Mixed Integer Non Linear Optimization: Methods and Applications

Mixed Integer Nonlinear Programming

Claudia D'Ambrosio dambrosio@lix.polytechnique.fr

Outline

- Motivating Applications
- Global Optimization methods
 - Multistart
 - Spatial Branch-and-Bound
 - Standard form
 - Convexification
 - Expression trees
 - Variable ranges
 - Bounds tightening
 - Reformulation Linearization Technique (RLT)

Pooling Problem

Pooling Problem

Inputs I Pools L Outputs J

- Nodes $N = I \cup L \cup J$
- Arcs A $(i,j) \in (I \times L) \cup (L \times J) \cup (I \times J)$ on which materials flow
- Material attributes: K

- Arc capacities: u_{ij} , $(i,j) \in A$
- Node capacities: C_i , $i \in N$
- Attribute requirements $\alpha_{kj}, \ k \in K, j \in J$

4/50

refinery processes in the petroleum industry

- refinery processes in the petroleum industry
- different specifications: e.g., sulphur/carbon concentrations or physical properties such as density, octane number, ...

- refinery processes in the petroleum industry
- different specifications: e.g., sulphur/carbon concentrations or physical properties such as density, octane number, ...
- wastewater treatment, e.g., Karuppiah and Grossmann (2006)

- refinery processes in the petroleum industry
- different specifications: e.g., sulphur/carbon concentrations or physical properties such as density, octane number, ...
- wastewater treatment, e.g., Karuppiah and Grossmann (2006)
- Formally introduced by Haverly (1978)

- refinery processes in the petroleum industry
- different specifications: e.g., sulphur/carbon concentrations or physical properties such as density, octane number, ...
- wastewater treatment, e.g., Karuppiah and Grossmann (2006)
- Formally introduced by Haverly (1978)
- Alfaki and Haugland (2012) formally proved it is strongly NP-hard

Pooling problem: Citations

- Haverly, Studies of the behaviour of recursion for the pooling problem, ACM SIGMAP Bulletin, 1978
- Adhya, Tawarmalani, Sahinidis, A Lagrangian approach to the pooling problem, Ind. Eng. Chem., 1999
- Audet et al., Pooling Problem: Alternate Formulations and Solution Methods, Manag. Sci., 2004
- Liberti, Pantelides, An exact reformulation algorithm for large nonconvex NLPs involving bilinear terms, JOGO, 2006
- Misener, Floudas, Advances for the pooling problem: modeling, global optimization, and computational studies, Appl. Comput. Math., 2009
- D'Ambrosio, Linderoth, Luedtke, Valid inequalities for the pooling problem with binary variables, IPCO, 2011
- Tawarmalani and Sahinidis. Convexification and global optimization in continuous and mixed-integer nonlinear programming: theory, algorithms, software, and applications, Ch.
 Kluwer Academic Publishers, 2002.

"Simple" constraints

Variables x_{ij} for flow on arcs

Flow balance constraints at pools:

$$\sum_{i\in I_l} x_{il} - \sum_{j\in J_l} x_{lj} = 0, \quad \forall l\in L$$

Inputs I Pools L Outputs J

"Simple" constraints

Variables x_{ij} for flow on arcs

Flow balance constraints at pools:

$$\sum_{i\in I_l} x_{il} - \sum_{j\in J_l} x_{lj} = 0, \quad \forall I\in L$$

Capacity constraints:

Pools L

Outputs J

$$\sum_{j \in J_i} x_{ij} + \sum_{l \in L_i} x_{il} \le C_i, \quad \forall i \in I$$

$$\sum_{j \in J_l} x_{lj} \le C_l, \quad \forall l \in L$$

$$\sum_{j \in J_l} x_{ij} + \sum_{j \in J_l} x_{jj} \le C_j, \quad \forall j \in J$$

Inputs 1

"Complicating" constraints

- Inputs have associated attribute concentrations $\lambda_{ki}, k \in K, i \in I$
- Concentration of attribute in pool is the weighted average of the concentrations of its inputs.
- This results in bilinear constraints.

"Complicating" constraints

- Inputs have associated attribute concentrations $\lambda_{ki}, k \in K, i \in I$
- Concentration of attribute in pool is the weighted average of the concentrations of its inputs.
- This results in bilinear constraints.
- P-formulation (Haverly 78):
 Keep track of concentration p_{kl} of attribute k in pool l

"Complicating" constraints

- Inputs have associated attribute concentrations $\lambda_{ki}, k \in K, i \in I$
- Concentration of attribute in pool is the weighted average of the concentrations of its inputs.
- This results in bilinear constraints.
- P-formulation (Haverly 78):
 Keep track of concentration p_{kl} of attribute k in pool l
- Q-formulation (Ben-Tal et al. 94):
 Variables q_{il} for proportion of flow into pool l coming from input i

P-formulation

$$\sum_{j \in J_i} x_{ij} + \sum_{l \in L_i} x_{il} \leq C_i, \qquad \forall i \in I$$

$$\sum_{j \in J_l} x_{lj} \leq C_l, \qquad \forall l \in L$$

$$\sum_{i \in I_j} x_{ij} + \sum_{l \in L_j} x_{lj} \leq C_j, \qquad \forall j \in J$$

$$\sum_{i \in I_l} x_{il} - \sum_{j \in J_l} x_{lj} = 0, \qquad \forall l \in L$$

$$p_{kl} = \frac{\sum_{i \in I_l} \lambda_{ki} x_{il}}{\sum_{j \in J_l} x_{lj}} \quad \forall k \in K, l \in L$$

$$\frac{\sum_{i \in I_j} \lambda_{ki} x_{ij} + \sum_{l \in L_j} p_{kl} x_{lj}}{\sum_{i \in I_l \cup L_i} x_{ij}} \leq \alpha_{kj}, \qquad \forall k \in K, j \in J$$

P-formulation

$$\sum_{j \in J_i} x_{ij} + \sum_{l \in L_i} x_{il} \le C_i, \qquad \forall i \in I$$

$$\sum_{j \in J_i} x_{lj} \le C_l, \qquad \forall l \in L$$

$$\sum_{i \in I_j} x_{ij} + \sum_{l \in L_j} x_{lj} \le C_j, \qquad \forall j \in J$$

$$\sum_{i \in I_l} x_{il} - \sum_{j \in J_l} x_{lj} = 0, \qquad \forall l \in L$$

$$\mathbf{p_{kl}} \sum_{\mathbf{j} \in J_l} \mathbf{x_{lj}} = \sum_{i \in I_l} \lambda_{ki} x_{il} \qquad \forall k \in K, l \in L$$

$$\sum_{i \in I_i} \lambda_{ki} x_{ij} + \sum_{l \in L_i} \mathbf{p_{kl}} \mathbf{x_{lj}} \le \alpha_{kj} \sum_{i \in I_i \cup L_i} x_{ij}, \quad \forall k \in K, j \in J$$

Q-formulation

$$x_{il} = q_{il} \sum_{j \in J_l} x_{lj}, \quad \forall i \in I, I \in L_i$$

 $\sum_{i \in I_l} q_{il} = 1, \qquad \forall I \in L$

Q-formulation

$$x_{il} = q_{il} \sum_{j \in J_l} x_{lj}, \quad \forall i \in I, l \in L_i$$

$$\sum_{i \in I_l} q_{il} = 1, \qquad \forall I \in L$$

Attribute constraints

$$\sum_{i \in I_j} \lambda_{ki} x_{ij} + \sum_{l \in L_j} x_{lj} \left(\sum_{i \in I_l} \lambda_{ki} q_{il} \right) \leq \alpha_{kj} \sum_{i \in I_j \cup L_j} x_{ij}, \quad \forall k \in K, j \in J$$

Q-formulation

$$\sum_{j \in J_i} x_{ij} + \sum_{l \in L_i} x_{il} \leq C_i, \qquad \forall i \in I$$

$$\sum_{j \in J_i} x_{lj} \leq C_l, \qquad \forall l \in L$$

$$\sum_{i \in I_j} x_{ij} + \sum_{l \in L_j} x_{lj} \leq C_j, \qquad \forall j \in J$$

$$x_{il} - \mathbf{q_{il}} \sum_{\mathbf{j} \in J_l} \mathbf{x_{lj}} = 0 \qquad \forall i \in I, I \in L_i$$

$$\sum_{i \in I_i} q_{il} = 1 \qquad \forall l \in L$$

$$\sum_{i \in I_i} \lambda_{ki} x_{ij} + \sum_{l \in L_i} \mathbf{x_{lj}} \left(\sum_{i \in I_l} \lambda_{ki} \mathbf{q_{il}} \right) \leq \alpha_{kj} \sum_{i \in I_i \cup L_i} x_{ij}, \quad \forall k \in K, j \in J$$

Example: Pooling Problem with binary vars

From NLP to MINLP

- Decide whether to install pipes or not (0/1 decision)
- Associate a binary variable z_{ij} with each pipe (suppose for now on arcs from input to output)

Extra constraints:

$$x_{ij} \leq \min(C_i, C_j) z_{ij}$$
 $\forall i \in I, j \in J_i$
 $z_{ij} \in \{0, 1\}$ $\forall i \in I, j \in J_i$

Objective Function

Fixed cost for installing pipe

$$\min \sum_{i \in I} c_i \left(\sum_{l \in L_i} x_{il} + \sum_{j \in J_i} x_{ij} \right) - \sum_{j \in J} \rho_j \left(\sum_{i \in I_j} x_{ij} + \sum_{l \in L_j} x_{lj} \right) + \sum_{i \in I} \sum_{j \in J_i} f_{ij} z_{ij}$$

Outline

- Motivating Applications
- Global Optimization methods
 - Multistart
 - Spatial Branch-and-Bound
 - Standard form
 - Convexification
 - Expression trees
 - Variable ranges
 - Bounds tightening
 - Reformulation Linearization Technique (RLT)

Global Optimization methods

a: solution of convex relaxation in whole space
b: local solution of objective function in whole space

Exact

- "Exact" in continuous space:
 ε-approximate (find solution within pre-determined ε distance from optimum in obj. fun. value)
- For some problems, finite convergence to optimum ($\varepsilon = 0$)

Heuristic

 Find solution with probability 1 in infinite time

Outline

- Motivating Applications
- Global Optimization methods
 - Multistart
 - Spatial Branch-and-Bound
 - Standard form
 - Convexification
 - Expression trees
 - Variable ranges
 - Bounds tightening
 - Reformulation Linearization Technique (RLT)

Multistart

The easiest GO method

```
1: f^* = \infty

2: x^* = (\infty, ..., \infty)

3: while ¬ termination do

4: x' = (\text{random}(), ..., \text{random}())

5: x = \text{localSolve}(P, x')

6: if f_P(x) < f^* then

7: f^* \leftarrow f_P(x)

8: x^* \leftarrow x

9: end if

10: end while
```

Termination condition: e.g. repeat k times

$$f(x_1, x_2) = 4x_1^2 - 2.1x_1^4 + \frac{1}{3}x_1^6 + x_1x_2 - 4x_2^2 + 4x_2^4$$

Global optimum (COUENNE)

$$f(x_1, x_2) = 4x_1^2 - 2.1x_1^4 + \frac{1}{3}x_1^6 + x_1x_2 - 4x_2^2 + 4x_2^4$$

Multistart with IPOPT, k = 5

$$f(x_1, x_2) = 4x_1^2 - 2.1x_1^4 + \frac{1}{3}x_1^6 + x_1x_2 - 4x_2^2 + 4x_2^4$$

Multistart with IPOPT, k = 10

$$f(x_1, x_2) = 4x_1^2 - 2.1x_1^4 + \frac{1}{3}x_1^6 + x_1x_2 - 4x_2^2 + 4x_2^4$$

Multistart with IPOPT, k = 20

$$f(x_1, x_2) = 4x_1^2 - 2.1x_1^4 + \frac{1}{3}x_1^6 + x_1x_2 - 4x_2^2 + 4x_2^4$$

Multistart with IPOPT, k = 50

$$f(x_1, x_2) = 4x_1^2 - 2.1x_1^4 + \frac{1}{3}x_1^6 + x_1x_2 - 4x_2^2 + 4x_2^4$$

Multistart with SNOPT, k = 20

Outline

- Motivating Applications
- Global Optimization methods
 - Multistart
 - Spatial Branch-and-Bound
 - Standard form
 - Convexification
 - Expression trees
 - Variable ranges
 - Bounds tightening
 - Reformulation Linearization Technique (RLT)

Spatial Branch-and-Bound

Falk and Soland (1969) "An algorithm for separable nonconvex programming problems".

20 years ago: first general-purpose "exact" algorithms for nonconvex MINLP.

- Tree-like search
- Explores search space exhaustively but implicitly
- Builds a sequence of decreasing upper bounds and increasing lower bounds to the global optimum
- Exponential worst-case
- Only general-purpose "exact" algorithm for MINLP Since continuous vars are involved, should say "ε-approximate"
- Like BB for MILP, but may branch on continuous vars
 Done whenever one is involved in a nonconvex term

Spatial B&B: Example

Original problem P

Spatial B&B: Example

Spatial B&B: Example

Local (upper bounding) solution x*

Convex relaxation (lower) bound \bar{f} with $|f^* - \bar{f}| > \varepsilon$

25/50

Branch at $x = \bar{x}$ into C_1, C_2

Convex relaxation on C_1 : lower bounding solution \bar{x}

localSolve. from \bar{x} : new upper bounding solution x^*

 $|f^* - \bar{f}| > \varepsilon$: branch at $x = \bar{x}$

Repeat on C_3 : get $\bar{x}=x^*$ and $|f^*-\bar{f}|<\varepsilon$, no more branching

Repeat on C_2 : $\bar{f} > f^*$ (can't improve x^* in C_2)

Repeat on C_4 : $\bar{f} > f^*$ (can't improve x^* in C_4)

C. D'Ambrosio (CNRS&X) MINLP 25/50

No more subproblems left, return x^* and terminate

Spatial B&B: Pruning

- \bigcirc P was branched into C_1, C_2
- \bigcirc C_1 was branched into C_3 , C_4
- **3** C_3 was pruned by optimality $(x^* \in \mathcal{G}(C_3))$ was found)
- C₂, C₄ were pruned by bound (lower bound for C₂ worse than f*)
- **⑤** No more nodes: whole space explored, $x^* \in \mathcal{G}(P)$
 - Search generates a tree
 - Suproblems are nodes
 - Nodes can be pruned by optimality, bound or infeasibility (when subproblem is infeasible)
 - Otherwise, they are branched

Aimed at solving "factorable functions", i.e., f and g of the form:

$$\sum_{h}\prod_{k}f_{hk}(x,y)$$

where $f_{hk}(x, y)$ are univariate functions $\forall h, k$.

Aimed at solving "factorable functions", i.e., f and g of the form:

$$\sum_{h}\prod_{k}f_{hk}(x,y)$$

where $f_{hk}(x, y)$ are univariate functions $\forall h, k$.

 Exact reformulation of MINLP so as to have "isolated basic nonlinear functions" (additional variables and constraints).

Aimed at solving "factorable functions", i.e., f and g of the form:

$$\sum_{h}\prod_{k}f_{hk}(x,y)$$

where $f_{hk}(x, y)$ are univariate functions $\forall h, k$.

- Exact reformulation of MINLP so as to have "isolated basic nonlinear functions" (additional variables and constraints).
- Relax (linear/convex) the basic nonlinear terms (library of envelopes/underestimators).

Aimed at solving "factorable functions", i.e., f and g of the form:

$$\sum_h \prod_k f_{hk}(x,y)$$

where $f_{hk}(x, y)$ are univariate functions $\forall h, k$.

- Exact reformulation of MINLP so as to have "isolated basic nonlinear functions" (additional variables and constraints).
- Relax (linear/convex) the basic nonlinear terms (library of envelopes/underestimators).
- Relaxation depends on variable bounds, thus branching potentially strengthen it.

Outline

- Motivating Applications
- Global Optimization methods
 - Multistart
 - Spatial Branch-and-Bound
 - Standard form
 - Convexification
 - Expression trees
 - Variable ranges
 - Bounds tightening
 - Dourius tigritering
 - Reformulation Linearization Technique (RLT)

Spatial B&B: exact reformulation to standard form

Consider a NLP for simplicity. Transform it in a **standard form** like:

$$\min c^{\mathsf{T}}(x, w)$$
 $A(x, w) \leq b$
 $w_{ij} = x_i \bigotimes x_j \quad \text{for suitable } i, j$
 $x \in X$
 $w \in W$

where, for example, $\bigotimes \in \{\text{sum, product, quotient, power, exp, log, sin, cos, abs}\}$ (Couenne).

Outline

- Motivating Applications
- Global Optimization methods
 - Multistart
 - Spatial Branch-and-Bound
 - Standard form
 - Convexification
 - Expression trees
 - Variable ranges
 - Bounds tightening
 - Reformulation Linearization Technique (RLT)

Spatial B&B: convexification

Relax $w_{ij} = x_i \bigotimes x_j \ \forall$ suitable i, j where $\bigotimes \in \{\text{sum, product, quotient, power, exp, log, sin, cos, abs}\}$ such that:

$$w_{ij} \leq \text{overestimator}(x_i \bigotimes x_j)$$

$$w_{ij} \geq \text{underestimator}(x_i \bigotimes x_j)$$

Convex relaxation is **not the tightest possible**, but **built automatically** .

Spatial B&B: convexification

Relax $w_{ij} = x_i \bigotimes x_j \ \forall$ suitable i, j where $\bigotimes \in \{\text{sum, product, quotient, power, exp, log, sin, cos, abs}\}$ such that:

$$w_{ij} \leq \text{overestimator}(x_i \bigotimes x_j)$$

 $w_{ij} \geq \text{underestimator}(x_i \bigotimes x_j)$

Convex relaxation is **not the tightest possible**, but **built automatically** .

- Underestimator/overestimator of convex/concave function: tangent cuts (OA)
- Odd powers or Trigonometric functions: separate intervals in which function is convex or concave and do as for convex/concave functions
- Product or Quotient: Mc Cormick relaxation

Spatial B&B: Examples of Convexifications

P. Belotti, J. Lee, L. Liberti, F. Margot, A. Wächter, "Branching and bounds tightening techniques for non-convex MINLP". Optimization Methods and Software 24(4-5): 597-634 (2009).

Example: Standard Form Reformulation

Example: Standard Form Reformulation

becomes

$$\begin{array}{rcl} \min w_1 + w_2 & & \\ w_1 & = & x_1^2 \\ w_2 & = & x_1 x_2 \\ x_1 + x_2 & \geq & 1 \\ x_1 & \in & [0, 1] \\ x_2 & \in & [0, 1] \end{array}$$

Example: .mod from Couenne

```
var x1 <= 1, >= 0;
var x2 <= 1, >= 0;
minimize of:
x1**2 + x1*x2;
subject to constraint:
x1 + x2 >= 1;
```

Example: .mod from Couenne

```
var x1 <= 1, >= 0;
var x2 <= 1, >= 0;
minimize of:
x1**2 + x1*x2;
subject to constraint:
x1 + x2 >= 1;
```

```
# Problem name: extended-aw.mod
# original variables
var x 0 >= 0 <= 1 default 0:
var w 1 >= 0 <= 1 default 1;
var w 2 >= 0 <= 1 default 0;
var w 3 >= 0 <= 1 default 0:
var w 4 >= 0 <= 2 default 0;
# objective
minimize obj: w 4;
# aux. variables defined
aux1: w 1 = (1-x 0);
aux2: w 2 = (x 0**2);
aux3: w 3 = (x 0*w 1);
aux4: w 4 = (w 2+w 3);
# constraints
```

Convex hull of pieces weaker than the whole convex hull

Consider the following feasible set:

$$x_1^2 + x_2^2 \ge 1$$

 $x_1, x_2 \in [0, 2]$

Convex hull of pieces weaker than the whole convex hull

Consider the following feasible set:

$$x_1^2 + x_2^2 \ge 1$$

 $x_1, x_2 \in [0, 2]$

Convex hull: $x_1 + x_2 \ge 1$

Convex hull of pieces weaker than the whole convex hull

Consider the following feasible set: Convex hull of standard form

$$x_1^2 + x_2^2 \ge 1$$

 $x_1, x_2 \in [0, 2]$

Convex hull: $x_1 + x_2 \ge 1$

$$x_3 + x_4 \ge 1$$
 $x_3 \le x_1^2$
 $x_4 \le x_1^2$
 $x_1, x_2 \in [0, 2]$

Figure: Source Belotti et al. (2013)

Outline

- Motivating Applications
- Global Optimization methods
 - Multistart
 - Spatial Branch-and-Bound
 - Standard form
 - Convexification
 - Expression trees
 - Variable ranges
 - Bounds tightening
 - Reformulation Linearization Technique (RLT)

Expression trees

Representation of objective f and constraints g

Encode mathematical expressions in trees or DAGs

E.g.
$$x_1^2 + x_1x_2$$
:

Expression trees

Representation of objective f and constraints g

Encode mathematical expressions in trees or DAGs

E.g.
$$x_1^2 + x_1x_2$$
:

Outline

- Motivating Applications
- Global Optimization methods
 - Multistart
 - Spatial Branch-and-Bound
 - Standard form
 - Convexification
 - Expression trees
 - Variable ranges
 - Bounds tightening
 - Reformulation Linearization Technique (RLT)

Variable ranges

- Crucial property for sBB convergence: convex relaxation tightens as variable range widths decrease
- convex/concave under/over-estimator constraints are (convex) functions of x^L, x^U
- it makes sense to tighten x^L, x^U at the sBB root node (trading off speed for efficiency) and at each other node (trading off efficiency for speed)

Outline

- Motivating Applications
- Global Optimization methods
 - Multistart
 - Spatial Branch-and-Bound
 - Standard form
 - Convexification
 - Expression trees
 - Variable ranges
 - Bounds tightening
 - Reformulation Linearization Technique (RLT)

Bounds Tightening

- In sBB we need to tighten variable bounds at each node
- Two methods:
 - Optimization Based Bounds Tightening (OBBT)
 - Feasibility Based Bounds Tightening (FBBT)
- OBBT:

for each variable x in P compute

- $\underline{x} = \min\{x \mid \text{conv. rel. constr.}\}$
- $\overline{x} = \max\{x \mid \text{conv. rel. constr.}\}$

Set
$$\underline{x} \le x \le \overline{x}$$

Bounds Tightening

- In sBB we need to tighten variable bounds at each node
- Two methods:
 - Optimization Based Bounds Tightening (OBBT)
 - Feasibility Based Bounds Tightening (FBBT)
- FBBT:

propagation of intervals up and down constraint expression trees, with tightening at the root node

Example:
$$5x_1 - x_2 = 0$$
.

Bounds Tightening

- In sBB we need to tighten variable bounds at each node
- Two methods:
 - Optimization Based Bounds Tightening (OBBT)
 - Feasibility Based Bounds Tightening (FBBT)
- FBBT: propagation of intervals up and down constraint expression trees, with tightening at the root node

Outline

- Motivating Applications
- Global Optimization methods
 - Multistart
 - Spatial Branch-and-Bound
 - Standard form
 - Convexification
 - Expression trees
 - Variable ranges
 - Bounds tightening
 - Reformulation Linearization Technique (RLT)

- All nonlinear terms are quadratic monomials
- Aim to reduce gap betwen the problem and its convex relaxation
- → replace quadratic terms with suitable linear constraints (fewer nonlinear terms to relax)
- Can be obtained by considering linear relations (called reduced RLT constraints) between original and linearizing variables

Hp. We have $w_{ij} = x_i x_j$ for all i = j = 1, ..., n. How to **strengthen the relaxation** obtained by replacing $w_{ij} = x_i x_j$ with its McCormick envelops?

Hp. We have $w_{ij} = x_i x_j$ for all i = j = 1, ..., n. How to **strengthen the relaxation** obtained by replacing $w_{ij} = x_i x_j$ with its McCormick envelops?

• Take a variable x_k and a constraint $\sum_{j=1}^n a_{ij}x_j \leq b_i$

Hp. We have $w_{ij} = x_i x_j$ for all i = j = 1, ..., n. How to **strengthen the relaxation** obtained by replacing $w_{ij} = x_i x_j$ with its McCormick envelops?

- Take a variable x_k and a constraint $\sum_{j=1}^n a_{ij}x_j \leq b_i$
- Multiply both the LHS and RHS of the constraint by x_i:

$$\sum_{j=1}^n a_{ij}x_jx_k \leq b_ix_k$$

Hp. We have $w_{ij} = x_i x_j$ for all i = j = 1, ..., n. How to **strengthen the relaxation** obtained by replacing $w_{ij} = x_i x_j$ with its McCormick envelops?

- Take a variable x_k and a constraint $\sum_{j=1}^n a_{ij}x_j \leq b_i$
- Multiply both the LHS and RHS of the constraint by x_i:

$$\sum_{j=1}^n a_{ij}x_jx_k \leq b_ix_k$$

• Linearize the resulting constraint by replacing $x_j x_k$ with w_{jk} :

$$\sum_{j=1}^n a_{ij}w_{jk} \leq b_i x_k$$

Example: pooling problem

Q-formulation

$$\sum_{j \in J_i} x_{ij} + \sum_{l \in L_i} x_{il} \leq C_i, \qquad \forall i \in I$$

$$\sum_{j \in J_l} x_{lj} \leq C_l, \qquad \forall l \in L$$

$$\sum_{i \in I_j} x_{ij} + \sum_{l \in L_j} x_{lj} \leq C_j, \qquad \forall j \in J$$

$$x_{il} - q_{il} \sum_{j \in J_l} x_{lj} = 0 \qquad \forall i \in I, I \in L_i$$

$$\sum_{i \in I_l} q_{il} = 1 \qquad \forall I \in L$$

$$\sum_{i \in I_i} \lambda_{ki} x_{ij} + \sum_{l \in L_i} x_{lj} \left(\sum_{i \in I_l} \lambda_{ki} q_{il}\right) \leq \alpha_{kj} \sum_{i \in I_i \cup L_i} x_{ij}, \quad \forall k \in K, j \in J$$

Example: pooling problem

PQ-formulation by Sahinidis and Tawarmalani (2005). Like Q-formulation but with extra (redundant) constraints:

•
$$x_{lj} \sum_{i \in I_l} q_{il} = x_{lj} \quad \forall l \in L, j \in J_l$$

•
$$q_{il} \sum_{j \in J_l} x_{lj} \leq C_l q_{il} \quad \forall i \in I, I \in L_i$$

Example: pooling problem

PQ-formulation by Sahinidis and Tawarmalani (2005). Like Q-formulation but with extra (redundant) constraints:

•
$$x_{lj} \sum_{i \in I_l} q_{il} = x_{lj} \quad \forall l \in L, j \in J_l$$

•
$$q_{il} \sum_{j \in J_l} x_{lj} \leq C_l q_{il} \quad \forall i \in I, I \in L_i$$

One of the strongest known formulation!

Citations

- Sherali, Alameddine, A new reformulation-linearization technique for bilinear programming problems, JOGO, 1991
- Falk, Soland, An algorithm for separable nonconvex programming problems, Manag. Sci. 1969.
- Horst, Tuy, Global Optimization, Springer 1990.
- Ryoo, Sahinidis, Global optimization of nonconvex NLPs and MINLPs with applications in process design, Comp. Chem. Eng. 1995.
- Adjiman, Floudas et al., A global optimization method, αBB, for general twice-differentiable nonconvex NLPs, Comp. Chem. Eng. 1998.
- Smith, Pantelides, A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs, Comp. Chem. Eng. 1999.
- Nowak, Relaxation and decomposition methods for Mixed Integer Nonlinear Programming, Birkhäuser, 2005.
- Belotti, et al., Branching and bounds tightening techniques for nonconvex MINLP, Opt. Meth. Softw., 2009.
- Vigerske, PhD Thesis: Decomposition of Multistage Stochastic Programs and a Constraint Integer Programming Approach to Mixed-Integer Nonlinear Programming, Humboldt-University Berlin, 2013.