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First part
Verifiable computing

1.1 | SNARKs

SNARK stands for Succinct Non-interactive ARgument of Knowledge.

Idea. We want to turn
A:x,h—y

that runs in time 7(n), into
Az h—y,

such that
> |af < 7(n) Succinct
» nothing on & is learnt from « zero-knowledge

» A’ runs in time O(7rlog ) (or even O(7))

» 3V running in time poly(|a|) Non-interactive ARgument of Knowledge
if 3h, A(x,h) =y then P(V(«) accepts) =1 (completeness)
if Vh, A(x,h) # y then P(V(«) accepts) < s. (soundness)
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Applications )

> Speedrun: Proof of Emulation — Doom

> Signature holding: Proof of Authenticity — photo authenticity

> Al reqgulation: Proof of Training — theoretical

> Blockchain: Proof of Transaction — practical
—

1.2 | Arithmetization

Consider a computer as a r-register machine i.e. you can use r variables in your program.
Execution trace. Let H = (g) C ;. The Prover will “send” (in a sense defined later) polynomials
R, ..., R, such that

YO<t<T, Ri(g") =registeri att

Program. A program A = (I1,...,I;) is a list of instructions.

DTG MM Instruction

An instruction is an operation that assigns to a register a polynomial of the value of the registers.

More generally, we consider any instruction I that can be represented as a polynomial Q7 €
F[X1,..., X, Y1,...,Y;] such that

(Ry,...,R,) > (R}, ...,R)) < Qi(Ry,...,RR},..,R.)=0

We write an instruction as a constraint polynomial whose roots are the matching values.

Main instructions |

7

> Addition. (Rl,Rg) ii) (R1 + RQ,RQ) becomes Q+(X1,X2,Y1,Y2) =Y -X;1 - X5
> Multiplication. (Ry, Rz) v (R1 X Rg, Ry) becomes Q(X1, Xo,Y1,Y2) = Vi — X1 X,

> Division. (Ry, R2) = (R1/Ra, Ry) becomes Q- (X1, X2, Y1,Y2) = X1 — XoV)

> Boolean equality testing. (R1, Re, R3) S (R 2 0, Ro, R3) becomes 3 constraints

Q;,bln - Yl(l o Yl)
Q- =Y1Xo

=,zero
Q: =XoXz—(1-11)

where X3 is asked by non-determinism to be the inverse of X5 when there exists.

> Conditions and loops. As in assembly, we write the program in the memory and use gotos.

N\

Composition with the registers.
QroR(X):=Qr(R1(X), ... Ro(X), R1(9X), ..., R-(9 X))

Time specification. Instruction I;, must only apply at time ¢y

X" -1
Py(X) = Qp, o R(X) x [[(X - ¢") = Qp,, o R(X) x S
t=1 ¢
t#to =Ti, (X)

And if an instruction is used several times, we can combine them.
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Limitations. We actually also need to make sure that the other registers are not modified, with
constraints. It becomes very heavy if there are a lot of registers, so then we can use a RAM model.

m Square Fibonacci

> fo=fi=1and fiys:=f2,+ f? modp

» Three registers: f for “f;11", g for “f;" and h for “f;_1"
» The program is:
» fori=1,..,7/3
> h+ f

> [ Pt gP
> g« h

» Three alternating instructions, contraints and time specificators:

frah = f,9,f fr9.h = P+ 6% 9, h fr9:h = f,h R
Qn=Y;—X; Qr=Y1—X?— X2 Qy=Y2— X1
Th = Tl (X - ggt) iy = | JHE ¢ _93t+1) Ty = [ (X - 93t+2)
— x7/3_1 = X3 _g7/3 = X7/3 — g27/3
P,=QroR xT) P =QfoR x Ty P,=QyoR xT,

M Arithmetization idea

definition ARy, ..., Ry such  arithmetization iR, ..., R, such
= that at each step ¢, < thatforallt, P,(X)
(R, .., Ry) &5 ( e RL) cancelson H C F

The computation of
A= (I,...,I;) is valid

Second part

FRI protocol: proximity test to Reed-Solomon codes

2.1 | Testing proximity suffices

m Schwartz-Zippel lemma

Let P # Q € K[ X1, ..., X;)]<q and S C K finite. Then

d
P (P(z1, ) = Q@1 7)) < ——.
(xl,...@n)es( (J"la y L ) Q(xl z )) |S‘

IS PWA Reed-Solomon code

Let LC Fy and k < |L]. If f: L — T, denote fe F,[X] the interpolator of f on L. Define
RS[L, k], or RS[|L]|, k] as

{f:E—)IE‘q|degf<k}.

For f,R1,...,R, : L = Fg and Q(X1, ..., X;,Y1,....Y,). Denote Z(X) := [];_,(X — g¢").
The claim is the algebraic equality

2~

QoR(X) x T(X) = f(X)Z(X).

=P(x)
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m Proximity suffices

Let 6 > 0. If

» Vi, A(R;,RS[L,T]) < ¢ — proximity test

» A(f,RS[L,7degQ]) < ¢ — proximity test

> IP’L:(Q oR(z) x T'(x) = f(x)Z(x)) > % +6 It's Schwartz-Zippel!
TeL N\ ~-

=P(z)

then there exists él, ... R, € Fq[X]<T,} € Fy[X]<rdeg @ such that

P(X) = Qo R(X) x T(X) = f(X)Z(X).

Proof.
Take cp and ¢y closest codewords to P and f. Suppose by adventure that cp(X) # ¢3(X)Z(X).
We can prove that 3D C £ such that |D| > (1 —6)L, and Pp = cpp and fip = cgp. Then

P (P(x) = f(2)Z(x)) < P (P(z) = f(z)Z(x))P(z € D) +P(z ¢ D)

xeLl zeD
_ - D] Dl
P (@ () = @) 2(a) ) + 1
deg P |D| T(deg @ + 1)
< g = 22Ty
1Dl |£] £]

Fichtre! Diantre! Vertuchou! The adventure is over.

Thanks to this we have a gap!

dRy, ...t L— IE‘q,EIfl, i L— ]Fq,
Vi, A(R;, RS[L, 7]) < 6
Vt7 A(ft7 RS[£7Tdeg Qlt]) <9

Vt,P(P(z) = fi(z)Z(z)) > % +5

The computation is valid <=

Remark. The domain £ and the roots H must be disjoint.

2.2 | Locally-testable codes and IOPPs

The Verifier wants to test words so long he can’t read them! Thus we need locality.

IS XN Oracle

Blackbox function that doesn’t count in the complexity (but counts in query complexity).

Once the oracle is commited, it is trusted that it gives the commited value.

Usually in complexity theory, oracles solve problems: a SAT oracle solves SAT:

1 if ¢ is satisfiable
0 otherwise.

SAT:cp»—){

Here we use any function f: £ — I, as oracle.

In practice. The Prover commits a Merkle tree and reveals the values on query. Our only security
assumption is that the hash function used is secure and that the Prover can’t create collisions. The
rest is only combinatorics.
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IISIGITIPAGE  Locally-testable code

A code C C Fy is (4,6, s)-locally-testable if there exists an algorithm V' with only ¢ oracle
queries such that for any w € F7,

if w € C then P(V* accepts) =1 (completeness)

if d(w,C) > 0 then P(V* accepts) < s. (soundness)

Note that the soundness is not “if w € C". We need the gap!

Codes with constant rate, minimal distance and locality [DELLM21]

There exists a family of codes with constant rate, minimal distance and locality: 3¢ € N, C' is
(¢,0,1 — kd)-locally-testable.

| thought it was then possible to build more efficient PCP protocols so we studied those “3C
codes” with Elina Roussel, but they are too rigid and complex to study efficient arithmetizations
on them.

(ST PRE Reed-Solomon codes don’t have a good locality

For any £ <k, 0 >0 and s < 1, RS[n, k] is not (4,9, s)-locally-testable.

Here, k = Q(7) is the length of the computation — impossible for the Verifier

ISR IOPP [BCS16]

Locality test with interaction instead of testing alone.

To remove the interaction, we apply a Fiat-Shamir heuristic that requires the Verifier to only send
randomness and apply the checks at the end. The Prover then uses a hash function to create
“pseudo-randomness”.

2.3 | Fast Reed-Solomon IOPP
FRI stands for Fast RS IOPP.

Idea. Instead of testing a polynomial, test its even and odd parts, which have degree deg f/2!
With Y = X2, let
f(X) = feven(Y) + Xfodd(Y)

FOId[fv a](Y) = feven(Y) + afodd(Y) — f(X) —|—2f(—X) . af(X) ;)'(f(_X)

So the Verifier can compute Fold[f, a](y) with only 2 queries to f!

Domains. We require the Verifier to be able to reconstruct the Fold. So
Lrold := {.Z'2 | xr,—T € ﬁ}

Thus to apply successively the Fold, F, must have 2" primitive roots of unity.

HOIIGIPAIE FRI protocol [BBHR18a]

Prover input: fo: Lo — F,
Verifier input: oracle to f
Claim: A(fo,RS[|Lol,k]) <o
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Verifier

o) ﬁFq

f1 5 El — ]Fq
f1 = Fold[fo, o]

3
Qp_1 < Fq

e £p — By
f, = Fold[fo_1, 1]

The Verifier accepts iff all the tests pass.

query phase

3
To < Eo, Ty = x%

fi(@1) = Fold[fo, ag] (1)

2
Ty 1= Ty,

sawn) w jeadal

Fr(ar) = Fold[fr_1, a1 (y)

____________________

2.4 | ldea of the proof of soundness

The idea is, for f: L = F

. . . . 1
deg <2k = degfoundogfons <k <= P (deg(FoId[ f,a]) < k) > &
1

f S RS[QTL, 2k] <~ feven, fodd S RS[TL, k] < IP;F (F0|d[f, a] S RS[TL, k]) > ’IF
acliy q

M Commit soundness [BCIKS20]

P (A(Fold[f;,a],RS;iy1) <

o€l

Let RS; = RS[L;, k). Then Ve > 0, with &; := min(A(f;,RS,), 1 — /5 — &).

k.2

0; — &) < ——0.
)< G|

T

By the total probability, /

——
P(V accepts) < P(commit error) + P

(V accepts | commit error).

M FRI soundness [BKS18,BCIKS20]

2
P(V accepts) < min <L +(1—00+ rs)m)

P (firi(2) # Fold[fi, ai] () >

By summing over all ¢ € [r], we obtain the result.

A(Fold[fi, a], fiv1)

A(fi+1, Fold[fi; a;])  and

+  A(fit1,RSiv1),

e>0 (25)7|Fq|
Idea.
Since o
B (firr(2) # Fold[fi, ai] () =
triangle
A(FOId[fla Odi], Rsi-l-l) <
we have

A(fi,RSi) — A(fi+1,RSiy1) — e
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M FRI's principle

Reduction from f € RS[2n,2k] to f’, f” € RS[n, k]? such that f’, f” can be computed with a
constant number of queries to f.

_Third part

Flowering protocol: proximity test to codes on graphs

3.1 | Codes on graphs

Multigraph.  Usually, a multigraph is T' = (V, E) where E is a multiset over V2. Here we consider
n-reqular indexed multigraphs, so E :=V X [n]/ ~ where

(v,0) ~ (V',0') < £=1{"and v,v" are neighbors with edge /.

DI NCAM Word on graph, code on graph

A word on I is a labeling of the edges: f: E — F,. Denote f(v,-) the vector (f(v,¥))}_;.
If I' is n-reqular and Cy C IF;", the code on I

CIT,Col :={f: E—Fy| Vo, f(v,-) € Co}.

IR

N
RS
SAZRNIES A
TN '.gﬁn @QJ‘
)A‘m‘é@( ‘sﬁmr
DS \&/ %

3)
m?»}'!%m.
5

f=(co, c1, c2, 3, 4, c5, cg, C7, C8, C9, Cl0, C11, bo, b1, b2, b3, bs, bs, bg, b7, bg, by, b10, b11, 9o,
91, 92, 93, 94, 95, 96, 97, 98, 99, 910, gi1, 0o, T'1, 72, '3, T4, T'5 )

We will only build our graphs on Reed-Solomon codes:
C[l', k] := C[I', RS[n, k]].

OISR Lower bound on dimension

2
If T is n-reqular, rate(C[T', k]) > 2k 1.
n

Idea.
By taking the |V parity check matrices of the local RS, we obtain a matrix with |E| columns
and (n — k)|V] rows.
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Y

P
. (n—k)V|

!

Thus dim C[T, k] > |E| — (n — k)|V| = (k — n/2)|V].

DISNILI RN  Vertex distance

Av(f,f1) = l{v eV f(v,) # f'(v,)}]

Proposition 3.5

For f, f': E = Fy, Av(f, f') = A(f, ).

3.2 | Flowering protocol

From f: E — F,, we want to create f': E' — F, and f” : E” — F, such that

feC = f.f"eC <« P (Fold[f,a]el)>s

ackF,

IO NCNN Cut-graph, cut-word

IfT = (V,E) and V' C V, Cut[l', V'] := (V', E’) where

B (0,0) = E,¢) if E(v,0) eV’
T ) otherwise.

If £+ B — Fy, Cutlf, V'] == fiyrxp-

DIIINIGHICWA Flowering cut

If V/'UV"” =V and there exists a graph isomorphism ¢ : Cut[l’, V'] — Cut[l', V"], F = (V', ¢)
is a flowering cut.
Denote 7, : V' — V' the projection on V.

Example 3.8
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Let f := Cut[f,V’] and f” := Cut[f,V"]. Then

Fold[f, &) (v, £) := f/(’U, 0+ Oéf”(SO(U)7€)-

HGIILINCRE Flowering protocol [DMR25]

Prover input: fo: Ey — F,
Verifier input: oracle to f
Claim: Av(fo,C[F07k]) <0

query phase

. Prover Verifier 1 :
: o)) ﬁ IF‘q : : V0 (i Vo, v1 := 7['1(1)0) :
! fi:Br—F, L fu(v, ) < Fold[fo, ao) (v, ) !
1 fl = FO|dU() ()'()} : : 5 1
: . Lo 3!
I ar—1 + Fy L Oy 1= T (V1) % :
: fr o By = Fy o folor, ) = Fold[fro1, 00 (ur ) )
: fr — FOld{frfl ) “rfl} ! : :

The Verifier accepts iff all the tests pass.

3.3 | ldea of the proof of soundness

We use, for f : E — F, that

FeCl k] < f. f'eClCut(T,V),k] <= P (Fold[f,a] € C[Cut(T,V'),k]) > s

a€lFy
ALEVIZYICRIE Commit soundness [DMR25]

Let C; = C[I';, k]. Let 6; := Ay (fi, C;). Then Ve > 0,

ae]P’Fq(A(Fold[fz,a],C’zH) < 0;—¢) oI,

m Flowering soundness [DMR25]

P(V accepts) < r€n>161 <€’%q| + (1 —00 + rs)m>

Idea.
Exacty like for the FRI soundness, since

UIEF’V(fm(%')#F0|d[fz',06i](v,')) = Ay (fiy1, Fold[fi, o)),
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we have

Ugjv(f¢+1(v,-)#F0|d[fi,ai](v,-)) > Av(fi,Ci) — Av(fisy1,Cip1) — e

3.4 | Our codes

DIGIGIRCNPE Cayley graphs

Let G be a group and S = {s1,..,s,} € G. Then Cay(G,S) := (V,E) where V = G and
E:(v,i) = v+s;.

Take G =7Z/2"Z and S = {£1,43,45,47}, V' ={0,...,2" 1 —1} and p(v) = 2" — 1 — v

T := Cay(G, S)

SEIDIICAER Binary construction

G =TF4, S = {0001,0010, 0100, 1000, 1111}

0011) (0100
0010 0101
0001 0110
0000 <>< §<> 0111
S g
1111 ] T 1000
</ |\t
1110 1001
1101 1010
1100) (1011

HOLVETTOHICNIE Parameters of the code (binary construction) [DMR25]

With T' := Cay(FF5, S) and n := |S

’

» Length. N = n2™!

1
» Minimal distance. If there exists a code [n,n — r,d]s then there exists S? such that 55 <
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1 k—1 n2¢—2 k—1
AH(C[F,k])é(S,Whereé:W(l— " >: N (1— " >

“take the columns of a parity check matrix

Idea of the upper bound.
If there is S’ C S of size n — k + 1 such that |[(S")| = 2971, then we can have a word with only
nonzero coordinates in the subgraph Cay[(S’), S"].

0011) (0100
0010 0101
0001 0110
0000 <>< §<> 0111
\ /

o T 1000
\ /
1110 1001
1101 1010
1100) (1011

An idea would be to take a MDS code with a bigger alphabet.

HIOLHGLOHECHI Parameters of the code (enlarge your alphabet) [DMR25]

With n = 2™, S the columns of a [n,n — 7,7 + 1]am (MDS) code, and I" := Cay(FF%.., S),

r+1
» Length. N =n2™ 1 = o

r _ r—1 _
» Minimal distance. Ay (C[T, k]) > % <z> (1 _k 1) _2 (1 _k 1)

n n N n
M Flowering’s idea

We reduce testing proximity to C[T', k] to testing proximity to C[I, k] where I'" is “twice” smaller,
like the FRI for RS.

3.5 | Is there an arithmetization?
The question now is: do we have an arithmetization like this?

The computation ? 3Ry, ... such that for
of A is valid eacht, Q; o R € C[I', k]

On the one hand we can write a computation as a graph.

Computation as a reqular graph )

> Circuits. We can represent a computation as a circuit rather than a program.

> De Bruijn graph. There are reqgular graphs that allow to represent circuits.

And on the other hand, we can prove statements on the local node views. GivenI'(V, E), P : E — F,
and Z € F,[X], we can use a variant of that Flowering protocol to prove,

Af : E—F,, Vv e V,Pv,X) = Z(X) x f(v,X),
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te. it Z(X) = [[eu(X — h),
Vv € V, P(v, X) cancels on H.

However, if the R; are E — [F, then composing with a polynomial constraint does not give a word
on a graph.

That's what | will work on next.
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