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Introduction

1 STARK protocols

When a server interacts with a client, it cannot always be trusted and the client may want to have
proofs that the server is not lying and is honnestly executing its task. The issue is that the client
is computationally weak, so it can't repeat the same computation to check the output. Likewise, the
server doesn’t want to perform too much extra computations to be able to prove that it is honnest. This
happens for example in blockchain where the proof of verification of the interactions must be added to
blockchatn.

NP is a first model of efficient verification in which we consider that a prover gives a proof to be
checked deterministically in polnomial time. Probabilistic check is introduced with PCP, with very
impressive theoretical result [BFLS91]. The idea is that the verifier doesn’t read the whole proof to
decide it is it accepted or not. This theorem was completely unpractical until [BS08] which created
PCP proofs of quasilinear length. A new model adding interaction with the prover, IOP, is introduced
in [BCS16], leading to the creation of practical efficient protocols [BBHR18a, BBHR18b, BKS18,
BGKS20, BCIT20]. Those protocols are called STARKS. It stands for Scalable Transparent ARgument
of Knowledge. An argument of knowledge is a proof that the prover correctly executed a computation,
scalable means that the proof is logarithmic in the size of the computation, and transparent means
that the protocol does not rely on cryptographic asumptions.

1.1 Scientific context

Formally, PCP restricts the verifier to draw a bounded number of bits and to read a limited
number of bits of the proof. The PCP theorem states that the verifier only require to read a constant
number of bits of the proof to check it, independently of the size of the problem.

DI NTHGIININE PCP (Probabilistically Checkable Proof)

A language £ C ¥* is in PCP[r(n),q(n)] if there exists a polynomial time verifier V, using at
most r(n) internal randomness bits and reading only g(n) bits of its input proof, such that

e Perfect completeness: Va € £,3r proof, P(V (z, ) = accept) =1
e Soundness: there exists s < 1/2 such that Vz ¢ £, Vr proof, P(V (z,m) = accept) < s

where the probability is taken on the internal randomness of the verifier.

M PCP theorem [BFLS91]

PCP[O(logn),O(1)] =
PCP[O(poly(n)),O ()] NEXP

The issue is that the proof itself is huge and requires a lot of computation to be generated, much
more than finding a general proof, so this result itself is only theoretical. In [BS08], Ben-Sasson and
Sudan managed to generate PCP proofs of quasilinear length and that can be verified by reading a
polylog number of bits. This result opened the door to creating practical PCP-like theorems. Another
approach for proof systems is IP.

IISIGITTLINIEE [P (Interactive Proofs)

A language £ C ¥* is in IP if there exists a polynomial time verifier V' having one or more
interactions with an unboundedly powerful prover such that

e Perfect completeness: Vo € £,3P prover,P(V(x, P(x)) = accept) =1
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e Soundness: there exists s < 1/2 such that Vz ¢ £,VP,P(V (z, P(z)) = accept) < s

where the probability is taken over the internal randomness of the verifier.

For cryptographic assumptions, we will require in the following that the soundness is at most 2128

or 27256,

AL TP = PSPACE [LFKN92]

IP = PSPACE

A more recent approach [BCS16] is the fusion of the properties of PCP and IP, where the verifier
interacts with a prover, and the prover gives oracle access to its proofs, so that the verifier does not
read them entirely. Having such oracle access makes this new class bigger than IP.

M IOP — NEXP [BCS16]

I0P = NEXP

Since the verifier’s randomness is public-coin, it is possible to use a Fiat-Shamir heuristic to turn
the interactive proof into a non-interactive one.

1.2 Arithmetization

The summary of the construction is the following.

Proof of execution

folX) = Ty

’ Algorithm ‘ arithmetization
e T T T R —— xx'\ """"""""" .
: Computation
E l Constraint poly-
E Polynomial exe- notals G
s cution trace P(X) /
: =

’ Low degree test ‘

The prover constructs the whole arithmetization and the verifier only constructs the constraint
polynomials in order to be able to perform consistency checks with the proof of execution.

The prover executes a computation in 7" steps, using R registers (memory cells). It has an execution
trace which is R functions ry,...,7g from H to F, where |H| =T + 1 is detailled below. We encode
the transitions in such a way that it is possible to be convinced of the validity of the computation by
checking only a few values. In other words we encode the execution trace so that if there are some
errors then the encoding has lots of errors.

The computation trace is valid if it respects the constraints induced by the asked computation.
There are two kind of constraints on the registers:

e The local constraints tell what value must have some registers at some specific time of the execution,
typically the initial and final values.

e The constraint polynomials tell what transitions of register states are allowed. They are of the form
Q(X1,...,Xgr,Y1,...,Yr) where X; represents the value of register i at time ¢, and Y; represents
the value of the same register i at time £+ 1. These polynomials must have as only roots the valid
values of transitions.

SEIEMNE Constraints for the computation of square Fibonacci

Consider the square Fibonacci sequence where fo = fi = 1 and fi;2 = 1'2+1 + f2 mod 96769.

A verifier wants to know the 10%th term of the sequence, so it asks a prover that claims that the
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result is 36452. The prover works in F = Z/96769Z and only needs one register for the f;'s and

one for the “f;_1's", that we call g; and that is such that g;11 = f;. The constraints will be here
the following.

e The local constraints are fo =1, fi =1 and fg9 = 36452.

e The transition constraints are fi11—f?—g? = 0 and gi+1—f; = 0. So the constraint polynomials
are

Q1(X1,X2,Y1,Y) =Y, — Xi — X3 Qa2(X1, X2, Y1, Ys) = Yo — X;.

Once the prover has the constraint polynomials and the execution trace, it creates the proof
polynomials.

For arithmetic purposes, we set H to be a multiplicative subgroup of F* of size T'+1 with generator
g. With this, we go from time ¢ to time ¢ + 1 by multiplying by g.

The prover computes an interpolation of the execution traces as polynomials P;'s: Vt, P;(g') :=

ri(g"). For each constraint polynomial Q(Xy, ..., Xg, Y1, ..., Yr), the prover creates the associated
univariate composed polynomial

(Q o P)(X) := Q(P(X),P(9X)),

with P(X) := (P (X), ..., Pr(X)) € (F[X])%.
With this construction, if the computation is valid then the composed polynomials have all the g
as roots, so G(X) := [[,,<p(X — ¢") divides the composed constraint polynomials, i.e.

(QoP)(X)

GIX) e F(X)

is a polynomial iff the product divides the composed polynomial. We will call this a proof polynomial.
Since G(X) = XT*+1 -1, it allows the verifier to efficiently compute this product to perform consistency
checks. Now we have a set of proof polynomials, and if one wants only one proof polynomial, one can
take a random linear combination of these polynomials.

For a valid computation, if d is the maximal degree of the constraint polynomials then the degree
of a composed polynomial is at most d1" and the degree of a proof polynomial is at most d1'— T In
fact, seen as a function in a finite field, a rational fraction can always be seen as a polynomial. If
the computation is not valid, then we can show that the proof polynomial isn’t any function. This is
a gap promise that we will use: the proof polynomial is either low-degree or very different from a
low-degree polynomial (see Section 1.3.3).

1.3 Low degree testing

1.31 Reed-Solomon codes

Linear error-correcting codes are vector spaces over ™ in which we consider some parameters like
the ratio of the number of elements of the code over the number of elements of the ambiant space (the
rate of the code), or the minimal distance between two elements for some distance. Reed-Solomon
codes are linear codes defined as evaluation of low-degree polynomials on a given domain.

IS WA Reed-Solomon code

The code RS[D,p] is {f : D — F | 3P(X) € F[X|.,p|, Pp = f}, with D C F the evaluation

domain and p € [0,1] the rate of the code.

Reed-Solomon codewords can be considered as functions interpolating polynomials, or as vectors
over FIPI. The distance used here is the Hamming distance.
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DRGITTNNRE Hamming distance

Let u,v € F™. The Hamming distance between u and v, denoted A(u,v) is the number of indexes
i € [1,n] such that u; # v;, divided by n so that A(u,v) € [0, 1].

The Hamming distance between u € FY and S C F" is A(u, S) := mig A(u,v).
ve

The minimal distance between any two elements of a set S is denoted A(S) := ;ninSA(u,u’).
uFu' €

1.3.2 FRI protocol [BBHR18a]

FRI is the acronym for Fast Reed-Solomon IOPP (IOPP being an acronym for |IOP of Proximity).
It is an IOP protocol for convincing a verifier that a given function is a Reed-Solomon codeword, by
using techniques inspired from FFT [BBHR18a].

To prove that a function f is a polynomial of degree at most & it suffices, for a divide and conquer
approach, to prove that the even part fy and the odd part f; of f are polynomials of degree at most
k/2. Even and odd parts means that f(X) = fo(X?) + X f1(X?), Le. fo(Y) = w and
f1(y) = LXSED for v = X2

However, testing the degrees of both fy and f; costs as much as testing the degree of f, so the
idea is to test the degree of fy + af; for a random o« € F. If fo and f; are indeed polynomials of
degree < k/2 then so is fo + afi with probability 1, and if fy or f; is a polynomial of high degree
then fo + af1 is of high degree with high probability over the choice of .

This linear combination of the even and odd parts of f over « is called the folding of f.

INEIHOHINE Folding

For f : F* — T, with fy : y — W and f1 1 y — @S (=2) \where 22 = y, denote the

2x
folding of f over a € F by Fold[f, o] := fo + afi.

Testing the degree of a polynomial over a domain D reduces to testing the degree over a domain
of size |D|/2. Therefore we need the domains to be the 2'th roots of the unit, so that the folding is
defined over the 2¢th roots of the unit.

DTTIGHIMNEE FRI protocol

Let » < n € N. Let D; C T be the set of 2"“th roots of the unit, so that D;y1 = {2% | = € D;}.
Define the code V; as RS[D;, p]. Let p = 2""™ so that 2" = p|Dy|.

Prover wants to prove that a given function fy : Dy — F is in RS[Dy, p]. There are two phases
during the FRI protocol.

Commit phase. The verifier sends a random « € T and the prover commits Fold|f, a]. This process
is repeated until the degree of the polynomial is zero.

Prover Verifier
&%) (7)) i F
fl : Dl —F
5 (1 = Fold[fo, aq)) h
S
Q1 Qpr—1 (ﬁ F
fr : D, - F
(fr = FOld{frflaO‘rle Ir

Query phase. The verifier checks if each commited polynomial is indeed the folding of the original
function. This process is applied successively at each level of folding by taking , and is repeated
several times to increase the soundness.
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Verifier chooses sy <~ Dy, defines s;;1 := s? and accepts if

fi(s1) = Fold[fo, ap](s1)

repeat

query

Jr(sr) = Fold[f—1, e —1](5r).

This protocol requires a logarithmic number of random bits from the verifier, a logarithmic number
of rounds of communication, and the verifier only looks at three elements of the proof to check the
consistency of f;11 with f; on one value.

The hard part, left to Sections 2.2 and 3.1, is now to compute a bound on the soundness.

1.3.3 Gap promise

The above arithmetization is such that if the computation respects the constraints then the proof
polynomial is low-degree (in the code), but if the computation does not respect the constraints then
the proof polynomial is far from the code.

Let DCF, pe|0,1] and C = RS[D, p]. Let P1(X), P,(X) € F[X]. Suppose that Vx € D, Py(z) #
0 and

P,(X) does not divide P, (X). M

Then with f(x) := Pi(x)/Pa(x) for x € D, we have A(f,C) > 1 — max (de‘%fl P+ dT%?).
Proof.

Let § := A(f,C) and g € C such that A(f,g) = 9. Let I = {x € D | f(z) = g(x)}. Then
|I| = (1—9)|D| and for all x € I, Pi(z) — Pa(z)g(x) = 0. By Equation (1) we know that P;(X) —
Py(X)g(X) is not null, so |I| < deg(P1(X) — P2(X)g(X)) < max(deg P1(X), p|D| + deg Po(X)).
Thus the result.

Py (X) represents the composed polynomial (Q o P)(X) and P»(X) represents the product G(X).
Equation (1) means exactly that there is a constraint that is not satisfied at some time t.
In the arithmetization we have that the composed polynomial has degree at most T'deg @, the

product has degree T" and p = %, so the gap promise is

0 >1— — max(2,deg Q).

T
D]

2 Objective of the internship

Other arithmetizations can use different error-correcting codes to achieve different properties, like
algebraic geometry codes [BLNR22]. The objective of the internship was to create a protocol similar
to FRI for Interleaved Reed-Solomon codes.

It is motivated by the fact that in practice, several proofs must be done for several codewords, so
maybe them can help to improve parameters as it does in coding theory.

2.1 Interleaved codes

In the practical use of error-correcting codes, it often happens to encode successively several
messages. And in some models of error, we consider that an error occurs on successive bits. So an
idea to improve the decodability is to interleave the messages in order to have only a bit of each
message with one error (which we can correct), instead of having one message fully erroneous.
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DINITIWPAE Interleaved error-correcting code

Given a code C C F™, its /-interleaved code associated is

Uil U2 o Uln
: : U, ...,up € C'

Ug1 UWe2 - Wn

IRS[D, p, ¢] denotes the ¢-interleaved code on the code RS[D, p].

The difference between the interleaved code and a simple concatenation of codewords is the
distance. The distance between two matricial words v and v is the number of indices 7 such that the
ith column of u is different from the ith column of v. Equivalently the code can be considered on the
alphabet F in order to use the same Hamming distance.

2.2 Maximum distance and list-decoding

Denote by ¢ € [0, 1] the gap promise. The soundness of the protocol is a function increasing in 4.
However the proofs of soundness are valid only for bounded values of §. RS[D, p] has a property telling
that a word from the ambiant space is at distance at most 1 — p from any codeword (by interpolation),
so 1 — p is the largest theoretical bound. But all the formulas for soundness that have been found
are only proven for § smaller. The best results, in [BCI*20], achieves § < 0pmax = 1 — /p. This
limitation is due to a code-related technique that is used in the proofs of the soundness, which is
called list-decoding.

Usually, when using error-correcting codes, one wants to be able to recover the only correct
codeword associated to an erroneous received word. This is only possible if the error introduced is
small, otherwise there can be several choices of codewords to correct the received word. Getting a
list of the closests codewords to a received word is called list-decoding that word.

DI WP List-decodability

Let X be a finite alphabet and S C ¥™. S is said to be (0, u)-list-decodable if any ball of X" of
radius ¢ (for the Hamming distance) contains at most x elements of .S, i.e.

Vu € ¥",|B(u,0) N S| < p.

In the proofs of soundness we have to reconstruct codewords from the received proof polynomial,
so the proofs use list-decoding, and they are therefore limited to the range of nice list-decoding. An
important and very general result for list-decoding is the Johnson bound, which is a general bound on
the size of the list-decoding for general codes (not even linear).

Fore €]0,1], let J.: 0 — 1—+/1 — §(1 — ¢). If X is a finite alphabet, n € N, S C X", and ¢ €]0, 1],
then S is (J-(A(S)), 2)-list-decodable.

This result is used as such in the proofs of soundness of [BKS18] and [BGKS20]. It bounds ¢ to
be smaller than A(S), and the soundness is a decreasing function of the size of the list. Interleaved
codes may be interesting to achieve a better bound.

2.3 Interest of interleaved Reed-Solomon codes

An important property of IRS[D, p, ¢] is that an error on at most Hil(l — p) columns and that is

uniformly distributed on each coordinate can be uniquely corrected with high probability.

MO LSULIPRIE  Probabilistic decoding of an IRS [Zap20]

There is an algorithm such that, given an erroneous word received u = v + e, with v € IRS, if e has

at most £+L1(1 — p) non-null columns and if each non-null column of e is uniformly distributed, the
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algorithm to recover v from u with probability O(1/|F

), probability taken on e.

This property looks like some “probabilistic list-decoding”, telling that given a received word u,
with some probability p = O(1/|F|), the ball of radius § = E%(l — p) contains at most u = 1
codewords. The field F will be chosen to be really huge in practice, so p is somehow negligible. The
maximum distance ¢ is far better than any deterministic known result. And = 1 is also far better
any 1/e that we would get with the Johnson bound. The first part of the internship was to revisit the
different proofs to replace the use of the Johnson bound by a hypothesis of probabilistic list-decoding.

The issue with Proposition 2.4 is that the probability is somehow taken on the random choice of
u, i.e. in our context on the proof polynomial. Since the prover is adversarial, it could take u's that
does not satisfy this property.

Objective of the internship

Generalize proofs of soundness of the FRI protocol so that they can be used to build a similar
protocol with interleaved codes, with a better bound on the maximum distance 6y ax-

This objective has been achieved in Part Il, modulo finding a suitable revisiting of Proposition 2.4.
Therefore, as advised by Daniel Augot, | worked on the last part of my internship, in Part lll, on under-
standing the use of De Bruijn graphs in some arithmetization compared to the other arithmetization.

Part I
FRI protocol with IRS

3 FRI protocol

The protocol described in Section 1.3.2 respects perfect completeness by construction, and for a
practical use we want the soundness to be cryptographically small. To achieve this we need to compute
bounds on the soundness, which will be a function of the gap promise § and of the parameters (the
field, the number of repetition of the query phase, and other parameters like ¢ that will appear next).

3.1 Soundness of the FRI protocol [BKS18]

In this section we use the notations introduced in Definition 1.10.

During the commit phase, the bad thing that can happen is that f is far from the code, yet the
random value a drawn by the verifier to fold f makes Fold[f, o] closer to the code. Corollary 3.2 gives
the probability (on the choice of a) that the distance to the code reduces by folding.

During the query phase, the bad thing that can happen is that the prover cheated on only some
values of a folding and that the verifier doesn’t check these values. Proposition 3.3 gives the probability
for the verifier not to detect an error during the query phase.

3.1.1 Commit phase soundness

With f: D; — F, V; = RS[D;, p] and V41 = RS[D;11, p|, we want to bound

P (A(Fold[f,a], Vi1) < A(f, Vi) — 2).

Theorem 3.1 will be used by contrapositive to show that if two words don’t coincide with codewords
on a same big enough support, then there are not a lot of a’s that make their combination get closer
to the code than what they were both.

It is in Theorem 3.1 that the constraint & < Jpax appears. The next results will inherit this
hypothesis. For this section we will set dpax := Jo(J(A(Vh))), with £ a parameter we can choose.
The Johnson bound is used twice in the proof of Theorem 3.1, so dax is @ composition of twice the
Johnson function.
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Let V C F™ be a linear code. Let u*,u € F™ and £,0 > 0 such that § < dax.
let A={aeF|Aw*+au,V) <d§—¢e}
If [A| > % then there exists T C [1,n] such that w € Vir, ujr € V7 and |T| > (1 —9d)n.

Proof.

For a € A, denote by v* an element of V such that A(u* 4+ au,v®*) < § —¢, ite. A(u*,v* —au) <
0—e.

Consider the graph G = (A, E) where

E={(a,d) | A(v® — au, v — ou) < J7LHH)Y,

and coG = (A, A%\ E) its complement graph.
Let S4 C A be a clique of coG and S = {v* —au | « € Su}. Since S4 is a clique of coG, we
have A(S) > J1(6), so by applying the Johnson bound we get that S is (9, %)—llst decodable, so

|B(u*,8)N S| < - 2)

™ | =

But since A(u*,v® — au) < § — £ by definition of v®, we get that B(u*,6) NS = S. So [Sa| < 1.
Therefore coG doesn’t have any clique of size > % We are now going to use Turan's theorem.

m Turan's theorem
2

Every graph with n vertices that does not contain a clique of size » + 1 has at most (1 — %)%
edges.

By applying Turan’s theorem on coG, we get that G has at least 5% edges. Therefore

Y acadegg(a) = €|A|(|A] — 1) so there exists ag € A such that degg () > €| A| — 1. Let
B={a€A|(a,a) € E}.
Then |B| > ¢|A| — 1 and for all a € B,

1

a— Qg

A(v* — agu, v —au) = A <u, (v — ”a0)> < JZH(9).

ap—«
Ll,ev, Cv, 50 |B| = > ey, |Cy|. Therefore there exists v € V,, such that |Cy| > ﬁ]ﬂ By
Johnson’s bound, we have that

Let C, = {a €Blv= -1 (v"— vaﬂ)} and V,, = VN B(u, J-(\)). Then B is the disjoint union

1
|B(u, J-H0)) N V| < - 3)
so |Cy| > ¢|B|. Forall a € Cy, v = ——(v® — v™), so with v* = v® — agu, we have that for all

a—aq

a € Cy, v* = v* 4+ av. So by definition of v?, for all a € Cy, A(u* — v*, (v —u)) < —e.
Let T = {i € [1,n] | (uf,u;) # (v},v:)}. Let Do ={i € T | u} — v} = a(v; —u;)}. Fori €T there

A
uf—vr . .
can be at most one a € C, such that u} — v} = a(v; — w;) (szuz if v; # u;, and none if v; = u;

and v} # u}). le. for i € T there is at most one « € C,, such that i € D,,.

So we have > . |Do| < |T| and there exists a; such that [ Dy, | < ||CT|| Sy fie T, and if

i & Dq,, we have that uf — v} # aq(v; — u;). Thus with T'= [1,n] \ T,

[T Dal ., ITI_ 1

d—e>A —vo(v—u)) >1- n n = no |Gyl

N——
i¢T

i¢Day

Since |Cy| > ¢|B| > e(e|A] — 1) > %

T\>n<1—5+€—‘c—1v|> > (1-6)n.
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This is the proof from [BKS18] on which | added necessary details. Note that the Johnson bound
is used only to get Equations (2) and (3). In section 3.2 we will take as hypothesis Equations (2)
and (3) with more general parameters than 1/ and ¢ but still centered in «* and u, hoping that we
will be able to prove that hypothesis for u* and .

This important result can now be applied in the context of the FRI protocol to get the “commit
soundness”.

m Commit soundness [BKS18]

Let f: D; — FF be an arbitrary function. Let € > 0 and § = min (A (f, V;) , dmax)- Then

2
P (A(F it1) <0 —¢) < ==
aGF( ( Old[fv Oé],V_H) 0 5) 83’F|
Proof.
We use Theorem 3.1 by contrapositive with A = {a € F | A(Fold[f, a],Vi11) < J —¢)}.

If by contradiction |A| > 8% then there exists Q1,2 € Vi1 and a subset 7' C D, as in
Theorem 3.1.

Then with R(X) = Q1(X?) + XQ2(X?) we have

deg(R) < 2max(deg(Q1),deg(Q2)) +1 < 2871 — 1 < 287,

so R € V;, and thus A(f,V;) <1— |D|i|1| < § contradicts our assumption.

3.1.2 Query phase soundness

Now that we have the soundness for the commit phase, we can compute the soundness for the
query phase assuming that the functions committed don't get closer to the code, i.e. that there is no
commit error. This is thanks to the formula of total probability:

P(V accepts) = P(V accepts | commit error)P(commit error)

+ P(V accepts | commit error)P(commit error)

< P (commit error) + P (V accepts | commit error) .

GO LSGOOECE Query soundness [BKS18]

Let e >0, m € N*, § := A(fo, Vo) and r such that 2" = p|Dy|.
Assuming that for all 4, A(Fold[f;, z;], Viy1) > d; — €, the probability not to detect an error by
doing m iterations of the query phase is at most (1 — min(d, dmax) + 7)™

Now, combining Corollary 3.2 and Proposition 3.3 we get the soundness of the whole protocol.

QLR FRI protocol soundness [BKS18]

Lete > 0,1 € N*, 0 := A(fo,Vp) and r € N such that 2" = p|Dy|.
When the FRI protocol is invoked on fy : Dy — F with m iterations of the query phase, if
0 := A(fo, Vo) > 0 then the verifier accepts with probability at most

2r .
WF’ + (1 — mln(é, 5max) -+ T€)m 0

where the probability is taken on the «;'s and the sg’s.

The reworked proof of both Corollary 3.2 and Theorem 3.4 is detailled in Appendix A.1.1.

The parameters we can adjust to get the required soundness are ¢, |F| and m. m adds interaction,
which makes the proof longer, ¢ must be big in the commit soundness and must be small in the query
soundness, and F must be very big to counter 3 but it makes all the computations more expensive.

Having a larger dmax allows to reduce the query soundness and therefore to reduce the size of the
proof.
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3.2 (Generalization

The idea is to revisit the proofs of Theorem 3.1 and Corollary 3.2 but to remove the use of the
Johnson bound, which is only used on the specific words «* and u, by a “local list-decodability”.

First, here is the most general generalization of Theorem 3.1. But the hypothesis Equation (4)
is too unconvenient because it is not applied to the code but to a set S that is not totally arbitrary.
Corollary 3.7 below is a simpler version.

M Generalization of Theorem 3.1 (inspired from [BKS18]) -&

Let V' C F” be a linear code. Let ,0,7*,+v > 0 such that § < v* + . Let pu,u* € N*. Let
u*,u € F™.

let A={aeF|A(w*+ au,V) <J —ec} and let v® € V be the closest element to u* + au.
Suppose that

VS C{v* —au|a € A}, if A(S) = v then |B(u*,7*)N S| < p* (4)

|B(u,7) N V| < (5)
If |A| > 235&* then there exists 7' C [1,n] such that ujp € Vir, ujp € Vi and IT| > (1—90)n.

The proof is exactly the same as for Theorem 3.1 and a detailled version is available in Ap-
pendix A.1.2. To see that this result is indeed a generalization we can prove Theorem 3.1 with it.

SEIDIICHE Theorem 3.1 by application of Theorem 3.5

Let §,& > Osuch that 6 < Je(Jz(N)). Lety = JZ1(8),v* =6, p = p* = % We have that 0 < v*. For
all S C F" such that A(S) > J-'(6), we have |[B(u*,5)NS| < 1 by Johnson bound. Also by Johnson
bound, |B(u, J:(A\) N V| < L. Since J71(0) < J(A), |B(u, J71(8)) N V| < |B(u, J:(\) N V| < L.

Equation (4) replaces the use of the Johnson bound to get Equation (2) in Theorem 3.1 and
Equation (D) replaces the Johnson bound to get Equation (3). However Equation (4) is not applied
on the code but to a set S that won't have the required properties. For this one it seems that the
Jonhson bound will be the best we will achieve.

m Theorem 3.5 with only one Johnson -&

Let V' C F” be a linear code. Let £,d,7 > 0 such that § < dpax := Jo(7) + . Let p € N*. Let
u*,u € F™.
Let A={aeF|A(u*+ au,V) < J —e}. Suppose that

[B(u, ) N V] < p. (6)

If |A| > %’% then there exists 7' C [1,n] such that up € Vir, ujp € Vi and IT| > (1—9)n.

In Theorem 3.5 we see that we have dyax = 7* +¢, and in Corollary 3.7 we have dpax = Je(7) +¢,
which won't be better than the state of the art [BCIT20].

Commit soundness, generalization (inspired from [BKS18]) -&

Let f:D; — F, uand d,e,v > 0 such that 6 = A(f, V). Let fy and f; be the even and odd parts

of f. Let A= {a € F | A(Fold[f, ], Vit1) < 0 —e} and suppose that Equation (6) of Corollary 3.7
is satisfied with u := f.
Then

P (A(Fold(f, o), Vit1) < 6 — ) <

zelF

SIS

This result inherits the dpax of Corollary 3.7. The proof is exactly the same as for Corollary 3.2,
replacing ¢ by % and is also detailled in Appendix A.1.2.
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Lemma 3.8 is compatible with Proposition 3.3, which gives the soundness of the whole protocol:

2ur
e2[F|

+ (1 — min(d, dmax) + 7)™

Since the application to IRS would not have improved dy,ax further than [BCI*T20] I did not push
further this direction. Moreover it appeared at this point that it would not have been possible to use
IRS because there is no randomness on word for which we want Equation (6). Therefore | worked on
another approach of the FRI protocol, which is only a bit more complex, and in which it is possible to
completely replace the use of any Johnson bound.

4 DEEP method

The DEEP-FRI protocol was introduced in [BGKS20]. DEEP is an acronym for Domain Extending
for Eliminating Pretenders. The DEEP-FRI protocol is an IOPP protocol for Reed-Solomon codes
that aims to improve the soundness of the FRI protocol by evaluating the functions outside of the
evaluation set.

The advantage of this protocol over the FRI is that the word on which the Johnson bound is
applied depends on some randomness of the verifier. In the previous part, the Johnson bound was
applied on words u* and u chosen by the prover, but here it will be applied on u* + au with a chosen
randomly by the verifier. It gives two advantages: the first is that the Johnson bound is used only
once, and the second is that having randomness of the verifier makes the hypothesis we are doing
on u* + au (Hypothesis 4.5) is a kind of probabilistic list-decoding, which is what we are expecting
from interleaved codes (see Section 4.3). Unfortunately we will see that | haven’t been able to find
interesting results using the properties of IRS by using so few randomness.

41 The DEEP-FRI protocol [BGKS20]

Only the commit phase changes between the FRI and DEEP-FRI protocol. The idea is to be able
to evaluate the functions out of their domains D;.

IO N Commit phase of the DEEP-FRI protocol [BGKS20]

The verifier sends a random element z of the field so that the prover commits a folding B, (X) :=
Fold[f, X](z), then the verifier sends another random element « to fold around, and the prover
commits the new function derived from the folding, f(X) := F°ld[f’a;§i(i_Bz(a).
Prover Verifier
0 20 g F
Bis, :F—>F
(B1,2(X) = Fold[fo, X](20)) Biz
0 g i I
f1 : Dl — F
h o FO[d[f(),(l()}(X)*BLZ' (Oz()) fl
El (hoo) = X Bz (a0))
8 .
=L Zp—il (i IF
By._, F>F
(Br,z—, (X) = Fold[fr—1, X](2-1)) fr
Ar-1 Q1 i F
fr:D.—>F
Fold[f,—1,0r—1](X)—=Br.z, , (ar_1) -
(f(x) = B OO B (o))
The query phase works the same way but the verification of the functions f;'s doesn’t have the
same expression.
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iy $ c .
Verifier chooses sy <~ Dy, defines s;;1 := s? and accepts if

Fold[fo, ao](s1) = (si+1 — 2i) fir1(siv1) + Bit1,z ()

repeat

query

FOld[fr—bar—l](sr) = (S'r - Zr—l)fr(sr) + Br,zrfl(ar—l)-

The equivalent of Theorem 3.1 and Corollary 3.2 is the following theorem.

For z,b € I, let V* := {f € V| f(2) = b} C V be the subcode where codewords evaluate to b on

z
QLR DEEP method for RS codes [BGKS20]

Let V = RS[D, p]. For § > 0, let us € N such that V is (4, us)-liste-decodable. Let u*,u € FP.
Letd >0and 0 <e < % Suppose that

1/3
* z,B.(x) > . p|D|
%E’;F(A(u +zu,V ) <6) = 2us <|IF| +e + 2] (7)

Then there exists 7' € D such that u. € Vip, ujp € Vir and IT| > (1-06—¢)|D|.

The proof of a more general result (Proposition A.4) is detailled in Appendix A.2. Equation (7)
gives the commit phase soundness for the DEEP-FRI protocol. The right term looks like the soundness
of Corollary 3.2. Notice that there is only one Johnson bound used here, so there is an £2 at the
denominator whereas there is an ¢ for Corollary 3.2. The first term of Equation (7) is used to create
a line in some space to extend the evaluation space of the words. It requires taking 3 random points,
so the probability will be cubed and there is the cube root here.

4.2 Application to IRS

The DEEP-FII protocol (DEEP-Fast IRS I0PP) will be exactly the DEEP-FRI protocol, except
that the z;s and a;'s are taken in F¢, the functions B; . are F¢ — F¢ and the fi are D; — F¢ with
D CF (see Definition B.1). | worked with Sarah Bordage to make sure that the protocol is correct.

DI IR  Interleaved folding

a9 fl
let f:F* = Ffanda=| : | €T Let f1,...,fo:F* = Fsuchthat f=| : |. Then
Qy ff
FOld[fl,Oél]
Fold[f,a] = :
Fold[fg,ag]

The result we will need to replace the Johnson bound is something like the following. We want to

have a value p and dnyax as high as possible, and p € N as low as possible, maybe © = 1, such that
the following holds.

A
-/

Let # € N and p, dmax € [0,1]. Let V = IRS[D, p, £] € F***. Let u*,u € F**¢ be arbritrary points
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of the ambiant space. Then

P (IB(u" + au,dmax) N V| < 1) 2 p. (8)

Note that we can easily have p = 1 with p := % and Omax := J:(1 — p) =® 1 — /p the Johnson
bound, or even p = 1 and p = 1, with dpax = %(1 — p) the deterministic unique decoding radius.
But we want to have § as close to 1 — p as possible. We can also have dax = 1 — p but then p
becomes exponential in the size of D, which makes the soundness explode. Here we are targetting
Omax = Hil(l — p), because results like Proposition 2.4 suggests that it should provide satisfying
results.

The application of Theorem 4.3 to IRS will be the following.

MO WSO NE DEEP method for Interleaved Reed-Solomon codes with probability
on the list bound &

Let u € N, p, dmax € [0,1], and suppose that Hypothesis 4.5 is valid for (i, p, dmax)-
Let V. = IRS[D,p,f]. Let u*,u € FP*, 0 < § < Omax and 0 < & < L. Denote n = 2u -

1/3
(% + 5) + azim the same probability as in Equation (7), with u generalizing p5. Suppose that

1
3

* z,B.(a) > o
aeg”’zeF(A(u +au,V ) <6)=pn+(1—p). (9)

Then there exists 7' C D such that ui. € Vir, wr € Vi and IT| > (1-06—¢)|D|.

As for Theorem 4.3, the proof of Proposition A.4, a more general result, is detailled in Appendix A.2.
Equation (9) justifies that we want to have p as close to 1 as possible. If p =1 then we get n as in
Theorem 4.3, and if p = 0 then we get 1 which is useless. The soundness theorem associated is also
almost the same as in [BGKS20], so | have not worked on the proof.

LUEVEWE Soundness theorem for the DEEP-FII protocol (almost [BGKS20]) -&

Let u € N, p, dmax € [0,1], and suppose that Hypothesis 4.5 is valid for (u, p, dmax)-
Then, when the DEEP-FII protocol is invoked on oracle fy : Dy — F¢, with m iterations of the
query phase, if § = A(fo, Vo) > 0 then the verifier accepts with probability at most

(pn 41 — p)log|Do| + (1 — min(4, dmax) + (log |Do| — 2r)e)™,

-~

commit soundness query soundness

: D,
with n =2 - <p||m°|

/
+ 5) + E%MF‘ and where the probability is taken on the z;'s, a;'s and sg’s.

4.3 Hypothesis 4.5

| have not stated Hypothesis 4.5 as a result | have not been able to prove it for interesting values
of p, P, dmax- | worked with Daniel Augot, llaria Zappatore and Sarah Bordage to try to get such a
result.

The first approach was to start from Proposition 2.4 adapt the proof to our case, but it strongly
uses the fact that the error columns must be uniformly random. There is not enough randomness in
the protocol. There are only ¢ random bits at each step, which doesn’t seem te be enough. Having |D|
random bits would work but D is really huge in practice, making such a protocol completely useless
because of the communication complexity.

Another approach was to say that the columns of the matrix ©* + cu will behave almost randomly,
and therefore the non null columns of the difference between u* + au and the closest codeword would
be linearly independent with a good probability, in order to apply the two following results.
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QLEIE RN Correction of interleaved codes with linearly independent error columns
[MK90]

Let V C F™*! be a linear code of minimal distance d. If the code is seen as a code over F¢, then
any pattern of d — 2 or less errors can be corrected if the error columns are linearly independent.

But unfortunalety this cannot work because the prover can commit two words that will never form
a line of words with linearly independent error columns, as shown in the following counterexample.

SEHEAE Counterexample

Suppose that the prover commits words v = v + e and u* = v* + ¢, with v,v* € V and e € F*",
where the non-null columns of e are linearly dependent. Then Vo € F u, = v* +av+ (1 4+ a)e =
vz + (1 + a)e. So the "error' of u* + awu has linearly dependent non-null columns with probability
1 over the choice of a.

A last idea, but that | have not explored, is to only consider the functions that the prover can commit,
i.e. the functions that can be obained by arithmetization. We already know that these functions have
a gap promise property (Lemma 1.11), so maybe there are other interesting properties, and restricting
Hypothesis 4.5 to u* and u obtained by arithmetization allows to get more interesting results.

Part Ill
De Bruijn graphs for arithmetization

5 Circuits to De Bruijn graphs [Spi95]

5.1 Colored wrapped de Bruijn graphs to represent circuits

The use of De Bruijn graphs to represent circuits was introduced in [Spi95]. | first thought that their
use was similar in [BBHR18b], so | studied this, but in fact it is completely different. Nevertheless, it
makes a good introduction to De Bruijn graphs and the arithmetization is interesting.

IINTHGINGNE Wrapped De Bruijn graph

The wrapped De Bruijn graph (or simply De Bruijn graph) of parameter n is the directed graph
B,, = (V, E,,) where

Vo = {0, (%1, ...,2n)) | i € Z/nZ,x; € {0,1}},

and the edges are (i, (z1,...,xn)) — (i + 1, (x2, ..., zpn, b)) with b € {0,1}.

Here is the wrapped De Bruijn graph of size n = 3.

000 001 010 011 100 101 110 111

!
Q
Q
Q

An interesting property is that there is exactly one path of length n from a node (0, (x1,...,zy))
to any node (0, (y1,...,¥n)). There are two edges going out from a node, so a bitstring can denote a
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path in the graph. For b € {0,1}, by denoting b the edge (i, (z1,...,25)) = (i + 1, (22, ..., 2p, 21 D D),
the path from (z1,...,x,) t0 (Y1, ..., Yn) i (X1 D Y1, ..oy Tpy D Yn)-

A wrapped De Bruijn graph of size n is able to represent a circuit of logy n gates, including
additional gates for the inputs and the output. But we have to specify a routing that represents
the given circuit. To make an analogy, a circuit can be easily embedded in a complete binary tree
with some leaves representing the inputs, some nodes representing gates and the root representing
the output. De Bruijn graphs are like complete binary trees and we have to specify which nodes
correspond to which gate, and what is the effective connection between them.

We want to represent the circuit as a coloring of the graph. So the gates and routing will be
represented as colors. So it is not the edges that will be marked, but the nodes. There is one line,
the line ¢ = 0, that will be used to represent the gates. The other nodes are only used for routing.
Every node has two inputs and two outputs, so the possible connections for the routing nodes are the
9 following.

DD OO0 XD O

The nodes representing a gate also have to represent their routing. All routings are not possible
for each gate (the gates have 0, 1 or 2 inputs for example). The possible coloring are 15 the following.

D QB D O Q @ W @
L QA @ QLW

Thus an instance of circuit can be represented as a 24 colors coloring of a wrapped De Bruijn
graph.

m Instance of circuit as De Bruijn graph

Here are a circuit and the associated colored De Bruijn graph.

Now we also want to represent the witness. The witness of satisfiyability could in theory be the
values of the inputs, but checking that the witness is valid would require to go through all the circuit,
which we want to avoid. Instead we want the witness to be a proof, so we will also represent the
witness as a coloring telling for each node which entries or outputs are mapped to true and which
entries or outputs are mapped to false. So a witness of satisfyability of a circuit can be represented
as a 2% colors coloring of a De Bruijn graph. Given an instance and a witness we will only check local
consistency on random nodes to be convinced of the validity of the witness.

5.2 De Bruijn graphs arithmetization

For arithmetization we see the graph B, as a subset of A X Fo./2 X Fgn/2 where A = {a’ | 0 <
i <n—1} and « is a generator of the multiplicative group of Fy,./2. The node (¢,z,y) has edges to
(at,y,ax) and (at,y,ax 4+ 1). x and y are swapped but this graph is isomorphic to the wrapped De
Bruijn graph defined earlier. An instance is a coloring, so we see it as a function AXF,, o xF,, 5 — C}
where C1 C I, /5 is a first set of colors. A solution is another coloring, so we also see it as a function
A Xy, 5 X Fp 9 — C2 where C2 CF,, /5 is a second set of colors.

To check that a witness is valid, we want to check only locally. In order to check the validity of
one node, we will check the consistency of the witness colors of the node with its two neighbors, with
respect to their instance color. A tuple (ig, 1,2, wo, w1, ws) € C3 x C3 is valid if a lot of rules are
satisfies. A couple (i, w;) respects validity if the inputs and outputs of the node (in w;) respects the
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wiring. For a routing node it means that inputs are linked to outputs of same value (true or false),
and for gate nodes it means that the inputs are linked to outputs with a value respecting the gate (A,
V and — are applied). A tuple (ig,%;,wo,w;) respects validity if, in the case where there is a wire
between these nodes, if the output value of the first node is the same as the input value of the second
node. If there is no wire between these nodes then it always respects validity.

With all these rules, it is possible to create a polynomial x € F[ Xy, X7, X9, Yy, Y1, Yo| interpolating
the valid values of colors (seen as elements of IF) to 0.

Example 5.4

These nodes are locally correct:

01 1 0 01 0 0
Therefore x @,@,@,Q,Q,O =0, but x @,@,@,Q,O,Q # 0.
01 11 0 01 00 0

And there are similar rules for gates, like these ones:

11 1
1 0 0 0
1 0, 0 0,
O O
1 0 0 0 0

6 De Bruijn graphs to check the memory consis-

tency [BBHR18b]

With the arithmetization described in Section 1.2, the execution trace of a computation of 7" steps
and using R registers has size RT. So if the computation has a high memory complexity (R = Q(T))
then the execution trace has size O(T?), which is too big. [BBHR18b] proposes another arithmetization
such that the witness of the correct execution has always size O(T logT).

6.1 Checking the memory trace [Per17, BBHR18b]

The idea is to notice that at each step, only one register is accessed, so it is not necessary to
consider all the registers at each step in the execution trace. Instead we consider a trace of the
accesses to the memory. Like in Section 1.2 we consider a subgroup H C F* of size T+ 1 and
generator g.

IDIINTHGINGNE Memory trace

A memory trace is represented by three functions:

e [ : H — {read,write,ignore} C F telling if the memory is read, written or ignored,
e a: H — F giving the adress of the accessed cell, and

e v: H — F giving the value that is read or written in the memory.
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A memory trace is valid if, whenever a value is read in a cell, it corresponds to the value that was
previously in the cell.

IO MOPA  Valid memory trace [Per17]

A memory trace (I,a,v) is valid if for any ¢ € [1, 7] such that I(g") = read, with ¢, < ¢ the maximum
time such that I(g’) # ignore and a(g’) = a(g'), we have v(g%) = v(g?).

Checking the validity of a memory trace can done efficiently if the verifier knows of a permutation
o : H — H sorting the time steps by first the adress and second the time (i.e. t — (a(o(g?)),o(g"))
is an increasing function for the dictionnary order and any order on F). With such a permutation
we can construct a constraint polynomial Q (X1, X2, X3, Y7, Y2, Y3) such that with L(X), A(X), V(X)
polynomials interpolating [, a,v on H and

P(X) = Q(L(a(X)), A(e(X)), V(e(X)), L(go (X)), Alga (X)), V(9o (X)), (10)
we have that Vt € [1,T], P(g") = 0 iff the memory trace is valid. For this we must have
Q(X1, X9, X3,Y1,Y9,Y3) =0 iff (X;=read AY; #ignore A Xo =Y3) = X3=1Y53.

The issue is that it is not possible to ensure that o is a permutation and that the prover is not
cheating with an arbitrary function H — H. This is the subject of Section 6.2.

The memory trace, together with a sorting permutation, could be sufficient to check the validity
of the memory, but it is impractical to check the validity of the execution. [Per17] gives the explicit
construction of polynomial constraints for all the possible computation steps, and in particular the
number of simultaneous register required, and [BBHR18b] claims that R = O(log T") registers suffices
to have an execution trace that can be efficiently generated and verified. In this new arithmetization
there are three types of constraints.

IO MOEE Permuted execution trace constraints [BBHR18b]

There are three types of constraints to check the validity of a computation:

e The local constraints.
e The execution constraints Q's, such that V¢, Q(r(g%),r(g'™!)) = 0.

e The memory constraints Q's, such that V¢, Q(r(g'),r(7(g"))) = 0.

The memory constraints are written differently than in Equation (10), but with 7(x) = 0~ !(go(x))
it is equivalent to test the consistency of all g* with m(g*) and to check the consistency of all o(g")
with go(g').

6.2 De Bruijn graphs to algebraize permutations [BBHR18b]

Let n € N such that 2" = T + 1. We saw in Section 5 that in a wrapped De Bruijn graph it is
possible to go from a node (0, (x1, ..., zy)) to any node (0, (y1,...,yn)) in n steps. In fact it is possible
to use a routing coloring of a De Bruijn graph (without gate nodes) to represent a lot of functions
{0,1}" — {0,1}", including the permutations. Furthermore, it is possible to encode the nodes of a
De Bruijn graph in F in such a way that there are 8 affine functions such that the two neighbors of a
node are its image by two of these functions.

DINNIONRN Algebraic De Bruijn graph [BBHR18b]

Let go € IF be a primitive element, k := [log(n + 1)], and £ be a primitive binary polynomial of
degree k. The node (x_1.-.50>, (%0, ..., Zn_1)) of the De Bruijn graph of size n is represented as

n—1 k—1
> wigh+ 98> vigh =z + gy
=0 =0
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Therefore the neighbors of the node = + gy are the vy(x + ggy) for b € {0,1}, where

(T + 9"Y) = Vo1 6(T + 90Y) Vby babs (2) 7= g0z + b1(gg + 1) + ba(gp€) + bs.

Note that for all by, b2, b3 € {0,1}, vp, 1, is an affine function. Now we allow ourselves to use
both writings undistinctly.
Theorem 6.5 gives a way to ensure that the function 7 given by the prover is a permutation.

ALY GG Affine permutation [BBHR18b)]

Let (V,,, E,,) be the De Bruijn graph of size n. Let cp,c1 : V;, — C :={g" | 0 < t < T’} be colorings
such that

1. w > ¢o(0,w) is injective,
2. Yw € {0,1}", co(n — 1,w) = ¢1(n — 1,w), and
3. for b € {0,1}, ¢p(i,w) is equal to c,(vo (i, w)) or cp(v1 (i, w)).

Then the function 7 : C' — C' induced by Yw, 7(cp(0,w)) = ¢1(0,w) is a permutation.

Conversely, for any permutation 7 : C' = C, there exists colorings ¢y and c; satisfying the three
properties above.

Let ¢, ¢1 : V,, — C be the colorings induced by Theorem 6.5 for 7. Let Cy, C; € F[X] interpolating
co,c1 on V. By Theorem 6.5 we have that 7 is a permutation iff

1. Co(X) — Cx(X) cancels on {(i,w) € V,, | i = 0}, with C(X) interpolating a canonical bijection
¢ {(i,w) € V,, | i = 0} — C which is known by the verifier,

2. Cy(X) — C1(X) cancels on {(i,w) € V, | i =n — 1}, and
3. For b € {0,1}, (Cy(X) — Cp(vo(X))) (Co(X) — Cp(v1(X))) cancels on Vj,.

And Furthermore, we have
Vit € [[l,Tﬂ,P(r(gt),r(w(gt))) =0 iff Ywe{0,1}", P(r(Cy(0,w)),r(C1(0,w))) =0.

So we have constructed constraint polynomials to allow the verifier to efficiently check memory con-
straints.

For the verifier to be able to check the consistency of the proof polynomials efficiently, we required
in Section 1.2 that the polynomial constraints cancel on H = {g' | 0 < t < T}, so that the verifier
can compute [, (X — g") = XT+1 — 1. Here with this construction the polynomials don’t cancel
on H, but the real arithmetization of [BBHR18b] makes the polynomials cancel on a convenient set.
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A Detailled proofs

A.1 FRI soundness proofs

A.1.1 Detailled proof of Theorem 3.4

Let 6; = min(Je(J=(A(W))), A(fi, Vi)). Let E; be the bad event that A(Fold[f;, a;], Vit1) < d;—e.
Let accept be the event that the Verifier accepts.
By the formula of total probability,

r—1 r—1
U EZ-)IP’ (U Ez> +P (accept
i=0 i=0

( El>+ (accept

Corollary 3.2 implies that P(E;) | [ SO by the union bound we have that

P(accept) =P (accept

N
i
N
f

=0

With Q; the event that the Verifier doesn't reject the j iteration of the query phase, we have

r—1 r—1
P (accept ﬂ-&) =P (Qla"‘an mﬂ) ’
i=0 i=0
so by independence of the choices of the sy’s and since the process is always the same,
r—1 m r—1
P (accept ﬂ EZ> = HIP (Qj ﬂ EZ>
i=0 j=1 i=0
r—1 m
=P <Q1 N E) :

i=0
So we only have to do the proof for one step of the query phase. Futhermore, we now suppose that
we have \/Z; E;.

Consider the graph G = (V, E) where V = LoU...U L, and (s, s") € E iff there exists i such that
s € Lit1, 8 € Ljand s = s?. This graph is a tree with root the only element of L, and leaves the
elements of Lg. In these settings, the query phase consists in choosing a random leaf sg and verifying
each step up to s,.

Consider the following coloration c of the graph.

green if s e Lo

c(s) =< green if fiy1(s) = Fold[f;, a](s)
red otherwise.

The Verifier accepts iff there is no red vertex in the branch from the chosen sy to s,.

We are going to change the functions f; into some f/ in order to simplify the computation of the
probability, where P(Q1) < P(Q)) with @ the event that the Verifier doesn’t reject in the query phase
with the functions f;.

In any branch sg...s,, starting from the root, when the first red node s; is encountered, make all
the s; for j < i correct, i.e. with i = max{j € [1,7] | c(s;) = red},

f/* (8' ) _ FOld[fj,Ozj](Sj) if7+1<q
JHISIH fir1(sj41) if j >
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This way, with g; = [ (rrd)\ the proportion of red nodes in L;,

e P(Q1) < P(Q)) because every branch of G that is accepting according to the f; is accepting
according to the f/

o A(fiy1,Fold[f;, ci]) < Bit1

. . . - reen if j <1
e with the same notations, the new coloration ¢’ of G satisfies ¢/(s;) = g AN
c(sj) ifj=>i

With this construction, in a branch with (at least) a red vertex according to ¢, there is exactly one
red vertex according to ¢/, and in a branch with no red vertex according to ¢, there is still no red vertex
according to ¢'.

Therefore the event that the Verifier rejects is the disjoint union of the events C; that the Verifier
finds a vertex in L; that is red according to ¢’. So we have

o)

:1—21@(0)
=0

= 1*2@%
=0

We now have to bound the 3;. We split in two cases, if §;+1 < J; — € or not.
If 0,41 > d; —e then Bi41 >202>9; — 641 — €.
If ;11 < &; — e then ;41 < 0; < &' s0 Ji+1 = A(fit1, Vit1)- So by the triangle inequality,

div1 = A(fit1, Vigr) = (FOld[fz, a;), Vig1) — A(fig1, Fold[fi, o).

>5 —€ <Bit1

So in both cases, ;11 = §; — d;+1 — €. Therefore,

Y B (6 —dip1—e)
=0 1=0

= (50 5r —re

=0y — e

Thus
P(accept) < ﬁ + (1 — min(4, J.(J-(A(VD)))) + re)™

A.1.2 Improved proofs from [BKS18]

A1.2.1 Detailled proof of Theorem 3.5

For o € A, we have that A(u*,v® —au) < § —e.
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Consider the graph G = (A, E) where
E={(a,d) | Aw* — au,v® — a'u) < ~},

and coG = (A, A%\ E) its complement graph.
Let S4 C A be a clique of coG and

S={v*—au|aecSa}

The function o — v® — au is injective, otherwise there exists «, o’ such that v* — au = v — a’u, so
u € V. Therefore |S| = [S4|.

Since S4 is a clique, we have A(S) > =, so by hypothesis |B(u*,~*) N S| < p*. But since
A(u*,v* — au) < 6 —e < v* by definition of v*, we get that B(u*,7*) NS = S. So |Sa| < u*
Therefore coG doesn’t have any clique of size > u*.

So by Turdn’s theorem, coG has at most (1 — ﬁ)m edges, so at most (1 — ﬁ)%
edges, so GG has at least %W edges.

Y acadegg(a) = %\A|(\A| — 1) so there exists oy € A such that degg(ag) > #—HA\ — 1. Let
B={a€cA|(a,a) € E}.
Then |B| > %\A[ — 1 and for all a € B,

1

"a— g

A(v* — agu, v* — au) = A(u (v* —vH)) <.

ap—«

Uper, Cu 50 [Bl =3, cy. |Cyl. Therefore there exists v such that |Cy| > \V%I‘B|
By hypothesis on u, we have that |B(u,vy) NV| < g, so |Cy| > i!B|
For all o € C,

Let C, = {a €EB|lv= (v —vao)} and V,, = VN B(u,v). Then B is the disjoint union

1

a—

v = (Y — V™),

so with

we have that for all o € C,, v* = v* + aw.
So by definition of v, for all a € C,,,

Au* —v*a(v—u)) <d—e

Let T = {i € [1,n] | (uf,u;) # (vf,v;)}. Let Do = {i € T | uf — v} = a(v; —u;)}

For i € T there can be at most one o € C,, such that u} — v} = a(v; — ;) (% if v; # u;, and
none if v; = w; and v} # u}). le. fori e T there is at most one a € C,, such that i € D,. So we have
>acc, 1Dal <|T| so there exists o such that [Dq, | < % <

IfieT, and if i ¢ D,,, we have that u} — v} # ay(v; — u;). Thus with T = [1,n] \ T,

T D T 1
5—5>A(u*—v*,a1(v—u));1_u_@>1_u_ '
n n n |Gy
——
i¢T
i¢Day
Since |Cy| > 21B| > L (141 -1) > L,
|T| 1
>1—0+¢e— >1-0.
(&

A.1.2.2 Detailled proof of Lemma 3.8

Suppose by a way of contradiction that |A| > u. Then there exists 7' C L;y; and g1,92 € Viq1

T
such that \L‘i+|1| >1-=96, for = g1r and fir = 927
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Let Q1(Y) and Q2(Y) be the polynomials interpolating g; and g2 respectively. Then deg(Q1), deg(Q2) <

gk—i—1 by definition of V.
Let Q(X,Y) = Q1(Y) + XQ2(Y). Then degy (Q) < 2F—"1 — 1.
Let R(X) = Q(X, X?) = Q1(X?) + XQ2(X?). Then
deg(R) < 2degy (Q) +1 < 2871 — 1 < 2+,

So R € V; and thus A(f,V;) < 1 — % < 6, which contradicts our assumption. Therefore
Al < p.

A.2 DEEP-FRI commit soundness proof

Suppose that P (€[a, z]) = n. Then

>
RS
9
™
B
&
Y,
\l/
Y,
N3

Proof.
Let A, be the event P(E[a, 2]) >

Suppose that P (A,) < 7.
Then

S

< P(Ay) + P (o, 2] | Ag) by Fubini

(NS

So if P (&[a,z]) =n, then P(Ay) >

Notation A.2

Let V be a linear code [n, k,d], of generating matrix G € F¥*". Let D C F¥ be the set of columns
of G. A codeword v : D — F is the evaluation of a linear form /,,.
Let S C F* be a o-robust set (every subset of S of size o contains a basis of F¥).

e For a,b € F¥, let (a,b) = Zle a;b;.

e ForzecSandbeF, letV3={veV|v=G- ¥4, and (£, z) = b}.

Notation A.3

For w € [0,1]™ a weight and u, v : F?, we note the w-agreement between u and v by

1
agree,, (u,v) = — Z w;.
n

1<i<n
U; =05

And for V C IFZ;,

agree,,(u, V') = max agree,, (u, v).
veV
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OB RN DEEP method for general linear codes with probability on the list
bound (inspired from [BGKS20]) &

Let

e V be a linear code [n, k, d|, of generating matrix G € IF';X",

D C ]F'; be the set of columns of G,
e SC IF’,; be a o-robust set,
e we 0,1,

ou*,uG]FZ,6>O.u€N*,and0<e<%.

1/3
Denote £ = {a € Fy | [B(u* 4+ au,0) N V| < p} and = max <2M (ﬁ +5> ’%)

Suppose that }PI’F (0 € E) > p and that
acliy

P * yaB(a)y 5 1 ) > 1—p). 11
aqu,zeS(agreew(u + au, ) ) =pn+(1-p) (11)

Then there exists T' C [1,n] such that ujp € Vir, wr € Vip and Yierwi > (1 =6 —¢)n.

Proof.
Let D, . be the event (agree, (u* 4+ au, V*5=()) > 1 — §. By the total probabilities,

P D = P D P E P D P E
aequ,zeS( a’z) aGE,zGS( a’z)aqu,zeS(ae )+aeE,zeS( a’z)aqu,zeS(ae )

So by rearanging,

1
P Do)=— 2 (r - (1- P aer) P
aeE’ZES( ) P (a€FE) <0‘€1Fq,2'€5( 2) ( Ole]Fq(a © )> aeﬁ,zes( Oé’Z))

acF,

o 117 (aeJFq,zeS(Da’Z) -« _p)aegzeS(Da’Z)> Py hypothests on p
1

> (P De) (-1

>~ on+(1=p)=(1-p) by hypothesis on P (D)

.

S P D >n.
anE,ZES( oz,z) K

Let upy = u* + au. Let &[a,z] denote the event “Jv € B(uq,d) NV, {(v,z) = B,(«a) and
agree,, (uq,v) > 1 —0". Then by assumption, EIP’ S(E[a,z]) > 1.
aE €

)

a€E \zeS
have |A| > L. For o € E, take

Thus, by Lemma A1, P < P (Ela,z]) > g) > 1 Thenwith A={a € F | ZleP’S(é’[oz, z]) = 4}, we

vo = argmax P ((v,z) = B,(a)).
vEB(Uq, )NV #€5

Let So = {2 € S| (Va,2) = Bz()} and po = %

For o € A, there is a subset S” C S such that |S'| = @ and for all z € &', €[, 2] is satisfied. This
can be seen as a function fo : S = B(ua,d)NV and 5" is the disjoint union U, cyn g, 4) it (v},

SO D LeVNB(ua,d) o) = |19 = @ Therefore there exists v € V N B(uq,d) such that
. S —

FM D] > spekel—s And by definition, 1o = P((ta, ) = B:(a)) > P((1,2) = Ba(a)) >

| £t ({v})]. Furthermore, for « € A C E, we have |B(uq,8) N V| < 1, 50 fiq = %

For a, 3,7 taken independently uniformly at random in A, we have

|Sa NSNS,
ﬁ( 5] s pealLzesanssns,)
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=E(E <]lz€Sa)3) by independence

zeS acA
> Lees,)’
ZGSIE[GA( ) by Jensen
= 1,
n\®
> <> since a € A
21
P é +e by definition of 5
Therefore
<
o+ |S)e < a7617]3eA(|Sa NSgNSy|)
S|
= P >
> B (82N S5 N8| > k)
k=1
o S|
= P (|SanSgNSy| =k P (|SanSsNSy| >k
i oc,,B,’yEA(| B 1 )+ kZU;H by A(’ B M )
<1 <P(|SaNS5NSy|>0+1)
< - P (]
o+ (S| U)a,ﬂ,weAuS NSgN Sy > o)
< P .
o+ ‘S’a,ﬁ,'yeA(’SQ NSgNSy| > o)
P o > E.
So aﬂﬁeA(]S NSNSy >0)>e¢
P(a, B8, not all distinct) < P(|{e, 8,7} = 2)
=Pla=p8)+P({e, 8.7} =2 a #p)
=Pla=p)+Pla=7)+P({a, B2} =2]a#pfa#7)
=Pla=p)+Pla=7)+P(B=7)

Since ¢ < % we have [A| > L > 2> g, so P(a, 8, not all distinct) <
Thus,

£
5-

B([{a, 8.7}| = 3 and Sa N S5 11 S,| > o)
= P({e, 8,7} = 3)P(|Sa N Sp N Sy| > o | {e, B,7}] = 3)
=P(|Sa N SN 55| > 0) = P(ISa N SN 55| > 0 | e, 7} < 3)P({e, 7} < 3)
by the total probabilities
> P(|Sa NSNSy > 0) = P(|{a, 8,7} <3)
>e/2.

So there exists distinct ag, 5y € A such that IP’A (ISag NS, NSy >0) = ¢/2>0.
e

Let B={y € A|[Sa, N Ss, NS,y >0} Then |B| > |A|5 > 1.

Consider v € B and let S, = S,, N Sg, NS,.

We extend u* and u to S by for all z € S\ [1,n], u*(z) = B»(0), u(z) = B;(1), and for all « € E,
uq(z) = u*(2) + au(z).

(0, Uag ), (Bo,up,) and (y,u,) are collinear, so (ao,uao|g), (Bo,u50|5) and (fy,uﬂg) are collinear.
Since V' is systematic, we define v,(2) = <v7|[[170]],z> to extend v, to S. Thus by definition of S,
(@0, vag|3), (ﬁo,vﬁ()'g) and (7, vyg) are collinear. Furthermore, S is o-robust and || > o so v, is
uniquely determined by vy g, and so (a0, vaq), (Bo,vs,) and (v,v,) are collinear.

We write the line (ag, va,), (Bo, vg,) @s v* + v, so for all v € B, v, = v* + yv. Let

T ={ie[L,n] | (u(@),u@) = (v (i), v())}
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and T = [1,n] \ T. For v € E and i € [1,n],

Uy (1) = v4(1) = (u'(9) = 0" () + 7 (u(i) — v(D))
so for i € T there exists at most one value v € B such that (i) = v, (i).
Let By = {i € T | uy(i) = vy(i)}. Then > _5|B,| < |T|, so there exists 79 € A such that

| Bao| < (- Thus

veEB

1-46< IEEB(agreew(uv,vv)) by definition of v
g

1
= @ ZB agree,, (uy, vy)
ve

1 - .
= m Z Zwi]lu%isz by definition of agree
yeB i=1
1

1 n
= 2| 77 2 P

YEB
1 1 1
< ” Z w; + ” Z wi@
€T ic€T
1 7|
L wit B
i€T

1
gEZwi—FE because |B| > 1
€T

N

So Y icrwi > (1—0—¢)n.

With this proven, the exact proof of Proposition 4.6 is the following.

Proof of Proposition 4.6
Take S = {(2)o<i<k—1 | # € Fy}. Then S is (n—k)-robust and it is equivalent to take an element of
S or an element of IF;. For v € V, we have that /, is the coefficients of an interpolating polynomial

of v, 50 (ly, (2)o<ich_1) = Zfzo(ﬁv)izi = ly(2).
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B DEEP-FII protocol
DEEP-FII protocol

Prover wants to prove that fy : Dy — Fg e V.

Prover Verifier
0 20 <£ F¢
By, : FY — F*
(B1,2(X) = Fold[fo, X](20)) Biz
0 Qg (i ]FZ
f1 g Dl — ]Fé
= Fold[fo,a0](X)—Bi -, (a
£ (h(x) = Bdbed 0Py A
S :
Zr—1 Zr—1 <£ F¢
By , :Ft - F*
(Br,z_ (X) = Fold[fr—1, X](2,-1))  Jr
Ar-1 Qp_q (i F¢
fr: D, =T
. Fold[f,—1,0r—1](X fB,,Z7,7 fo 7o 7
() = Brvr OO By r)) -
Verifier chooses sy ﬁ Dy, defines s;4+1 := s? and accepts if
- Fold[fo, aol(s1) = (si+1 — 2i) fi+1(8i+1) + Bit1,z, ()
o repeat
>
U .
FOld[fT—la ar—l](sr) = (Sr - Zr—l)fr<5r) aF Br,z,«_l(ar—l)-

Note that the B; ., , are not really multivariate functions, they are a succession of ¢ univariate
functions.
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