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Part I
Introduction

STARK protocols1
When a server interacts with a client, it cannot always be trusted and the client may want to haveproofs that the server is not lying and is honnestly executing its task. The issue is that the clientis computationally weak, so it can’t repeat the same computation to check the output. Likewise, theserver doesn’t want to perform too much extra computations to be able to prove that it is honnest. Thishappens for example in blockchain where the proof of verification of the interactions must be added toblockchain.
NP is a first model of efficient verification in which we consider that a prover gives a proof to bechecked deterministically in polnomial time. Probabilistic check is introduced with PCP, with veryimpressive theoretical result [BFLS91]. The idea is that the verifier doesn’t read the whole proof todecide it is it accepted or not. This theorem was completely unpractical until [BS08] which created

PCP proofs of quasilinear length. A new model adding interaction with the prover, IOP, is introducedin [BCS16], leading to the creation of practical efficient protocols [BBHR18a, BBHR18b, BKS18,BGKS20, BCI+20]. Those protocols are called STARKs. It stands for Scalable Transparent ARgumentof Knowledge. An argument of knowledge is a proof that the prover correctly executed a computation,scalable means that the proof is logarithmic in the size of the computation, and transparent meansthat the protocol does not rely on cryptographic asumptions.
Scientific context1.1

Formally, PCP restricts the verifier to draw a bounded number of bits and to read a limitednumber of bits of the proof. The PCP theorem states that the verifier only require to read a constantnumber of bits of the proof to check it, independently of the size of the problem.
PCP (Probabilistically Checkable Proof)Definition 1.1A language L ⊆ Σ∗ is in PCP[r(n), q(n)] if there exists a polynomial time verifier V , using atmost r(n) internal randomness bits and reading only q(n) bits of its input proof, such that

• Perfect completeness: ∀x ∈ L, ∃π proof,P(V (x, π) = accept) = 1

• Soundness: there exists s < 1/2 such that ∀x /∈ L, ∀π proof,P(V (x, π) = accept) < s

where the probability is taken on the internal randomness of the verifier.
PCP theorem [BFLS91]Theorem 1.2

PCP[O(log n), O(1)] = NP
PCP[O(poly(n)), O(1)] = NEXP

The issue is that the proof itself is huge and requires a lot of computation to be generated, muchmore than finding a general proof, so this result itself is only theoretical. In [BS08], Ben-Sasson andSudan managed to generate PCP proofs of quasilinear length and that can be verified by reading apolylog number of bits. This result opened the door to creating practical PCP-like theorems. Anotherapproach for proof systems is IP.
IP (Interactive Proofs)Definition 1.3A language L ⊆ Σ∗ is in IP if there exists a polynomial time verifier V having one or moreinteractions with an unboundedly powerful prover such that

• Perfect completeness: ∀x ∈ L, ∃P prover,P(V (x, P (x)) = accept) = 1
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• Soundness: there exists s < 1/2 such that ∀x /∈ L, ∀P,P(V (x, P (x)) = accept) < s

where the probability is taken over the internal randomness of the verifier.
For cryptographic assumptions, we will require in the following that the soundness is at most 2−128or 2−256.

IP = PSPACE [LFKN92]Theorem 1.4

IP = PSPACE

A more recent approach [BCS16] is the fusion of the properties of PCP and IP, where the verifierinteracts with a prover, and the prover gives oracle access to its proofs, so that the verifier does notread them entirely. Having such oracle access makes this new class bigger than IP.
IOP = NEXP [BCS16]Theorem 1.5

IOP = NEXP

Since the verifier’s randomness is public-coin, it is possible to use a Fiat-Shamir heuristic to turnthe interactive proof into a non-interactive one.
Arithmetization1.2

The summary of the construction is the following.
arithmetizationAlgorithm

Computation
Polynomial exe-cution trace P(X)

Constraint poly-nomials Q’s
Proof of execution
fQ(X) = Q◦P(X)

G(X)

Low degree test
The prover constructs the whole arithmetization and the verifier only constructs the constraintpolynomials in order to be able to perform consistency checks with the proof of execution.The prover executes a computation in T steps, using R registers (memory cells). It has an executiontrace which is R functions r1, ..., rR from H to F, where |H| = T + 1 is detailled below. We encodethe transitions in such a way that it is possible to be convinced of the validity of the computation bychecking only a few values. In other words we encode the execution trace so that if there are someerrors then the encoding has lots of errors.The computation trace is valid if it respects the constraints induced by the asked computation.There are two kind of constraints on the registers:• The local constraints tell what value must have some registers at some specific time of the execution,typically the initial and final values.• The constraint polynomials tell what transitions of register states are allowed. They are of the form
Q(X1, ..., XR, Y1, ..., YR) where Xi represents the value of register i at time t, and Yi representsthe value of the same register i at time t+1. These polynomials must have as only roots the validvalues of transitions.

Constraints for the computation of square FibonacciExample 1.6Consider the square Fibonacci sequence where f0 = f1 = 1 and fi+2 = f2
i+1 + f2

i mod 96769.A verifier wants to know the 109th term of the sequence, so it asks a prover that claims that the
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result is 36452. The prover works in F = Z/96769Z and only needs one register for the fi’s andone for the “fi−1’s”, that we call gi and that is such that gi+1 = fi. The constraints will be herethe following.
• The local constraints are f0 = 1, f1 = 1 and f109 = 36452.
• The transition constraints are fi+1−f2

i −g2i = 0 and gi+1−fi = 0. So the constraint polynomialsare
Q1(X1, X2, Y1, Y2) = Y1 −X2

1 −X2
2 Q2(X1, X2, Y1, Y2) = Y2 −X1.

Once the prover has the constraint polynomials and the execution trace, it creates the proofpolynomials.For arithmetic purposes, we set H to be a multiplicative subgroup of F∗ of size T+1 with generator
g. With this, we go from time t to time t+ 1 by multiplying by g.The prover computes an interpolation of the execution traces as polynomials Pi’s: ∀t, Pi(g

t) :=
ri(g

t). For each constraint polynomial Q(X1, ..., XR, Y1, ..., YR), the prover creates the associatedunivariate composed polynomial
(Q ◦P)(X) := Q(P(X),P(gX)),

with P(X) := (P1(X), ..., PR(X)) ∈ (F[X])R.With this construction, if the computation is valid then the composed polynomials have all the gtas roots, so G(X) :=
∏

1⩽t⩽T (X − gt) divides the composed constraint polynomials, i.e.
(Q ◦P)(X)

G(X)
∈ F(X)

is a polynomial iff the product divides the composed polynomial. We will call this a proof polynomial.Since G(X) = XT+1−1, it allows the verifier to efficiently compute this product to perform consistencychecks. Now we have a set of proof polynomials, and if one wants only one proof polynomial, one cantake a random linear combination of these polynomials.For a valid computation, if d is the maximal degree of the constraint polynomials then the degreeof a composed polynomial is at most dT and the degree of a proof polynomial is at most dT − T . Infact, seen as a function in a finite field, a rational fraction can always be seen as a polynomial. Ifthe computation is not valid, then we can show that the proof polynomial isn’t any function. This isa gap promise that we will use: the proof polynomial is either low-degree or very different from alow-degree polynomial (see Section 1.3.3).
Low degree testing1.3

Reed-Solomon codes1.3.1

Linear error-correcting codes are vector spaces over Fn in which we consider some parameters likethe ratio of the number of elements of the code over the number of elements of the ambiant space (therate of the code), or the minimal distance between two elements for some distance. Reed-Solomoncodes are linear codes defined as evaluation of low-degree polynomials on a given domain.
Reed-Solomon codeDefinition 1.7The code RS[D, ρ] is {f : D → F | ∃P (X) ∈ F[X]<ρ|D|, P|D = f}, with D ⊆ F the evaluationdomain and ρ ∈ [0, 1] the rate of the code.

Reed-Solomon codewords can be considered as functions interpolating polynomials, or as vectorsover F|D|. The distance used here is the Hamming distance.
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Hamming distanceDefinition 1.8Let u, v ∈ Fn. The Hamming distance between u and v, denoted ∆(u, v) is the number of indexes
i ∈ [[1, n]] such that ui ̸= vi, divided by n so that ∆(u, v) ∈ [0, 1].The Hamming distance between u ∈ FN and S ⊆ Fn is ∆(u, S) := min

v∈S
∆(u, v).The minimal distance between any two elements of a set S is denoted ∆(S) := min

u̸=u′∈S
∆(u, u′).

FRI protocol [BBHR18a]1.3.2

FRI is the acronym for Fast Reed-Solomon IOPP (IOPP being an acronym for IOP of Proximity).It is an IOP protocol for convincing a verifier that a given function is a Reed-Solomon codeword, byusing techniques inspired from FFT [BBHR18a].To prove that a function f is a polynomial of degree at most k it suffices, for a divide and conquerapproach, to prove that the even part f0 and the odd part f1 of f are polynomials of degree at most
k/2. Even and odd parts means that f(X) = f0(X

2) + Xf1(X
2), i.e. f0(Y ) = f(X)+f(−X)

2 and
f1(Y ) = f(X)−f(−X)

2X , for Y = X2.However, testing the degrees of both f0 and f1 costs as much as testing the degree of f , so theidea is to test the degree of f0 + αf1 for a random α ∈ F. If f0 and f1 are indeed polynomials ofdegree < k/2 then so is f0 + αf1 with probability 1, and if f0 or f1 is a polynomial of high degreethen f0 + αf1 is of high degree with high probability over the choice of α.This linear combination of the even and odd parts of f over α is called the folding of f .
FoldingNotation 1.9

For f : F∗ → F, with f0 : y 7→ f(x)+f(−x)
2 and f1 : y 7→ f(x)−f(−x)

2x , where x2 = y, denote thefolding of f over α ∈ F by Fold[f, α] := f0 + αf1.
Testing the degree of a polynomial over a domain D reduces to testing the degree over a domainof size |D|/2. Therefore we need the domains to be the 2ith roots of the unit, so that the folding isdefined over the 2i−1th roots of the unit.

FRI protocolDefinition 1.10Let r ⩽ n ∈ N. Let Di ⊆ F be the set of 2n−ith roots of the unit, so that Di+1 = {x2 | x ∈ Di}.Define the code Vi as RS[Di, ρ]. Let ρ = 2r−n so that 2r = ρ|D0|.Prover wants to prove that a given function f0 : D0 → F is in RS[D0, ρ]. There are two phasesduring the FRI protocol.
Commit phase. The verifier sends a random α ∈ F and the prover commits Fold[f, α]. This processis repeated until the degree of the polynomial is zero.

Prover Verifier
α0

$← Fα0

f1 : D1 → F(f1 = Fold[f0, α0]) f1......
...

αr−1
$← Fαr−1

fr : Dr → F(fr = Fold[fr−1, αr−1]) fr

comm
it

Query phase. The verifier checks if each commited polynomial is indeed the folding of the originalfunction. This process is applied successively at each level of folding by taking , and is repeatedseveral times to increase the soundness.
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Verifier chooses s0
$← D0, defines si+1 := s2i and accepts if

f1(s1) = Fold[f0, α0](s1)...
fr(sr) = Fold[fr−1, αr−1](sr).

repeatquery
This protocol requires a logarithmic number of random bits from the verifier, a logarithmic numberof rounds of communication, and the verifier only looks at three elements of the proof to check theconsistency of fi+1 with fi on one value.The hard part, left to Sections 2.2 and 3.1, is now to compute a bound on the soundness.

Gap promise1.3.3

The above arithmetization is such that if the computation respects the constraints then the proofpolynomial is low-degree (in the code), but if the computation does not respect the constraints thenthe proof polynomial is far from the code.
Gap promiseLemma 1.11Let D ⊆ F, ρ ∈ [0, 1] and C = RS[D, ρ]. Let P1(X), P2(X) ∈ F[X]. Suppose that ∀x ∈ D, P2(x) ̸=

0 and
P2(X) does not divide P1(X). (1)

Then with f(x) := P1(x)/P2(x) for x ∈ D, we have ∆(f, C) ⩾ 1−max
(
degP1

|D| , ρ+ degP2

|D|

).
Proof.Let δ := ∆(f, C) and g ∈ C such that ∆(f, g) = δ. Let I = {x ∈ D | f(x) = g(x)}. Then
|I| = (1− δ)|D| and for all x ∈ I , P1(x)−P2(x)g(x) = 0. By Equation (1) we know that P1(X)−
P2(X)g(X) is not null, so |I| ⩽ deg(P1(X)− P2(X)g(X)) ⩽ max(degP1(X), ρ|D|+ degP2(X)).Thus the result.
P1(X) represents the composed polynomial (Q ◦P)(X) and P2(X) represents the product G(X).Equation (1) means exactly that there is a constraint that is not satisfied at some time t.In the arithmetization we have that the composed polynomial has degree at most T degQ, theproduct has degree T and ρ = T

|D| , so the gap promise is
δ ⩾ 1− T

|D|
max(2, degQ).

Objective of the internship2
Other arithmetizations can use different error-correcting codes to achieve different properties, likealgebraic geometry codes [BLNR22]. The objective of the internship was to create a protocol similarto FRI for Interleaved Reed-Solomon codes.It is motivated by the fact that in practice, several proofs must be done for several codewords, somaybe them can help to improve parameters as it does in coding theory.

Interleaved codes2.1

In the practical use of error-correcting codes, it often happens to encode successively severalmessages. And in some models of error, we consider that an error occurs on successive bits. So anidea to improve the decodability is to interleave the messages in order to have only a bit of eachmessage with one error (which we can correct), instead of having one message fully erroneous.
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Interleaved error-correcting codeDefinition 2.1Given a code C ⊆ Fn, its ℓ-interleaved code associated is
 u1,1 u1,2 · · · u1,n... ... . . . ...

uℓ,1 uℓ,2 · · · uℓ,n


∣∣∣∣∣∣∣u1, ..., uℓ ∈ C

 .
IRS[D, ρ, ℓ] denotes the ℓ-interleaved code on the code RS[D, ρ].

The difference between the interleaved code and a simple concatenation of codewords is thedistance. The distance between two matricial words u and v is the number of indices i such that the
ith column of u is different from the ith column of v. Equivalently the code can be considered on thealphabet Fℓ in order to use the same Hamming distance.

Maximum distance and list-decoding2.2

Denote by δ ∈ [0, 1] the gap promise. The soundness of the protocol is a function increasing in δ.However the proofs of soundness are valid only for bounded values of δ. RS[D, ρ] has a property tellingthat a word from the ambiant space is at distance at most 1− ρ from any codeword (by interpolation),so 1 − ρ is the largest theoretical bound. But all the formulas for soundness that have been foundare only proven for δ smaller. The best results, in [BCI+20], achieves δ ⩽ δmax = 1 − √ρ. Thislimitation is due to a code-related technique that is used in the proofs of the soundness, which iscalled list-decoding.Usually, when using error-correcting codes, one wants to be able to recover the only correctcodeword associated to an erroneous received word. This is only possible if the error introduced issmall, otherwise there can be several choices of codewords to correct the received word. Getting alist of the closests codewords to a received word is called list-decoding that word.
List-decodabilityDefinition 2.2Let Σ be a finite alphabet and S ⊆ Σn. S is said to be (δ, µ)-list-decodable if any ball of Σn ofradius δ (for the Hamming distance) contains at most µ elements of S, i.e.

∀u ∈ Σn, |B(u, δ) ∩ S| ⩽ µ.
In the proofs of soundness we have to reconstruct codewords from the received proof polynomial,so the proofs use list-decoding, and they are therefore limited to the range of nice list-decoding. Animportant and very general result for list-decoding is the Johnson bound, which is a general bound onthe size of the list-decoding for general codes (not even linear).

Johnson boundTheorem 2.3

For ε ∈]0, 1], let Jε : δ 7→ 1−
√

1− δ(1− ε). If Σ is a finite alphabet, n ∈ N, S ⊆ Σn, and ε ∈]0, 1],then S is (Jε(∆(S)), 1ε )-list-decodable.
This result is used as such in the proofs of soundness of [BKS18] and [BGKS20]. It bounds δ tobe smaller than ∆(S), and the soundness is a decreasing function of the size of the list. Interleavedcodes may be interesting to achieve a better bound.

Interest of interleaved Reed-Solomon codes2.3

An important property of IRS[D, ρ, ℓ] is that an error on at most ℓ
ℓ+1(1 − ρ) columns and that isuniformly distributed on each coordinate can be uniquely corrected with high probability.

Probabilistic decoding of an IRS [Zap20]Proposition 2.4There is an algorithm such that, given an erroneous word received u = v+ e, with v ∈ IRS, if e hasat most ℓ
ℓ+1(1− ρ) non-null columns and if each non-null column of e is uniformly distributed, the
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algorithm to recover v from u with probability O(1/|F|), probability taken on e.
This property looks like some “probabilistic list-decoding”, telling that given a received word u,with some probability p = O(1/|F|), the ball of radius δ = ℓ

ℓ+1(1 − ρ) contains at most µ = 1codewords. The field F will be chosen to be really huge in practice, so p is somehow negligible. Themaximum distance δ is far better than any deterministic known result. And µ = 1 is also far betterany 1/ε that we would get with the Johnson bound. The first part of the internship was to revisit thedifferent proofs to replace the use of the Johnson bound by a hypothesis of probabilistic list-decoding.The issue with Proposition 2.4 is that the probability is somehow taken on the random choice of
u, i.e. in our context on the proof polynomial. Since the prover is adversarial, it could take u’s thatdoes not satisfy this property.

Objective of the internshipGeneralize proofs of soundness of the FRI protocol so that they can be used to build a similarprotocol with interleaved codes, with a better bound on the maximum distance δmax.
This objective has been achieved in Part II, modulo finding a suitable revisiting of Proposition 2.4.Therefore, as advised by Daniel Augot, I worked on the last part of my internship, in Part III, on under-standing the use of De Bruijn graphs in some arithmetization compared to the other arithmetization.

Part II
FRI protocol with IRS

FRI protocol3
The protocol described in Section 1.3.2 respects perfect completeness by construction, and for apractical use we want the soundness to be cryptographically small. To achieve this we need to computebounds on the soundness, which will be a function of the gap promise δ and of the parameters (thefield, the number of repetition of the query phase, and other parameters like ε that will appear next).

Soundness of the FRI protocol [BKS18]3.1

In this section we use the notations introduced in Definition 1.10.During the commit phase, the bad thing that can happen is that f is far from the code, yet therandom value α drawn by the verifier to fold f makes Fold[f, α] closer to the code. Corollary 3.2 givesthe probability (on the choice of α) that the distance to the code reduces by folding.During the query phase, the bad thing that can happen is that the prover cheated on only somevalues of a folding and that the verifier doesn’t check these values. Proposition 3.3 gives the probabilityfor the verifier not to detect an error during the query phase.
Commit phase soundness3.1.1

With f : Di → F, Vi = RS[Di, ρ] and Vi+1 = RS[Di+1, ρ], we want to bound
P

α∈F

(
∆(Fold[f, α], Vi+1) ⩽ ∆(f, Vi)− ε

).
Theorem 3.1 will be used by contrapositive to show that if two words don’t coincide with codewordson a same big enough support, then there are not a lot of α’s that make their combination get closerto the code than what they were both.It is in Theorem 3.1 that the constraint δ ⩽ δmax appears. The next results will inherit thishypothesis. For this section we will set δmax := Jε(Jε(∆(V0))), with ε a parameter we can choose.The Johnson bound is used twice in the proof of Theorem 3.1, so δmax is a composition of twice theJohnson function.
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[BKS18]Theorem 3.1Let V ⊆ Fn be a linear code. Let u∗, u ∈ Fn and ε, δ > 0 such that δ ⩽ δmax.Let A = {α ∈ F | ∆(u∗ + αu, V ) < δ − ε}.If |A| > 2
ε3

then there exists T ⊆ [[1, n]] such that u|T ∈ V|T , u∗|T ∈ V ∗
|T and |T | > (1− δ)n.

Proof.For α ∈ A, denote by vα an element of V such that ∆(u∗ +αu, vα) < δ− ε, i.e. ∆(u∗, vα−αu) <
δ − ε.Consider the graph G = (A,E) where

E = {(α, α′) | ∆(vα − αu, vα
′ − α′u) < J−1

ε (δ)},
and coG = (A,A2 \ E) its complement graph.Let SA ⊆ A be a clique of coG and S = {vα − αu | α ∈ SA}. Since SA is a clique of coG, wehave ∆(S) ⩾ J−1

ε (δ), so by applying the Johnson bound we get that S is (δ, 1ε )-list decodable, so
|B(u∗, δ) ∩ S| ⩽ 1

ε
. (2)

But since ∆(u∗, vα − αu) < δ − ε by definition of vα, we get that B(u∗, δ) ∩ S = S. So |SA| ⩽ 1
ε .Therefore coG doesn’t have any clique of size > 1

ε . We are now going to use Turán’s theorem.
Turán’s theoremTheorem

Every graph with n vertices that does not contain a clique of size r + 1 has at most (1− 1
r )

n2

2edges.
By applying Turán’s theorem on coG, we get that G has at least ε |A|(|A|−1)

2 edges. Therefore∑
α∈A degG(α) = ε|A|(|A| − 1) so there exists α0 ∈ A such that degG(α0) ⩾ ε|A| − 1. Let

B = {α ∈ A | (α0, α) ∈ E}.
Then |B| ⩾ ε|A| − 1 and for all α ∈ B,

∆(vα0 − α0u, v
α − αu) = ∆

(
u,

1

α− α0
(vα − vα0)

)
< J−1

ε (δ).
Let Cv =

{
α ∈ B | v = 1

α0−α(v
α − vα0)

} and Vu = V ∩B(u, Jε(λ)). Then B is the disjoint union⊔
v∈Vu

Cv , so |B| = ∑
v∈Vu

|Cv|. Therefore there exists v ∈ Vu such that |Cv| ⩾ 1
|Vu| |B|. ByJohnson’s bound, we have that

|B(u, J−1
ε (δ)) ∩ V | ⩽ 1

ε
, (3)

so |Cv| ⩾ ε|B|. For all α ∈ Cv , v = 1
α−α0

(vα − vα0), so with v∗ = vα0 − α0v, we have that for all
α ∈ Cv , vα = v∗ + αv. So by definition of vα, for all α ∈ Cv , ∆(u∗ − v∗, α(v − u)) < δ − ε.Let T = {i ∈ [[1, n]] | (u∗i , ui) ̸= (v∗i , vi)}. Let Dα = {i ∈ T | u∗i − v∗i = α(vi−ui)}. For i ∈ T therecan be at most one α ∈ Cv such that u∗i − v∗i = α(vi − ui) (u∗

i−v∗i
vi−ui

if vi ̸= ui, and none if vi = uiand v∗i ̸= u∗i ). I.e. for i ∈ T there is at most one α ∈ Cv such that i ∈ Dα.
So we have ∑α∈Cv

|Dα| ⩽ |T | and there exists α1 such that |Dα1 | ⩽
|T |
|Cv | ⩽

n
|Cv | . If i ∈ T , and if

i /∈ Dα1 , we have that u∗i − v∗i ̸= α1(vi − ui). Thus with T = [[1, n]] \ T ,
δ − ε > ∆(u∗ − v∗, α1(v − u)) ⩾ 1− |T |

n︸ ︷︷ ︸
i/∈T

− |Dα1 |
n

︸ ︷︷ ︸
i/∈Dα1

⩾ 1− |T |
n
− 1

|Cv|
.

Since |Cv| ⩾ ε|B| ⩾ ε(ε|A| − 1) ⩾ 1
ε , |T | > n

(
1− δ + ε− 1

|Cv |

)
⩾ (1− δ)n.
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This is the proof from [BKS18] on which I added necessary details. Note that the Johnson boundis used only to get Equations (2) and (3). In section 3.2 we will take as hypothesis Equations (2)and (3) with more general parameters than 1/ε and δ but still centered in u∗ and u, hoping that wewill be able to prove that hypothesis for u∗ and u.This important result can now be applied in the context of the FRI protocol to get the “commitsoundness”.
Commit soundness [BKS18]Corollary 3.2Let f : Di → F be an arbitrary function. Let ε > 0 and δ = min (∆ (f, Vi) , δmax). Then

P
α∈F

(∆ (Fold[f, α], Vi+1) ⩽ δ − ε) ⩽
2

ε3|F|
.

Proof.We use Theorem 3.1 by contrapositive with A = {α ∈ F | ∆(Fold[f, α], Vi+1) ⩽ δ − ε)}.If by contradiction |A| > 2
ε3

, then there exists Q1, Q2 ∈ Vi+1 and a subset T ⊆ Di+1 as inTheorem 3.1.Then with R(X) = Q1(X
2) +XQ2(X

2) we have
deg(R) ⩽ 2max(deg(Q1),deg(Q2)) + 1 ⩽ 2k−i − 1 < 2k−i,

so R ∈ Vi, and thus ∆(f, Vi) ⩽ 1− |T |
|Di+1| < δ contradicts our assumption.

Query phase soundness3.1.2

Now that we have the soundness for the commit phase, we can compute the soundness for thequery phase assuming that the functions committed don’t get closer to the code, i.e. that there is nocommit error. This is thanks to the formula of total probability:
P(V accepts) = P(V accepts | commit error)P(commit error)

+ P(V accepts | commit error)P(commit error)
⩽ P (commit error) + P

(
V accepts ∣∣ commit error) .

Query soundness [BKS18]Proposition 3.3Let ε > 0, m ∈ N∗, δ := ∆(f0, V0) and r such that 2r = ρ|D0|.Assuming that for all i, ∆(Fold[fi, xi], Vi+1) > δi − ε, the probability not to detect an error bydoing m iterations of the query phase is at most (1−min(δ, δmax) + rε)m.
Now, combining Corollary 3.2 and Proposition 3.3 we get the soundness of the whole protocol.

FRI protocol soundness [BKS18]Theorem 3.4Let ε > 0, l ∈ N∗, δ := ∆(f0, V0) and r ∈ N such that 2r = ρ|D0|.When the FRI protocol is invoked on f0 : D0 → F with m iterations of the query phase, if
δ := ∆(f0, V0) > 0 then the verifier accepts with probability at most

2r

ε3|F|
+ (1−min(δ, δmax) + rε)m ,

where the probability is taken on the αi’s and the s0’s.
The reworked proof of both Corollary 3.2 and Theorem 3.4 is detailled in Appendix A.1.1.The parameters we can adjust to get the required soundness are ε, |F| and m. m adds interaction,which makes the proof longer, ε must be big in the commit soundness and must be small in the querysoundness, and F must be very big to counter ε3 but it makes all the computations more expensive.Having a larger δmax allows to reduce the query soundness and therefore to reduce the size of theproof.
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Generalization3.2

The idea is to revisit the proofs of Theorem 3.1 and Corollary 3.2 but to remove the use of theJohnson bound, which is only used on the specific words u∗ and u, by a “local list-decodability”.First, here is the most general generalization of Theorem 3.1. But the hypothesis Equation (4)is too unconvenient because it is not applied to the code but to a set S that is not totally arbitrary.Corollary 3.7 below is a simpler version.
Generalization of Theorem 3.1 (inspired from [BKS18])Theorem 3.5Let V ⊆ Fn be a linear code. Let ε, δ, γ∗, γ > 0 such that δ ⩽ γ∗ + ε. Let µ, µ∗ ∈ N∗. Let

u∗, u ∈ Fn.Let A = {α ∈ F | ∆(u∗ + αu, V ) < δ − ε} and let vα ∈ V be the closest element to u∗ + αu.Suppose that
∀S ⊆ {vα − αu |α ∈ A}, if ∆(S) ⩾ γ then |B(u∗, γ∗) ∩ S| ⩽ µ∗ (4)

|B(u, γ) ∩ V | ⩽ µ. (5)If |A| > 2µµ∗

ε then there exists T ⊆ [[1, n]] such that u|T ∈ V|T , u∗|T ∈ V ∗
|T and |T | > (1− δ)n.

The proof is exactly the same as for Theorem 3.1 and a detailled version is available in Ap-pendix A.1.2. To see that this result is indeed a generalization we can prove Theorem 3.1 with it.
Theorem 3.1 by application of Theorem 3.5Example 3.6

Let δ, ε > 0 such that δ ⩽ Jε(Jε(λ)). Let γ = J−1
ε (δ), γ∗ = δ, µ = µ∗ = 1

ε . We have that δ ⩽ γ∗. Forall S ⊆ Fn such that ∆(S) ⩾ J−1
ε (δ), we have |B(u∗, δ)∩S| ⩽ 1

ε by Johnson bound. Also by Johnsonbound, |B(u, Jε(λ) ∩ V | ⩽ 1
ε . Since J−1

ε (δ) ⩽ Jε(λ), |B(u, J−1
ε (δ)) ∩ V | ⩽ |B(u, Jε(λ)) ∩ V | ⩽ 1

ε .
Equation (4) replaces the use of the Johnson bound to get Equation (2) in Theorem 3.1 andEquation (5) replaces the Johnson bound to get Equation (3). However Equation (4) is not appliedon the code but to a set S that won’t have the required properties. For this one it seems that theJonhson bound will be the best we will achieve.

Theorem 3.5 with only one JohnsonCorollary 3.7Let V ⊆ Fn be a linear code. Let ε, δ, γ > 0 such that δ ⩽ δmax := Jε(γ) + ε. Let µ ∈ N∗. Let
u∗, u ∈ Fn.Let A = {α ∈ F | ∆(u∗ + αu, V ) < δ − ε}. Suppose that

|B(u, γ) ∩ V | ⩽ µ. (6)
If |A| > 2µ

ε2
then there exists T ⊆ [[1, n]] such that u|T ∈ V|T , u∗|T ∈ V ∗

|T and |T | > (1− δ)n.
In Theorem 3.5 we see that we have δmax = γ∗+ε, and in Corollary 3.7 we have δmax = Jε(γ)+ε,which won’t be better than the state of the art [BCI+20].

Commit soundness, generalization (inspired from [BKS18])Lemma 3.8Let f : Di → F, µ and δ, ε, γ > 0 such that δ = ∆(f, Vi). Let f0 and f1 be the even and odd partsof f . Let A = {α ∈ F | ∆(Fold[f, α], Vi+1) < δ− ε} and suppose that Equation (6) of Corollary 3.7is satisfied with u := f1.Then
P

x∈F
(∆(Fold(f, x), Vi+1) < δ − ε) ⩽

µ

F
.

This result inherits the δmax of Corollary 3.7. The proof is exactly the same as for Corollary 3.2,replacing ε by 1
µ , and is also detailled in Appendix A.1.2.
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Lemma 3.8 is compatible with Proposition 3.3, which gives the soundness of the whole protocol:
2µr

ε2|F|
+ (1−min(δ, δmax) + rε)m .

Since the application to IRS would not have improved δmax further than [BCI+20] I did not pushfurther this direction. Moreover it appeared at this point that it would not have been possible to useIRS because there is no randomness on word for which we want Equation (6). Therefore I worked onanother approach of the FRI protocol, which is only a bit more complex, and in which it is possible tocompletely replace the use of any Johnson bound.
DEEP method4

The DEEP-FRI protocol was introduced in [BGKS20]. DEEP is an acronym for Domain Extendingfor Eliminating Pretenders. The DEEP-FRI protocol is an IOPP protocol for Reed-Solomon codesthat aims to improve the soundness of the FRI protocol by evaluating the functions outside of theevaluation set.The advantage of this protocol over the FRI is that the word on which the Johnson bound isapplied depends on some randomness of the verifier. In the previous part, the Johnson bound wasapplied on words u∗ and u chosen by the prover, but here it will be applied on u∗+αu with α chosenrandomly by the verifier. It gives two advantages: the first is that the Johnson bound is used onlyonce, and the second is that having randomness of the verifier makes the hypothesis we are doingon u∗ + αu (Hypothesis 4.5) is a kind of probabilistic list-decoding, which is what we are expectingfrom interleaved codes (see Section 4.3). Unfortunately we will see that I haven’t been able to findinteresting results using the properties of IRS by using so few randomness.
The DEEP-FRI protocol [BGKS20]4.1

Only the commit phase changes between the FRI and DEEP-FRI protocol. The idea is to be ableto evaluate the functions out of their domains Di.
Commit phase of the DEEP-FRI protocol [BGKS20]Definition 4.1The verifier sends a random element z of the field so that the prover commits a folding Bz(X) :=

Fold[f,X](z), then the verifier sends another random element α to fold around, and the provercommits the new function derived from the folding, f(X) := Fold[f,α](X)−Bz(α)
X−z .

Prover Verifier
z0

$← Fz0

B1,z0 : F→ F(B1,z0(X) = Fold[f0, X](z0)) B1,z0

α0
$← Fα0

f1 : D1 → F(f1(X) =
Fold[f0,α0](X)−B1,z0 (α0)

X−z0
) f1......

...
zr−1

$← Fzr−1

Br,zr−1 : F→ F(Br,zr−1(X) = Fold[fr−1, X](zr−1)) fr

αr−1
$← Fαr−1

fr : Dr → F(fr(X) =
Fold[fr−1,αr−1](X)−Br,zr−1 (αr−1)

X−zr−1
) fr

comm
it

The query phase works the same way but the verification of the functions fi’s doesn’t have thesame expression.
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Verifier chooses s0
$← D0, defines si+1 := s2i and accepts if

Fold[f0, α0](s1) = (si+1 − zi)fi+1(si+1) +Bi+1,zi(αi)...
Fold[fr−1, αr−1](sr) = (sr − zr−1)fr(sr) +Br,zr−1(αr−1).

repeatquery
The equivalent of Theorem 3.1 and Corollary 3.2 is the following theorem.

Notation 4.2

For z, b ∈ F, let V z,b := {f ∈ V | f(z) = b} ⊆ V be the subcode where codewords evaluate to b on
z.

DEEP method for RS codes [BGKS20]Theorem 4.3

Let V = RS[D, ρ]. For δ > 0, let µδ ∈ N such that V is (δ, µδ)-liste-decodable. Let u∗, u ∈ FD .Let δ > 0 and 0 < ε < 1
3 . Suppose that

P
x,z∈F

(
∆(u∗ + xu, V z,Bz(x)) < δ

)
⩾ 2µδ ·

(
ρ|D|
|F|

+ ε

)1/3

+
4

ε2|F|
. (7)

Then there exists T ⊆ D such that u∗|T ∈ V|T , u|T ∈ V|T and |T | > (1− δ − ε)|D|.
The proof of a more general result (Proposition A.4) is detailled in Appendix A.2. Equation (7)gives the commit phase soundness for the DEEP-FRI protocol. The right term looks like the soundnessof Corollary 3.2. Notice that there is only one Johnson bound used here, so there is an ε2 at thedenominator whereas there is an ε3 for Corollary 3.2. The first term of Equation (7) is used to createa line in some space to extend the evaluation space of the words. It requires taking 3 random points,so the probability will be cubed and there is the cube root here.

Application to IRS4.2

The DEEP-FII protocol (DEEP-Fast IRS IOPP) will be exactly the DEEP-FRI protocol, exceptthat the zi’s and αi’s are taken in Fℓ, the functions Bi,z are Fℓ → Fℓ and the fi are Di → Fℓ with
D ⊆ F (see Definition B.1). I worked with Sarah Bordage to make sure that the protocol is correct.

Interleaved foldingDefinition 4.4

Let f : F∗ → Fℓ and α =

 α1...
αℓ

 ∈ Fℓ. Let f1, ..., fℓ : F∗ → F such that f =

 f1...
fℓ

. Then

Fold[f, α] =

 Fold[f1, α1]...
Fold[fℓ, αℓ]

 .
The result we will need to replace the Johnson bound is something like the following. We want tohave a value p and δmax as high as possible, and µ ∈ N as low as possible, maybe µ = 1, such thatthe following holds.

(µ, p, δmax)-hypothesis for probabilistic list-decoding on an arbitrary
line of an IRS

Hypothesis 4.5

Let µ ∈ N and p, δmax ∈ [0, 1]. Let V = IRS[D, ρ, ℓ] ⊆ Fn×ℓ. Let u∗, u ∈ Fn×ℓ be arbritrary points
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of the ambiant space. Then
P

α∈F

(
|B(u∗ + αu, δmax) ∩ V | ⩽ µ

)
⩾ p. (8)

Note that we can easily have p = 1 with µ := 1
ε and δmax := Jε(1 − ρ) ≈ 1 − √ρ the Johnsonbound, or even p = 1 and µ = 1, with δmax := 1

2(1 − ρ) the deterministic unique decoding radius.But we want to have δ as close to 1 − ρ as possible. We can also have δmax = 1 − ρ but then µbecomes exponential in the size of D, which makes the soundness explode. Here we are targetting
δmax := ℓ

ℓ+1(1 − ρ), because results like Proposition 2.4 suggests that it should provide satisfyingresults.The application of Theorem 4.3 to IRS will be the following.
DEEP method for Interleaved Reed-Solomon codes with probability
on the list bound

Proposition 4.6

Let µ ∈ N, p, δmax ∈ [0, 1], and suppose that Hypothesis 4.5 is valid for (µ, p, δmax).Let V = IRS[D, ρ, ℓ]. Let u∗, u ∈ FD×ℓ, 0 < δ ⩽ δmax and 0 < ε ⩽ 1
3 . Denote η = 2µ ·(

ρ|D|
|F| + ε

)1/3
+ 4

ε2|F| the same probability as in Equation (7), with µ generalizing µδ . Suppose that
P

α∈F,z∈F
(∆(u∗ + αu, V z,Bz(α)) < δ) ⩾ pη + (1− p). (9)

Then there exists T ⊆ D such that u∗|T ∈ V|T , u|T ∈ V|T and |T | > (1− δ − ε)|D|.
As for Theorem 4.3, the proof of Proposition A.4, a more general result, is detailled in Appendix A.2.Equation (9) justifies that we want to have p as close to 1 as possible. If p = 1 then we get η as inTheorem 4.3, and if p = 0 then we get 1 which is useless. The soundness theorem associated is alsoalmost the same as in [BGKS20], so I have not worked on the proof.

Soundness theorem for the DEEP-FII protocol (almost [BGKS20])Theorem 4.7Let µ ∈ N, p, δmax ∈ [0, 1], and suppose that Hypothesis 4.5 is valid for (µ, p, δmax).Then, when the DEEP-FII protocol is invoked on oracle f0 : D0 → Fℓ, with m iterations of thequery phase, if δ = ∆(f0, V0) > 0 then the verifier accepts with probability at most
(pη + 1− p) log |D0|︸ ︷︷ ︸commit soundness + (1−min(δ, δmax) + (log |D0| − 2r)ε)m︸ ︷︷ ︸query soundness ,

with η = 2µ ·
(
ρ|D0|
|F| + ε

)1/3
+ 4

ε2|F| and where the probability is taken on the zi’s, αi’s and s0’s.
Hypothesis 4.54.3

I have not stated Hypothesis 4.5 as a result I have not been able to prove it for interesting valuesof µ, p, δmax. I worked with Daniel Augot, Ilaria Zappatore and Sarah Bordage to try to get such aresult.The first approach was to start from Proposition 2.4 adapt the proof to our case, but it stronglyuses the fact that the error columns must be uniformly random. There is not enough randomness inthe protocol. There are only ℓ random bits at each step, which doesn’t seem te be enough. Having |D|random bits would work but D is really huge in practice, making such a protocol completely uselessbecause of the communication complexity.Another approach was to say that the columns of the matrix u∗+αu will behave almost randomly,and therefore the non null columns of the difference between u∗+αu and the closest codeword wouldbe linearly independent with a good probability, in order to apply the two following results.
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Correction of interleaved codes with linearly independent error columns
[MK90]

Theorem 4.8

Let V ⊆ Fn×ℓ be a linear code of minimal distance d. If the code is seen as a code over Fℓ, thenany pattern of d− 2 or less errors can be corrected if the error columns are linearly independent.
But unfortunalety this cannot work because the prover can commit two words that will never forma line of words with linearly independent error columns, as shown in the following counterexample.

CounterexampleExample 4.9

Suppose that the prover commits words u = v + e and u∗ = v∗ + e, with v, v∗ ∈ V and e ∈ Fℓ×n,where the non-null columns of e are linearly dependent. Then ∀α ∈ F, ux = v∗ + αv + (1 + α)e =
vx + (1 + α)e. So the "error" of u∗ + αu has linearly dependent non-null columns with probability
1 over the choice of α.

A last idea, but that I have not explored, is to only consider the functions that the prover can commit,i.e. the functions that can be obained by arithmetization. We already know that these functions havea gap promise property (Lemma 1.11), so maybe there are other interesting properties, and restrictingHypothesis 4.5 to u∗ and u obtained by arithmetization allows to get more interesting results.
Part III
De Bruijn graphs for arithmetization

Circuits to De Bruijn graphs [Spi95]5

Colored wrapped de Bruijn graphs to represent circuits5.1

The use of De Bruijn graphs to represent circuits was introduced in [Spi95]. I first thought that theiruse was similar in [BBHR18b], so I studied this, but in fact it is completely different. Nevertheless, itmakes a good introduction to De Bruijn graphs and the arithmetization is interesting.
Wrapped De Bruijn graphDefinition 5.1The wrapped De Bruijn graph (or simply De Bruijn graph) of parameter n is the directed graph

Bn = (Vn, En) where
Vn =

{
(i, (x1, ..., xn)) | i ∈ Z/nZ, xi ∈ {0, 1}

}
,

and the edges are (i, (x1, ..., xn))→ (i+ 1, (x2, ..., xn, b)) with b ∈ {0, 1}.
De Bruijn graphExample 5.2Here is the wrapped De Bruijn graph of size n = 3.

0
1
2
3

000 001 010 011 100 101 110 111

An interesting property is that there is exactly one path of length n from a node (0, (x1, ..., xn))to any node (0, (y1, ..., yn)). There are two edges going out from a node, so a bitstring can denote a
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path in the graph. For b ∈ {0, 1}, by denoting b the edge (i, (x1, ..., xn))→ (i+1, (x2, ..., xn, x1 ⊕ b),the path from (x1, ..., xn) to (y1, ..., yn) is (x1 ⊕ y1, ..., xn ⊕ yn).A wrapped De Bruijn graph of size n is able to represent a circuit of log2 n gates, includingadditional gates for the inputs and the output. But we have to specify a routing that representsthe given circuit. To make an analogy, a circuit can be easily embedded in a complete binary treewith some leaves representing the inputs, some nodes representing gates and the root representingthe output. De Bruijn graphs are like complete binary trees and we have to specify which nodescorrespond to which gate, and what is the effective connection between them.We want to represent the circuit as a coloring of the graph. So the gates and routing will berepresented as colors. So it is not the edges that will be marked, but the nodes. There is one line,the line i = 0, that will be used to represent the gates. The other nodes are only used for routing.Every node has two inputs and two outputs, so the possible connections for the routing nodes are the9 following.

The nodes representing a gate also have to represent their routing. All routings are not possiblefor each gate (the gates have 0, 1 or 2 inputs for example). The possible coloring are 15 the following.
∧ ∧ ∧ ∨ ∨ ∨ in in in

¬ ¬ ¬ ¬ ¬ ¬ out out
Thus an instance of circuit can be represented as a 24 colors coloring of a wrapped De Bruijngraph.

Instance of circuit as De Bruijn graphExample 5.3Here are a circuit and the associated colored De Bruijn graph.
in in

∧

out
in in ∧ out

Now we also want to represent the witness. The witness of satisfiyability could in theory be thevalues of the inputs, but checking that the witness is valid would require to go through all the circuit,which we want to avoid. Instead we want the witness to be a proof, so we will also represent thewitness as a coloring telling for each node which entries or outputs are mapped to true and whichentries or outputs are mapped to false. So a witness of satisfyability of a circuit can be representedas a 24 colors coloring of a De Bruijn graph. Given an instance and a witness we will only check localconsistency on random nodes to be convinced of the validity of the witness.
De Bruijn graphs arithmetization5.2

For arithmetization we see the graph Bn as a subset of A × F2n/2 × F2n/2 where A = {αi | 0 ⩽
i ⩽ n− 1} and α is a generator of the multiplicative group of F2n/2 . The node (t, x, y) has edges to
(αt, y, αx) and (αt, y, αx+ 1). x and y are swapped but this graph is isomorphic to the wrapped DeBruijn graph defined earlier. An instance is a coloring, so we see it as a function A×Fn/2×Fn/2 → C1where C1 ⊆ Fn/2 is a first set of colors. A solution is another coloring, so we also see it as a function
A× Fn/2 × Fn/2 → C2 where C2 ⊆ Fn/2 is a second set of colors.To check that a witness is valid, we want to check only locally. In order to check the validity ofone node, we will check the consistency of the witness colors of the node with its two neighbors, withrespect to their instance color. A tuple (i0, i1, i2, w0, w1, w2) ∈ C3

1 × C3
2 is valid if a lot of rules aresatisfies. A couple (ij , wj) respects validity if the inputs and outputs of the node (in wj) respects the
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wiring. For a routing node it means that inputs are linked to outputs of same value (true or false),and for gate nodes it means that the inputs are linked to outputs with a value respecting the gate (∧,
∨ and ¬ are applied). A tuple (i0, ij , w0, wj) respects validity if, in the case where there is a wirebetween these nodes, if the output value of the first node is the same as the input value of the secondnode. If there is no wire between these nodes then it always respects validity.With all these rules, it is possible to create a polynomial χ ∈ F[X0, X1, X2, Y0, Y1, Y2] interpolatingthe valid values of colors (seen as elements of F) to 0.

Example 5.4These nodes are locally correct:
10

10
1

11

0

0

Therefore χ

 , , ,
10
10 ,

1
11 ,

0
0

 = 0, but χ , , ,
10
10 ,

0
00 ,

0
0

 ̸= 0.
And there are similar rules for gates, like these ones:

∧

11

1
1

1

¬

1

00
0

0

0

00

in0
0

0

De Bruijn graphs to check the memory consis-
tency [BBHR18b]

6

With the arithmetization described in Section 1.2, the execution trace of a computation of T stepsand using R registers has size RT . So if the computation has a high memory complexity (R = Ω(T ))then the execution trace has size O(T 2), which is too big. [BBHR18b] proposes another arithmetizationsuch that the witness of the correct execution has always size O(T log T ).
Checking the memory trace [Per17, BBHR18b]6.1

The idea is to notice that at each step, only one register is accessed, so it is not necessary toconsider all the registers at each step in the execution trace. Instead we consider a trace of theaccesses to the memory. Like in Section 1.2 we consider a subgroup H ⊆ F∗ of size T + 1 andgenerator g.
Memory traceDefinition 6.1A memory trace is represented by three functions:

• l : H → {read,write, ignore} ⊆ F telling if the memory is read, written or ignored,
• a : H → F giving the adress of the accessed cell, and
• v : H → F giving the value that is read or written in the memory.
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A memory trace is valid if, whenever a value is read in a cell, it corresponds to the value that waspreviously in the cell.
Valid memory trace [Per17]Definition 6.2A memory trace (l, a, v) is valid if for any t ∈ [[1, T ]] such that l(gt) = read, with t0 < t the maximumtime such that l(gt0) ̸= ignore and a(gt0) = a(gt), we have v(gt0) = v(gt).

Checking the validity of a memory trace can done efficiently if the verifier knows of a permutation
σ : H → H sorting the time steps by first the adress and second the time (i.e. t 7→ (a(σ(gt)), σ(gt))is an increasing function for the dictionnary order and any order on F). With such a permutationwe can construct a constraint polynomial Q(X1, X2, X3, Y1, Y2, Y3) such that with L(X), A(X), V (X)polynomials interpolating l, a, v on H and

P (X) := Q(L(σ(X)), A(σ(X)), V (σ(X)), L(gσ(X)), A(gσ(X)), V (gσ(X))), (10)
we have that ∀t ∈ [[1, T ]], P (gt) = 0 iff the memory trace is valid. For this we must have

Q(X1, X2, X3, Y1, Y2, Y3) = 0 iff (X1 = read ∧ Y1 ̸= ignore ∧X2 = Y2)⇒ X3 = Y3.
The issue is that it is not possible to ensure that σ is a permutation and that the prover is notcheating with an arbitrary function H → H . This is the subject of Section 6.2.The memory trace, together with a sorting permutation, could be sufficient to check the validityof the memory, but it is impractical to check the validity of the execution. [Per17] gives the explicitconstruction of polynomial constraints for all the possible computation steps, and in particular thenumber of simultaneous register required, and [BBHR18b] claims that R = O(log T ) registers sufficesto have an execution trace that can be efficiently generated and verified. In this new arithmetizationthere are three types of constraints.

Permuted execution trace constraints [BBHR18b]Definition 6.3There are three types of constraints to check the validity of a computation:
• The local constraints.
• The execution constraints Q’s, such that ∀t, Q(r(gt), r(gt+1)) = 0.
• The memory constraints Q’s, such that ∀t, Q(r(gt), r(π(gt))) = 0.

The memory constraints are written differently than in Equation (10), but with π(x) = σ−1(gσ(x))it is equivalent to test the consistency of all gt with π(gt) and to check the consistency of all σ(gt)with gσ(gt).
De Bruijn graphs to algebraize permutations [BBHR18b]6.2

Let n ∈ N such that 2n = T + 1. We saw in Section 5 that in a wrapped De Bruijn graph it ispossible to go from a node (0, (x1, ..., xn)) to any node (0, (y1, ..., yn)) in n steps. In fact it is possibleto use a routing coloring of a De Bruijn graph (without gate nodes) to represent a lot of functions
{0, 1}n → {0, 1}n, including the permutations. Furthermore, it is possible to encode the nodes of aDe Bruijn graph in F in such a way that there are 8 affine functions such that the two neighbors of anode are its image by two of these functions.

Algebraic De Bruijn graph [BBHR18b]Definition 6.4Let g0 ∈ F be a primitive element, k := ⌈log(n + 1)⌉, and ξ be a primitive binary polynomial ofdegree k. The node (yk−1...y0
2, (x0, ..., xn−1)) of the De Bruijn graph of size n is represented as

n−1∑
j=0

xjg
j
0 + gn0

k−1∑
j=0

yjg
j
0 = x+ gn0 y.
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Therefore the neighbors of the node x+ gn0 y are the vb(x+ gn0 y) for b ∈ {0, 1}, where
vb(x+ gny) = vxn−2,yk−1,b(x+ gn0 y) vb1,b2,b3(z) := g0z + b1(g

n
0 + 1) + b2(g

n
0 ξ) + b3.

Note that for all b1, b2, b3 ∈ {0, 1}, vb1,b2,b3 is an affine function. Now we allow ourselves to useboth writings undistinctly.Theorem 6.5 gives a way to ensure that the function π given by the prover is a permutation.
Affine permutation [BBHR18b]Theorem 6.5Let (Vn, En) be the De Bruijn graph of size n. Let c0, c1 : Vn → C := {gt | 0 ⩽ t ⩽ T} be coloringssuch that

1. w 7→ c0(0, w) is injective,
2. ∀w ∈ {0, 1}n, c0(n− 1, w) = c1(n− 1, w), and
3. for b ∈ {0, 1}, cb(i, w) is equal to cb(v0(i, w)) or cb(v1(i, w)).Then the function π : C → C induced by ∀w, π(c0(0, w)) = c1(0, w) is a permutation.Conversely, for any permutation π : C → C , there exists colorings c0 and c1 satisfying the threeproperties above.

Let c0, c1 : Vn → C be the colorings induced by Theorem 6.5 for π. Let C0, C1 ∈ F[X] interpolating
c0, c1 on Vn. By Theorem 6.5 we have that π is a permutation iff
1. C0(X) − C∗(X) cancels on {(i, w) ∈ Vn | i = 0}, with C∗(X) interpolating a canonical bijection

c∗ : {(i, w) ∈ Vn | i = 0} → C which is known by the verifier,
2. C0(X)− C1(X) cancels on {(i, w) ∈ Vn | i = n− 1}, and
3. For b ∈ {0, 1}, (Cb(X)− Cb(v0(X))

)(
Cb(X)− Cb(v1(X))

) cancels on Vn.
And Furthermore, we have
∀t ∈ [[1, T ]], P (r(gt), r(π(gt))) = 0 iff ∀w ∈ {0, 1}n, P (r(C0(0, w)), r(C1(0, w))) = 0.

So we have constructed constraint polynomials to allow the verifier to efficiently check memory con-straints.For the verifier to be able to check the consistency of the proof polynomials efficiently, we requiredin Section 1.2 that the polynomial constraints cancel on H = {gt | 0 ⩽ t ⩽ T}, so that the verifiercan compute ∏1⩽t⩽T (X − gt) = XT+1 − 1. Here with this construction the polynomials don’t cancelon H , but the real arithmetization of [BBHR18b] makes the polynomials cancel on a convenient set.
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Detailled proofsA

FRI soundness proofsA.1

Detailled proof of Theorem 3.4A.1.1

Let δi = min(Jε(Jε(∆(V0))),∆(fi, Vi)). Let Ei be the bad event that ∆(Fold[fi, αi], Vi+1) ⩽ δi−ε.Let accept be the event that the Verifier accepts.By the formula of total probability,
P(accept) = P

(
accept

∣∣∣∣∣
r−1⋃
i=0

Ei

)
︸ ︷︷ ︸

⩽1

P

(
r−1⋃
i=0

Ei

)
+ P

(
accept

∣∣∣∣∣
r−1⋂
i=0

Ei

)
P

(
r−1⋂
i=0

Ei

)
︸ ︷︷ ︸

⩽1

⩽ P

(
r−1⋃
i=0

Ei

)
+ P

(
accept

∣∣∣∣∣
r−1⋂
i=0

Ei

) .
Corollary 3.2 implies that P(Ei) ⩽ 2

ε3|F| so by the union bound we have that
P

(
r−1⋃
i=0

Ei

)
⩽

2r

ε3|F|
.

With Qj the event that the Verifier doesn’t reject the jth iteration of the query phase, we have
P

(
accept

∣∣∣∣∣
r−1⋂
i=0

Ei

)
= P

(
Q1, ..., Qm

∣∣∣∣∣
r−1⋂
i=0

Ei

) ,
so by independence of the choices of the s0’s and since the process is always the same,

P

(
accept

∣∣∣∣∣
r−1⋂
i=0

Ei

)
=

m∏
j=1

P

(
Qj

∣∣∣∣∣
r−1⋂
i=0

Ei

)

= P

(
Q1

∣∣∣∣∣
r−1⋂
i=0

Ei

)m .
So we only have to do the proof for one step of the query phase. Futhermore, we now suppose thatwe have ∧r−1

i=0 Ei.Consider the graph G = (V,E) where V = L0 ⊔ ...⊔Lr and (s, s′) ∈ E iff there exists i such that
s ∈ Li+1, s′ ∈ Li and s = s′2. This graph is a tree with root the only element of Lr and leaves theelements of L0. In these settings, the query phase consists in choosing a random leaf s0 and verifyingeach step up to sr .Consider the following coloration c of the graph.

c(s) =


green if s ∈ L0green if fi+1(s) = Fold[fi, αi](s)red otherwise.

The Verifier accepts iff there is no red vertex in the branch from the chosen s0 to sr .We are going to change the functions fi into some f ′
i in order to simplify the computation of theprobability, where P(Q1) ⩽ P(Q′

1) with Q′
1 the event that the Verifier doesn’t reject in the query phasewith the functions f ′

i .In any branch s0...sr , starting from the root, when the first red node si is encountered, make allthe sj for j < i correct, i.e. with i = max{j ∈ [[1, r]] | c(sj) = red},
f ′
j+1(sj+1) =

{
Fold[fj , αj ](sj) if j + 1 < i
fj+1(sj+1) if j ⩾ i.
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Example

7→

This way, with βi =
|c′−1(red)|

|Li| the proportion of red nodes in Li,
• P(Q1) ⩽ P(Q′

1) because every branch of G that is accepting according to the fi is acceptingaccording to the f ′
i• ∆(fi+1,Fold[fi, αi]) ⩽ βi+1

• with the same notations, the new coloration c′ of G satisfies c′(sj) =

{ green if j < i
c(sj) if j ⩾ i.With this construction, in a branch with (at least) a red vertex according to c, there is exactly onered vertex according to c′, and in a branch with no red vertex according to c, there is still no red vertexaccording to c′.Therefore the event that the Verifier rejects is the disjoint union of the events Ci that the Verifierfinds a vertex in Li that is red according to c′. So we have

P (Q1) = 1− P

(
r⊔

i=0

Ci

)

= 1−
r∑

i=0

P (Ci)

= 1−
r∑

i=0

βi.
We now have to bound the βi. We split in two cases, if δi+1 ⩽ δi − ε or not.If δi+1 > δi − ε then βi+1 ⩾ 0 ⩾ δi − δi+1 − ε.If δi+1 ⩽ δi − ε then δi+1 < δi ⩽ δ′ so δi+1 = ∆(fi+1, Vi+1). So by the triangle inequality,

δi+1 = ∆(fi+1, Vi+1) ⩾ ∆(Fold[fi, αi], Vi+1)︸ ︷︷ ︸
⩾δi−ε

−∆(fi+1,Fold[fi, αi])︸ ︷︷ ︸
⩽βi+1

.
So in both cases, βi+1 ⩾ δi − δi+1 − ε. Therefore,

r−1∑
i=0

βi ⩾
r−1∑
i=0

(δi − δi+1 − ε)

= δ0 − δr − rε

= δ0 − rε.
Thus

P(accept) ⩽
r

ε3|F|
+ (1−min(δ, Jε(Jε(∆(V0)))) + rε)m .

Improved proofs from [BKS18]A.1.2

Detailled proof of Theorem 3.5A.1.2.1

For α ∈ A, we have that ∆(u∗, vα − αu) < δ − ε.
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Consider the graph G = (A,E) where
E = {(α, α′) | ∆(vα − αu, vα

′ − α′u) < γ},
and coG = (A,A2 \ E) its complement graph.Let SA ⊆ A be a clique of coG and

S = {vα − αu | α ∈ SA}.The function α 7→ vα − αu is injective, otherwise there exists α, α′ such that vα − αu = vα
′ − α′u, so

u ∈ V . Therefore |S| = |SA|.Since SA is a clique, we have ∆(S) ⩾ γ, so by hypothesis |B(u∗, γ∗) ∩ S| ⩽ µ∗. But since
∆(u∗, vα − αu) < δ − ε ⩽ γ∗ by definition of vα, we get that B(u∗, γ∗) ∩ S = S. So |SA| ⩽ µ∗.Therefore coG doesn’t have any clique of size > µ∗.So by Turán’s theorem, coG has at most (1− 1

µ∗−1)
|A|(|A|−1)

2 edges, so at most (1− 1
µ∗ )

|A|(|A|−1)
2edges, so G has at least 1

µ∗
|A|(|A|−1)

2 edges.∑
α∈A degG(α) =

1
µ∗ |A|(|A| − 1) so there exists α0 ∈ A such that degG(α0) ⩾ 1

µ∗ |A| − 1. Let
B = {α ∈ A | (α0, α) ∈ E}.

Then |B| ⩾ 1
µ∗ |A| − 1 and for all α ∈ B,

∆(vα0 − α0u, v
α − αu) = ∆(u,

1

α− α0
(vα − vα0)) < γ.

Let Cv =
{
α ∈ B | v = 1

α0−α(v
α − vα0)

} and Vu = V ∩ B(u, γ). Then B is the disjoint union⋃
v∈Vu

Cv , so |B| =∑v∈Vu
|Cv|. Therefore there exists v such that |Cv| ⩾ 1

|Vu| |B|.By hypothesis on u, we have that |B(u, γ) ∩ V | ⩽ µ, so |Cv| ⩾ 1
µ |B|.For all α ∈ Cv ,

v =
1

α− α0
(vα − vα0),

so with
v∗ = vα0 − α0v,we have that for all α ∈ Cv , vα = v∗ + αv.So by definition of vα, for all α ∈ Cv ,

∆(u∗ − v∗, α(v − u)) < δ − ε.
Let T = {i ∈ [[1, n]] | (u∗i , ui) ̸= (v∗i , vi)}. Let Dα = {i ∈ T | u∗i − v∗i = α(vi − ui)}.For i ∈ T there can be at most one α ∈ Cv such that u∗i − v∗i = α(vi − ui) (u∗

i−v∗i
vi−ui

if vi ̸= ui, andnone if vi = ui and v∗i ̸= u∗i ). I.e. for i ∈ T there is at most one α ∈ Cv such that i ∈ Dα. So we have∑
α∈Cv

|Dα| ⩽ |T | so there exists α1 such that |Dα1 | ⩽
|T |
|Cv | ⩽

n
|Cv | .If i ∈ T , and if i /∈ Dα1 , we have that u∗i − v∗i ̸= α1(vi − ui). Thus with T = [[1, n]] \ T ,

δ − ε > ∆(u∗ − v∗, α1(v − u)) ⩾ 1− |T |
n︸ ︷︷ ︸

i/∈T

− |Dα1 |
n

︸ ︷︷ ︸
i/∈Dα1

⩾ 1− |T |
n
− 1

|Cv|
.

Since |Cv| ⩾ 1
µ |B| ⩾

1
µ

(
1
µ∗ |A| − 1

)
⩾ 1

ε ,
|T |
n

> 1− δ + ε− 1

|Cv|
⩾ 1− δ.

Detailled proof of Lemma 3.8A.1.2.2

Suppose by a way of contradiction that |A| > µ. Then there exists T ⊆ Li+1 and g1, g2 ∈ Vi+1such that |T |
|Li+1| > 1− δ, f0|T = g1|T and f1|T = g2|T .
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Let Q1(Y ) and Q2(Y ) be the polynomials interpolating g1 and g2 respectively. Then deg(Q1),deg(Q2) <
2k−i−1 by definition of Vi+1.Let Q(X,Y ) = Q1(Y ) +XQ2(Y ). Then degY (Q) ⩽ 2k−i−1 − 1.Let R(X) = Q(X,X2) = Q1(X

2) +XQ2(X
2). Then

deg(R) ⩽ 2 degY (Q) + 1 ⩽ 2k−i)− 1 < 2k−i.
So R ∈ Vi and thus ∆(f, Vi) ⩽ 1 − |T |

|Li+1| < δ, which contradicts our assumption. Therefore
|A| ⩽ µ.

DEEP-FRI commit soundness proofA.2

Lemma A.1Suppose that P
α,z

(E [α, z]) ⩾ η. Then
P
α

(
P
z
(E [α, z]) ⩾ η

2

)
⩾

η

2
.

Proof.Let Aα be the event P
z
(E [α, z]) ⩾ η

2 .Suppose that P
α
(Aα) <

η
2 .Then

P
α,z

(E [α, z]) = P
α,z

(E [α, z] | Aα) P
α,z

(Aα) + P
α,z

(E [α, z] | Aα) P
α,z

(Aα)

⩽ P
α,z

(Aα)︸ ︷︷ ︸
< η

2

+ P
α,z

(E [α, z] | Aα)︸ ︷︷ ︸
< η

2

by Fubini
< η.

So if P
α,z

(E [α, z]) ⩾ η, then P
α
(Aα) ⩾

η
2 .

Notation A.2

Let V be a linear code [n, k, d]q of generating matrix G ∈ Fk×n. Let D ⊆ Fk be the set of columnsof G. A codeword v : D → F is the evaluation of a linear form ℓv .Let S ⊆ Fk be a σ-robust set (every subset of S of size σ contains a basis of Fk).
• For a, b ∈ Fk , let ⟨a, b⟩ =∑k

i=1 aibi.• For z ∈ S and b ∈ F, let V z,b = {v ∈ V | v = G · ℓv and ⟨ℓv, z⟩ = b}.
Notation A.3For w ∈ [0, 1]n a weight and u, v : Fn

q , we note the w-agreement between u and v by
agreew(u, v) =

1

n

∑
1⩽i⩽n
ui=vi

wi.
And for V ⊆ Fn

q ,
agreew(u, V ) = max

v∈V
agreew(u, v).
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DEEP method for general linear codes with probability on the list
bound (inspired from [BGKS20])

Proposition A.4

Let
• V be a linear code [n, k, d]q of generating matrix G ∈ Fk×n

q ,
• D ⊆ Fk

q be the set of columns of G,
• S ⊆ Fk

q be a σ-robust set,
• w ∈ [0, 1]n,
• u∗, u ∈ Fn

q , δ > 0, µ ∈ N∗, and 0 < ε ⩽ 1
3 .

Denote E = {α ∈ Fq | |B(u∗ + αu, δ) ∩ V | ⩽ µ} and η = max

(
2µ
(

σ
|S| + ε

)1/3
, 4
ε2q

).Suppose that P
α∈Fq

(α ∈ E) ⩾ p and that
P

α∈Fq ,z∈S
(agreew(u

∗ + αu, V z,Bz(α)) > 1− δ) ⩾ pη + (1− p). (11)
Then there exists T ⊆ [[1, n]] such that u∗|T ∈ V|T , u|T ∈ V|T and ∑i∈T wi > (1− δ − ε)n.
Proof.Let Dα,z be the event (agreew(u∗ + αu, V z,Bz(α)) > 1− δ. By the total probabilities,

P
α∈Fq ,z∈S

(Dα,z) = P
α∈E,z∈S

(Dα,z) P
α∈Fq ,z∈S

(α ∈ E) + P
α∈E,z∈S

(Dα,z) P
α∈Fq ,z∈S

(α ∈ E)

So by rearanging,
P

α∈E,z∈S
(Dα,z) =

1

P
α∈Fq

(α ∈ E)

(
P

α∈Fq ,z∈S
(Dα,z)−

(
1− P

α∈Fq

(α ∈ E)

)
P

α∈E,z∈S
(Dα,z)

)

⩾
1

p

(
P

α∈Fq ,z∈S
(Dα,z)− (1− p) P

α∈E,z∈S
(Dα,z)

) by hypothesis on p

⩾
1

p

(
P

α∈Fq ,z∈S
(Dα,z)− (1− p)

)
⩾

1

p
(pη + (1− p)− (1− p)) by hypothesis on P

α∈Fq ,z∈S
(Dα,z)

= η.So P
α∈E,z∈S

(Dα,z) ⩾ η.Let uα = u∗ + αu. Let E [α, z] denote the event “∃v ∈ B(uα, δ) ∩ V, ⟨v, z⟩ = Bz(α) and
agreew(uα, v) > 1− δ”. Then by assumption, P

α∈E,z∈S
(E [α, z]) ⩾ η.

Thus, by Lemma A.1, P
α∈E

(
P

z∈S
(E [α, z]) ⩾ η

2

)
⩾ η

2 . Then with A = {α ∈ E | P
z∈S

(E [α, z]) ⩾ η
2}, wehave |A| ⩾ ηq

2 . For α ∈ E, take
vα = argmax

v∈B(uα,δ)∩V
P

z∈S
(⟨v, z⟩ = Bz(α)).

Let Sα = {z ∈ S | ⟨vα, z⟩ = Bz(α)} and µα = |Sα|
|S| .For α ∈ A, there is a subset S′ ⊆ S such that |S′| = η|S|

2 and for all z ∈ S′, E [α, z] is satisfied. Thiscan be seen as a function fα : S′ → B(uα, δ)∩V and S′ is the disjoint union⋃v∈V ∩B(uα,δ)
f−1
α ({v}),so ∑v∈V ∩B(uα,δ)

|f−1
α ({v})| = |S′| = η|S|

2 . Therefore there exists v ∈ V ∩ B(uα, δ) such that
|f−1

α ({v})| ⩾ η|S|
2|V ∩B(uα,δ)| . And by definition, µα = P(⟨vα, z⟩ = Bz(α)) ⩾ P(⟨v, z⟩ = Bz(α)) ⩾

|f−1
α ({v})|. Furthermore, for α ∈ A ⊆ E, we have |B(uα, δ) ∩ V | ⩽ µ, so µα ⩾ η

2µ .For α, β, γ taken independently uniformly at random in A, we have
E

α,β,γ∈A

(
|Sα ∩ Sβ ∩ Sγ |

|S|

)
= E

z∈S,α,β,γ∈A
(1z∈Sα∩Sβ∩Sγ )
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= E
z∈S

(
E

α∈A
(1z∈Sα)

3
) by independence

⩾ E
z∈S,α∈A

(1z∈Sα)
3 by Jensen

= µ3
α

⩾

(
η

2µ

)3 since α ∈ A

⩾
σ

|S|
+ ε. by definition of η

Therefore
σ + |S|ε ⩽ E

α,β,γ∈A
(|Sα ∩ Sβ ∩ Sγ |)

=

|S|∑
k=1

P
α,β,γ∈A

(|Sα ∩ Sβ ∩ Sγ | ⩾ k)

=
σ∑

k=1

P
α,β,γ∈A

(|Sα ∩ Sβ ∩ Sγ | ⩾ k)︸ ︷︷ ︸
⩽1

+

|S|∑
k=σ+1

P
α,β,γ∈A

(|Sα ∩ Sβ ∩ Sγ | ⩾ k)︸ ︷︷ ︸
⩽P(|Sα∩Sβ∩Sγ |⩾σ+1)

⩽ σ + (|S| − σ) P
α,β,γ∈A

(|Sα ∩ Sβ ∩ Sγ | > σ)

⩽ σ + |S| P
α,β,γ∈A

(|Sα ∩ Sβ ∩ Sγ | > σ).
So P

α,β,γ∈A
(|Sα ∩ Sβ ∩ Sγ | > σ) ⩾ ε.

P(α, β, γ not all distinct) < P(|{α, β, γ}| = 2)

= P(α = β) + P(|{α, β, γ}| = 2 | α ̸= β)

= P(α = β) + P(α = γ) + P(|{α, β, γ}| = 2 | α ̸= β, α ̸= γ)

= P(α = β) + P(α = γ) + P(β = γ)

=
3

|A|
.

Since ε ⩽ 1
3 , we have |A| ⩾ ηq

2 ⩾ 2
ε2

⩾ 6
ε , so P(α, β, γ not all distinct) ⩽ ε

2 .Thus,
P(|{α, β, γ}| = 3 and |Sα ∩ Sβ ∩ Sγ | > σ)

= P(|{α, β, γ}| = 3)P(|Sα ∩ Sβ ∩ Sγ | > σ | |{α, β, γ}| = 3)

= P(|Sα ∩ Sβ ∩ Sγ | > σ)− P(|Sα ∩ Sβ ∩ Sγ | > σ | |{α, β, γ}| < 3)P(|{α, β, γ}| < 3)by the total probabilities
⩾ P(|Sα ∩ Sβ ∩ Sγ | > σ)− P(|{α, β, γ}| < 3)

⩾ ε/2.
So there exists distinct α0, β0 ∈ A such that P

γ∈A
(|Sα0 ∩ Sβ0 ∩ Sγ | > σ) ⩾ ε/2 > 0.Let B = {γ ∈ A | |Sα0 ∩ Sβ0 ∩ Sγ | > σ}. Then |B| ⩾ |A| ε2 ⩾ 1

ε .Consider γ ∈ B and let S̃γ = Sα0 ∩ Sβ0 ∩ Sγ .We extend u∗ and u to S by for all z ∈ S \ [[1, n]], u∗(z) = Bz(0), u(z) = Bz(1), and for all α ∈ E,
uα(z) = u∗(z) + αu(z).
(α0, uα0), (β0, uβ0) and (γ, uγ) are collinear, so (α0, uα0 |S̃), (β0, uβ0 |S̃) and (γ, uγ |S̃) are collinear.Since V is systematic, we define vγ(z) = ⟨vγ |[[1,σ]], z⟩ to extend vγ to S̃. Thus by definition of S̃,
(α0, vα0 |S̃), (β0, vβ0 |S̃) and (γ, vγ |S̃) are collinear. Furthermore, S is σ-robust and |S̃| > σ so vγ isuniquely determined by vγ |S̃ , and so (α0, vα0), (β0, vβ0) and (γ, vγ) are collinear.We write the line (α0, vα0), (β0, vβ0) as v∗ + γv, so for all γ ∈ B, vγ = v∗ + γv. Let

T = {i ∈ [[1, n]] | (u∗(i), u(i)) = (v∗(i), v(i))}
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and T = [[1, n]] \ T . For γ ∈ E and i ∈ [[1, n[],
uγ(i)− vγ(i) = (u∗(i)− v∗(i)) + γ(u(i)− v(i))

so for i ∈ T there exists at most one value γ ∈ B such that uγ(i) = vγ(i).Let Bγ = {i ∈ T | uγ(i) = vγ(i)}. Then ∑γ∈B |Bγ | ⩽ |T |, so there exists γ0 ∈ A such that
|Bγ0 | ⩽ T

|B| . Thus
1− δ < E

γ∈B
(agreew(uγ , vγ)) by definition of vγ

=
1

|B|
∑
γ∈B

agreew(uγ , vγ)

=
1

n|B|
∑
γ∈B

n∑
i=1

wi1uγ,i=vγ,i by definition of agree
=

1

n

n∑
i=1

wi

 1

|B|
∑
γ∈B

1uγ,i=vγ,i


⩽

1

n

∑
i∈T

wi +
1

n

∑
i∈T

wi
1

|B|

⩽
1

n

∑
i∈T

wi +
|T |
n|B|

⩽
1

n

∑
i∈T

wi + ε because |B| ⩾ 1
ε

So ∑i∈T wi > (1− δ − ε)n.
With this proven, the exact proof of Proposition 4.6 is the following.

Proof of Proposition 4.6Take S = {(zi)0⩽i⩽k−1 | z ∈ Fq}. Then S is (n−k)-robust and it is equivalent to take an element of
S or an element of Fq . For v ∈ V , we have that ℓv is the coefficients of an interpolating polynomialof v, so ⟨ℓv, (zi)0⩽i⩽k−1⟩ =

∑k
i=0(ℓv)iz

i = ℓv(z).
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DEEP-FII protocolB

DEEP-FII protocolDefinition B.1

Prover wants to prove that f0 : D0 → Fℓ
q ∈ V0.

Prover Verifier
z0

$← Fℓz0

B1,z0 : Fℓ → Fℓ(B1,z0(X) = Fold[f0, X](z0)) B1,z0

α0
$← Fℓα0

f1 : D1 → Fℓ(f1(X) =
Fold[f0,α0](X)−B1,z0 (α0)

X−z0
) f1......

...
zr−1

$← Fℓzr−1

Br,zr−1 : Fℓ → Fℓ(Br,zr−1(X) = Fold[fr−1, X](zr−1)) fr

αr−1
$← Fℓαr−1

fr : Dr → F(fr(X) =
Fold[fr−1,αr−1](X)−Br,zr−1 (αr−1)

X−zr−1
) fr

comm
it

Verifier chooses s0
$← D0, defines si+1 := s2i and accepts if

Fold[f0, α0](s1) = (si+1 − zi)fi+1(si+1) +Bi+1,zi(αi)...
Fold[fr−1, αr−1](sr) = (sr − zr−1)fr(sr) +Br,zr−1(αr−1).

repeatquery

Note that the Bi,zi−1 are not really multivariate functions, they are a succession of ℓ univariatefunctions.
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Interleaved error-correcting code, 7Interleaved folding, 13IP (Interactive Proofs), 2

List-decodability, 7
Memory trace, 17
PCP (Probabilistically Checkable Proof), 2Permuted execution trace constraints[BBHR18b], 18
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