of edges within community), 

 Inter-cluster edge density (# of edges across communities)  

 Both two criteria 

 

 We group the community evaluation measures according to 

 Evaluation based on internal connectivity 

 Evaluation based on external connectivity 

 Evaluation based on internal and external connectivity 

 Evaluation based on network model 

*Leskovec et al. ‘10+, *Yang and Leskovec ‘12+, *Fortunato ‘10+ 
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Notation 

 G = (V, E) is an undirected graph, |V| = n, |E| = m 

 S is the set of nodes in the cluster 

 ns = |S| is the number of nodes in S 

 ms is the number of edges in S,  

 cs is the number of edges on the boundary of S,  

 du is the degree of node u 

 f (S) represent  the clustering quality of set S 

  SvSuvums  ,:,

  SvSuvucs  ,:,

S 

Nodes in S (ns) 

Edges in S (ms) 

Edges in boundary 
of S (cs) 
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Evaluation based on internal connectivity (1) 

 Internal density [Radicchi et al. ’04+ 

 

 

 

 

 

 Edges inside [Radicchi et al. ’04+ 
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Evaluation based on internal connectivity (2) 

 Average degree [Radicchi et al. ’04+ 

 

 

 

 

 Fraction over median degree (FOMD) *Yang and Leskovec ‘12+ 
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Evaluation based on internal connectivity (3) 

 Triangle participation ratio (TPR) *Yang and Leskovec ’12+ 
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Evaluation based on external connectivity 

 Expansion [Radicchi et al. ’04+ 

 

 

 

 

 Cut ratio *Fortunato ‘10+ 
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Evaluation based on internal and external connectivity (1) 

 Conductance *Chung ‘97+ 

 

 

 

 

 Normalized cut [Shi and Malic ’00+ 
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Evaluation based on internal and external connectivity (2) 

 Maximum out degree fraction (Max ODF) *Flake et al ‘00+ 

 

 

 

 

 Average out degree fraction (Avg ODF) *Flake et al ‘00+ 
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Evaluation based on internal and external connectivity (3) 

 Flake’s out degree fraction (Flake’s ODF) *Flake et al ‘00+ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

s

u

n

dSvEvuSuu
Sf

2/:,,:
)(




S 

Measures the fraction of nodes 
in S that have fewer edges 

pointing inside than outside of S 



30 C. Giatsidis, F. D. Malliaros, M. Vazirgiannis Tutorial – WWW 2013 

Evaluation based on network model 

 Modularity *Newman and Girvan ‘04+, *Newman ‘06+ 
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How different are the evaluation measures? (1) 

 Several community evaluation measures (objective criteria) 
have been proposed 

 Is there any relationship between them? 

 Consider real graphs with known node assignment to 
communities (ground-truth information) and test the 
behavior of the objective measures *Yang and Leskovec ‘12+ 

1. For each of the ground-truth communities S 

2. Compute the score of S using each of the  previously described 
evaluation measures 

3. Form the correlation matrix of the objective measures based on 
the scores 

4. Apply a threshold in the correlation matrix 

5. Extract the correlations between community objective measures 
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How different are the evaluation measures? (2) 

 Observation:  Community evaluation measures form four 
groups based on their correlation *Yang and Leskovec ‘12+ 

 

 

Conductance 

Normalized Cut 

Max ODF Avg ODF 

Flake’s ODF 

Expansion 

Cut Ratio 

Internal Density 

FOMD 

Edges Inside Average Degree 

TPR 

Modularity 

internal connectivity 

 

internal and external connectivity 

external connectivity 

 

network model 
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How different are the evaluation measures? (3) 

 The different structural definitions of communities are heavily 
correlated *Yang and Leskovec ‘12+ 

 Community evaluation measures form four groups based on 
their correlation 

 These groups correspond to the four main notions of structural 
communities 

 Communities based on internal connectivity 

 Communities based on external connectivity 

 Communities based on internal and external connectivity 

 Communities based on a network model (modularity) 
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Graph Clustering Algorithms 

 Taxonomy 

 Hierarchical methods 

 Spectral Clustering 

 Modularity Based Methods 
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Graph Clustering Algorithms 

 Taxonomy 

 Hierarchical clustering  

•  Divisive algorithms  (the algorithm of Girvan and Newman) 

  Spectral clustering  

  Modularity-based methods   

 



39 C. Giatsidis, F. D. Malliaros, M. Vazirgiannis Tutorial – WWW 2013 

Hierarchical graph clustering algorithms 

 Clusters form hierarchies 

 Need for a cluster similarity measure 

 Single linkage clustering vs. complete linkage 

 Agglomerative algorithms, clusters are iteratively merged 
if their similarity is sufficiently high 

 Divisive algorithms, in which clusters are iteratively split 
by removing edges connecting vertices with low 
similarity [Girvan and Newman] (to be presented later) 

 Hierarchical clustering  does not require a preliminary 
knowledge on the number and size of the clusters 
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Hierarchical clustering 

 Dendrogram: request multiple partitions of the 
data 

 High complexity 

 O(n2) – O(n2log(n)) 
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Graph Clustering Algorithms 

 Taxonomy 

 Hierarchical methods 

 Spectral Clustering 

 Modularity Based Methods 
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Notations 

 Given Graph G=(V,E) undirected: 

 Vertex Set V={v1,…..vn}, Edge eij between vi and vj  

• we assume weight wij>0 for eij 

 |V| : number of vertices 

 di degree of vi : 𝑑𝑖 =  𝑤𝑖𝑗𝑣𝑗∈𝑉
 

 𝑣 𝑉 =  𝑑𝑖𝑣𝑖∈𝑉 
 

 for 𝐴 ⊂ 𝑉 𝐴 = 𝑉 − 𝐴 

 Given A, B ⊂ 𝑉 & A ∩ 𝐵 = ∅ 𝑤 𝐴, 𝐵 =  𝑤𝑖𝑗𝑣𝑖∈𝐴,𝑣𝑗∈𝐵
 

 D: Diagonal matrix where D(i,i)=di 

 W: Adjacency matrix W(i,j)=wij 
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Graph-Cut 

 For k clusters: 

 𝑐𝑢𝑡(𝐴1, . . , 𝐴𝑘) = 1/2 𝑤(𝐴𝑖, 𝐴𝑖)
𝑘
𝑖=1   

• undirected graph:1/2 we count twice each edge 

 

 

 

 

 

 

 

 Min-cut:Minimize the edges’ weight a cluster 
shares with the rest of the graph 
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Min-Cut 

 Easy for k=2 : Mincut(A1,A2) 

 Stoer and Wagner: “A Simple Min-Cut Algorithm” 

 In practice one vertex is separated from the rest 

 The algorithm is drawn to outliers 
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Normalized Graph Cuts 

 We can normalize by the size of the cluster (size 
of sub-graph) : 

 number of Vertices (Hagen and Kahng, 1992): 

𝑅𝑎𝑡𝑖𝑜𝑐𝑢𝑡 𝐴1, …𝐴𝑘 =  
𝑐𝑢𝑡(𝐴𝑖,𝐴𝑖)

|𝐴𝑖|
𝑘
𝑖=1  

 sum of weights (Shi and Malik, 2000) : 

𝑁𝑐𝑢𝑡 𝐴1, … 𝐴𝑘 =  
𝑐𝑢𝑡(𝐴𝑖,𝐴𝑖)

𝑣(𝐴𝑖)
𝑘
𝑖=1  

 Optimizing these functions is NP-hard 

 Spectral Clustering  provides solution to a 
relaxed version of the above 

 



46 C. Giatsidis, F. D. Malliaros, M. Vazirgiannis Tutorial – WWW 2013 

From Graph Cuts to Spectral Clustering 

 For simplicity assume k=2: 

 Define 𝑓: 𝑉 → ℝ for Graph G : 

𝑓𝑖 =  
  1           𝑣𝑖 ∈ 𝐴

−1          𝑣𝑖 ∈ 𝐴
 

 Optimizing the original cut is equivalent to an 
optimization of: 

  𝑤𝑖𝑗 𝑓𝑖 − 𝑓𝑗
2𝑛

𝑖,𝑗=1  
=  𝑤𝑖𝑗 1 + 1

2+

𝑣
𝑖
∈𝐴,𝑣𝑗∈𝐴

 𝑤𝑖𝑗 −1 − 1
2

𝑣
𝑖
∈𝐴,𝑣𝑗∈𝐴

 

= 𝟖 ∗ 𝒄𝒖𝒕 𝑨, 𝑨  
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Graph Laplacian 

 How is the previous useful in Spectral clustering? 

 𝑤𝑖𝑗 𝑓𝑖 − 𝑓𝑗
2

𝑛

𝑖,𝑗=1

 

=  𝑤𝑖𝑗𝑓𝑖
2 𝑛

𝑖,𝑗=1 −2  𝑤𝑖𝑗𝑓𝑖𝑓𝑗
𝑛
𝑖,𝑗=1 +  𝑤𝑖𝑗𝑓𝑗

2𝑛
𝑖,𝑗=1  

=  𝑑𝑖𝑓𝑖
2

𝑛

𝑖,𝑗=1

− 2  𝑤𝑖𝑗𝑓𝑖𝑓𝑗

𝑛

𝑖,𝑗=1

+ 𝑑𝑗𝑓𝑗
2

𝑛

𝑖,𝑗=1
 

= 2  𝑑𝑖𝑖𝑓𝑖
2

𝑛

𝑖,𝑗=1
−  𝑤𝑖𝑗𝑓𝑖𝑓𝑗

𝑛

𝑖,𝑗=1

 

= 2 𝒇𝑻𝑫𝒇 − 𝒇𝑻𝑾𝒇 = 2𝒇𝑻 𝑫 −𝑾 𝒇 = 2𝒇𝑻𝑳𝒇 

 f:a single vector with the cluster assignments of the 
vertices 

 L=D-W : the Laplacian of a graph 
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Properties of L 

 L is  

 Symmetric 

 Positive 

 Semi-definite 

 The smallest eigenvalue of L is 0  

 The corresponding eigenvector is 𝟙  

 L has n non-negative, real valued eigenvalues 

 0 = 𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑛 
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Two Way Cut from the Laplacian 

 We could solve minf f
TLf  where  𝑓 ∈ −1,1 𝑛 

 NP-Hard for discrete cluster assignments 

 Relax the constraint 𝑡𝑜 𝑓 ∈ 𝑅𝑛 : 
   𝑚𝑖𝑛𝑓𝑓

𝑇𝐿𝑓 subject to fTf=n 

 The solution to this problem is given by: 

 (Rayleigh-Ritz Theorem) the eigenvector corresponding 
to smallest eigenvalue: 0  and the corresponding  
eigenvector (full of 1s) offers no information 

 We use the second eigenvector as an 
approximation 

 fi>0 the vertex belongs to one cluster , fi<0 to the other 
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Example 
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Ratio Cut 

 𝑅𝑎𝑡𝑖𝑜𝑐𝑢𝑡 𝐴1, …𝐴𝑘 =  
𝑐𝑢𝑡(𝐴𝑖,𝐴𝑖)

|𝐴𝑖|

𝑘
𝑖=1  

 Define 𝑓: 𝑉 → ℝ for Graph G : 

𝑓𝑖 =

  
|𝐴|

|𝐴|
           𝑣𝑖 ∈ 𝐴

−
|𝐴|

|𝐴|
           𝑣𝑖 ∈ 𝐴

 

  𝑤𝑖𝑗 𝑓𝑖 − 𝑓𝑗
2𝑛

𝑖,𝑗=1 = 2𝑐𝑢𝑡 A, 𝐴
𝐴

𝐴
+

𝐴

𝐴
+ 2  

= 2|𝑉|𝑅𝑎𝑡𝑖𝑜𝑐𝑢𝑡(𝐴, 𝐴) 
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Ratio Cut 

 We have 𝑚𝑖𝑛𝑓𝑓
𝑇𝐿𝑓 subject to  

   𝑓𝑇1 = 0, 𝑓𝑇𝑓 =n 
 

𝑓𝑇1 = 𝑓𝑖 =  
|𝐴|

|𝐴|
𝑣𝑖∈𝐴

𝑛

𝑖
+  −

|𝐴|

|𝐴|
𝑣𝑖∈𝐴

= A
𝐴

𝐴
− 𝐴

𝐴

𝐴
= 0 

𝑓𝑇𝑓 = 𝑓𝑖2
𝑛

𝑖
= 𝐴 + 𝐴 = 𝑛 

 The second smallest eigenvalue of 
𝐿𝑓 = 𝜆𝑓approximates the solution 
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Normalized Cut 

 𝑁𝑐𝑢𝑡 𝐴1, … 𝐴𝑘 =  
𝑐𝑢𝑡(𝐴𝑖,𝐴𝑖)

𝑣(𝐴𝑖)
𝑘
𝑖=1  

 Define 𝑓: 𝑉 → ℝ for Graph G : 

𝑓𝑖 =

  
𝑣(𝐴)

𝑣(𝐴)
           𝑣𝑖 ∈ 𝐴

−
𝑣(𝐴)

𝑣(𝐴)
           𝑣𝑖 ∈ 𝐴

 

  𝑤𝑖𝑗 𝑓𝑖 − 𝑓𝑗
2𝑛

𝑖,𝑗=1 = 2𝑐𝑢𝑡 A, 𝐴
𝑣(𝐴)

𝑣(𝐴)
+
𝑣(𝐴)

𝑣(𝐴)
+ 2  

= 2𝑣 V Ncut(A, 𝐴) 
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Normalized Cut 

 Similarly we come to : 𝑚𝑖𝑛𝑓𝑓
𝑇𝐿𝑓  

 subject to 𝑓𝑇𝐷1 = 0, 𝑓𝑇𝐷𝑓 = 𝑣 𝑉  

 Assume 𝑕 = 𝐷
1
2 𝑓 

 𝑚𝑖𝑛𝑕𝑕
𝑇𝐷
−1
2 L𝐷

−1
2 h subject to  

𝑕𝑇𝐷
1
2 1 = 0, 𝑕𝑇𝑕 = 𝑣 𝑉  

 The answer is in the eigenvector of the second 

smallest eigenvalue of 𝐿𝑠𝑦𝑚 = 𝐷
−1
2 L𝐷

−1
2  

Shi and Malik (2000) 

 𝐿𝑠𝑦𝑚 is the normalized Laplacian 
 has n non-negative, real valued eigenvalues 

 0 = 𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑛 
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Multi-Way Graph Partition 

 Define 𝑓𝑖𝑗 =  

1

𝐴𝑗
    𝑣𝑖 ∈ 𝐴𝑗

0     𝑜𝑡𝑕𝑒𝑤𝑖𝑠𝑒
  

 we have a vector indicating the cluster a vertex 
belongs to 

 Similarly to the other equations we can deduce: 

 𝑓𝑖
𝑇𝐿𝑓𝑖 = 𝑐𝑢𝑡(𝐴𝑖, 𝐴𝑖)/|𝐴𝑖| 

  𝑓𝑖
𝑇𝐿𝑓𝑖

𝑘
𝑖=1 =  𝐹𝑇𝐿𝐹 𝑖𝑖

𝑘
𝑖=1 = 𝑇𝑟(𝐹𝑇𝐿𝐹) 

• Where Tr is the Trace of a Matrix 

 So now the RatioCut becomes: 
𝑚𝑖𝑛 𝐹𝑇𝐿𝐹 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐹𝑇𝐹 = 𝐼 
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Multi-Way Graph Partition 

 The solution can now be given by the first k 
eigenvectors of L as columns 

 The real values need to be converted to cluster 
assignments 

 We use k-means to cluster the  rows  

 We can substitute L with Lsym 

 
A11………….…………A1n 

A21………….…………A2n 

 

Ak1………….…………Akn 

. 

. 

. 

First  k  

eigeigenvectors 
 A11 

 

 

 

 

 

 

 

 

 

 

 A1n 

 A21 

 

 

 

 

 

 

 

 

 

 

 A2n 

 

 Ak1 

 

 

 

 

 

 

 

 

 

 

 Akn 

 

..... 

K-means on 

the Lines 

 

Each Line 

Represents a 

Vertex 
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Algorithm for k>2 

 Compute Laplacian (L, Lsym). 
Compute the first k eigenvectors u1, . . . , uk of L. 
Let 𝑈 ∈ ℝ𝑛𝑥𝑘 the matrix containing the vectors  
    u1, . . . , uk as columns. 
For i = 1, . . . , n,  

 let 𝑦𝑖 ∈ ℝ
𝑘 the vector corresponding to the i-th row of U. 

Cluster the points 𝑦𝑖 = 1,… . 𝑛 ∈ ℝ
𝑘 with the k-means algorithm into 

clusters C1, . . . ,Ck. 

 
Output: Clusters 𝐴1, . . . , 𝐴k with 𝐴𝑖 = 𝑗 𝑣𝑗 ∈ 𝐶𝑖} 

 

 HOW DO WE CHOOSE k? 
 We choose the k that maximizes the eigengap: 

  ∆𝑘 = 𝜆𝑘 − 𝜆𝑘−1  (Davis-Kahan Theorem) 

Ideally: for k connected components the Laplacian has k 0-
eigenvalues 
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Laplacian-Eigenvectors-EigenValues 

C1 

C2 

Cn 

L1 
L2 

Ln 

Everything sorted according to cluster : block diagonal form Matrix 

L follows the same form composed on L1…Ln 

Each Li has the same properties as L: nx0 min eigenvalues etc.. 

Each “Second” eigenvector is a cut of Ci from the rest of the graph and holds 

a mapping (distance) of a vertex to the cluster i  
 



59 C. Giatsidis, F. D. Malliaros, M. Vazirgiannis Tutorial – WWW 2013 

Simple example 

2  Eigenvectors 

 

(1100) and (0011) 

 

Mapping vertices 

in their clusters 

2  Eigenvectors 

 

(1010) and 

(0101) 

 

Mapping vertices 

to the same 

clusters 

Permutation does not change 

the result 

 

The cut remains the same 

regardless of the ordering 
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Graph Clustering Algorithms 

 Taxonomy 

 Hierarchical methods 

 Spectral Clustering 

 Modularity Based Methods 
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Basics 

 Most of the community evaluation measures (e.g., 
conductance, cut-based measures), quantify the quality of a 
community based on 

 Internal connectivity (intra-community edges) 

 External connectivity (inter-community edges) 

 Question: Is there any other way to distinguish groups of nodes 
with good community structure? 

 Random graphs are not expected to present inherent 
community structure 

 Idea: Compare the number of edges that lie within a cluster  with 
the expected one in case of random graphs with the same degree 
distribution – modularity measure 
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Main idea 

 Modularity function *Newman and Girvan ‘04+, *Newman ‘06+ 

 Initially introduced as a measure for assessing the strength of 
communities 

 Q = (fraction of edges within communities) –  

    (expected number of edges within communities) 

 What is the expected number of edges? 

 Consider a configuration model 

 Random graph model with the same degree distribution 

 Let Pij = probability of an edge between nodes i and j 

 with degrees ki and kj respectively 

 Then Pij  = ki kj / 2m,  where  m = |E| = ½ Σi ki 
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Formal definition of modularity 

 Modularity  Q 

 

 

where  

 A is the adjacency matrix 

 ki, kj the degrees of nodes i and j respectively 

  m is the number of edges 

 Ci is the community of node i 

 δ(.) is the Kronecker function: 1 if both nodes i and j belong on 
the same community (Ci = Cj), 0 otherwise 

 ji
ij

ji
ij CC

m

kk
A

m
Q , 










22

1

*Newman and Girvan ‘04+, *Newman ‘06+ 
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Properties of modularity 

 Larger modularity  Q indicates better communities (more than 
random intra-cluster density) 

 The community structure would be better if the number of 
internal edges exceed the expected number 

 Modularity value is always smaller than 1 

 It can also take negative values 

 E.g., if each node is a community itself 

 No partitions with positive modularity  No community structure 

 Partitions with large negative modularity  Existence of 
subgraphs with small internal number of edges and large number 
of inter-community edges 

 

 ji
ij

ji
ij CC

m

kk
A

m
Q , 










22

1

*Newman and Girvan ‘04+, *Newman ‘06+, *Fortunato ‘10+ 
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Applications of modularity 

 Modularity can be applied: 

 As quality function in clustering algorithms 

 As evaluation measure for comparison of different partitions or 
algorithms 

 As a community detection tool itself 

 Modularity optimization 

 As criterion for reducing the size of a graph 

 Size reduction preserving modularity *Arenas et al. ‘07+ 

 

*Newman and Girvan ‘04+, *Newman ‘06+, *Fortunato ‘10+ 
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Modularity-based community detection 

 Modularity was first applied as a stopping criterion in the Newman-
Girvan algorithm 

 Newman-Girvan algorithm *Newman and Girvan ‘04+ 

 A divisive algorithm (detect and remove edges that connect vertices of 
different communities) 

 Idea: try to identify the edges of the graph that are most between other 
vertices  responsible for connecting many node pairs 

 Select and remove edges based to the value of betweenness centrality 

 Betweenness centrality: number of shortest paths between every pair of 
nodes, that pass through an edge 

 
Edge betweenness is 
higher for edges that 

connect different 
communities 
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Newman-Girvan algorithm (1) 

 Basic steps: 

1. Compute betweenness centrality for all edges in the graph 

2. Find and remove the edge with the highest score 

3. Recalculate betweenness centrality score for the remaining 
edges 

4. Go to step 2 

 How do we know if the produced communities are  good ones 
and stop the algorithm? 

 The output of the algorithm is in the form of a dendrogram 

 Use modularity as a criterion to cut the dendrogram and 
terminate the algorithm (Q ~= 0.3-0.7 indicates good partitions)  

 Complexity: O(m2n) (or O(n3) on a sparse graph) 

 *Newman and Girvan ‘04+, *Girvan and Newman ‘02+ 
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Newman-Girvan algorithm (2) 

*Newman and Girvan ‘04+ 

Zachary’s karate club 

M
o

d
u

la
ri

ty
 

Community structure 
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Modularity optimization 

 High values of modularity indicate good quality of partitions 

 Goal: find the partition that corresponds to the maximum value 
of modularity 

 Modularity maximization problem 

 Computational difficult problem [Brandes et al. ‘06+ 

 Appoximation techniques and heuristics 

 Four main categories of techniques 

1. Greedy techniques 

2. Spectral optimization 

3. Simulated annealing 

4. Extremal optimization 

*Fortunato ‘10+ 
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Greedy techniques (1) 

 Newman’s algorithm *Newman ’04b+ 

 Agglomerative (bottom-up) hierarchical clustering algorithm 

 Idea: Repeatedly join pairs of communities that achieve the 
greatest increase of modularity (dendrogram representation) 

1. Initially, each node of the graph belongs on its own cluster (n) 

2. Repeatedly, join communities in pairs by adding edges 

a. At each step, choose the pairs that achieve the greatest increase (or 
minimum decrease) of modularity  

b. Consider only pairs of communities between which there exist 
edges (merging communities that do not share edges, it can never 
improve modularity) 

 Complexity: O((m+n) n) (or O(n2) on a sparse graph) 
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Greedy techniques (2) 

 Can we improve the complexity of Newman’s algorithm? 

 Greedy optimization algorithm by Clauset, Newman and Moore   
[Clauset et al. ’04+ 

 Key point: large graphs are sparse 

 Exploit sparsity by using appropriate data structures for sparse 
graphs (e.g., max-heaps) 

a. A sparse matrix for storing the variations of modularity ΔQi,j after 
joining two communities i, j (in the case they are connected by an 
edge) 

b. A max-heap data structure for the largest element of each row of 
matrix ΔQi,j (fast update time and constant time for finndmax() 
operation) 

 Complexity: O(m d logn), d is the depth of the dendrogram 
describing the performed partitions (the community structure) 

 Sparse graphs: m ~ n. Graphs with hierarchical structure: d ~ logn. 
Therefore, the complexity is O(n log2n) for such graphs 
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Spectral optimization (1) 

 Idea: Spectral techniques for modularity optimization 

 Goal: Assign the nodes into two communities, X and Y 

 Let  be an indicator variable where si = +1 if i is 
assigned to X and si = -1 if i is assigned to Y  

 

*Newman ‘06+, *Newman ‘06b+ 
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Spectral optimization (2) 

 Modularity matrix B 

 

 Vector s can be written as a linear combination of the 
eigenvectors ui of the modularity matrix B 

                                              where                                                          

  

 Modularity can now expressed as 

 

 

Where βi is the eigenvalue of B corresponding to eigenvector ui 

 

 
*Newman ‘06+, *Newman ‘06b+ 
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Spectral optimization (3) 

 Spectral modularity optimization algorithm 

1. Consider the eigenvector u1 of B corresponding to the largest 
eigenvalue 

2. Assign the nodes of the graph in one of the two communities X (si = +1) 
and Y (si = -1) based on the signs of the corresponding components of 
the eigenvector 

 

 

 More than two partitions? 

1. Iteratively, divide the produced partitions into two parts 

2. If at any step the split does not contribute to the modularity, leave the 
corresponding subgraph as is 

3. End when the entire graph has been splinted into no further divisible 
subgraphs 

 Complexity: O(n2 logn) for sparse graphs 

 
*Newman ‘06+, *Newman ‘06b+ 
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Simulated annealing 

 Simulated annealing is a probabilistic method for global optimization of a 
given function in a large search space 

 Explore the search space looking for a good approximation of the global 
optimum of a function f (modularity in our case - maximum) 

 Set of states, correspond to points of the search space 

 Transitions from one state to another are achieved probabilistically 

1. With probability 1, if f increases after moving to the other state 

2. With probability exp(β Δf), where Δf represents the amount of decrease of f 
when moving to the other state, and β is a parameter that helps to avoid getting 
trapped in local optima 

 Modularity optimization using simulated annealing  *Guimera et al. ‘04+  

 Two types of movements-transitions 

1. Individual node movements, from one community to another (randomly) 

2. Collective node movements, either by merging two communitie, or splitting 
one community 

 Mostly for small graphs (~ 104 nodes) *Fortunato ‘10+ 
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Extremal optimization 

 Optimization heuristic  search method 

 Basic idea: optimize a global function, by optimizing local variables [Duch 
and Arenas ‘05+  

 Global function: modularity Q 

 Local variables: the contribution of individual nodes to the modularity qi 

 The modularity in the graph can be expressed as the sum over the nodes, 
based on their contribution: 

1. Start from a random partition of the graph into two parts 

2. At every iteration, the node with the lower value of local variable is moved to 
the other partition, until the global modularity is not changing 

3. Delete all links between both partitions 

4. Repeat recursively at every part of the remaining graph 

 Complexity: O(n2 logn)  


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iq
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Extensions of modularity 

 Modularity has been extended in several directions 

 Weighted graphs *Newman ‘04+  

 Bipartite graphs *Guimera et al ‘07+  

 Directed graphs (next in this tutorial) *Arenas et al. ‘07+, *Leicht 
and Newman ‘08+ 

 Overlapping community detection (next in this tutorial) [Nicosia 
et al. ‘09+ 

 Modifications in the configuration model – local definition of 
modularity *Muff et al. ‘05+ 
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Resolution limit of modularity 

 Resolution Limit of modularity [Fortunato and Barthelemy ‘07+ 

 The method of modularity optimization may not detect 
communities with relatively small size, which depends on the 
total number of edges in the graph 

 

 

Km 

Km 

Km Km 

Km 

Km 

Km 

Km 

Km 

Km 

 Km are cliques with m edges (m ≤ sqrt(|E|)) 

 Km represent well-defined clusters 

 However, the maximum modularity 
corresponds to clusters formed by two or 
more cliques 

 It is difficult to know if the community 
returned by modularity optimization 
corresponds to a single community or a 
union of smaller communities 
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Outline 

1. Introduction & Motivation  

2. Graph fundamentals  

3. Community evaluation measures  

4. Graph clustering algorithms 

5. Clustering and community detection in 
directed graphs  

6. Alternative Methods for Community 
Evaluation  

7. New directions for research in the area of 
graph mining 
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Directed graphs – why should we care (1)? 

 A plethora of network data from several applications 
is from their nature directed 

 

 

Twitter  

Web Graph Citation Graph 

Online Social Networks 

Wikipedia 

[Image: http://sites.davidson.edu/mathmovement/] 
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 Social and Information Networks:  

 Communities in the directed hyperlink structure of the Web 
correspond to sets of web pages that possibly share common topics 

 Communities in SNs with non-symmetric links (e.g., Twitter)  
individuals with common interests or friendship relationships 

 Biology: In prokaryote genome sequence data, the donor-
recipient relations between genomes are modeled by 
directed graphs (Lateral Gene Transfer - LTG) 

 Community detection enables to test hypotheses relevant to LTG 
patterns and mechanisms operating in nature 

 Neuroscience: Neuron interactions are represented by 
directed graphs 

 Community detection methods help us to comprehend the 
functional architecture of the brain 

Directed graphs – why should we care (2)? 
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 Clustering non-graph data: 

 Apply graph clustering algorithms on data with no inherent graph 
structure (e.g., points in a d-dimensional Euclidean space) 

 How? 

1. Construct a similarity graph based on the topological 
relationships and distance between data points 

2. Then, the problem of clustering the set of data points is 
transformed to a graph clustering problem  

 
 

Directed graphs – why should we care (3)? 

Depending on the way the similarity graph is constructed, 
the final graph can be directed (e.g., using k-Nearest 

Neighbor graphs) *von Luxburg ‘07+ 
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Basics 

 Similar to the undirected case, the community detection is the 
task of grouping the vertices of a directed network into 
clusters (communities), in such a way that 

 There should be many edges within each cluster ... 

 … and relatively few edges among different clusters 

  However,  the problem has 
mainly been considered and 
studied for the case of undirected 
networks 
 A large number of diverse 
algorithms have been proposed 
 *Fortunato, Phys. Reports ‘10+ 

 
Edge directionality should be considered properly in the 

community detection task 
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Challenges in clustering directed graphs (1) 

 The problem is generally a more hard and challenging task 
compared to the undirected one 

 Existence of asymmetric relationships among entities (non 
reciprocal)  the nature of interactions are fundamentally 
different from the one in the undirected case 

 Graph concepts for community evaluation (e.g., density)  

 Well theoretically founded for undirected graphs 

 Not enough effort has been put on how to extend these 
concepts on directed graphs 

 Theoretical tools 

 Mainly graph theoretic and linear algebraic tools  

 Have mainly been considered for undirected graphs  

 Not straightforward extension to the directed case 
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Challenges in clustering directed graphs (2) 

 No precise and common definition for the problem 

 The presence of directed links is possible to imply the 
existence of other more sophisticated types of clusters that 

 Do not exist in undirected networks  

 Can not be captured using only density and edge 
concentration characteristics 

 Ignoring directionality and naively transform the graph to 
undirected in not a good practice 

 
1 2 

3 4 

1 2 

3 4 

Directed Graph Undirected Graph 

Naïve transformation 

Two  
communities 

Communities ? 
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Topics on clustering in directed graphs 

 Notions - Intuitive definitions 

 Density-based communities 

 Pattern-based communities 

 Approaches for identifying communities in 
directed networks 

 Naïve graph transformation 

 Transformations maintaining directionality 

 Extending clustering objective functions and 
methodologies to directed networks 

 Alternative approaches 
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Communities in directed networks 

 Two main definitions/notions (or categories) of clusters 
in directed networks 

 Density-based clusters 

 Pattern-based clusters 

x = 1

A cluster or community in a graph can be considered as a set of 
nodes that share common or similar features (characteristics) 
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Density-based clusters 

 Follow the typical clustering definition based on edge density 
characteristics 

 Entirely based on the distribution-density of the edges inside 
the network 

 Group of nodes with more intra-cluster edges than inter-
cluster edges 

 Density-based clusters 
Uniform structure 
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Is it a “trivial” task? 

 Extending the notion of density-based clusters to 
directed networks is not always a trivial procedure 

 Meaningful extension of the objective criteria (e.g., 
modularity) used for community evaluation 

 Simple graph concepts become more complex 

 E.g., each cluster should be connected *Schaeffer ‘07+ 

 Three types of connectivity in directed graphs 

 Weak connectivity 

 Connectivity 

 Strong connectivity 
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Pattern-based clusters 

 The density-based definition cannot capture more 
sophisticated clustering and connectivity patterns 

 Edge density alone may not represent the major clustering 
criterion 

 Patterns beyond edge density 

 

 
1 2 

3 4 

Citation-based clusters 

1 

3 

Flow-based cluster 

Nodes point to and pointed 
by the same group 

Patterns of flow – groups with 
persistent flow 
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Remarks on clustering notions 

 Both types of clusters may co-exist in a directed graph 

 Combined density-based and pattern-based clusters 

 E.g., many methods adopt the citation-based clustering 
notion and are also able to identify density-based 
clusters 

 Key point: 

 Apply appropriate transformations to enhance a density-
based method with pattern-based clustering features 
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Community detection in directed graphs 

 

 Naïve graph transformation 

 Transformations maintaining directionality 

 Extending clustering objective functions and 
methodologies to directed networks 

 Alternative approaches 

 

Approaches for identifying communities in directed networks 
w.r.t. the undirected case of the problem 
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Taxonomy 

Clustering/Community 
detection approaches in 

directed networks 
 

Naïve graph transformation 
approach 

 

Transformations maintaining 
directionality 

 

Extending objective functions and 
methodologies to directed graphs 

 

Alternative approaches 
 

Transform to unipartite 
weighted graph 

 

Transform to bipartite graph 
 

Modularity 
 

Spectral Clustering & cut-based 
measures 

 

PageRank and random walk 
based methods 

 

Other Extensions 
 

Clique percolation 
method 

 

Local density clustering 
 

Information theoretic 
based approaches 

 

Probabilistic models & 
statistical inference 

 

Blockmodeling methods 
 

Mutuality aware 
clustering 

 
Dynamic networks 
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Naïve graph transformation approach (1) 

 Discard edge directionality and treat graphs as 
undirected  Apply algorithms for undirected graphs 

 Several drawbacks: information represented by edges’ 
direction is ignored 

 Data ambiguities 

 Ambiguities and to some degree incorrect information are 
introduced in the graph 

Paper A Paper B Paper A Paper B 

Citation Similarity ? 

Paper B may be an 
important paper, 
but in a different area 

Naïve 
Transformation 
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Naïve graph transformation approach (2) 

 Deviations in clustering results 

 Ambiguities introduced in the data, may have impact to 
the final outcome of the clustering algorithm 

 Valuable information is not utilized in the clustering 
process 

 E.g., clusters that exist in the initial directed network, may 
not be identified at the transformed one 

Two  
communities 

Communities ? 
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Transformations maintaining directionality 

Transformations 
maintaining 

directionality 
 

Transform to 
unipartite weighted 

graph 
 

Transform to bipartite 
graph 
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Transformations maintaining directionality 

1. Transform the directed graph to undirected (unipartite / bipartite) 

2. Edges' direction information is retained as much as possible (e.g.,   
by introducing weights on the edges of the transformed graph) 

3. Apply already proposed community detection algorithms designed 
for undirected graphs 

4. The extracted communities will also correspond to the communities 
of the initial graph 

 
Graph Transformation 

Approaches Community Detection 
Algorithms 

for Undirected Graphs 

Initial directed graph 

 

Undirected graph 

 

Large bulk of 
available methods  
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Transformation to unipartite weighted graph (1) 

 Idea: transform the directed graph to undirected 

 Information about directionality is incorporated via edge weights 

 Graph symmetrizations *Satuluri  and Parthasarathy ‘11+ 

               symmetrization 

 

 
2 1 

4 3 

1 1 

1 

1 

1 

1 
2 1 

4 3 

1 

2 

2 

1 

Directed graph (adj. matrix: A) Transformed graph 

 Same number of edges 

 Edges in both direction: 

 Add as edge weight the 
sum  of the weights in the 
initial graph 
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Transformation to unipartite weighted graph (2) 

 Bibliometric symmetrization *Satuluri  and Parthasarathy ‘11+ 

 C 

                            :   Bibliographic coupling matrix (captures the 
number of common outgoing edges between each pair of nodes) 

                           :   Co-citation strength matrix (captures the 
number of common incoming edges between each pair of nodes) 

 

 
 Introduce new edges based on 

 Number of common outgoing edges and incoming edges 

 

 

 The previous symmetrization maintains intact the edge set 
(discard directions – new edge weights) 

  Observation: Meaningful clusters can be groups of nodes that 
share similar incoming and/or outgoing edges 

 Edges should appear between similar nodes  (in-link and out-
link node similarity) 
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Transformation to unipartite weighted graph (3) 

 The degree distribution of real-world networks is heavy-tailed 

 Nodes with high degree would share a lot of common edges 
with other nodes (higher similarity) 

 How can we define a similarity measure between the nodes 
of a directed graph, taking into account in- and out- degree? 

 i 

j 

h 

High in-deg 

i 

j 

h 

Low in-deg 

Sim (i, j) : inversely related  
to  in-deg(h) 

i 

j 

h 

High out-deg 

i 

j 

h 

Low out-deg 

Sim (i, j) : inversely related  
to  out-deg(i) and  out-deg(j) 
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Transformation to unipartite weighted graph (4) 

 Degree discounted symmetrization 

 

Bibliographic coupling matrix Co-citation matrix 

 Adjacency matrix of symmetrized undirected graph 

   

 

 Typically, α = β = 0.5 *Satuluri  and Parthasarathy ‘11+ 
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Transformation to unipartite weighted graph (5) 

 Random-walk based transformation [Satuluri  and 
Parthasarathy ‘11+, *Lai et al., Physica A ‘10+, *Lai et al., J. Stat 
Mech. ‘10+ 

 The normalized cut criterion will be preserved 

 Two neighborhood nodes are more probable to belong on the 
same community, if they can be mutually visited by random 
walks starting from these nodes 

 Use edge directionality to classify edges   

 The edge between those nodes is more likely to be an intra-
community edges  It will receive higher weight than inter-
community edges *Lai et al., J. Stat Mech. ‘10+ 
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Transformation to bipartite graph (1) 

 The directed graph G = (V, E) is transformed to a bipartite 
undirected one GB = (Vh, Va, Eb) : 

  

 
})(|{ 0 iDandViiV outhh

})(|{ 0 iDandViiV inaa

Each directed edge    between two nodes of the directed 
graph G will be represented by an edge                   of the produced 
bipartite graph  

Eji ),(

bah Eji ),(

1 2 3 

5 4 

1 

2 

4 

5 

2 

3 

4 

5 

Vh Va 

Apply community 
detection methods for 

bipartite graphs 
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Transformation to bipartite graph (2) 

 Approach inspired by Kleinberg’s hub and authority web model 

 Idea: detect clusters of nodes with similar outgoing and incoming 
links 

 Consider that the partitions represent actors (h) and teams (a) 

 Identify groups of actors that are closely connected to each other through 

co-participation in many teams *Guimera et al. ‘07+, *Zhan et al. ‘11+ 

 Other approach: semi-supervised learning framework for 
directed graphs *Zhou et al. ‘05+ 

 Node classification in directed graphs (positive or negative labels) 

 Absence of labeled node instances  graph clustering tool 

 Idea: category similarity of co-linked nodes 

 Node similarity based on the existence of common parents and 
common children structures  highlight co-linked nodes structures 
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Extending objective 
functions and 

methodologies to 
directed graphs 

 

Modularity 
 

Spectral Clustering & 
cut-based measures 

 

PageRank and 
random walk based 

methods 
 

Other Extensions 
 

Clique percolation 
method 

 

Local density 
clustering 

 

Extending objective functions and methodologies 
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Modularity for directed graphs 

 Initially introduced for the case of undirected graphs 

 Q = (fraction of edges within communities) -   
   (expected fraction of edges) 

 In directed graphs, the existence of a directed edge (i, j) 
between nodes i and j depends on the out-degree of  i  
and in-degree of j 

i j 
 Consider that: 

 i has high out-deg and low in-deg 

  j has high in-deg and low out-deg 

 More probable to observe edge (i, j) than 
edge (j, i) 

 

 

[Arenas et al. ‘07], [Leicht and Newman ‘08] 
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Modularity optimization 

 Goal: Assign the nodes into two communities, X and Y 

 Let  be an indicator variable where si = +1 if i is 
assigned to X and si = -1 if i is assigned to Y  

 

[Leicht and Newman ‘08] 

Visi ,

 Transpose Qd (scalar) and 
take the average 

 

 

 Now,                 is symmetric 

Modularity 
matrix  

(not symmetric) 

TBB

 Spectral optimization of modularity 

 Compute the eigenvector that corresponds to 
the largest positive eigenvalue of                           

 Assign the nodes to communities X and Y 
according to the signs of the corresponding 
components in the eigenvector 

 Repeated bisection (for more than two 
communities) 
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A few interesting points of directed modularity 

 Modularity exhibits two limitations 

 It cannot properly distinguish the directionality of the 
edges 

 It cannot be used to detect clusters representing patterns 
of movement  between nodes 

 

[Kim et al. ‘10] 

A B 

A’ B’ 

 Nodes A and A’ as well as B and B’ 
have the same in-deg and out-deg 
respectively 

 B A : more precise (strong) 
directed flow that the one B’  A’ 

 Modularity cannot distinguish 
these different situations 
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Other extensions of directed modularity 

 Random walk based formulation 

 LinkRank method *Kim et al. ‘10+ 

 Indicates the importance of the edges in the graph based on 
random walk concepts 

 Qlinkrank = (fraction of time spent by a random surfer while 
walking within communities) – (expected value of this time) 

 A community is a group of nodes where a random surfer is more 
likely to stay  

 It can distinguish properly the direction of the edges 

 

 Directed modularity for overlapping communities 

 Allow nodes to be assigned in more than one community 

 Extend the configuration model *Nicosia et al. ‘09+ 
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Spectral clustering and cut-based methods 

 Spectral clustering: partition the nodes of the graph using 
information related to the spectrum of a matrix 
representation of the graph (e.g., Laplacian or adjacency) 

 Optimizing cut-based objective measures, can be achieved 
using spectral techniques 

 We can say that spectral methods have a dual use: 

 Clustering framework itself 

 Optimization framework of objective functions 

 Close connection between those two points 

 Laplacian matrix for directed graphs 

 Spectral clustering algorithm 

 Extension of cut-based measures to directed graphs 
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Laplacian matrix for directed graphs 

 Undirected networks: use the eigenvector that corresponds to 
the second smallest non-zero eigenvalue of the Laplacian 
matrix (Fiedler vector) to obtain a bipartition of the nodes 

 Solution to the normalized cut objective function 

 What about directed directed graphs? 

 Laplacian matrix for directed graphs 

 

 

 P is the transition matrix and Π = diag (π1, π2, … , πn) the 
stationary distribution of the random walk 

 Cheeger inequality holds for Ld 

 *Chung ‘07+, *Zhou et al. ‘05+, *Li and Zhang ‘10+ 
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Directed spectral clustering algorithm 

Input: Directed graph G = (V, E) 

Output: A partition of the vertex set V into two parts 

1. Define a random walk over G with transition matrix P 

2. Form the normalized Laplacian matrix Ld 

3. Compute the eigenvector u2 of Ld that corresponds to the second smallest 
(non zero) eigenvalue 

4. Partition the vertex set V into two parts 

a.   

b.   

 

})(|{ 02  iuViS

})(|{' 02  iuViS

 The algorithm can be extended in the case of a k-partition 

• Eigenvectors of the k smallest eigenvalues of Ld 

• *Zhou et al. ‘10+, *Gleich ‘06+ 
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Cut-based measures 

 The Laplacian matrix provide a solution to the normalized cut 
problem 

 What about other cut-based measures? 

 Weighted cuts [Meila and Pentney ‘07+ 

  

 

 

 Balanced size node clusters (vector T) 

 Vector T’ is used as a normalization factor  

 The optimization of WCut can be relaxed to a symmetric 
problem 

 Other generalization of NCut (in image processing) [Yu and Shi 
‘01+ 
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PageRank and random walk based methods 

 Random walks are closely related to spectral clustering 

 Cut-based measures can be expressed in terms of random walks 

 

 

 The minimization of the number of edges that crossing a cut can be 
described as a similar process where the random walker is forced to stay 
more time within a cluster 

 Other random walk based approach: 

 Consider the transition matrix P of a random walk 

 Look for piecewise constant components in the top k eigenvectors of P 
[Pentney and Meila ‘07+ 

 Look for correlation between components in the eigenvectors [Capocci 
et al. ‘05+ 

 The components correspond to nodes of the same cluster will show high correlation  
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Community detection in the Web graph (1) 

 The random walk should ensure that Web pages that share a common 
topic or interest should be grouped together 

 Even if they are not directly connected 

 Co-citation and co-reference information (pattern-based clusters) 

 Use a two-step PageRank random walk treating nodes as 
hubs/authorities *Huang et al. ‘06+ 

h 
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Community detection in the Web graph (2) 

 The transition matrix of the random walk can be defined as 

 

 

 

 It combines both backward and forward two step random walks 

 Co-citation and co-reference node similarity 

 Parameter β controls the co-citation and co-reference effects 

 Apply the modified transition matrix to the Laplacian matrix and 
use spectral methods to extract the communities 

HA PPP )(   1
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Local clustering using random walks 

 Goal: find a good local clustering structure near a specified seed 
node 

 Examine only a small portion of the input graph 

 Idea: combine information from local and global structure 
*Andersen et al. ‘07+ 

 Local: Personalized PageRank score of a node v (seed node) 

 Global: PageRank score of node v 

 For the seed node  v 

 Compute the Personalized PageRank score with a single starting 
node (seed node) 

 Compute the global PageRank score with a uniform starting 
distribution over all nodes 

 Take the ratio of the entries in the Personalized PR and global PR 
and sort the nodes according to the ratio 
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Other extensions to directed graphs (1) 

 Clique percolation method *Palla et al. ‘07+ 

 Detect network modules (dense connected groups of nodes) 

 Idea: consider the definition of k-cliques (complete subgraph with 
k nodes) 

 Adjacent k-cliques: they share k-1 nodes 

 Module: the union of k-cliques that can be reached from each 
other traversing the nodes of adjacent k-cliques 

 

 

 

 

 

 Directed k-cliques: complete subgraphs of size k, where the nodes can be 
ordered, i.e., directed edges connect higher order node to lower ones  

 Template k-clique: A-B-C-D 

 The template is gradually  
rolled to adjacent k-cliques 

 Final module: A-B-C-D-E-F 
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Other extensions to directed graphs 

 Local density clustering *Schaeffer ‘05+, *Virtanen ‘03+ 

 Extend the concept of local cluster density to directed graphs 

 Find a good local cluster that contains a specific seed node 

 Internal degree of cluster int-deg(C): # of edges with both endpoints in C 

 External degree of cluster ext-deg(C): # of edges with only the start node 
in C 

 Density of graph G = (V, E):  δ = |E| / |V|(|V|-1) 

 Local density of cluster C: δlocal (C) = int-deg(C) / |C|(|C|-1) 

 Relative density of C: δr (C) = int-deg(C) / (int-deg(C) + ext-deg(C)) 

 A cluster should have both high local and relative density 

 Cluster quality measure: f(C) = δlocal (C) x δr(C) 

 
 

 

Local clustering: find subgraph C with k nodes that contains a given 
node v (seed node), maximizing  f(C) 

 Optimization using a local search approach starting from v 
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Alternative approaches 

Alternative approaches 
 

Information theoretic 
based approaches 

 

Probabilistic models & 
statistical inference 

 

Blockmodeling 
methods 

 

Mutuality aware 
clustering 

 

Dynamic networks 
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Information-theoretic based approaches (1) 

 Communities in graphs represent patterns and regularities 

 The can be used to efficiently compress the data 

 Isomap method [Rosvall and Bergstrom ‘08+ 

 Combine random walks and compression principles 

 Intuition: communities can be identified based on how fast information 
flows on them 

 Apply the concept of random walks to describe the process of inf. flow  

 We have seen that a community corresponds to a group of nodes where 
the random surfer is more likely to be trapped in 

 The random surfer will visit more time nodes of the same group than nodes outside of that 

 Idea: communities would correspond to groups of nodes in which the 
random walk can be compressed better 

Reformulation as a coding problem: 

Select a partition M of |V| nodes into c communities, minimizing 
the description length of the random walk 
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Information-theoretic based approaches (2) 

Illustration of Isomap [Rosvall and Bergstrom ‘08+ 

A. Trajectory of the random walks 

B. Use Huffman coding  to assign codewords to the nodes based on the trajectory 

 Shorter codewords  are assigned to more frequently visited nodes 

C. Two level description: 

 Unique codewords (names) for major clusters 

 Codewords of nodes within clusters are reused 

D. Coarse grained description: report only the codewords of clusters (high level description) 
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Probabilistic models and statistical inference 

 Mixture models for inferring the group (community) membership of 
nodes in a directed network 

 Formulate the community detection problem as a likelihood 
maximization problem  *Newman and Leicht ‘07+ 

 Apply an Expectation-Maximization algorithm to infer the probabilities qir  , i.e., 
the probability that node i belongs to community r 

 Note: Each community should have at least one node with non-zero out degree 
(due to the formulation of the mixture model) 

 Extensions [Ramasco and Mungan ‘08+, *Wang and Lai ‘08+ 

Possible outputs of 
*Newman and Leicht ‘07+  

A natural grouping of nodes 
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Blockmodeling methods 

 Blockmodeling: represent a large and possibly incoherent graph by a 
smaller structure that can be interpreted more easily 

 Similar to a co-clustering procedure  

 Reordering scheme of the adjacency matrix 

 Formation of a block-wise structure 

 The blockmodel for  the example graph can 
be described by matrix Bcxc  

 Bgq = 1 if there exists an edge between 
communities g and q 

 *Holland et al. ‘83+, *Wang and Wong ‘87+,   
*Yang et al. ‘10+, *Airoldi et al. ‘08+, *Rohe 
and Yu ‘12+ 

 

 

 

 

*Batagelj and Mrvar ‘02+ 
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Mutuality-tendency aware community detection 

 Existence of mutual (both-way) and one-way connections in directed networks 

 Most approaches do not explicitly distinguish them 

 By minimizing the number of inter-community edges, possible tendencies between 
nodes are not captured 

 Importance: Cluster stability depends on the existence of mutual connections 

 Tendency aware spectral clustering *Li et al. ’12+ 

 Tendencies of node pairs to form reciprocal connections 

 Criterion: Maximization of intra-cluster mutuality tendency and minimization of the 
inter-cluster mutuality tendency 

Traditional spectral clustering Tendency aware spectral clustering 
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Dynamic networks 

 Dynamic nature of real-world networks 

 Graph stream (sequence of graphs)  

 Incrementally find communities in dynamic graphs 

 

 

 

 

 Two sub-problems need to be addressed 

 Community discovery: node assignment into communities of static snapshots 

 Change point detection: quantify and detect the change of the community 
structure over time – similarity between different partitions over time 

 Significant change in the already identified community structure 

 *Sun et al. ’07+, *Duan et al. ’09+ 

  ,,,,: )()()( tGGGG 21
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Outline 

1. Introduction & Motivation  

2. Graph fundamentals  

3. Community evaluation measures  

4. Graph clustering algorithms 

5. Clustering and community detection in 
directed graphs  

6. Alternative Methods for Community 
Evaluation  

7. New directions for research in the area of 
graph mining 
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Topics on community detection and evaluation 

 Overlapping community detection 

 Global vs. local methods for community detection 

 Community detection from seed nodes 

 Observations on structural properties of large graphs 

 Degeneracy-based community evaluation 
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Overlapping community detection (1) 

 Most of the methods presented so far perform hard clustering 

 The graph is divided into communities (clusters, modules) 

 Each node is assigned to a single community 

 In many cases, nodes can simultaneously belong to more than one 
communities 

 Overlapping communities 

Non overlapping  
communities 

Overlapping  
communities 
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Overlapping community detection (2) 

[Palla et al. ’05+ 

 Why overlapping communities?  

• E.g., in a social network, individuals have several simultaneous 
memberships (family, profession, friends,  …) 
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Overlapping community detection (3) 

 Clique Percolation Method (CPM) [Palla et al. ’05+ 

 Idea: consider the definition of k-cliques (complete subgraph with k 
nodes) 

 Adjacent k-cliques: they share k-1 nodes 

 Communities: the union of k-cliques that can be reached from each 
other traversing the nodes of adjacent k-cliques 

 

 

 

 

 

 CFinder free software tool for CPM (http://www.cfinder.org/) 

 Template k-clique: A-B-C-D 

 The template is gradually  
rolled to adjacent k-cliques 

 Final module: A-B-C-D-E-F 
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Overlapping community detection (4) 

 Several extensions of Clique Percolation Method 

 Weighted graphs *Farkas et al. ’07+ 

 Bipartite graphs (overlapping bicliques) *Lehmann et al. ’08+ 

 Scalable (“fast”) implementation of CPM *Kumpula et al. ’08+ 

 Parallel implementation of CFinder *Pollner et al. ’12+ 

 Drawbacks of CPM *Fortunato ’10+ 

 Assumes that the graph has a large number of cliques  

 It may fail to detect communities in graphs with a small number 
of cliques 

 In case of graphs with many cliques  a single community that 
covers the whole graph 

 How to set parameter k to identify meaningful communities? 
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Topics on community detection and evaluation 

 Overlapping community detection 

 Global vs. local methods for community detection 

 Community detection from seed nodes 

 Observations on structural properties of large graphs 

 Degeneracy-based community evaluation 
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Local vs. global communities 

 Most of the proposed methods presented so far are global 

 Every node of the graph is finally assigned  to a community 

 Complexity issues  we need to process the whole graph 

 In many cases, we are interested in evaluating communities as 
individual entities *Fortunato ’10+, *Schaeffer ‘07+ 

 Independent of the full graph 

 Using possibly limited amount of information  improving complexity 

 Find local communities around seed nodes 

 For a given node v, extract the community that v belongs to 

 

v 



143 C. Giatsidis, F. D. Malliaros, M. Vazirgiannis Tutorial – WWW 2013 

Topics on community detection and evaluation 

 Overlapping community detection 

 Global vs. local methods for community detection 

 Community detection from seed nodes 

 Observations on structural properties of large graphs 

 Degeneracy-based community evaluation 
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Communities from seed nodes 

 Problem: Given a seed node v, find  a community around v 

 Based on a quality measure (e.g., conductance, expansion, cut 
ratio) 

 The desired size of the community may also be given as input 

 To problem can be extended to communities from a node set s 

 

 Question 1: How to grow (expand) the seed set? 

 Question 2: How to select the seed nodes? 
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Seed expanding strategies 

Several strategies for expanding a seed set: 

 Use random walks to expand a seed node set into a low-conductance 
community *Andersen and Lang ’06+ 

 Examine only a small neighborhood of the graph 

 Local graph partitioning using personalized PageRank [Andersen et 
al. ’06+  

 Find community around seed node v 

 Compute the personalized PageRank score (at the teleportation step, 
move to node v) 

 Sweep over the PageRank vector to find a good conductance set 

 Cheeger inequality for PageRank vectors (the basic tool in spectral 
clustering) 

 Other extensions  

 Dense subgraphs around a seed node in bipartite graphs *Andersen  ’08+ 

 Use of Markov chains (Evolving Set Process) *Andersen and Peres ’09+ 
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How to select seed nodes or sets? (1) 

 It mainly depends on the scope of the community detection 
task 

 Consider the node that we are interested in as a seed node 

 E.g., in  a co-authorship graph 

 Find the best community of A.-L. Barabasi 

 Important nodes 

 Based on centrality measures (e.g., degree, betweenness) 

 Randomly 

 Just pick a random node and let the grow strategy to reveal the best 
cluster around this node 
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How to select seed nodes or sets? (2) 

 In the case of seed sets, most of the methods require that the 
seed set itself has good community properties 

 E.g., low conductance node sets *Andersen and Lang ’06+, 
*Andersen et al. ’06+  

 Difficult to find good seeds 

 Neighborhoods are good communities [Gleich and Seshadhri 
’12+ 

1. High global clustering coefficient 

2. Heavy-tailed degree distribution 

 

Node neighborhoods (egonets) 
with good conductance scores 

Good seed 
sets 
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Sampling community structure 

 Idea [Maiya and Berger-Wolf ’10+ 

1. Produce subgraphs representative of community structure in 
the full graph 

2. Use these subgraph samples to infer the community 
membership for the rest of node in the graph 

 Sampling process over the graph with respect to the 
community structure 

 The produced sample subgraphs should consist of members 
from most (or all) of the communities in the original graph 

 How to sample representative subgraphs? 

 Based on the notion of expander graphs 

 Add nodes by maximizing expansion 

 
s

s

n

c
Sf )(

Measures the number of edges per 
node that point outside S 
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Do we need all these methods? 

 Question: Do we really need all these diverse methodologies? 

 Answer: Mainly, yes 

1. Overlapping communities:  

 In some application domains we may not want to hardly assign nodes  
into only one community 

 The nodes of the graph may naturally have multiple memberships into 
communities 

2. Local vs. global methods: 

 Computational issues 

 Applications where we are only looking for a community around some 
seed nodes or we need to partition the whole graph 

3. Structural observations: 

 In large scale real graphs, it is difficult to find good communities 
*Leskovec et al. ’09+  
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Topics on community detection and evaluation 

 Overlapping community detection 

 Global vs. local methods for community detection 

 Community detection from seed nodes 

 Observations on structural properties of large graphs 

 Degeneracy-based community evaluation 
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Community structure in small vs. large graphs 

Small scale collaboration network 
(Newman) 

Blog network 
http://www.ryze.com 
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Examine the structural differences 

 How can we examine and compare the structural differences – in 
terms of community structure – at different scale graphs? 

 Use conductance Φ(S) as a community evaluation measure 

 Smaller value for conductance implies better community-like properties 
*Leskovec et al. ’09+  Φ(S) = # outgoing edges / # edges within 

Example by J. Leskovec, ICML 2009 

Φ1 = 5/6 = 0.83  

 

Φ2 = 2/5 = 0.4  

Better than Φ1  

Φ3 = 2/8 = 0.25  

 
Best community  

 

Find the best 
community of 5 

nodes 

   SkSVS
k 


,
min
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Network Community Profile plot 

 Network Community Profile (NCP) plot *Leskovec et al. ’09+  

 Plot the best conductance score (minimum) Φ(k) for each 
community size k 

Conductance 
log Φ(k) 

Size of community, log k 

k=3 k=4 k=4 
k=6 

… 

… 

NCP plot of real graphs 
 

? 
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NCP plot examples 

cut A 

cut A+B 

k (# nodes in community) 

Φ
 (

co
n

d
u

ct
an

ce
 s

co
re

) 

Zachary’s karate club social network 

k (# nodes in community) 

Φ
 (

co
n

d
u

ct
an

ce
 s

co
re

) 
A B 

C D 
C+E 

Newman’s collaboration network 

Small scale 
networks 

*Leskovec et al. ’09+  
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NCP plot of large real-world graphs 

k (# nodes in community) 

k (# nodes in community) k (# nodes in community) k (# nodes in community) 

k (# nodes in community) k (# nodes in community) 
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Φ
 (

co
n

d
u

ct
an

ce
 s

co
re

) 

LiveJournal01 Messenger-DE ATP-DBLP 

Cit-Hep-Th Web-Google Amazon-All 

Large scale 
networks 

*Leskovec et al. ’09+  
Figure: J. Leskovec, ICML 2009 

Any common property? 
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NCP plot: Observation in large graphs 

*Leskovec et al. ’09+  Figure: http://snap.stanford.edu/ncp/ 
Slide by J. Leskovec, ICML 2009 

Φ
 (

co
n

d
u

ct
an

ce
 s

co
re

) 

k (# nodes in community) 

LiveJournal  social network 
|V| = 5M, |E| = 42 M 

Improved community 
structure 

Quality of communities 
is decreasing 

Best community: 
Size ~ 100 nodes 
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Explanation: Core-Periphery structure 

 How can we explain the observed structure of large graphs? 

 Core-periphery structure 

*Leskovec et al. ’09+  

Whiskers: maximal subgraphs 
connected to the core via a 

single edge 

Core: contains a large 
portion of the graph (~60% 

of nodes and ~80% of edges) 

Core becomes 
denser and denser 
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Core-Periphery structure 

 Core-periphery structure 

 Core 

 Whiskers 

 

 Whiskers 

 Non-trivial structure  more than random (shape and size) 

 Question: What is happening if we remove whiskers (periphery) 
from graphs? 

 Almost nothing. The whiskers are replaced by 2-whiskers (subgraphs 
connected to the core with 2 edges) 

 The core itself has core-periphery structure 

 Important point: Whiskers are also responsible for the best 
communities in large graphs (lowest point of NCP plot) 

*Leskovec et al. ’09+  
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Similar structural observations 

 Jellyfish model for the Internet topology [Tauro et al. ’01+ 

 

  Min-cut plots [Chakrabarty et al. ’04+ 

 Perform min-cut recursively 

 Plot the relative size of the minimum cut 

 

 Robustness of large scale social networks *Malliaros et al. ’12+ 

 Robustness estimation based on the expansion properties of graphs 

 Social networks are expected to show low robustness due to the 
existence of communities  the (small number of) inter-community 
edges will act as bottlenecks 

 Large scale social graphs tend to be extremely robust 

 Structural differences (in terms of robustness and community 
structure) between different scale graphs 
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Clustering algorithms and objective criteria 

 Question 1: Is the observed property an effect of the used 
community detection algorithm (Metis + flow based method)? 

 A: No. The qualitative shape of the NCP plot is the same, regardless of 
the community detection algorithm *Leskovec et al. ’09+  

 Question 2: Is the observed property an effect of the conductance 
community evaluation measure? 

 A: No. All the objective criteria that based on both internal and external 
connectivity, show a qualitatively almost similar behavior [Leskovec et 
al. ’10+  

 A V-like slope in the NCP plot 

 

C
o

m
m

u
n

it
y 
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o
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k (# nodes in community) 

AuthToPap-DBLP 
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Conclusions 

 Large scale real-world graphs 

 Core-periphery structure 

 No large, well defined communities 

 Structural differences between different scale graphs 

 Community detection algorithms should take into account 
these structural observation 

 Whiskers correspond to the best (conductance-based) communities 

 Need larger high-quality clusters? 

 Bag of whiskers: union of disjoint (disconnected) whiskers are mainly 
responsible for the best high-quality clusters of larger size (above 100) 
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Topics on community detection and evaluation 

 Overlapping community detection 

 Global vs. local methods for community detection 

 Community detection from seed nodes 

 Observations on structural properties of large graphs 

 Degeneracy-based community evaluation 
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Graph Degeneracy 

 Degeneracy, for an undirected Graph G : 

 also known as the k-core number 

 “the k-core of G is the largest sub-graph of G in which 
every vertex has degree of at least k within the sub-
graph” 

 k-core decomposition: 

  find the k-core of G for all k 

 can be used as heuristics for maximum clique finding 
since a clique of size k 

 can give a (1/2)-approximation algorithm for the 
densest sub-graph problem 
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K-core 

G0 = G 

G0 : 1-core of G 

G1 : 2-core of G 

G2 : 3-core of G 

 

𝐺0 ⊇ 𝐺1 ⊇ 𝐺2 ⊇ 𝐺3 
 

 

 The  degeneracy and the size of the maximum rank 
core provide a  good indication of the cohesiveness 
of the graph G. 
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Another example 

                 
core0(G) 

core1(G) 

core2(G) 

core4(G) 

core3(G) 
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K-core 

 

 The algorithm for computing the k-th core of a graph:  

Procedure Trimk(G, k ) 

Input: An undirected graph G and  positive integer k 

Output: k-core(G) 

1. let F := G. 

2. while there is a node x in F such that  degF(x)<k 

delete node x from F. 

3. return F. 
 

 Time complexity: O(n.k) (n= |G|) 

 Fast! `especially in real word data where G is usually 
sparse. 

 requires the entire graph in memory 
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Wikipedia  

 We consider only links 
among article-pages within 
Wikipedia 

 A snapshot from January 
2004 taken from the 
Wikipedia dump (freely 
available for download) 

 # nodes: 1.2 M(unique 
pages) 

 # links: 3.662 M 
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DBLP 

 Taken from the DBLP data 
set 

 Paper authored by x,y,z 
cites paper authored by 
a,b,c: creates  directed 
citation-edges (x,a), (x,b), 
(x,c), (y,a)… 

 825 K author-nodes - 315K 
edges 

 A very large part of 
authors has no in/out links 
(about 800 K) leaving the 
rest 25K to be examined 
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Epinions 

 A “who-trusts-whom” 
online social network of a 
general consumer review 
site Epinions.com 
(provided from Jure 
Leskovec among other 
graph data sets) 

 #nodes: 75 K (users) 

 #edges: 508 K (trust 
relations) 

http://www.epinions.com/
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k-cores for the DBLP co-authorship graph 

 

Distribution of the k-core sizes in  

the unfiltered DBLP coauthorship graph 

 

Distribution of the number of  

coauthors/paper k-core sizes in  

In the unfiltered DBLP coauthorship graph 

 

1 paper with  

113 authors!! 
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DBLP co-authorship – k-core on filtered graph  

 Filtered out 1% of the papers 

  max 15 authors/paper 

 

Kurt Mehlhorn 

Micha Sharir 

Pankaj K. Agarwal 

Mark de Berg 

Rolf Klein 

Mark H. Overmars 

Herbert Edelsbrunner 

Stefanie Wuhrer 

Jack Snoeyink 

Joseph O'Rourke 

Subhash Suri 

Otfried Cheong 

Hazel Everett 

Sylvain Lazard 

Helmut Alt 

Emo Welzl 

Günter Rote 

Leonidas J. Guibas 

Chee-Keng Yap 

Danny Krizanc 

Pat Morin 

Jorge Urrutia 

Diane L. Souvaine 

Ileana Streinu 

Dan Halperin 

Hervé Brönnimann 

Joseph S. B. Mitchell 

David Eppstein 

Erik D. Demaine 

Olivier Devillers 

Sándor P. Fekete 

Henk Meijer 

Sariel Har-Peled 

John Hershberger 

Alon Efrat 

Stefan Langerman 

Bernard Chazelle 

Joachim 

Gudmundsson 

Giuseppe Liotta 

Sue Whitesides 

Christian Knauer 

Raimund Seidel 

Michiel H. M. Smid 

Tetsuo Asano 

David Rappaport 

Vera Sacristan 

Hee-Kap Ahn 

Prosenjit Bose 

Michael A. Soss 

Godfried T. Toussaint 

Marc J. van Kreveld 

Martin L. Demaine 

Ferran Hurtado 

Timothy M. Chan 

Oswin Aichholzer 

Bettina Speckmann 

Jeff Erickson 

Therese C. Biedl 

Greg Aloupis 

David Bremner 

Anna Lubiw 

Esther M. Arkin 

Boris Aronov 

Vida Dujmovic 

Suneeta Ramaswami 

Thomas C. Shermer 

David R. Wood 

Perouz Taslakian 

John Iacono 

Sergio Cabello 

Sébastien Collette 

Belén Palop 

Mirela Damian 

Jirí Matousek 

Otfried Schwarzkopf 

Richard Pollack 
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DBLP K-cores 

 Extreme k-core: k=15  (DBLP), 76 authors 

 Author ranking metric: max(k)-core that an 
author belongs to 

 e.g.  Paul Erdos : 14  

 On the max(k)-core we can identify the “closest” 
collaborators: Hop-1 community  

 Erdos hop-1 :  
 Boris Aronov, Daniel J. Kleitman, János Pach, Leonard J. 
Schulman, Nathan Linial, Béla Bollobás, Miklós Ajtai, Endre 
Szemerédi, Joel Spencer,Fan R. K. Chung, Ronald L. Graham, 
David Avis, Noga Alon, László Lovász, Shlomo Moran, Richard 
Pollack, Michael E. Saks, Shmuel Zaks, Peter Winkler, Prasad 
Tetali, László Babai 
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K-core - issues 

 Co-authorship graph: Authors participating in 
papers with many coauthors get biased credit 

 i.e., in the unfiltered case:  

 1 paper with 113 authors creates the most dense co-
authroship collaboration structure 

 for most of the authors was the only paper 

 Each author of a paper should get a just credit 
(i.e., 1/# authors) 
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Fractional k-cores 

Co-authorship edge weight:  
 For every edge e = {x, x’} we set 

 The weighted co-authorship affinity  

     among x and x’: collaboration ! 

Vertex fractional degree. x in (G,w)   
 
 

 the total co-authorship  

value of an author 
Distribution of the fractional 

k-core sizes in the DBLP  

coauthorship graph 

 

  

𝑤 𝑒 =  
1

|𝑁(𝑦)|
𝑦∈𝑁 𝑥 ∩𝑁(𝑥′)

 

𝑑𝑒𝑔𝐺, 𝑤 𝑥 =  𝑤(𝑒)

𝑒∈𝐸(𝑥)
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Author Core Size Hop-1 list 

C.H. 
Papadimitrio
u 

20.80 417 Mihalis Yannakakis     19.62 

Erik D. Demaine 0.14 

Georg Gottlob 1.0 

Moshe Y. Vardi 0.25 

G.Weikum 16.30 1506 Hans-Jörg Schek 7.43 

Surajit Chaudhuri 5.05 

Raghu Ramakrishnan 0.41 

Gustavo Alonso 0.43 

Divyakant Agrawal 0.29 

Yuri Breitbart 1.49 

Amr El Abbadi 0.29 

Catriel Beeri 0.33 

Rakesh Agrawal 0.48 

Abraham Silberschatz 0.17 

Gautam Das 0.7 

S. Sudarshan 0.2 

Michael Backes 0.33 

Jennifer Widom 0.19 

David J. DeWitt 0.19 

Stefano Ceri 0.275 

Serge Abiteboul 0.33 

Umeshwar Dayal 0.17 

Michael J. Carey 0.14 

… 

Tanenbaum 13.0 4016 Maarten van Steen 4.68 

Frances M. T. Brazier 0.98 

Howard Jay Siegel 0.13 

M. Frans Kaashoek 7 

Anne-Marie Kermarre 0.25 

Robbert van Renesse 5.4 

Michael S. Lew 0.02 

FRACTIONAL CORES AND 

HOP-1 LIST FOR SELECTED 

AUTHORS. 
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Degeneracy on directed graphs 

 Directed graphs:  
 WIKI - graph 

 DBLP – Citation graph  

 Is there a degeneracy notion for directed graphs? 

 We extend the k-core concept in directed graphs by 
applying a limit on in/out edges respectively. 

 This provides a two dimensional range where cores 
degenerate. 

 Trade off between in/out edges can give us a more specific 
view of the cohesiveness and the “social" behavior 
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D-core matrix Wikipedia 

Given a directed graph D. We define: 

 

                                                                                    

and 

 

 

 

A (k,l)-D-core of D is a maximal sub-digraph F of 

)}(|)(deg|min{)( DVxxxD in

D

in 

)}(|)(deg|min{)( DVxxxD out

D

out 

𝐷: δout F > k          and          δ𝑖𝑛 𝐹 > 𝑙 
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Degeneracy on directed graphs 

(k,l)-D-core (G): the (k,l) D-core of graph G  

for each k,l : dck,l = |(k,l)-D-core (G)|  

D-core matrix:  D(k,l)=dck,l, k,l integers – each cell stores the size 
of the respective D-core  

Frontier: F(D) = {(k;l): dck,l > 0 &  dck+1,l+1 = 0 } : the extreme (k,l)-
D-cores  

Collaboration indices 

 Balanced collaboration index (BCI) : Intersection of diagonal D(k,k) with 
frontier 

 Optimal collaboration index (OCI) : DC(k,l) where max((k+l)/2) distance from 
D(0,0) 

 Inherent collaboration index (ICI): All cores on the angle defined by the 
average inlinks/outlinks ratio 
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Wikipedia  

 Wikipedia Terms pages 

 We consider only links 
among article-pages 
within Wikipedia 

 January 2004 snapshot  

 # nodes: 1.2M(unique 
pages) 

 # links: 3.662 M 
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D-core matrix Wikipedia 

The extreme D-core(38,41) contains 237 pages  

diagonal 
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Thematic D-core frontiers - Wikipedia  

 “Andrew Jacson” “Greece” “Monty Pythons” 
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Thematic D-core frontiers - Wikipedia  
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D-core matrix for DBLP 



184 C. Giatsidis, F. D. Malliaros, M. Vazirgiannis Tutorial – WWW 2013 

The Extreme DBLP D-core authors 

 JosÃ© A. Blakeley 

 Hector Garcia-Molina 

 Abraham Silberschatz 

 Umeshwar Dayal 

 Eric N. Hanson 

 Jennifer Widom 

 Klaus R. Dittrich 

 Nathan Goodman 

 Won Kim 

 Alfons Kemper 

 Guido Moerkotte 

 Clement T. Yu 

 M. Tamer Ã–zsu 

 Amit P. Sheth 

 Ming-Chien Shan 

 Richard T. Snodgrass 

 David Maier 

 Michael J. Carey 

 David J. DeWitt 

 Joel E. Richardson 

 Eugene J. Shekita 

 Waqar Hasan 

 Marie-Anne Neimat 

 Darrell Woelk 

 Roger King 

 Stanley B. Zdonik 

 Lawrence A. Rowe 

 Michael Stonebraker 

 Serge Abiteboul 

 Richard Hull 

 Victor Vianu 

 Jeffrey D. Ullman 

 Michael Kifer 

 Philip A. Bernstein 

 Vassos Hadzilacos 

 Elisa Bertino 

 Stefano Ceri 

 Georges Gardarin 

• Patrick Valduriez 

• Ramez Elmasri 

• Richard R. Muntz 

• David B. Lomet 

• Betty Salzberg 

• Shamkant B. Navathe 

• Arie Segev 

• Gio Wiederhold 

• Witold Litwin 

• Theo HÃ¤rder 

• FranÃ§ois Bancilhon 

• Raghu Ramakrishnan 

• Michael J. Franklin 

• Yannis E. Ioannidis 

• Henry F. Korth 

• S. Sudarshan 

• Patrick E. O'Neil 

• Dennis Shasha 

• Shamim A. Naqvi 

• Shalom Tsur 

• Christos H. Papadimitriou 

• Georg Lausen 

• Gerhard Weikum 

• Kotagiri Ramamohanarao 

• Maurizio Lenzerini 

• Domenico SaccÃ  

• Giuseppe Pelagatti 

• Paris C. Kanellakis 

• Jeffrey Scott Vitter 

• Letizia Tanca 

• Sophie Cluet 

• Timos K. Sellis 

• Alberto O. Mendelzon 

• Dennis McLeod 

• Calton Pu 

• C. Mohan 

• Malcolm P. Atkinson 

• Doron Rotem 

 

• Michel E. Adiba 

• Kyuseok Shim 

• Goetz Graefe 

• Jiawei Han 

• Edward Sciore 

• Rakesh Agrawal 

• Carlo Zaniolo 

• V. S. Subrahmanian 

• Claude Delobel 

• Christophe LÃ©cluse 

• Michel Scholl 

• Peter C. Lockemann 

• Peter M. Schwarz 

• Laura M. Haas 

• Arnon Rosenthal 

• Erich J. Neuhold 

• Hans-JÃ¶rg Schek 

• Dirk Van Gucht 

• Hamid Pirahesh 

• Marc H. Scholl 

• Peter M. G. Apers 

• Allen Van Gelder 

• Tomasz Imielinski 

• Yehoshua Sagiv 

• Narain H. Gehani 

• H. V. Jagadish 

• Eric Simon 

• Peter Buneman 

• Dan Suciu 

• Christos Faloutsos 

• Donald D. Chamberlin 

• Setrag Khoshafian 

• Toby J. Teorey 

• Randy H. Katz 

• Miron Livny 

• Philip S. Yu 

• Stanley Y. W. Su 

• Henk M. Blanken 

• Peter Pistor 

• Matthias Jarke 

• Moshe Y. Vardi 

• Daniel BarbarÃ¡ 

• Uwe Deppisch 

• H.-Bernhard Paul 

• Don S. Batory 

• Marco A. Casanova 

• JÃ¼rgen Koch 

• Joachim W. Schmidt 

• Guy M. Lohman 

• Bruce G. Lindsay 

• Paul F. Wilms 

• Z. Meral Ã–zsoyoglu 

• Gultekin Ã–zsoyoglu 

• Kyu-Young Whang 

• Shahram Ghandeharizadeh 

• Tova Milo 

• Alon Y. Levy 

• Georg Gottlob 

• Johann Christoph Freytag 

• Klaus KÃ¼spert 

• Louiqa Raschid 

• John Mylopoulos 

• Alexander Borgida 

• Anand Rajaraman 

• Joseph M. Hellerstein 

• Masaru Kitsuregawa 

• Sumit Ganguly 

• Rudolf Bayer 

• Raymond T. Ng 

• Daniela Florescu 

• Per-Ã…ke Larson 

• Hongjun Lu 

• Ravi Krishnamurthy 

• Arthur M. Keller 

• Catriel Beeri 

• Inderpal Singh Mumick 

• Oded Shmueli 

• George P. Copeland 

• Peter Dadam 

• Susan B. Davidson 

• Donald Kossmann 

• Christophe de Maindreville 

• Yannis Papakonstantinou 

• Kenneth C. Sevcik 

• Gabriel M. Kuper 

• Peter J. Haas 

• Jeffrey F. Naughton 

• Nick Roussopoulos 

• Bernhard Seeger 

• Georg Walch 

• R. Erbe 

• Balakrishna R. Iyer 

• Ashish Gupta 

• Praveen Seshadri 

• Walter Chang 

• Surajit Chaudhuri 

• Divesh Srivastava 

• Kenneth A. Ross 

• Arun N. Swami 

• Donovan A. Schneider 

• S. Seshadri 

• Edward L. Wimmers 

• Kenneth Salem 

• Scott L. Vandenberg 

• Dallan Quass 
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D-Core frontier for individuals 

 The frontier of an 
individual: defined by the 
outmost d-cores that the 
individual belongs to. 

 We can evaluate the 
citation based robustness 
of an individual within the 
community by her 
frontier.  
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Strongly Connected Components (SCC) 

 The SCC’s are not usually used for community 
detection but in this case serve well for 
indicating how the communities would survive 
throughout the cores. 

 We trace SCC’s through the D-Cores(k,k) – i.e., 
on the “diagonal” direction. 
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Wikipedia SCCs 
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DBLP SCCs 
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Degeneracy in Signed graphs 

 Signed (directed) graphs can depict a wide 
variety of concepts. We define degeneracy upon 
a “trust“ network. 

 A member of a directed signed graph G can 
either trust or distrust an other but not the both 
simultaneously.  

 Obviously self links are of no interest. 

 Each vertex v has both positive & negative in-
degree and both positive & negative out-degree 
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S-cores 

 Degeneracy in directed graphs has a simple 2-
dimensional visualization in 2 axes. 

 We consider each case of trust interaction 
(positive/negative, in/out) as a separate case   

 high complexity in comprehension of the results 

 Some combinations could be explored only with d-cores (i.e. 
in/out degree for the same sign) 

 The purpose of the extensions is to examine/evaluate the 
underlying community under the scope of TRUST/DISTRUST 

 Solution: Consider as one dimension the in/out degrees 
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S-cores 

 We compute the trust network degeneracy 
degeneracy along the 4 combinations  of 
direction and sign (in,out): 

 (+,+): Mutual Trust 

 (+,-): Trust under distrust (i.e. trust those who do not 
trust me) 

 (-,-):  Mutual distrust 

 (-,+): Distrust under trust 
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Definitions 

 Given a pair (s, t)  {+,-}2, we define the (s, t)-
degeneracy of G: 
δs,t(G) = max{(k+l)/2 |G contains a non-empty (ks, 
lt)-d-core} 

 4 quadrants -> we define frontiers much like the 
d-cores : 

 RG = {(i, j)  F2
G  ai,j > 0 and ai+1,j+1 = 0} (the extreme 

non-empty S-cores) 
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Data description 

 Explicit Data: Epinions, Slashdot 

 Implicit Data: Wikipedia Topics 

 Explicit: data that describe an existing trust 
network 

 Implicit: Inferred data, extracted from user 
interactions (edit, delete, revert actions in 
articles)  
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Data Statistics 

Network Nodes Edges Negative 

Epinions 119,217 841,200 15.0% 

Slashdot 82,144 549,202 22.6% 

Domain Articles Nodes Edges Positive Negative 

History 3,331 141,983 534,693 439,193 95,500 

Politics 12,921 453,116 2,428,945 2,099,410 329,535 

Religion 6,459 277,482 1,423,279 1,244,166 179,113 

Mathematics 9,610 158,671 651,450 548,073 103,377 

Explicit 

Implicit (Wikipedia)  



195 C. Giatsidis, F. D. Malliaros, M. Vazirgiannis Tutorial – WWW 2013 

Wikipedia graph inference 

 Types of interactions extracted: 

1. number of words inserted by the author of the current 
revision in the vicinity of the text belonging to other 
authors 

2. number of words deleted or replaced between the 
current revision and the previous 

3. if the current revision is a reversion (restoration) 
reversions can be by one author upon many. 

 Additionally, between the authors of the above 
revisions: 

1.  votes in administrator elections 

2.  barnstars, i.e., prizes acknowledging important 
contributions, which can be put on a user's profile page 
by other contributors. 
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Examples 

 S-Cores sizes on real world data 

 

 

 

 

 

 

 In both cases positive trust dominates 

 In slashdot there is proportionaly much more mutual 
distrust than in the wikipedia-politics case 
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Frontiers (explicit graphs) 

 Original frontiers    Normalized 
___________________________________________________________________ 

- Slashdot is more robust under degeneracy than the epinions trust 
graph: i.e., there is denser mutual trust in S than in E. 

- In epinions the mutual negative distrust is much more important as 
well as the imbalanced trust graphs (+/-, -/+)  

Frontier’s 

Center 
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Wikipedia Topics 

 Original frontiers    Normalized 
__________________________________________________________________ 

- Wikipedia politics is the most robust trust network, history is the least 
one 

- In the normalized case: history is the one with the largest mutually 
negative trust  constituent  
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Users and Articles Frontiers  

 We utilize the s-core structure to evaluate the 
trustworthiness of a user or an article 

 Users 

the user frontier is defined by intersection of the s-cores 
she participates 

 Article frontier:  

Multiple users contribute to an Article 

The intersection of their contributing editors individual 
frontiers is the article frontier.  
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Users & Articles 

 Editors 

Gobonobo is by far the most trusting and trusted one – i.e. a very senior editor 

 Article frontier 

“Reagan” article is almost as trusted as the “Politics” topic.  
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 An online demo at: http://www.graphdegeneracy.org/  

 

http://www.graphdegeneracy.org/
http://www.graphdegeneracy.org/
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Outline 

1. Introduction & Motivation  

2. Graph fundamentals  

3. Community evaluation measures  

4. Graph clustering algorithms 

5. Clustering and community detection in 
directed graphs  

6. Alternative Methods for Community 
Evaluation  

7. New directions for research in the area of 
graph mining 
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Open Problems and Future Research Directions (1) 

 Community detection in directed graphs 

 A formal and precise definition of the clustering/community 
detection problem in directed networks (how clusters should 
look like) 

 In the existing methods on directed networks, there is no a clear 
way of how the edge directionality should be taken into account 

 Not straightforward generalizations of the methods for 
undirected graphs 

 Note: a single definition/notion of communities should possibly 
not fit to all needs – highly application-oriented task [Schaeffer 
’07+  

 Extension of existing methods to cover the case of signed 
graphs 
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Open Problems and Future Research Directions (2) 

 New Concepts & Applications of Degeneracy in Social 
Graphs 

 Reciprocity in signed graphs 

• Reciprocity is defined at node level indicating the average 
return rate of individual actions 

• Evaluation of reciprocity in trust networks  

 User’s engagement in social graphs 

• Important for prediction and monitoring of social nets 
evolution 

• Each user can either stay or leave from the graph 

• Model of user engagement based on his/her core number 

• Characterization of the engagement level of the graph based 
on the properties of the k-core decomposition 
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 New Concepts & Applications of Degeneracy in Social 
Graphs [1] 

 Degeneracy in text indexing and retrieval 

• Consider documents as directed graphs 

• Preserve word order and co-occurrence (tw) 

• Replace term frequency (tf) with term weighted degree (tw) 
in ad hoc retrieval  

• Potential in summarization and n-grams indexing  
 

 Methodological  level 

 Defining  preferential attachment model for signed 
graphs 

 
_________________________________________________________________ 
[1] Rousseau F,   Vazirgiannis M., “Composition of TF normalizations: new insights on scoring 
functions for ad hoc IR”, ACM SIGIR 2013 

Open Problems and Future Research Directions (3) 
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 Scalability 

 Distributed spectral clustering 
• Compute Laplacian and eigenvector decomposition in a 

distributed manner  

 Degeneracy for large scale graph clustering 
• Degeneracy identifies the cores of the best clusters 

• The degenerated data are exponentially smaller than the 
original one so the scheme scales 

 k-core computation O(nm) 
• Can be costly for dense graphs 

• Optimize with divide and conquer + start from high degree 
nodes 

 

 

Open Problems and Future Research Directions (4) 
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Open Problems and Future Research Directions (5) 

 

 Clustering Validity for graph clustering  

 How to decide if the results of graph clustering  are valid ? 

 Parameter values and algorithms choice …  

 Reliable benchmark graph dataset [Lancichinetti and Fortunato ’09+ 

 Experimental and comparative studies should be performed 

 

  Towards data-driven and application-driven approaches 

 Study the structure and properties of the graph we are interested in 

 Take into account possible structural observations that may affect 
the community detection task 
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Potential applications of degeneracy results 

Social Networks 
 “Which is the set of core members of a community, based on their intensive 

mutual collaboration”? 

 “Is the Epinions trust network mostly positively trustworthy?” 

Scientific corpora 
 “Which is the densest community of collaboration in the DBLP citation graph in 

data mining” ?  

 “Which is the densest collaboration community of Dr. X in the Arxiv citation 
graph ?” 

 “Which is the densest collaboration group in a co-authorship graph in which Dr. X 
belongs to?” 

Telecoms 
 “Which is the most connected component of users in a telecom 

network based on mutual calls?” 

Biology  
 “Which is the most important set of proteins in a protein 

interaction graph?” 
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http://www.graphdegeneracy.org  

http://www.graphdegeneracy.org/
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