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0 Motivating Applications
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Pooling Problem
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Pooling Problem

Inputs /'  Pools L Outputs J

?\B
AN

@ NodesN=/ULUJ

@ Arcs A
(I,j)e (IxL)yU(LxJ)u(lIxJ)
on which materials flow

@ Arc capacities: uj, (i,j) € A
@ Node capacities: Cj, i e N
@ Attribute requirements

,keK,jed
@ Material attributes: K A J
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Pooling Problem: Motivation

@ refinery processes in the petroleum industry
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Pooling Problem: Motivation

@ refinery processes in the petroleum industry

@ different specifications: e.g., sulphur/carbon concentrations or
physical properties such as density, octane number, ...

@ wastewater treatment, e.g., Karuppiah and Grossmann (2006)

@ Formally introduced by Haverly (1978)
@ Alfaki and Haugland (2012) formally proved it is strongly NP-hard
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Pooling problem: Citations
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Example: Pooling Problem

“Simple” constraints

Inputs /' Pools L  Outputs J
Variables x; for flow on arcs

Flow balance constraints at \/t
pools:

ZX,‘/—ZXII-Zo, vliel . \
iel jeJ, ./ T
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Example: Pooling Problem

“Simple” constraints

Variables x; for flow on arcs Inputs I Pools L  Outputs J

Flow balance constraints at .\
pools: \/>

ZX;/—ZX/I'ZO, vliel °
i€l jeJ, .
/ \

Capacity constraints:

@
DX+ Y xi< G Viel
jed; leL;
ZX// <C, VlelL
jed

ZXU+ZXUS Cj, Vjied
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Example: Pooling Problem

“Complicating” constraints
@ Inputs have associated attribute concentrations A4, k € K,i € |

@ Concentration of attribute in pool is the weighted average of the
concentrations of its inputs.

@ This results in bilinear constraints.
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Example: Pooling Problem

“Complicating” constraints
@ Inputs have associated attribute concentrations A4, k € K,i € |

@ Concentration of attribute in pool is the weighted average of the
concentrations of its inputs.

@ This results in bilinear constraints.

@ P-formulation (Haverly 78):
Keep track of concentration py, of attribute k in pool /

@ Q-formulation (Ben-Tal et al. 94):
Variables qj for proportion of flow into pool / coming from input /
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Example: Pooling Problem

P-formulation

> X+ xi <G, Viel
JEJi leL;
> x;<C, viel
jed
ZXU‘+ZX/]'§Cj, vVied
iG/j /ELj
ZX,‘/—ZXUZO, vliel
iel jEJ[
D icl AkiXil
pu = 2wk e K le L
Djed Xi
el; Mkirij leL; PKIAl .
s / < v, VkeK,jed
ZiEIjULj Xij
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Example: Pooling Problem

P-formulation

ZX;/-—}—ZX//SC,', Viel

JEJ; leL;
Y x <G, vieL
jedi
ZXU+ZXUSCI’ Vjied
iGIj /EL/'
ZX;/—ZX//':O, vliel
i€l jGJ/
kaZX“:Z)\k;X;/ VKEK,/EL
jEJ| iel
Z)\kixij + Zpklxlj < agj Z Xj, VkeK,jed
i€l; leL; i€huL;
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Example: Pooling Problem

Q-formulation

Xi=aqi Y x; Yiellel
jed;

Zq/'/=1, viel

iE//
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Example: Pooling Problem

Q-formulation

Xi=aqi Y x; Yiellel
jed
Zq/'/=1, Viel

iE//

@ Attribute constraints

> Awixi + ZX/,(Z )\kiq/'/) <oy Y. X5 VkeK,jed

iGI/' IELj iel iEljULj
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Example: Pooling Problem

Q-formulation

ZX,’_/‘FZX,’/SC,’, viel
jEJ,' leL;
> x <G, viel
Jed
ZX,’j-i-ZX/jSCj, vjed
fE/j IGL]'
X,'/—C]nZX“:O viellel;
jed
> aqi=1 viel
i€l

Z)\k,-x,-j + ZX“ (Z )\kiqil) < agj Z Xij Vke K,jed

iE/j
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Example: Pooling Problem with binary vars

From NLP to MINLP
@ Decide whether to install pipes or not (0/1 decision)

@ Associate a binary variable z; with each pipe (suppose for now on
arcs from input to output)

Extra constraints:

x;j < min(Cj, C))zj vieljed
zj € {0,1} Viel,jed

Objective Function
@ Fixed cost for installing pipe

min > ¢; (ZX"/+ZXU) -D.P (ZXHZX//) +D. > Tz

iel leL; jedi jed i€l leL; i€l jed;
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@ Global Optimization methods
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Global Optimization methods

subregion 1 \ subregion 2

discarded as h{c) > f(e) 3

bec fa de

objective function

convex relaxation in whole space

a: solution of convex relaxation in whole space

b local solution of objective function in whole space

Heuristic
Exact ) . .
@ “Exact” in continuous space: @ Find sollytlon.W{th. o
e-approximate (find solution probability 1 in infinite time

within pre-determined ¢ distance

from optimum in obj. fun. value)
@ For some problems, finite

convergence to optimum (e = 0)
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@ Global Optimization methods
@ Multistart
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Multistart

@ The easiest GO method

1: f*=o00

2: X* = (00,...,00)

3: while — termination do

4:  x' = (random(),...,random())
5. x = localSolve(P, x")

6: if fp(x) < f* then

7: f* « fp(x)

8: X* X

9: endif

10: end while
@ Termination condition: e.g. repeat k times
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Six-hump camelback function

MNLioANWROO
MLoanwAO®

Global optimum (COUENNE)
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Six-hump camelback function

f(x1,X%) = 4x2 — 24x¢ + Ix8 + xyx0 — 4x2 + 4x3

Multistart with IPOPT, k =5
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Six-hump camelback function

f(x1,X%) = 4x2 — 24x¢ + Ix8 + xyx0 — 4x2 + 4x3

Multistart with IPOPT, k =10
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Six-hump camelback function

f(x1,X%) = 4x2 — 24x¢ + Ix8 + xyx0 — 4x2 + 4x3

Multistart with IPOPT, k = 20
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Six-hump camelback function

f(x1,X%) = 4x2 — 24x¢ + Ix8 + xyx0 — 4x2 + 4x3

Multistart with IPOPT, k = 50
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Six-hump camelback function

f(x1,X%) = 4x2 — 24x¢ + Ix8 + xyx0 — 4x2 + 4x3

Multistart with SNOPT, k = 20
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@ Global Optimization methods

@ Spatial Branch-and-Bound
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Spatial Branch-and-Bound

Falk and Soland (1969) “An algorithm for separable nonconvex
programming problems”.

20 years ago: first general-purpose “exact” algorithms for nonconvex
MINLP.

@ Tree-like search
@ Explores search space exhaustively but implicitly

@ Builds a sequence of decreasing upper bounds and increasing
lower bounds to the global optimum

@ Exponential worst-case

@ Only general-purpose “exact” algorithm for MINLP
Since continuous vars are involved, should say “c-approximate”

@ Like BB for MILP, but may branch on continuous vars
Done whenever one is involved in a nonconvex term
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Spatial B&B: Example

al a2 a3 a4

Original problem P
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Spatial B&B: Example

al a2 a3 a4

Starting point x’
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Spatial B&B: Example

localSolve

al a2 a3 a4

Local (upper bounding) solution x*
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Spatial B&B: Example

al a2 a3 a4

Convex relaxation (lower) bound f with |f* — f| > ¢
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Spatial B&B: Example

|
L
!

al a2 i a3 a4

Branch at x = X into Cq, C»
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Spatial B&B: Example

al a2 ; a3 a4

Convex relaxation on C; : lower bounding solution x

C. D’Ambrosio (CNRS&X) MINLP 25/50



Spatial B&B: Example

localSolve

a1 a2 ' a3 ad

localSolve. from x: new upper bounding solution x*
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Spatial B&B: Example

al i a2 : a3 a4

|f* — f| > e: branch at x = X
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Spatial B&B: Example

al | a2 | a3 ad

Repeat on Cs: get X = x* and |f* — f| < &, no more branching
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Spatial B&B: Example

: H ' : :
e 1 b

al | a2 : a3 a4

Repeat on C,: f > f* (can’t improve x* in C,)
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Spatial B&B: Example

: H ' : :
e 1 b

al | a2 : a3 a4

Repeat on C4: f > f* (can’t improve x* in Cy)
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Spatial B&B: Example

al | a2 : a3 a4

No more subproblems left, return x* and terminate
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Spatial B&B: Pruning

@ P was branched into Cy, C,
@ C; was branched into Cs, Cy

© C; was pruned by optimality
(x* € G(C3) was found)

©Q C,, C4 were pruned by bound
(lower bound for Co worse than f*)

© No more nodes: whole space explored, x* € G(P)

@ Search generates a tree
@ Suproblems are nodes

@ Nodes can be pruned by optimality, bound or infeasibility (when
subproblem is infeasible)

@ Otherwise, they are branched
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Spatial B&B: General idea

Aimed at solving “factorable functions”, i.e., f and g of the form:
Z H fhk(Xa .y)
h kK

where fuc(x, y) are univariate functions Vh, k.
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Spatial B&B: General idea

Aimed at solving “factorable functions”, i.e., f and g of the form:
Z H fhk(X7 .y)
h kK

where fuc(x, y) are univariate functions Vh, k.

@ Exact reformulation of MINLP so as to have “isolated basic
nonlinear functions” (additional variables and constraints).

@ Relax (linear/convex) the basic nonlinear terms (library of
envelopes/underestimators).

@ Relaxation depends on variable bounds, thus branching
potentially strengthen it.
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@ Global Optimization methods

@ Spatial Branch-and-Bound
@ Standard form
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Spatial B&B: exact reformulation to standard form

Consider a NLP for simplicity. Transform it in a standard form like:

min CcT(x, w)
A(x, w)

Wi

IN

b

xi (X x; for suitable i, j
X

w

X €
w €
where, for example, ) € {sum, product, quotient, power, exp, log,
sin, cos, abs} (Couenne).
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@ Global Optimization methods

@ Spatial Branch-and-Bound

@ Convexification
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Spatial B&B: convexification

Relax wj = x; @ x; V suitable /, j where ) € {sum, product, quotient,
power, exp, log, sin, cos, abs} such that:

wj < overestimator(x,-@xj)

wj > underestimator(x; (X) X))

Convex relaxation is not the tightest possible, but built
automatically .
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Spatial B&B: convexification

Relax wj = x; @ x; V suitable /, j where ) € {sum, product, quotient,
power, exp, log, sin, cos, abs} such that:

wj < overestimator(x,-@xj)

wj > underestimator(x; (X) X))

Convex relaxation is not the tightest possible, but built
automatically .
@ Underestimator/overestimator of convex/concave function:
tangent cuts (OA)

@ Odd powers or Trigonometric functions: separate intervals in
which function is convex or concave and do as for convex/concave
functions

@ Product or Quotient: Mc Cormick relaxation
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Spatial B&B: Examples of Convexifications

(b) zo = loga 1) xo 2 (d) z3 = z1@2

P. Belotti, J. Lee, L. Liberti, F. Margot, A. Wachter, “Branching and
bounds tightening techniques for non-convex MINLP”. Optimization
Methods and Software 24(4-5): 597-634 (2009).
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Example: Standard Form Reformulation

: 2
min Xy + X1 X2

X1 +Xx2 > 1
X1 € [0, 1]
X2 € [07 1]
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Example: Standard Form Reformulation

: 2
min Xy + X1 X2

X1 +Xx2 > 1
x; € [0,1]
X2 € [0,1]

becomes
min Wy + Wo

Wy = X2
Wo = X{Xo

Xy +Xo > 1
x; € [0,1]
X2 € [0,1]
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Example: .mod from Couenne

var x1 <=1,>=0;
varx2 <=1, >=0;

minimize of:

X1**2 + x1*x2;
subject to constraint:
X1 +x2>=1;
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Example: .mod from Couenne

# Problem name: extended-aw.mod
# original variables

var x_0 >= 0 <= 1 default 0;
varw_1>= 0 <=1 default 1;
varw_2 >= 0 <= 1 default 0;

var x1 <=1, >=0; var w_3 >= 0 <= 1 default 0;
varx2 <=1, >=0; var w_4 >= 0 <= 2 default 0;
minimize of: # objective
x1**2 + x1*x2; _ . .
subject to constraint: minimize obj: w_4;
X1 +Xx2>=1; # aux. variables defined
aux1:w_1=(1-x_0);
aux2: w_2 = (x_0*"2);
aux3: w_3 = (x O*W - 1);
aux4: w_4 = (w_2+w_3);

# constraints
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Convex hull of pieces weaker than the whole convex

hull

Consider the following feasible set:

X2+ x3 >
x1,X2 € [0,2]
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Convex hull of pieces weaker than the whole convex

hull

Consider the following feasible set:

X2+ x3 >
x1,X2 € [0,2]

Convex hull: x; + xo > 1

35/50
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Convex hull of pieces weaker than the whole convex

hull

Consider the following feasible set: Convex hull of standard form

X12 n X22 > 1 X3+ Xq > 12
X1, % € [0,2] 5 =
xg < xf
: >
Convex hull: x; + xo > 1 Xy, X € [0,2]

T2

s
\
\
s
s
< B
. s
N N
. .

Figure: Source Belotti et al. (2013)

z1
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@ Global Optimization methods

@ Spatial Branch-and-Bound

@ Expression trees
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Expression trees

Representation of objective f and constraints g

Encode mathematical expressions in trees or DAGs

E.g. X2 + Xy Xo:

+
A/\

X4 2 X1 X2
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Expression trees

Representation of objective f and constraints g

Encode mathematical expressions in trees or DAGs

E.g. X2 + Xy Xo:

+
T
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@ Global Optimization methods

@ Spatial Branch-and-Bound

@ Variable ranges
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Variable ranges

@ Crucial property for sBB convergence: convex relaxation
tightens as variable range widths decrease

@ convex/concave under/over-estimator constraints are (convex)
functions of xt, xY

@ it makes sense to tighten x-, xU at the sBB root node (trading off
speed for efficiency) and at each other node (trading off efficiency
for speed)
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@ Global Optimization methods

@ Spatial Branch-and-Bound

@ Bounds tightening
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Bounds Tightening

@ In sBB we need to tighten variable bounds at each node

@ Two methods:
o Optimization Based Bounds Tightening (OBBT)
o Feasibility Based Bounds Tightening (FBBT)

o OBBT:
for each variable x in P compute

min{x | conv. rel. constr.}
max{x | conv. rel. constr.}

X
X

Setx<x<X

42/50
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Bounds Tightening

@ In sBB we need to tighten variable bounds at each node

@ Two methods:
@ Optimization Based Bounds Tightening (OBBT)
o Feasibility Based Bounds Tightening (FBBT)

@ FBBT: n=0
[0,0]
)
propagation of intervals up and down bas
constraint expression trees, with tightening /,Z
x

{ xa) (0,1
at the root node ) (@) [0.1]
Example: 5x; — xp = 0. \
@ @
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Bounds Tightening

@ In sBB we need to tighten variable bounds at each node

@ Two methods:

@ Optimization Based Bounds Tightening (OBBT)
o Feasibility Based Bounds Tightening (FBBT)

@ FBBT: =t
propagation of intervals up and down con- [~1,a] 1 (n[0,0]) = [0,0]

straint expression trees, with tightening at
the root node

Example: 5x; — x; = 0. RO HI
Up: ®:[5, 5] x [0, 1]=10, 5]; ©:[0, 5] [0, 1]=[-1, 5]. \

Root node tightening: [—1, 5] N [0, 0] = [0, 0]. @ @

Downwards: ®:[0, 0]+[0, 1]=[0, 1]; [a.q] %8 li]ll

x:00,11/15,51=0, {]
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@ Global Optimization methods

@ Spatial Branch-and-Bound
@ Reformulation Linearization Technique (RLT)
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RLT: Quadratic problems

@ All nonlinear terms are quadratic monomials

@ Aim to reduce gap betwen the problem and its convex
relaxation

@ = replace quadratic terms with suitable linear constraints (fewer
nonlinear terms to relax)

@ Can be obtained by considering linear relations (called reduced
RLT constraints) between original and linearizing variables
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RLT: Quadratic problems
Hp. We have wj; = x;x; foralli=j=1,...,n

How to strengthen the relaxation obtained by replacing wj = x;x;
with its McCormick envelops?
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RLT: Quadratic problems
Hp. We have wj; = x;x; foralli=j=1,...,n

How to strengthen the relaxation obtained by replacing wj = x;x;
with its McCormick envelops?

o Take a variable xx and a constraint >-_ ; a;x; < b;
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RLT: Quadratic problems
Hp. We have wj; = x;x; foralli=j=1,...,n
How to strengthen the relaxation obtained by replacing wj = x;x;
with its McCormick envelops?
@ Take a variable xx and a constraint 27:1 ajxj < b;

@ Multiply both the LHS and RHS of the constraint by x;:

n
> apxixk < bixg
=
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RLT: Quadratic problems
Hp. We have wj; = x;x; foralli=j=1,...,n
How to strengthen the relaxation obtained by replacing wj = x;x;
with its McCormick envelops?
@ Take a variable xx and a constraint 27:1 ajxj < b;

@ Multiply both the LHS and RHS of the constraint by x;:

n
> apxixk < bixg
=

@ Linearize the resulting constraint by replacing x;xx with w:

n
> awi < bixk
j=1

C. D’Ambrosio (CNRS&X) MINLP
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Example: pooling problem

Q-formulation

ZX,']'—FZX,'/SC,', Viel

jGJ/ leL;
ZX/j < Cy, VlielL
=

S oxi+Y x5 <G, Vjed

ielj /EL]'

X,'/—q,'/ZX/jZO ViEI,/GL,’
=
Z qil = 1 Vlie Ll
i€l

Z/\k,-x,-j—i—Zx/j(Z)\k,-qﬂ) < g Z Xijs Vke K,jed

i€l

C. D’Ambrosio (CNRS&X)

IELj i€l

MINLP

iehulL;
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Example: pooling problem

PQ-formulation by Sahinidis and Tawarmalani (2005).
Like Q-formulation but with extra (redundant) constraints:

@ X i, qi=x; VIeLjed
® Qidjcy X< Ciqi Viellel;
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Example: pooling problem

PQ-formulation by Sahinidis and Tawarmalani (2005).
Like Q-formulation but with extra (redundant) constraints:

@ X i, qi=x; VIeLjed
® Qidjcy X< Ciqi Viellel;

One of the strongest known formulation!
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