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MILP Methods

Branch and Bound

Based on upper and lower bounds on the optimal solution value
and on branching which divide iteration after iteration the feasible
region in smaller subproblems. A. H. Land & A. G. Doig (1960).

In general exponential worst case performance.
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Branch and Bound

▶ Bounding and branching phases

▶ Solve the continuous relaxation of the problem (bounding)

▶ If it solution is fractional, branch to obtain two smaller
subproblems and which do not contain the fractional solution

▶ explore implicitly all the subproblems and continue branching
if necessary

▶ The subproblems could
▶ be infeasible

▶ have an optimal solution x∗ which is integer feasible (no
further branching). Upper bound is the best between x∗ and

the best integer feasible solution found so far xUB

▶ have an optimal solution x∗ which is fractional

▶ If c⊤x∗ < c⊤xUB then branch

▶ Otherwise continue
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Branch and Bound: example

min−x1 − x2

2x1 + x2 ≤ 6

−x1 + x2 ≤ 1

x1, x2 ≥ 0

x1, x2 integer

�
��
P0

L0 = ⌈− 13
3
⌉ = −4



Branch and Bound: example

x∗ = (53 ,
8
3), c

⊤x∗ = −13
3

Branch on x1:
▶ Subproblem P1: P0 ∩ {x | x1 ≤ ⌊53⌋ = 1}
▶ Subproblem P2: P0 ∩ {x | x1 ≥ ⌊53⌋+ 1 = 2}
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3
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Branch and Bound: example

Explore P1: optimal solution (1, 2) of value −3. No further

branching, upper bound xUB = (1, 2).

Explore P2: optimal solution is (2, 2) of value −4. No further

branching, upper bound xUB = (2, 2).

No subproblems left to explore → optimal solution (2, 2) of value
−4.

P1 P2 �
��
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L0 = ⌊ 13
3
⌋ = −4
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x1 ≥ 2x1 ≤ 1
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Branch and Bound: example

The selection of i. the branching variable and ii. the next
subproblem to explore influence highly the exploration of the
feasible region.

Example: branch on x2
▶ x2 ≤ ⌊83⌋ = 2

▶ x2 ≥ ⌊83⌋+ 1 = 3
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Branch and Bound

Require: a MILP problem P (P0 is its continuous relaxation )

i = 1
f UB = +∞
Π = {P0}
while Π ̸= ∅ do

select a subproblem in Π, say Pk and remove it from Π
solve Pk , let x

∗ be its optimal solution and f ∗ be its value
if Pk is infeasible or f ∗ > f UB then

continue
end if
if x∗ is non-integer then

select a variable, say xj , with a fractional value x∗
j

define Pi = Pk ∩ {x | xj ≤ ⌊x∗
j ⌋} and Pi+1 = Pk ∩ {x | xj ≥ ⌊x∗

j ⌋+ 1}
let Li = f ∗ and Li+1 = f ∗

Π = Π ∪ {Pi ,Pi+1}
i = i + 2

else
f UB = f ∗, xUB = x∗

remove from Π any Pℓ with Lℓ > f UB

end if
end while
return x∗
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select a subproblem in Π, say Pk and remove it from Π
solve Pk , let x

∗ be its optimal solution and f ∗ be its value
if Pk is infeasible or f ∗ > f UB then

continue
end if
if x∗ is non-integer then

select a variable, say xj , with a fractional value x∗
j

define Pi = Pk ∩ {x | xj ≤ ⌊x∗
j ⌋} and Pi+1 = Pk ∩ {x | xj ≥ ⌊x∗

j ⌋+ 1}
let Li = f ∗ and Li+1 = f ∗

Π = Π ∪ {Pi ,Pi+1}
i = i + 2

else
f UB = f ∗, xUB = x∗

remove from Π any Pℓ with Lℓ > f UB

end if
end while
return x∗


