
Flowering
graphs

Verifiable
com

puting
H

ugo
D

elavenne

1
12

Barracuda presentation: Flowering graphs
Hugo Delavenne

Thursday 9th January, 2025

Contents

1 Verifiable computing 1
1.1 SNARKs . 1
1.2 Arithmetization . 2

2 FRI protocol: proximity test to Reed-Solomon codes 3
2.1 Testing proximity suffices . 3
2.2 Locally-testable codes and IOPPs . 4
2.3 Fast Reed-Solomon IOPP . 5
2.4 Idea of the proof of soundness . 6

3 Flowering protocol: proximity test to codes on graphs 7
3.1 Codes on graphs . 7
3.2 Flowering protocol . 8
3.3 Idea of the proof of soundness . 9
3.4 Our codes . 10
3.5 Is there an arithmetization? . 11

First part
Verifiable computing

1.1 SNARKs

SNARK stands for Succinct Non-interactive ARgument of Knowledge.

Idea. We want to turn
A : x, h 7−→ y

that runs in time τ(n), into
A′ : x, h 7−→ y, α

such that

▶ |α| ≪ τ(n) Succinct

▶ nothing on h is learnt from α zero-knowledge

▶ A′ runs in time O(τ log τ) (or even O(τ))

▶ ∃V running in time poly(|α|) Non-interactive ARgument of Knowledge

if ∃h,A(x, h) = y then P(V(α) accepts) = 1 (completeness)

if ∀h,A(x, h) ̸= y then P(V(α) accepts) ⩽ s. (soundness)

1

Flowering
graphs

Verifiable
com

puting
H

ugo
D

elavenne

2
12

Applications

▷ Speedrun: Proof of Emulation → Doom

▷ Signature holding: Proof of Authenticity → photo authenticity

▷ AI regulation: Proof of Training → theoretical

▷ Blockchain: Proof of Transaction → practical

1.2 Arithmetization

Consider a computer as a r-register machine i.e. you can use r variables in your program.

Execution trace. Let H = ⟨g⟩ ⊆ F∗
q . The Prover will “send” (in a sense defined later) polynomials

R1, ..., Rr such that
∀0 ⩽ t ⩽ τ, Ri(g

t) = register i at t

Program. A program A = (I1, ..., Iτ) is a list of instructions.

InstructionDefinition 1.1

An instruction is an operation that assigns to a register a polynomial of the value of the registers.

More generally, we consider any instruction I that can be represented as a polynomial QI ∈
F[X1, ..., Xr, Y1, ..., Yr] such that

(R1, ..., Rr)
I7→ (R′

1, ..., R
′
r) ⇐⇒ QI(R1, ..., Rr, R

′
1, ..., R

′
r) = 0

We write an instruction as a constraint polynomial whose roots are the matching values.

Main instructions

▷ Addition. (R1, R2)
+7→ (R1 +R2, R2) becomes Q+(X1, X2, Y1, Y2) = Y1 −X1 −X2

▷ Multiplication. (R1, R2)
×7→ (R1 ×R2, R2) becomes Q(X1, X2, Y1, Y2) = Y1 −X1X2

▷ Division. (R1, R2)
÷7→ (R1/R2, R2) becomes Q÷(X1, X2, Y1, Y2) = X1 −X2Y1

▷ Boolean equality testing. (R1, R2, R3)
?
=7→ (R2

?
= 0, R2, R3) becomes 3 constraints

Q ?
=,bin

= Y1(1− Y1)

Q ?
=,zero

= Y1X2

Q ?
=,inv

= X2X3 − (1− Y1)

where X3 is asked by non-determinism to be the inverse of X2 when there exists.

▷ Conditions and loops. As in assembly, we write the program in the memory and use gotos.

Composition with the registers.

QI ◦R(X) := QI(R1(X), ..., Rr(X), R1(gX), ..., Rr(gX))

Time specification. Instruction It0 must only apply at time t0

Pt0(X) := QIt0
◦R(X)×

τ∏
t=1
t̸=t0

(X − gt) = QIt0
◦R(X)× Xτ − 1

X − gt0︸ ︷︷ ︸
=:Tt0 (X)

And if an instruction is used several times, we can combine them.

2

Flowering
graphs

FRIprotocol:
proxim

ity
testto

Reed-Solom
on

codes
H

ugo
D

elavenne

3
12

Limitations. We actually also need to make sure that the other registers are not modified, with
constraints. It becomes very heavy if there are a lot of registers, so then we can use a RAM model.

Square FibonacciExample 1.2

▶ f0 = f1 = 1 and fi+2 := f2
i+1 + f2

i mod p

▶ Three registers: f for “fi+1”, g for “fi” and h for “fi−1”

▶ The program is:

▶ for i = 1, ..., τ/3

▶ h← f

▶ f ← f2 + g2

▶ g ← h

▶ Three alternating instructions, contraints and time specificators:

f, g, h 7→ f, g, f f, g, h 7→ f2 + g2, g, h f, g, h 7→ f, h, h

Qh = Y3 −X1 Qf = Y1 −X2
1 −X2

2 Qg = Y2 −X1

Th =
∏τ

t=1(X − g3t)

= Xτ/3 − 1

Tf =
∏τ

t=1(X − g3t+1)

= Xτ/3 − gτ/3
Tg =

∏τ
t=1(X − g3t+2)

= Xτ/3 − g2τ/3

Ph = Qh ◦R× Th Pf = Qf ◦R× Tf Pg = Qg ◦R× Tg

Arithmetization ideaSummary

The computation of
A = (I1, ..., Iτ) is valid

∃R1, ..., Rr such
that at each step t,

(R1, ..., Rr)
It7→ (R′

1, ..., R
′
r)

∃R1, ..., Rr such
that for all t, PIt(X)
cancels on H ⊆ F

⇐⇒
definition

⇐⇒
arithmetization

Second part
FRI protocol: proximity test to Reed-Solomon codes

2.1 Testing proximity suffices

Schwartz-Zippel lemmaLemma 2.1

Let P ̸= Q ∈ K[X1, ..., Xn]⩽d and S ⊆ K finite. Then

P
(x1,...,xn)∈S

(P (x1, ..., xn) = Q(x1, ..., xn)) ⩽
d

|S|
.

Reed-Solomon codeDefinition 2.2

Let L ⊆ Fq and k < |L|. If f : L → Fq , denote f̂ ∈ Fq[X] the interpolator of f on L. Define
RS[L, k], or RS[|L|, k] as {

f : L → Fq | deg f̂ < k
}

.

For f,R1, ..., Rr : L → Fq and Q(X1, ..., Xr, Y1, ..., Yr). Denote Z(X) :=
∏τ

t=1(X − gt).
The claim is the algebraic equality

Q ◦ R̂(X)× T (X)︸ ︷︷ ︸
=P̂ (X)

?
= f̂(X)Z(X).

3

Flowering
graphs

FRIprotocol:
proxim

ity
testto

Reed-Solom
on

codes
H

ugo
D

elavenne

4
12

Proximity sufficesLemma 2.3

Let δ > 0. If

▶ ∀i,∆(Ri,RS[L, τ]) < δ → proximity test

▶ ∆(f,RS[L, τ degQ]) < δ → proximity test

▶ P
x∈L

(Q ◦R(x)× T (x)︸ ︷︷ ︸
=P (x)

= f(x)Z(x)) >
τ(degQ+ 1)

|L|
+ δ It’s Schwartz-Zippel!

then there exists R1, ..., Rr ∈ Fq[X]<τ , f ∈ Fq[X]<τ degQ such that

P (X) := Q ◦R(X)× T (X) = f(X)Z(X).

Proof.
Take cP and cf closest codewords to P and f . Suppose by adventure that ĉP (X) ̸= ĉf (X)Z(X).
We can prove that ∃D ⊆ L such that |D| ⩾ (1− δ)L, and P|D = cP |D and f|D = cf |D . Then

P
x∈L

(P (x) = f(x)Z(x)) ⩽ P
x∈D

(P (x) = f(x)Z(x))P(x ∈ D) + P(x /∈ D)

= P
x∈D

(ĉP (x) = ĉf (x)Z(x))
|D|
|L|

+ 1− |D|
|L|

⩽
degP

|D|
|D|
|L|

+ δ =
τ(degQ+ 1)

|L|
+ δ.

Fichtre! Diantre! Vertuchou! The adventure is over.

Thanks to this we have a gap!

The computation is valid ⇐⇒

∃R1, ... : L → Fq,∃f1, ... : L → Fq,
∀i,∆(Ri,RS[L, τ]) < δ

∀t,∆(ft,RS[L, τ degQIt]) < δ

∀t,P(P (x) = ft(x)Z(x)) >
τ(degQIt+1)

|L| + δ

Remark. The domain L and the roots H must be disjoint.

2.2 Locally-testable codes and IOPPs

The Verifier wants to test words so long he can’t read them! Thus we need locality.

OracleDefinition 2.4

Blackbox function that doesn’t count in the complexity (but counts in query complexity).

Once the oracle is commited, it is trusted that it gives the commited value.

Example 2.5

Usually in complexity theory, oracles solve problems: a SAT oracle solves SAT:

SAT : φ 7→

{
1 if φ is satisfiable
0 otherwise.

Here we use any function f : L → Fq as oracle.

In practice. The Prover commits a Merkle tree and reveals the values on query. Our only security
assumption is that the hash function used is secure and that the Prover can’t create collisions. The
rest is only combinatorics.

4

Flowering
graphs

FRIprotocol:
proxim

ity
testto

Reed-Solom
on

codes
H

ugo
D

elavenne

5
12

Locally-testable codeDefinition 2.6

A code C ⊆ Fn
q is (ℓ, δ, s)-locally-testable if there exists an algorithm V with only ℓ oracle

queries such that for any w ∈ Fn
q ,

if w ∈ C then P(Vw accepts) = 1 (completeness)

if d(w, C) > δ then P(Vw accepts) ⩽ s. (soundness)

Note that the soundness is not “if w ∈ C”. We need the gap!

Codes with constant rate, minimal distance and locality [DELLM21]Theorem 2.7

There exists a family of codes with constant rate, minimal distance and locality: ∃ℓ ∈ N, C is
(ℓ, δ, 1− κδ)-locally-testable.

I thought it was then possible to build more efficient PCP protocols so we studied those “3C
codes” with Élina Roussel, but they are too rigid and complex to study efficient arithmetizations
on them.

Reed-Solomon codes don’t have a good localityExample 2.8

For any ℓ ⩽ k, δ > 0 and s < 1, RS[n, k] is not (ℓ, δ, s)-locally-testable.

Here, k = Ω(τ) is the length of the computation → impossible for the Verifier

IOPP [BCS16]Definition 2.9

Locality test with interaction instead of testing alone.

To remove the interaction, we apply a Fiat-Shamir heuristic that requires the Verifier to only send
randomness and apply the checks at the end. The Prover then uses a hash function to create
“pseudo-randomness”.

2.3 Fast Reed-Solomon IOPP

FRI stands for Fast RS IOPP.

Idea. Instead of testing a polynomial, test its even and odd parts, which have degree deg f/2!
With Y = X2, let

f(X) =: feven(Y) +Xfodd(Y)

Fold[f, α](Y) := feven(Y) + αfodd(Y) =
f(X) + f(−X)

2
+ α

f(X)− f(−X)

2X
.

So the Verifier can compute Fold[f, α](y) with only 2 queries to f !

Domains. We require the Verifier to be able to reconstruct the Fold. So

LFold := {x2 | x,−x ∈ L}.

Thus to apply successively the Fold, Fq must have 2n primitive roots of unity.

FRI protocol [BBHR18a]Protocol 2.10

Prover input: f0 : L0 → Fq

Verifier input: oracle to f
Claim: ∆(f0,RS[|L0|, k]) < δ

5

Flowering
graphs

FRIprotocol:
proxim

ity
testto

Reed-Solom
on

codes
H

ugo
D

elavenne

6
12

Prover Verifier
α0

$← Fq

f1 : L1 → Fq

f1 = Fold[f0, α0]
...

αr−1
$← Fq

fr : Lr → Fq

fr = Fold[fr−1, αr−1]

commit phase

x0
$← L0, x1 := x20

f1(x1)
?
= Fold[f0, α0](x1)

...

xr := x2r−1

fr(xr)
?
= Fold[fr−1, αr−1](xr)

fr
?
∈ RS[Lr, k/2r]

repeat
m

tim
es

query phase

The Verifier accepts iff all the tests pass.

2.4 Idea of the proof of soundness

The idea is, for f : L → F

deg f̂ < 2k ⇐⇒ deg f̂even, deg f̂odd < k ⇐⇒ P
α∈Fq

(
deg

(
Fold[f̂ , α]

)
< k

)
>

1

|Fq|

f ∈ RS[2n, 2k] ⇐⇒ feven, fodd ∈ RS[n, k] ⇐⇒ P
α∈Fq

(Fold[f, α] ∈ RS[n, k]) >
1

|Fq|

Commit soundness [BCIKS20]Theorem 2.11

Let RSi = RS[Li, ki]. Then ∀ε > 0, with δi := min(∆(fi,RSi), 1−
√
ρ− ε).

P
α∈Fq

(∆(Fold[fi, α],RSi+1) < δi − ε)︸ ︷︷ ︸ ⩽
k2

(2ε)7|Fq|
.

By the total probability,

P(V accepts) ⩽ P(
︷ ︸︸ ︷
commit error) + P

(
V accepts | commit error

)
.

FRI soundness [BKS18,BCIKS20]Theorem 2.12

P(V accepts) ⩽ min
ε>0

(
rk2

(2ε)7|Fq|
+ (1− δ0 + rε)m

)
Idea.
Since

P
x∈L

(fi+1(x) ̸= Fold[fi, αi](x))
def
= ∆(fi+1,Fold[fi, αi]) and

∆(Fold[fi, αi],RSi+1)
triangle
⩽ ∆(Fold[fi, αi], fi+1) + ∆(fi+1,RSi+1),

we have

P
x∈L

(fi+1(x) ̸= Fold[fi, αi](x)) ⩾ ∆(fi,RSi) − ∆(fi+1,RSi+1) − ε.

By summing over all i ∈ [r], we obtain the result.

6

Flowering
graphs

Flowering
protocol:

proxim
ity

testto
codes

on
graphs

H
ugo

D
elavenne

7
12

FRI’s principleSummary

Reduction from f ∈ RS[2n, 2k] to f ′, f ′′ ∈ RS[n, k]2 such that f ′, f ′′ can be computed with a
constant number of queries to f .

Third part
Flowering protocol: proximity test to codes on graphs

3.1 Codes on graphs

Multigraph. Usually, a multigraph is Γ = (V,E) where E is a multiset over V 2. Here we consider
n-regular indexed multigraphs, so E := V × [n]/ ∼ where

(v, ℓ) ∼ (v′, ℓ′) ⇐⇒ ℓ = ℓ′ and v, v′ are neighbors with edge ℓ.

Word on graph, code on graphDefinition 3.1

A word on Γ is a labeling of the edges: f : E → Fq . Denote f(v, ·) the vector (f(v, ℓ))nℓ=1.
If Γ is n-regular and C0 ⊆ Fn

q , the code on Γ

C[Γ, C0] := {f : E → Fq | ∀v, f(v, ·) ∈ C0}.

Example 3.2

c 0

c1

c2

c
3

c
4

c
5

c 6

c7

c8

c
9

c
1
0

c
1
1

b0

b1
b
2

b
3

b
4

b 5

b6
b7

b
8

b
9

b
1
0

b 1
1

g0 g1
g
2

g
3

g
4

g 5

g6g7

g
8

g
9

g
1
0

g 1
1

r0

r
1

r
2

r
3

r 4

r5

0

1

2 3

4

5

6

7

89

10

11

f = (c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, g0,
g1, g2, g3, g4, g5, g6, g7, g8, g9, g10, g11, r0, r1, r2, r3, r4, r5)

We will only build our graphs on Reed-Solomon codes:

C[Γ, k] := C[Γ,RS[n, k]].

Lower bound on dimensionProposition 3.3

If Γ is n-regular, rate(C[Γ, k]) ⩾ 2k

n
− 1.

Idea.
By taking the |V | parity check matrices of the local RS, we obtain a matrix with |E| columns
and (n− k)|V | rows.

7

Flowering
graphs

Flowering
protocol:

proxim
ity

testto
codes

on
graphs

H
ugo

D
elavenne

8
12

H =


H

(1)
0

H
(2)
0
...

H
|V |
0



|E|

(n− k)|V |

Thus dim C[Γ, k] ⩾ |E| − (n− k)|V | = (k − n/2)|V |.

Vertex distanceDefinition 3.4

∆V (f, f
′) := 1

|V | |{v ∈ V | f(v, ·) ̸= f ′(v, ·)}|

Proposition 3.5

For f, f ′ : E → Fq , ∆V (f, f
′) ⩾ ∆(f, f ′).

3.2 Flowering protocol

From f : E → Fq , we want to create f ′ : E′ → Fq and f ′′ : E′′ → Fq such that

f ∈ C ⇐⇒ f ′, f ′′ ∈ C′ ⇐⇒ P
α∈Fq

(Fold[f, α] ∈ C′) > s

Cut-graph, cut-wordDefinition 3.6

If Γ = (V,E) and V ′ ⊆ V , Cut[Γ, V ′] := (V ′, E′) where

E′(v, ℓ) :=

{
E(v, ℓ) if E(v, ℓ) ∈ V ′

v otherwise.

If f : E → Fq , Cut[f, V ′] := f|V ′×[n].

Flowering cutDefinition 3.7

If V ′ ⊔ V ′′ = V and there exists a graph isomorphism φ : Cut[Γ, V ′]→ Cut[Γ, V ′′], F = (V ′, φ)
is a flowering cut.
Denote πφ : V → V ′ the projection on V ′.

Example 3.8

000

100

010

110

001

101

011

111

f

000

100

010

110

001

101

011

111

f ′′

f ′

000

010

001

011

Fold[f, α]

8

Flowering
graphs

Flowering
protocol:

proxim
ity

testto
codes

on
graphs

H
ugo

D
elavenne

9
12

000

010

001

011

000 001 000 001 000

Let f ′ := Cut[f, V ′] and f ′′ := Cut[f, V ′′]. Then

Fold[f, α](v, ℓ) := f ′(v, ℓ) + αf ′′(φ(v), ℓ).

Flowering protocol [DMR25]Protocol 3.9

Prover input: f0 : E0 → Fq

Verifier input: oracle to f
Claim: ∆V (f0, C[Γ0, k]) < δ

Prover Verifier
α0

$← Fq

f1 : E1 → Fq

f1 = Fold[f0, α0]
...

αr−1
$← Fq

fr : Er → Fq

fr = Fold[fr−1, αr−1]

commit phase

v0
$← V0, v1 := π1(v0)

f1(v1, ·)
?
= Fold[f0, α0](v1, ·)

...

vr := πr(vr−1)

fr(vr, ·)
?
= Fold[fr−1, αr−1](vr, ·)

fr
?
∈ RS[n, k]

repeat
m

tim
es

query phase

The Verifier accepts iff all the tests pass.

3.3 Idea of the proof of soundness

We use, for f : E → Fq that

f ∈ C[Γ, k] ⇐⇒ f ′, f ′′ ∈ C[Cut(Γ, V ′), k] ⇐⇒ P
α∈Fq

(Fold[f, α] ∈ C[Cut(Γ, V ′), k]) > s

Commit soundness [DMR25]Theorem 3.10

Let Ci = C[Γi, k]. Let δi := ∆V (fi, Ci). Then ∀ε > 0,

P
α∈Fq

(∆(Fold[fi, α], Ci+1) < δi − ε) ⩽
1

ε|Fq|
.

Flowering soundness [DMR25]Theorem 3.11

P(V accepts) ⩽ min
ε>0

(
r

ε|Fq|
+ (1− δ0 + rε)m

)
Idea.
Exacty like for the FRI soundness, since

P
v∈V

(fi+1(v, ·) ̸= Fold[fi, αi](v, ·)) = ∆V (fi+1,Fold[fi, αi]),

9

Flowering
graphs

Flowering
protocol:

proxim
ity

testto
codes

on
graphs

H
ugo

D
elavenne

10
12

we have

P
v∈V

(fi+1(v, ·) ̸= Fold[fi, αi](v, ·)) ⩾ ∆V (fi, Ci) − ∆V (fi+1, Ci+1) − ε.

3.4 Our codes

Cayley graphsDefinition 3.12

Let G be a group and S = {s1, .., sn} ⊆ G. Then Cay(G,S) := (V,E) where V = G and
E : (v, i) 7→ v + si.

Example 3.13

Take G = Z/2rZ and S = {±1,±3,±5,±7}, V ′ = {0, ..., 2r−1 − 1} and φ(v) = 2r − 1− v

0

1

2
3 4

5

6

7

8

9

10
1112

13

14

15

Γ := Cay(G,S)

7→
0

7

1

6

2

5

3

4

Cut[Γ, V ′]

7→
0

3

1

2

7→

0 1

7→

0

Binary constructionExample 3.14

G = F4
2, S = {0001, 0010, 0100, 1000, 1111}

0000

1000

0100

1100

0010

1010

0110

1110

0001

1001

0101

1101

0011

1011

0111

1111

Parameters of the code (binary construction) [DMR25]Proposition 3.15

With Γ := Cay(Fr
2, S) and n := |S|,

▶ Length. N = n2r−1

▶ Minimal distance. If there exists a code [n, n − r, d]2 then there exists Sa such that 1

2
δ ⩽

10

Flowering
graphs

Flowering
protocol:

proxim
ity

testto
codes

on
graphs

H
ugo

D
elavenne

11
12

∆H(C[Γ, k]) ⩽ δ, where δ :=
1

2r−d+1

(
1− k − 1

n

)
=

n2d−2

N

(
1− k − 1

n

)
.

atake the columns of a parity check matrix

Idea of the upper bound.
If there is S′ ⊆ S of size n− k + 1 such that |⟨S′⟩| = 2d−1, then we can have a word with only
nonzero coordinates in the subgraph Cay[⟨S′⟩, S′].

0000

1000

0100

1100

0010

1010

0110

1110

0001

1001

0101

1101

0011

1011

0111

1111

0000

0100
0010

01100001

0101
0011

0111

An idea would be to take a MDS code with a bigger alphabet.

Parameters of the code (enlarge your alphabet) [DMR25]Proposition 3.16

With n = 2m, S the columns of a [n, n− r, r + 1]2m (MDS) code, and Γ := Cay(Fr
2m , S),

▶ Length. N = n2mr−1 =
nr+1

2

▶ Minimal distance. ∆H(C[Γ, k]) ⩾ 1

2

(
2

n

)r (
1− k − 1

n

)
=

2r−1

N

(
1− k − 1

n

)

Flowering’s ideaSummary

We reduce testing proximity to C[Γ, k] to testing proximity to C[Γ′, k] where Γ′ is “twice” smaller,
like the FRI for RS.

3.5 Is there an arithmetization?

The question now is: do we have an arithmetization like this?

The computation
of A is valid

∃R1, ... such that for
each t, Qt ◦ R ∈ C[Γ, k]

?⇐⇒

On the one hand we can write a computation as a graph.

Computation as a regular graph

▷ Circuits. We can represent a computation as a circuit rather than a program.

▷ De Bruijn graph. There are regular graphs that allow to represent circuits.

And on the other hand, we can prove statements on the local node views. Given Γ(V,E), P : E → Fq

and Z ∈ Fq[X], we can use a variant of that Flowering protocol to prove,

∃f : E → Fq,∀v ∈ V, P̂ (v,X) = Z(X)× f̂(v,X),

11

Flowering
graphs

Flowering
protocol:

proxim
ity

testto
codes

on
graphs

H
ugo

D
elavenne

12
12

i.e. if Z(X) =
∏

h∈H(X − h),

∀v ∈ V, P̂ (v,X) cancels on H .

However, if the Ri are E → Fq , then composing with a polynomial constraint does not give a word
on a graph.

That’s what I will work on next.

12

	 Verifiable computing
	1.1 SNARKs
	1.2 Arithmetization

	 FRI protocol: proximity test to Reed-Solomon codes
	2.1 Testing proximity suffices
	2.2 Locally-testable codes and IOPPs
	2.3 Fast Reed-Solomon IOPP
	2.4 Idea of the proof of soundness

	 Flowering protocol: proximity test to codes on graphs
	3.1 Codes on graphs
	3.2 Flowering protocol
	3.3 Idea of the proof of soundness
	3.4 Our codes
	3.5 Is there an arithmetization?

