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Abstract. Research in models for experience-based trust management has either
ignored the problem of modelling and reasoning about dynamically changing
principal behaviour, or provided ad-hoc solutions to it. Probability theory pro-
vides a foundation for addressing this and many other issues in a rigorous and
mathematically sound manner. Using Hidden Markov Models to represent prin-
cipal behaviours, we focus on computational trust frameworks based on the ‘beta’
probability distribution and the principle of exponential decay, and derive a pre-
cise analytical formula for the estimation error they induce. This allows potential
adopters of beta-based computational trust frameworks and algorithms to better
understand the implications of their choice.

1 Introduction

This paper concerns experience-based trust management systems. The term ‘trust man-
agement’ is usually associated with the traditional credential-based trust management
systems in which trust is established primarily as a function of available credentials
(see e.g. [2]). In experience-based systems, trust in a principal is represented as a func-
tion of information about past principal behaviour. This encompasses also reputation
information, i.e., information about principal behaviour obtained not by direct observa-
tion but from other sources (e.g., ratings made by other principals). There are several
approaches to experience-based trust management; this paper is concerned with the
probabilistic approach, which can broadly be characterised as aiming to build proba-
bilistic models upon which to base predictions about principals’ future behaviours. Due
to space limitations, we shall assume the reader to be familiar with experience-based
trust management (the interested reader will find a comprehensive overview in [11])
and with the basics of probability theory.

Many systems for probabilistic trust management assume, sometimes implicitly, the
following scenario. There is a collection of principals (pi | i ∈ I), for some finite in-
dex set I, which at various points in time can choose to interact in a pair-wise manner;
each interaction can result in one of a predefined set of outcomes, O = {o1, . . . , om}.
For simplicity, and without loss of generality, in this exposition we shall limit the out-
comes to two: s (for success) and f (for failure). Typically, outcomes are determined
by behaviours: when principal pi interacts with principal p j, the behaviour of p j rel-
ative to the protocol used for interaction defines the outcome. Specifically, compliant
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behaviours represent successful interactions, whilst behaviour which diverge from the
interaction protocol determine failure. Hence, the most important component in the
framework is the behaviour model. In many existing frameworks the so-called Beta
model [10] is chosen. According to the Beta model, each principal p j is associated with
a fixed real number 0 ≤ Θ j ≤ 1, to indicate the assumption that an interaction involving
p j will yield success with probability Θ j. This is a static model in the precise sense
that the behaviour of principal p j is assumed to be representable by a fixed probability
distribution over outcomes, invariantly in time. This simple model gives rise to trust
computation algorithms that attempt to ‘guess’ p j’s behaviour by approximating the
unknown parameter Θ j from the history of interactions with p j (cf., e.g., [17]).

There are several examples in the literature where the Beta model is used, either
implicitly or explicitly, including Jøsang and Ismail’s Beta reputation system [10], the
systems of Mui et al. [13] and of Buchegger [4], the Dirichlet reputation systems [9],
TRAVOS [18], and the SECURE trust model [5]. Recently, in a line of research largely
inspired by Mogens Nielsen’s pioneering ideas, the Beta model and its extension to
interactions with multiple outcomes have been used to provide a first formal frame-
work for the analysis and comparison of computational trust algorithms [17, 14, 12].
In practice, these systems have found space in different applications of trust, e.g., on-
line auctioning, peer-to-peer filesharing, mobile ad-hoc routing and online multiplayer
gaming.

All the existing systems use the family of beta probability density functions (pdfs)
or some generalisation thereof, as e.g. the Dirichlet family — again for the sake of sim-
plicity and with no loss of generality, in this paper we shall confine ourselves to beta.
The choice of beta is a reasonable one, as a history of interactions h with principal p j

can be summarised compactly by a beta function with parameters α and β, in symbols
B(α, β), where α = #s(h)+ 1 (resp. β = #f(h)+ 1) is the number of successful (resp. un-
successful) interactions in h plus one. This claim can be made mathematically precise
in the language of Bayesian Theory, as the family of beta distributions is a conjugate
prior to the family of Bernoulli trials (cf. Section 2 below and [17] for a full explana-
tion). An important consequence of this representation is that it allows us to estimate
the so-called predictive probability, i.e., the probability of a success in the next inter-
action with p j given history h. Such an estimate is given by the expected value of Θ j

according to B(α, β):1

P(s | h B) = EB(α,β)(Θ j) =
α

α + β

So in this simple and popular model, the predictive probability depends only on the
number of past successful interactions in and the number of past failures.

Many researchers have recognised that the assumption of a fixed distribution to rep-
resent principals is a serious limitation for the Beta model [10, 4, 19]. Just consider, e.g.,
the example of an agent which can autonomously switch between two internal states, a
normal ‘on-service’ mode and a ‘do-not-disturb’ mode. This is why several papers have

1 In our probability notation, juxtaposition means logical conjunction, as in Jaynes [8] whose
notations we follow. So, P(s | h B) reads as ‘the probability of success conditional to history h
and the assumptions of the Beta model B.’
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used a ‘decay’ principle to favour recent events over information about older ones. The
decay principle can be implemented in many different ways, e.g., by a using a finite
‘buffer’ to remember only the most recent n events, or linear and exponential decay
functions, which scale according the parameters α and β of the beta pdf associated with
a principal. This paper will focus on exponential decay.

Whilst decay-based techniques have proved useful in some applications, to our
knowledge, there is as yet no formal understanding of which applications may ben-
efit from them. Indeed, the lack of foundational understanding and theoretical justi-
fication leaves application developers alone when confronting the vexing question of
which technique to deploy in their applications. In the recent past, two of the present
authors in joint work with Mogens Nielsen have proposed that rather than attempting
to lift too simplistic assumptions (viz., the Beta model) with apparently effective, yet
ad-hoc solutions (viz., decay), one should develop models sufficiently sophisticated to
encompass all the required advanced features (e.g., dynamic principal behaviours), and
then derive analysis and algorithms from such models. In this way, one would provide
a foundational framework suitable formulate and compare different analyses and algo-
rithms and, therefore, to underpin their deployment in real-world applications. It is our
contention that such an encompassing model is afforded by Hidden Markov Models [1]
(an enjoyable tutorial is [16]). In the present work we elect to use HMMs as a reference
model for probabilistic, stateful behaviour.

Original contribution of the paper. Aiming to address the issue of whether and when
exponential decay may be an optimal technique for reasoning about dynamic behaviour
in computational trust, we use a simple probabilistic analysis to derive some of its prop-
erties. In particular, we study the error induced on the predictive probability by using
the Beta model enhanced with exponential decay in comparison with (the so-to-say
‘ideal’) Hidden Markov Models (HMMs). Under mild conditions on principals’ be-
haviours, namely that their probabilistic state transition matrices are ergodic, we derive
an analytic formula for the error, which provides a first formal tool to assess precision
and usefulness of the decay technique. Also, we illustrate our results by deploying it
in an experimental setting to show how system stability has a dramatic impact on the
precision of the model.

Structure of the paper. We first recall the basic ideas of Bayesian analysis, beta distribu-
tions, decay and HMMs, in §2–4; §3 also proves some simple, yet interesting properties
of exponential decay. Then, §5 contains the derivation of our error formula, whilst §6
analyses exponential decay in terms of an original notion of system stability.

Dedication. This paper is dedicated to Mogens Nielsen on the occasion of his 60th
birthday, who along the years shared with me research and much more. To your sharp-
ness of mind and kindness of spirit. VS

2 Bayesian analysis and beta distributions

Bayesian analysis consists of formulating hypotheses on real-world phenomena of inter-
est, running experiments to test such hypotheses, and thereafter updating the hypotheses
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–if necessary– to provide a better explanation of the experimental results, a better fit of
the hypotheses to the observed behaviours. In terms of conditional probabilities on the
space of interest and under underlying assumptions λ, this procedure is expressed suc-
cinctly by Bayes’ Theorem:

P(Θ | h λ) ∝ P(h | Θ λ) · P(Θ | λ).

Reading from left to right, the formula is interpreted as saying: the probability of the
hypothesesΘ posterior to the outcome of experiment h is proportional to the likelihood
of such outcome under the hypotheses multiplied by the probability of the hypotheses
prior to the experiment. In the context of computational trust described in the Intro-
duction, the prior Θ will be an estimate of the probability of each potential outcome in
our next interaction with principal p, whilst the posterior will be our amended estimate
after some such interactions took place with outcome h.

In the case of binary outcomes {s, f} discussed above, Θ can be represented by a
single probability Θp, the probability that an interaction with principal p will be suc-
cessful. In this case, a sequence of n experiments h = o1 · · · on is a sequence of binomial
(Bernoulli) trials, and is modelled by a binomial distribution

P(h consists of exactly k successes) =
(

n
k

)
Θk

p(1 − Θp)n−k.

It then turns out that if the prior Θ follows a beta distribution, say

B(α, β) ∝ Θα−1
p (1 − Θp)β−1

of parameters α and β, then so does the posterior: viz., if h is an n-sequence of exactly
k successes, P(Θ | h λ) is B(α + k, β + n − k), the beta distribution of parameters
α + k and β + n − k. This is a particularly happy event when it comes to apply Bayes’
Theorem, because it makes it straightforward to compute the posterior distribution and
its expected value from the prior and the observations. In fact, the focus here is not
to compute P(Θ | h λ) for any particular value of Θ but, as Θ is the unknown in our
problem, rather to derive a symbolic knowledge of the entire distribution in order to
compute its expected value and use it as our next estimate for Θ. A relationship as the
one between binomial trials and the beta distributions is very useful in this respect;
indeed it is widely known and studied in the literature as the condition that the family
of beta distributions is a conjugate prior for the binomial trials.

The Bayesian approach has proved as successful in computational trust as in any of
its several applications (cf., e.g., [8]), yet it is fundamentally based on the assumption
that a principal p can be represented precisely enough by a single, immutable Θp. As
the latter is patently an unacceptable limitation in several real-world applications, in the
next section we will illustrate a simple idea to address it.

3 The exponential decay principle

One purpose of the exponential decay principle is to improve the responsiveness of the
Beta model to principals exhibiting dynamic behaviours. The idea is to scale by a con-
stant 0 < r < 1 the information about past behaviour, viz., #o(h) 7→ r · #o(h), each time
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a new observation is made. This yields an exponential decay of the weight of past ob-
servations, as in fact the contribution of an event n steps in the past will be scaled down
by a factor rn. Qualitatively, this means that picking a reasonably small r will make the
model respond quickly to behavioural changes. Suppose for instance that a sequence of
five positive and no negative events has occurred. The unmodified Beta model would
yield a beta pdf with parameters α = 6 and β = 1, predict the next event to be positive
with probability higher than 0.85. In contrast, choosing r = 0.5, the Beta model with
exponential decay would set α = 1 + 31/16 and β = 1. This assigns probability 0.75 to
the event that the next interaction is positive, as a reflection of the fact that some of the
weight of early positive events has significantly decayed. Suppose however that a sin-
gle negative event occurs next. Then, in the unmodified Beta model the parameters are
updated to α = 6 and β = 2, which still assign a probability 0.75 to ‘positive’ events,
reflecting the relative unresponsiveness of the model to change. On the contrary, the
model with decay assigns 63/32 to α and 2 to β, which yields a probability just above
0.5 that the next event is again negative. So despite having observed five positive events
and a negative one, the model with decay yields an approximately uniform distribution,
i.e., it considers positive and negative almost equally likely in the next interaction.

Of course, this may or may not be appropriate depending on the application and
the hypotheses made on principals behaviours. If on the one hand the specifics of the
application are such to suggest that principals do indeed behave according to a single,
immutable probability Θ, then discounting the past is clearly not the right thing to do.
If otherwise one assumes that principals may behave according to different Θs as they
switch their internal state, then exponential decay for a suitable r may make prediction
more accurate. Our assumption in this paper is precisely the latter, and our main objec-
tive is to analyse properties and qualities of the Beta model with exponential decay in
dynamic applications, by contrasting it with hidden Markov model, the ‘par excellence’
stochastic model which includes state at the outset.

We conclude this section by observing formally that with exponential decay, strong
certainty can be impossible. To this end, we study below the expression α + β, as that
is related to the width of B(α, β) and, in turn, to the variance of the distribution, and
represents in a precise sense the confidence one can put in the predictions afforded by
the pdf. Consider e.g. the case of sequences of n positive events, for increasing n ≥ 0.
For each n, the pdf obtained has parameters αn = 1 +

∑n
i=0 ri and βn = 1 + rn. Since

0 < r < 1, the sequence converges to the limit α = 1 + (1 − r)−1 and β = 1. In fact, we
can prove the following general proposition.

Proposition 1. Assume exponential decay with factor 0 < r < 1 starting from the prior
beta distribution with parameters α = 1 and β = 1. Then, for all n ≥ 0,

2 +
1

1 − r
≤ αn + βn + 2rn ≤ 4 if r ≤

1
2

4 ≤ αn + βn + 2rn ≤ 2 +
1

1 − r
if r ≥

1
2
.

Proof. The proof is a straightforward induction, which we exemplify in case r ≥ 1
2 . The

base case is obvious, as α0 + β0 = 2. Assume inductively that the proposition holds for
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n, and observe first that αn+1 + βn+1 = 2 + 1 + r(αn + βn − 2). Then

αn+1 +βn+1 +2rn+1 = 2+1+ r (αn +βn −2+2rn) ≤ 2+1+ r (2+
1

1 − r
−2) = 2+

1
1 − r

.

Similarly, as r · (αn + βn + 2rn − 2) ≥ r · 2 ≥ 1, it follows that αn+1 + βn+1 + 2rn+1 ≥ 4,
which ends the proof. �

Proposition 1 gives a bound on αn+βn as a function on r, which in fact is a bound on
the Bayesian inference via beta function. For instance, it means that a principal using
exponential decay with r = 1/2 can never achieve higher confidence in the derived
pdf than they initially had in the uniform distribution. In order to assess the speed of
convergence of α and β, let us define Dn =

∣∣∣αn + βn + 2rn − 2 − 1
1−r

∣∣∣. We then have the
following.

Proposition 2. Assume exponential decay with factor 0 < r < 1 starting from the prior
beta distribution with parameters α = 1 and β = 1. For every n ≥ 0, we have

Dn+1 = r · Dn

Proof. Let n ≥ 0. Then

Dn+1 =

∣∣∣∣∣ 2 + 1 + r (αn + βn − 2) + 2rn+1 − 2 −
1

1 − r

∣∣∣∣∣ =

= r ·
∣∣∣∣∣ αn + βn + 2rn − 2 −

1
1 − r

∣∣∣∣∣ = r · Dn �

One may of course argue that the choice of r is the key to bypass issues like these. In
any case, the current literature provides no underpinning for assessing what a sensible
value for r should be. Buchegger et al. [4] suggest that r = 1 − 1/m, where m is “. . . is
the order of magnitude of the number of observations over which we believe it makes
sense to assume stationary behavior;” however, no techniques are indicated to estimate
such a number. Similarly, Jøsang and Ismail [10] present simulations with r = 0.9 and
r = 0.7. Interestingly, even at r = 0.9, the sum αn + βn is uniformly bound by ten; this
means that the model yields at best a degree of certainty in its estimates comparable
to that obtained with the unmodified Beta model after only eight observations. Again,
whether or not this is the appropriate behaviour for a model depends entirely on the
application at hand.

4 Hidden Markov Models

In order to assess merits and problmes of the exponential decay model, and in which
scenario it may or may not be considered suitable, we clearly need a probabilistic model
which captures the notion of dynamic behaviour primitively, to function so-to-say as an
unconstraining testbed for comparisons.

In ongoing joint work with Mogens Nielsen, we are investigating Hidden Markov
Models (HMM) as a general model for stateful computational trust [12, 14, 17]. These
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are a well-established probabilistic model essentially based on a notion of system state.
Indeed, underlying each HMM there is a Markov chain modelling (probabilistically)
the system’s state transitions. HMMs provide the computational trust community with
several obvious advantages: they are widely used in scientific applications, and come
equipped with efficient algorithms for computing the probabilities of events and for
parameter estimation (cf. [16]), the chief problem for probabilistic trust management.

Definition 1 (hidden markov model). A (discrete) hidden Markov model (HMM) is a
tuple λ = (Q, π, A,O, s) where Q is a finite set of states; π is a distribution on Q, the
initial distribution; A : Q×Q→ [0, 1] is the transition matrix, with

∑
j∈Q Ai j = 1; finite

set O is the set of possible observations; and where s : Q × O → [0, 1], the signal,
assigns to each state j ∈ Q, a distribution s j on observations, i.e.,

∑
o∈O s j(o) = 1.

1

0.01

++ 2
0.25

kk

π1 = 1
s(1, s) = 0.95
s(1, f) = 0.05

O = {s, f}
π2 = 0
s(2, s) = 0.05
s(2, f) = 0.95

Fig. 1. Example Hidden Markov Model.

It is worth noticing how natural a generalisation the models illustrated in the preced-
ing sections HMMs provide. Indeed, in the context of computational trust, representing
a principal p by a HMM λp affords us a different distribution s j on O for each possible
state j of p. In particular, one could think of the states of λp as a collection of inde-
pendent Beta models, the transitions between which are governed by the Markov chain
formed by π and A, as principal p switches its internal state. The outcome of interac-
tions with p, given a (possibly empty) past history h = o1o2 · · · ok−1, is then modelled
according to HMMs rules, for o ∈ O:

P(o | h λp) =
∑

q1,...,qk∈Q

π(q1) · sq1 (o1) · Aq1q2 · sq2 (o2) · · · Aqk−1qk · sqk (o)

This makes the intention quite explicit that in HMMs, principals’ states are ‘hidden’
from the observer: we can only observe the result of interacting with p, not its state, and
the probability of outcomes is always computed in the ignorance of the path through Q
the system actually traced.

Example 1. Figure 1 shows a two-state HMM over our usual set of possible observa-
tions {s, f}. State 1 is relatively stable, i.e., there is only 0.01 probability mass attached
to the transition 1 7→ 2. Also, in state 1 the output s is much more likely than f. In con-
trast, state 2 is not nearly as stable and it signals f with probability 0.95. So, intuitively,
the likely observation sequences from this HMM are long sequences consisting mostly
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of s, followed by somewhat shorter sequences of mostly f; this pattern is likely to repeat
itself indefinitely. �

We conclude this section by recalling some fundamental properties of finite Markov
chains which we shall be using in the rest of the paper to analyse HMMs. For a fuller
treatment of these notions the reader is referred to, e.g., [6, 15, 3]. On the contrary, the
reader not interested in the details can safely jump to the next section.

The key property we rely on is the irreducibility of the discrete Markov chain
(DMC) underlying a HMM λ. Intuitively, a DMC is irreducible if at any time, from
each state i, there is a positive probability to eventually reach each state j. Denoting
by Am

i j the (i, j)-entry of the mth power of matrix A, we can then express the condition
formally as follows.

Definition 2 (irreducibility). For A a DMC, we say that state i reaches state j, written
i 7→ j, whenever Am

i j > 0, for some m, and that A is irreducible if i 7→ j, for all i and j.

A state i of a DMC can be classified as either recurrent or transient, according to
whether or not starting from i one is guaranteed to eventually return to i. Recurrent states
can be positive or null recurrent, according to whether or not they have an ‘average
return time.’ In the following, we shall write qk = i to indicate that i is the kth state
visited by a DMC in a given run q0q1q2 · · · .

Definition 3 (classification of states). For A a DMC and i a state, we say that i is:

recurrent if P( qk = i, for some q0 · · · qk | q0 = i ) = 1;
transient otherwise.

It can be proved that j is recurrent if and only if
∑∞

m Am
j j = ∞, and this characterisa-

tion has important corollaries. Firstly, it follows easily that
∑∞

m Am
i j = ∞, for all i such

that i 7→ j. Thus, if i 7→ j and j 7→ i, then i and j are either both transient or both re-
current. It is then an immediate observation that in an irreducible chain either all states
are transient, or they all are recurrent. We can also conclude that if j is transient, then
Am

i j → 0 as m → ∞, for all i. From this last observation it follows easily that if A is fi-
nite, as it is in our case, then at least one state must be recurrent and, therefore, all states
must be recurrent if A is also irreducible. In fact, if all states were transient, we would
have that limn→∞

∑
j∈Q Am

i j = 0, which is incompatible with the fact that
∑

j∈Q Am
i j = 1

for each m, since each Am is a stochastic matrix.

Let us define Ti as the random variable yielding the time of first visit to state i,
namely min{ k ≥ 1 | qk = i }. Exploiting the independence property of DMC (homo-
geneity), we can define the average return time of state i as

µi = E[ Ti | q0 = i ].

Definition 4 (classification of recurrent states). For A a DMC and i a recurrent state,
we say that i is:

null if µi = ∞;
positive if µi < ∞.
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Similarly to above, one can prove that a recurrent state is null if and only if Am
i j → 0

as m → ∞. Then, for the same reasons as above, one concludes that a finite DMC has
no null recurrent states. Moreoever, if A is finite and irreducible, then all its states are
positive recurrent, which leads us to state the following fundamental theorem.

Definition 5 (stationary distribution). A vector π = (π j | j ∈ Q) is a stationary
distribution on Q if

π j ≥ 0 for all j, and
∑

j∈Q π j = 1;

π A = π.

So a stationary distribution characterises the limiting behaviour of a chain beyond
the typical fluctuations of stochastic behaviours by the existence of an initial distribution
which remains invariant in time for the DMC. In an irreducible chain, the average time
to return determines such invariant.

Theorem 1 (existence of stationary distribution). An irreducible Markov chain has
a stationary distribution π if and only if all its states are positive recurrent. In this case,
π is the unique stationary distribution and is given by πi = µ

−1
i .

The existence of a stationary distribution goes a long way to describe the asymptotic
behaviour of a DMC yet, as it turns out, it is not sufficient. Indeed, if one wants to
guarantee convergence to the stationary distribution regardless of λ’s initial distribution,
one needs to add the condition of aperiodicity.

Definition 6 (aperiodicity). For A a DMC, the period of i is d(i) = gcd{m | Am
ii > 0 }.

State i is aperiodic if d(i) = 1; and A is aperiodic if all its states are such.

Theorem 2 (convergence to stationary distribution). For A an irreducible aperiodic
Markov chain, limm→∞ Am

i j = µ
−1
j , for all i and j.

Observe that as P(qm = j) =
∑

i P(q0 = i) · Am
i j, it follows that P(qm = j ) → µ−1

j
when m→ ∞, regardless of the initial distribution.

In the rest of this paper we shall assume each HMM to have an irreducible and
aperiodic underlying A, so as to be able to rely on Theorems 1 and 2. As A is indeed
positive recurrent (because finite), this is the same as requiring that A is ergodic.

5 Estimation error of Beta model with a decay scheme

This section presents a comparative analysis of the Beta model with exponential decay.
More precisely, we set out to derive an analytic expression for the error incurred by
approximating a principal exhibiting dynamic behaviour by the Beta model enhanced
with a decay scheme. As explained before, for the sake of this comparison we select
HMMs as a ‘state-based’ probabilistic model sufficiently precise to be confused with
the principal under analysis; therefore fix a generic HMM λ which we refer to as the
real model. Following the results from the theory of Markov chains recalled in §4, we
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shall work under the hypothesis that λ is ergodic. This corresponds to demanding that
all the states of λ remain ‘live’ (i.e., probabilistically possible) at all times, and does
seem as a standard and reasonably mild condition. It then follows by general reasons
that λ admits a stationary probability distribution over its states Qλ (cf. Theorem 1); we
denote it by the row vector

Πλ =
[
π1 π2 . . . πn

]
,

where πq denotes the stationary probability of the state q. If Aλ is the stochastic state
transition matrix representing the Markov chain underlying λ, vector Πλ satisfies the
stationary equation

Πλ = ΠλAλ. (1)

As we are only interested λ’s steady-state behaviour, and as the state distribution of
the process is guaranteed to converge to Πλ after a transient period (cf. Theorem 2),
without loss of generality in the following we shall assume that Πλ is indeed λ’s initial
distribution. Observe too that as λ is finite and irreducible, all components of Πλ are
strictly positive and can be computed easily from matrix Aλ.

For simplicity, we maintain here the restriction to binary outcomes (s or f), yet our
derivation of the estimation error can be generalised to multiple outcomes cases (e.g.,
replacing beta with Dirichlet pdfs, cf. [14]).

It is worth noticing that HMMs can themselves be used to support Bayesian analysis
and/or supplant the Beta model, as indicated, e.g., in [17]. That is however a matter for
another paper and another line of work. We remark again that our focus here remains
the analysis of the decay principle, in which HMMs’ sole role is to provide us with a
suitable model for principals and a meaningful testbed for comparisons.

Beta model with a decay factor

We consider observation sequences h` = o0o1 · · · o`−1 of arbitrary length `, where o0
and o`−1 are respectively the least and the most recent observed outcomes. Then, for r
a decay factor (0 < r < 1), the beta estimate for the probability distribution on the next
outcomes { s, f } is given by (Br(s | h`), Br(f | h`)), where

Br(s | h`) =
mr(h`) + 1

mr(h`) + nr(h`) + 2

Br(f | h`) =
nr(h`) + 1

mr(h`) + nr(h`) + 2

(2)

and

mr(h`) =
`−1∑
i=0

riδ`−i−1(s) nr(h`) =
`−1∑
i=0

riδ`−i−1(f) (3)

for

δi(X) =
{

1 if oi = X
0 otherwise (4)
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Under these conditions, from Equations (3) and (4), the sum mr(h`) + nr(h`) forms a
geometric series, and therefore

mr(h`) + nr(h`) =
1 − r`

1 − r
(5)

The error function

We call the real probability that the next outcome will be s the real predictive prob-
ability, and denote it by σ. In contrast, we call the estimated probability that the next
outcome will be s the estimated predictive probability. We define the estimation error
as the expected squared difference between the real and estimated predictive probabil-
ities. Observe that whilst the real predictive probability σ depends on λ, the chosen
representation of principal’s behaviour, and its current state, the estimated predictive
probability Br(s | h`) depends on the interaction history h` and the decay parameter r.
Here we derive an expression for the estimation error parametric in ` as a step towards
computing its limit for ` → ∞, and thus obtain the required formula for the asymptotic
estimation error. Here we start by expressing the estimation error as a function of the
behaviour model λ and the decay r. Formally,

Error`(λ, r) = E
[
(Br(s | h`) − σ)2

]
(6)

Using the definition in (2) for Br(s | h`), and writing a = mr(h`)+ nr(h`)+ 2 for brevity,
we rewrite the error function as:

Error`(λ, r) = E
(mr(h`) + 1

a
− σ

)2 =
E

[
1
a2

(
mr(h`)2 + 2mr(h`) + 1

)
−

2σ
a

(1 + mr(h`)) + σ2
] (7)

Using (5), we obtain

a =
3 − 2r − r`

1 − r
(8)

Observe now that a depends on the decay parameter r and the sequence length `. Using
the linearity property of expectation, we can rewrite Equation (7) as:

Error`(λ, r) =
1
a2 E

[
mr(h`)2

]
+

2
a2 E

[
mr(h`)

]
+

1
a2

−
2
a

E [σ] −
2
a

E
[
σmr(h`)

]
+ E

[
σ2

] (9)

In order to express the above error in terms of the real model λ and the decay r, we
need to express E

[
mr(h`)2], E

[
mr(h`)

]
, E

[
σmr(h`)

]
, E

[
σ
]
, and E

[
σ2] in terms of the

parameters of the real model λ and r. We start with evaluating E
[
mr(h`)

]
.
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Using the definition of mr(h`) given by (3) and the linearity of the expectation oper-
ator, we have

E [mr(h`)] =
`−1∑
i=0

ri · E [δ`−i−1(s)] (10)

Then, by Equation (4), we find that

E [δ`−i−1(s)] = P (δ`−i−1(s) = 1) (11)

Denoting the system state at the time of observing oi by νi we have

P (δ`−i−1(s) = 1) =
∑
x∈Qλ

P
(
ν`−i−1 = x, δ`−i−1(s) = 1

)
=

∑
x∈Qλ

P (ν`−i−1 = x) P
(
δ`−i−1(s) = 1 | ν`−i−1 = x

)
(12)

where Qλ is the set of states in the real model λ.
We define the state success probabilities vector, Θλ, as the column vector

Θλ =


θ1
θ2
...
θn

 (13)

where θq is the probability of observing s given the system is in state q. Notice that
these probabilities are given together with λ, viz., sq(s) from Definition 1. As we focus
on steady state behaviours, exploiting the properties of the stationary distribution Πλ,
we can rewrite Equation (12) as the scalar product of Πλ and Θλ:

P (δ`−i−1(s) = 1) =
∑
x∈Qλ

πxθx = ΠλΘλ (14)

Substituting in Equation (11), we get

E
[
δ`−i−1(s)

]
= ΠλΘλ (15)

and substituting in (10) we get

E
[
mr(h`)

]
=

`−1∑
i=0

ri · ΠλΘλ (16)

Since ΠλΘλ is independent of r, we use the geometric series summation rule to evaluate
the sum in the above equation, and obtain:

E
[
mr(h`)

]
=

(
1 − r`

1 − r

)
ΠλΘλ (17)
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Isolating the dependency on `, we write the above equation as follows

E
[
mr(h`)

]
=
ΠλΘλ
1 − r

+ ε1(`) (18)

where

ε1(`) = −r`
ΠλΘλ
1 − r

(19)

We now move on to simplify E
[
mr(h`)2], the next term in Error(λ, r). By the defini-

tion of mr(h`) in Equation (3), and using the linearity of expectation, we have

E
[
mr(h`)2

]
= E


 `−1∑

i=0

riδ`−i−1(s)


2

= E

 `−1∑
i1=0

`−1∑
i2=0

ri1+i2 δ`−i1−1(s) δ`−i2−1(s)


=

`−1∑
i1=0

`−1∑
i2=0

ri1+i2 · E
[
δ`−i1−1(s) δ`−i2−1(s)

]
(20)

In fact, from the definition of δi(s) given by (4) above, it is obvious that

E
[
δ`−i1−1(s) δ`−i2−1(s)

]
= P

(
δ`−i1−1(s) = 1, δ`−i2−1(s) = 1

)
Substituting in Equation (20) we get

E
[
mr(h`)2

]
=

`−1∑
i1=0

`−1∑
i2=0

ri1+i2 P
(
δ`−i1−1(s) = 1, δ`−i2−1(s) = 1

)
=

`−1∑
i=0

r2iP
(
δ`−i−1(s) = 1

)
+ 2

`−2∑
i1=0

`−1∑
i2=i1+1

ri1+i2 P
(
δ`−i1−1(s) = 1, δ`−i2−1(s) = 1

)
=

`−1∑
i=0

r2iP
(
δ`−i−1(s) = 1

)
+ 2

`−2∑
i=0

`−1−i∑
k=1

r2i+kP
(
δ`−i−1(s) = 1, δ`−(i+k)−1(s) = 1

)
=

`−1∑
i=0

r2iP (δ`−i−1(s) = 1) + 2
`−2∑
i=0

r2i
`−1−i∑
k=1

rkP
(
δ`−i−1(s) = 1, δ`−i−1−k(s) = 1

)
(21)

We use the notation ı̂ = ` − i − 1, and write the above equation as follows,

E
[
mr(h`)2

]
=

`−1∑
i=0

r2iP (δı̂(s) = 1) + 2
`−2∑
i=0

r2i
`−1−i∑
k=1

rkP
(
δı̂(s) = 1, δı̂−k(s) = 1

)
(22)
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Note now that P (δı̂(s) = 1, δı̂−k(s) = 1) is the joint probability of observing s at times ı̂
and ı̂ − k. This probability can be expressed as

P
(
δı̂(s) = 1, δı̂−k(s) = 1

)
=

∑
x∈Qλ

∑
y∈Qλ

P
(
νı̂ = x, δı̂(s) = 1, νı̂−k = y, δı̂−k(s) = 1

)
=

∑
x∈Qλ

P
(
νı̂ = x

)
P (δı̂(s) = 1 | νı̂ = x) · (23)

·
∑
y∈Qλ

P
(
νı̂−k = y | νı̂ = x

)
P
(
δı̂−k(s) = 1 | νı̂−k = y

)
.

We can rewrite (23) in terms of the state stationary probabilities vector Πλ and the state
success probabilities vector Θλ, given by Equations (1) and (13), respectively.

P
(
δı̂(s) = 1, δı̂−k(s) = 1

)
=

∑
x∈Qλ

πxθx

∑
y∈Qλ

P
(
νı̂−k = y | νı̂ = x

)
θy (24)

We can simplify this further by making use of the time reversal model of λ (cf. [3, 15]
which, informally speaking, represents the same model λ when time runs ‘backwards.’
If λ’s state transition probability matrix is Aλ = ( Ai j | i, j = 1, . . . , n) then λ’s reverse
state transition probability matrix is:

A′λ =


A′11 A′12 . . . . . .

A′21
. . . . . . . . .

... . . . A′xy

...

. . . . . . . . . A′nn

 (25)

where A′xy is the probability that the previous state is y given that current state is x.
Clearly, A′λ is derived from Aλ by the identity:

A′xy =
πy

πx
Ayx (26)

which exist as by the irreducibility of λ all πx are strictly positive. It is easy to prove
that A′λ is a stochastic matrix, and is irreducible when Aλ is such. Now, observing that
P (νı̂−k = y | νı̂ = x) is the probability that the kth previous state is y given that the cur-
rent state is x, we can rewrite (24) in terms of Πλ, Θλ and A′λ:

P (δı̂(s) = 1, δı̂−k(s) = 1) =
(
Πλ × Θλ

T
)

A′λ
k Θλ (27)

where we use symbol × to denote the ‘entry-wise’ product of matrices. Let us now
return to Equation (22) and replace P

(
δı̂(s) = 1

)
and P (δı̂(s) = 1, δı̂−k(s) = 1) in it

using expressions (14) and (27), respectively.

E
[
mr(h`)2

]
=

`−1∑
i=0

r2iΠλΘλ + 2
`−2∑
i=0

r2i
`−i−1∑
k=1

(
Πλ × Θ

T
λ

) (
rA′λ

)k Θλ (28)
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Using the summation rule for geometric series, Equation (28) can be simplified to the
following expression.

E
[
mr(h`)2] = (

1 − r2`

1 − r2

)
ΠλΘλ+

2
`−2∑
i=0

r2i
(
Πλ × Θ

T
λ

) (
rA′λ − (rA′λ)

`−i
) (

I − rA′λ
)−1Θλ (29)

where I is the identity matrix of size n. Applying the geometric series rule again, the
above equation can be rewritten as,

E
[
mr(h`)2] = (

1 − r2`

1 − r2

)
ΠλΘλ + 2r

(
1 − r2`−2

1 − r2

) (
Πλ × Θ

T
λ

)
A′λ

(
I − rA′λ

)−1Θλ

− 2r`
`−2∑
i=0

ri
(
Πλ × Θ

T
λ

)
(A′λ
`−i)(I − rA′λ)

−1Θλ (30)

Isolating the terms which depend on `, we write the above equation as follows

E
[
mr(h`)2] = ΠλΘλ

1 − r2 +
2r

1 − r2

(
Πλ × Θ

T
λ

)
A′λ

(
I − rA′λ

)−1 Θλ + ε2(`) (31)

where

ε2(`) =
(
−r2`

1 − r2

)
ΠλΘλ + 2

(
−r2`−1

1 − r2

) (
Πλ × Θ

T
λ

) (
A′λ

) (
I − rA′λ

)−1 Θλ

− 2r`
`−2∑
i=0

ri
(
Πλ × Θ

T
λ

) (
A′λ
`−i

) (
I − rA′λ

)−1Θλ (32)

Notice that in the formulation above we use an inverse matrix, whose existence we
prove by the following lemma.

Lemma 1. For A a stochastic matrix and 0 < r < 1, matrix (I − rA) is invertible.

Proof. We prove equivalently that

Det
(
I − rA

)
, 0 (33)

By multiplying (33) by the scalar −r−1, we reduce it to the equivalent condition

−
1
r
· Det

(
I − rA

)
= Det

(
A −

1
r

I
)
, 0

Observe that Det
(
A−r−1I

)
is the characteristic polynomial of A evaluated on r−1, which

is zero if and only if r−1 is an eigenvalue of A. Since A has no negative entry, it follows
from the Perron-Frobenius Theorem (cf., e.g., [7]) that all its eigenvalues u are such that

| u | ≤ max
i

n∑
k=1

Aik

As A is stochastic and r−1 > 1, this concludes our proof. �
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We remark that the argument above can easily be adapted to prove that if A a
stochastic matrix, the the matrix (I − A) is not invertible.

We now turn our attention to E [σmr(h`)], with σ the probability that the next out-
come is s. As σ depends on the current state ν`−1, expectation E

[
σmr(h`)

]
can be ex-

pressed as
E [σmr(h`)] = E [R(x)] (34)

with R(x) defined for x ∈ Qλ by

R(x) = E [σmr(h`) | ν`−1 = x] . (35)

In other words, R(x) is the conditional expected value of σmr(h`) given that the current
state is x.

We define the state predictive success probabilities vector Φλ as the following col-
umn vector.

Φλ =


φ1
φ2
...
φn

 (36)

where φx is the probability that the next outcome after a state transition is s, given that
the current state is x. The entries of Φλ can be computed by

φx =
∑
y∈Qλ

Axyθy,

and therefore
Φλ = AλΘλ (37)

Using the above, we can rewrite Equation (35) as

R(x) = E
[
φxmr(h`)

∣∣∣ ν`−1 = x
]

(38)

for x ∈ Qλ. Substituting mr(h`) with its definition in (3), we obtain

R(x) = E
[
φx

`−1∑
i=0

riδ`−i−1(s)
∣∣∣∣ ν`−1 = x

]
= φxE

[ `−1∑
i=0

riδ`−i−1(s)
∣∣∣∣ ν`−1 = x

]
(39)

Using the linearity of expectation, we then get

R(x) = φx

`−1∑
i=0

riE
[
δ`−i−1(s)

∣∣∣ ν`−1 = x
]

(40)

Since the possible values of δ`−i−1(s) are only 0 and 1, we have

E
[
δ`−i−1(s)

∣∣∣ ν`−1 = x
]
= P

(
δ`−i−1(s) = 1

∣∣∣ ν`−1 = x
)
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Thus Equation (40) can be written as

R(x) = φx

`−1∑
i=0

riP
(
δ`−i−1(s) = 1

∣∣∣ ν`−1 = x
)

= φx

`−1∑
i=0

ri
∑
y∈Qλ

P
(
ν`−i−1 = y

∣∣∣ ν`−1 = x
)

P
(
δ`−i−1(s) = 1

∣∣∣ ν`−i−1 = y
)

= φx

`−1∑
i=0

ri
∑
y∈Qλ

P
(
ν`−i−1 = y

∣∣∣∣ ν`−1 = x
)
θy (41)

We now return to Equation (34) which expresses E
[
σmr(h`)

]
and, making use again

of the stationary distribution, substitute the expression above for R(x).

E
[
σmr(h`)

]
=

∑
x∈Qλ

P (ν`−1 = x) R(x) =
∑
x∈Qλ

πxR(x)

=
∑
x∈Qλ

πxφx

`−1∑
i=0

ri
∑
y∈Qλ

P (ν`−i−1 = y | ν`−1 = x) θy (42)

Exchanging the summations in the above equation, we get,

E
[
σmr(h`)

]
=

`−1∑
i=0

ri
∑
x∈Qλ

πxφx

∑
y∈Qλ

P (ν`−i−1 = y | ν`−1 = x) θy (43)

Comparing the above with Equations (24) and (27), we similarly obtain

E
[
σmr(h`)

]
=

`−1∑
i=0

ri
(
Πλ ×Φ

T
λ

)
A′λ

i Θλ

=
(
Πλ ×Φ

T
λ

) ( `−1∑
i=0

(rA′λ)
i
)
Θλ (44)

As before, by Lemma 1, we can simplify the above formula as

E
[
σmr(h`)

]
=

(
Πλ ×Φ

T
λ

) (
I − (rA′λ)

`
) (

I − rA′λ
)−1
Θλ (45)

Isolating the term which depends on `, we rewrite the above equation as follows

E
[
σmr(h`)

]
=

(
Πλ ×Φ

T
λ

) (
I − rA′λ

)−1
Θλ + ε3(`) (46)

where
ε3(`) = −r`

(
Πλ ×Φ

T
λ

)
(A′λ)

`(I − rA′λ
)−1
Θλ (47)

Let us now consider E [σ]

E [σ] =
∑
x∈Qλ

P (ν`−1 = x) φx =
∑
x∈Qλ

πxφx = ΠλΦλ
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Substituting Φ in the above equation by its definition in (37), we get

E [σ] = ΠλAλΘλ, (48)

Using the eigenvector property of Πλ in Equation (1) we obtain

E [σ] = ΠλΘλ (49)

Finally, let us evaluate E
[
σ2].

E
[
σ2] = ∑

x∈Qλ

P
(
ν`−1 = x

)
φx

2 =
∑
x∈Qλ

πxφx
2 = Πλ (Φλ ×Φλ) (50)

We can now in the end return to the error formula (9) and substitute the expressions
we have so derived for its various components, viz., Equations (31), (18), (46), (49) and
(50). We therefore obtain the following formula for the Beta estimation error.

Error` (λ, r) =
1
a2

(
ΠλΘλ

1 − r2 +
2r

1 − r2

(
Πλ × Θ

T
λ

)
A′λ

(
I − rA′λ

)−1 Θλ

)
+

2
a2

(
ΠλΘλ
1 − r

)
−

2
a

(
Πλ ×Φ

T
λ

) (
I − rA′λ

)−1 Θλ

−
2
a
ΠλΘλ + Πλ (Φλ ×Φλ) +

1
a2

+
2
a2 ε1(`) +

1
a2 ε2(`) −

2
a
ε3(`)

(51)

where ε1(`), ε2(`), and ε3(`) are given by equations (19), (32), and (47) respectively.
Also a is given by (8). Now, as we are interested in the asymptotic error, we evaluate
the limit of the above error when ` → ∞.

Error (λ, r) = lim
`→∞

Error` (λ, r) (52)

Since r < 1, it is obvious that

lim
`→∞
ε1(`) = lim

`→∞
ε2(`) = lim

`→∞
ε3(`) = 0

and
lim
`→∞

a =
3 − 2r
1 − r

Therefore, and using a few algebraic manipulations we get our final asymptotic error
formula for the beta model with exponential decay.

Error (λ, r) =
(1 − r)

(
4r2 − 3

)
(1 + r) (3 − 2r)2ΠλΘλ +

(
1 − r

3 − 2r

)2

+
2 (1 − r) r

(3 − 2r)2 (1 + r)

(
Πλ × Θ

T
λ

)
A′λ

(
I − rA′λ

)−1 Θλ

− 2
(

1 − r
3 − 2r

) (
Πλ ×Φ

T
λ

) (
I − rA′λ

)−1Θλ + Πλ (Φλ ×Φλ)

(53)
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6 System stability

The stability of a system is, informally speaking, its tendency to remain in the same
state. In this section we describe the effect of system stability on beta estimation error
derived in §5. In particular, we show that if a system is very stable, then the Beta es-
timation error tends to 0 as the decay r tends to 1; as the limit of the decay model for
r → 1 is indeed the unmodified Beta model, this means that when systems are very
stable, the unmodified Beta model achieves better prediction than any decay model.

We introduce the notion of state stability which we define as the probability of
transition to the same state. Formally, given a HMM λ with set of states Qλ, the stability
of a state x ∈ Qλ is defined as

Stability (x) = P (qt+1 = x | qt = x) = Axx

Building on that, we define the system stability of λ at time t, as

Stabilityt (λ) = P (qt+1 = qt) ,

that is the probability that the system remains at time t+1 in the same state where it has
been at time t. System stability can therefore be expressed as

Stabilityt (λ) =
∑
x∈Qλ

P (qt = x) Axx (54)

Note that the system stability depends on the diagonal elements of the transition ma-
trix Aλ. It also depends on the probability distribution over system states at the time t.
Assuming as before that the system is ergodic (cf. Definitions 2 and 6), when t tends to
∞ the probability distribution over the system states converges to the stationary proba-
bility distribution Πλ. We call the system stability when t → ∞ the asymptotic system
stability, and denote it by Stability∞(λ).

Stability∞ (λ) =
∑
x∈Qλ

πxAxx (55)

As the stationary probability distribution Πλ over states depends on the state tran-
sition matrix Aλ — see Equation (1) — the asymptotic system stability of λ is thus
determined by the transition matrix Aλ.

Regarding the analysis of the effect of the system stability on the estimation, obvi-
ously the error formula (53) is too complex to allow an analytical study of its curve.
However, given a particular system model with a specific stability, the beta estimation
error can be evaluated for different values of the decay factor r, which allows us to build
sound intuitions about the impact of stability on the beta estimation mechanism.



20 Ehab ElSalamouny, Karl Tikjøb Krukow, and Vladimiro Sassone

Consider the model λ with the stability s where,

Aλ =



s 1 − s
3

1 − s
3

1 − s
3

1 − s
3

s 1 − s
3

1 − s
3

1 − s
3

1 − s
3

s 1 − s
3

1 − s
3

1 − s
3

1 − s
3

s


(56)

Given the above transition matrix, it can be easily verified that

Πλ =
[ 1

4
1
4

1
4

1
4
]

(57)

Let the success probabilities vector Θλ be defined by

Θλ =


1.0
0.7
0.3
0.0

 (58)

Figure 2 shows Beta estimation error when the system λ is unstable (s < 0.5). It
is obvious that the minimum error value is obtained when the decay r tends to 1. The
reason for this is that an unstable system is relatively unlikely to stay in the same state,
and therefore unlikely to preserve the previous distribution over observations. If the
estimation uses low values for the decay, then the resulting estimate for the predictive
probability distribution is close to the previous distribution; this is unlikely to be the
same as in the next time instant, due to instability. On the other hand, using a decay r
tending to 1 favours equally all previous observations, and according to the following
lemma the resulting probability distribution is expected to be the average of the distri-
butions exhibited by the model states. Such an average provides a better estimate for
the predictive probability distribution than approximating the distribution of the most
recent set of states using low decay values.

Lemma 2. Given unbounded sequences generated by a HMM λ, the expected value of
beta estimate for the predictive probability as decay r → 1 is given by ΠλΘλ, where Πλ
and Θλ are the stationary probability distribution and success probabilities vectors of
λ, respectively.

Proof. The expected value for beta estimate with decay r < 1 is given by,

E [Br(s | h`)] = E
[

mr(h`) + 1
mr(h`) + nr(h`) + 2

]
(59)

using Equation (5), the equation above can be rewritten as

E
[
Br(s | h`)

]
=

(
1 − r

3 − 2r − r`

) (
E[mr(h`)] + 1

)
. (60)
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Fig. 2. Beta estimation error versus decay factor given stability < 0.5

Substituting E [mr(h`)] using Equation (18), and taking the limit when ` → ∞, we get

lim
`→∞

E
[
Br(s | h`)

]
=
ΠλΘλ + 1 − r

3 − 2r
, (61)

which converges to ΠλΘλ when r → 1.

It is worth noticing that when s = 1/|Qλ|, the minimum expected beta error is 0,
when r → 1. In this case all elements of Aλ are equal and therefore the predictive
probability of success is

∑
x∈Qλ θx/|Qλ|, regardless of the current state. In other words,

the whole behaviour can effectively be modelled by a single probability distribution
over observations. The best approximation for this probability distribution is achieved
by considering the entire history using decay r → 1, because in this way the expected
beta estimate converges to the correct predictive distribution according to Lemma 2.

Systems which are relatively stable (i.e., with s > 0.5) are more likely to stay in
the same state rather than transitioning to a new state. In such case, approximating the
probability distribution of a state by observing systems interactions provides a good
estimate for the predictive probability distribution. However, the quality of the approxi-
mation depends heavily on the choice of an optimum value for decay. If the decay is too
small, the sequence of observation considered in the computation will prove too short
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Fig. 3. Beta estimation error versus decay factor given stability > 0.5

to reflect the correct distribution precisely. If otherwise the decay is too large (i.e., too
close to 1), then the resulting estimate approaches the average probability distribution
as described above. Figure 3 above shows the beta estimation error when the system λ
is relatively stable.

Figure 4 shows the beta estimation error for very stable systems, i.e., systems with
s > 0.9. In such case, observe that the estimation error is very sensitive to the choice of
the decay value. In fact, regarded as a function of s and r, the error formula is patho-
logical around point (1, 1). Observe that the formula is undefined for r = 1, because in
such a case all matrices (I − rA′) are singular. Worse than that, there is no limit as s
and r tend to 1, as the limiting value depends on the relative speed of s and r. This is
illustrated in Figure 5, which plots Error (λ, r) over the open unit square for our running
four-state model. A simple inspection of (53), with the support of Lemma 1, shows that
Error is continuous and well behaved on its domain, as illustrated by the top-left plot.
Yes, the cusp near (1, 1) –which is also noticeable in graphs of Figure 4– reflects its
erratic behaviour in that neighborhood. The remaining three graphs of Figure 5 show
that the error function for s 7→ 1 and r 7→ 1 tends to different values along different
lines, and therefore prove that it admits no limit at (1, 1). However, if stability is actu-
ally 1, the minimum estimation error tends to 0, and the optimum decay value (which
correspond to the minimum estimation error) tends to 1. The following Lemma proves
this observation formally.
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Fig. 4. Beta estimation error versus decay factor given stability > 0.9

Lemma 3. Let λ be a HMM. If Stability∞ (λ) = 1, then the asymptotic beta estimation
error tends to 0 when the decay r tends to 1.

Proof. The asymptotic stability of a given system λ tends to 1 (i.e., a perfectly stable
system) if and only if all the diagonal elements of Aλ tend to 1; this means that Aλ
tends to the identity matrix I. As the latter is not irreducible, we first need to prove
that the error formula (53) remains valid for s = 1. In fact, irreducibility plays its role
in our assumption that the initial state distribution Πλ is stable, which is obviously
true in the case of I. All the steps in the derivation can then be repeated verbatim,
with the exception of (26), which is undefined. Yet, it can easily be verified that I′λ
exists and is the identity matrix. We can therefore evaluate the beta estimation error
in this case by replacing A′λ by the identity matrix I in (53), while remembering that
(I − rI)−1 = I(1 − r)−1 and Φλ = IΘλ = Θλ. We get,

Error (λ, r) =
(1 − r)

(
4r2 − 3

)
(1 + r) (3 − 2r)2ΠλΘλ +

(
1 − r
3 − 2r

)2

+
2 (1 − r) r

(3 − 2r)2 (1 + r)

(
Πλ × Θ

T
λ

) 1
1 − r

Θλ

− 2
(

1 − r
3 − 2r

) (
Πλ × Θ

T
λ

) 1
1 − r

Θλ + Πλ (Θλ × Θλ)

(62)
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The error as a function of s and r The error along the line 4s = r + 3

The error along the line 2s = r + 1 The error along the line 4s = 3r + 1

Fig. 5. Beta estimation error for the four-states model

Then, observing that

(
Πλ × Θ

T
λ

)
Θλ = Πλ (Θλ × Θλ) ,

we obtain

Error (λ, r) =
(1 − r)

(
4r2 − 3

)
(1 + r) (3 − 2r)2ΠλΘλ +

(
1 − r

3 − 2r

)2

+

(
2r

(3 − 2r)2 (1 + r)
−

2
3 − 2r

+ 1
)
Πλ (Θλ × Θλ)

(63)
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and thus

Error (λ, r) =
(1 − r)

(
4r2 − 3

)
(1 + r) (3 − 2r)2ΠλΘλ +

(
1 − r
3 − 2r

)2

+
(1 − r)

(
3 − 4r2

)
(1 + r) (3 − 2r)2Πλ (Θλ × Θλ) .

(64)

By inspection of the error formula above, when r → 1, the beta estimation error
obviously tends to 0. That is, when the given system is stable, zero estimation error is
achieved by choosing the decay r tending to 1, which is the same as saying dropping
the decay altogether and using the unmodified Beta model. �

7 Conclusion

In this paper we have focussed on the exponential decay principle in the context of
computational trust as a way to endow the well-known and widely-used Beta model
with appropriate mechanisms to support dynamic behaviours. Our contention is that,
despite the attention the Beta model has received in the literature and its undoubted
success ‘on-the-ground,’ the assumption that principals can be represented by a single
immutable probability distribution is untenable in the real world.1 1. about limitations

of HMMsAlthough we in general advocate fully-fledged ‘stateful’ models, such as the hidden
Markov models, our purpose in this paper was to ascertain to what extent the decay
principle put forward by some authors can provide the required support for principals
whose behaviour changes according to their (discrete) state transitions. In doing this,
we have described some mathematical properties of the Beta model with exponential
decay scheme, which suggest that the scheme will not be ideal in all scenarios.

We2 have then derived a formula for the expected error of the Beta scheme with 2. what happens if
not irreducible?respect to a representation of the ‘real model’ as a hidden Markov model, which can

be used by algorithm developers to understand the implications of chosing a decay
factor. Finally, we have exemplified one such analysis by plotting the error formula as a
function of the decay parameter r according to a notion of system stability. The evidence
obtained for the exercise, can be roughly summarised by saying that the choice of the
‘right’ parameter r remains highly sensitive and critical, and that anyway the choice of
a decay scheme over the unmodified Beta model appears sensible only when systems
are relatively stable, so that state changes happen rather infrequently.

Our future work will be dedicated to probabilistic models embodying the notion of
dynamic behaviour at their core, among their primary concerns.
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