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Convex hull : given a set S ⊆ Rn, conv(S) is the smallest convex
set containing S .

When S is the set of solutions of an IP, Conv(S) is a polyhedron
whose vertices are integer points .

Ideal formulation of S :
{x ∈ Rn | Ãx ≤ b̃, x ≤ x ≤ x} = conv(S).

The ideal formulation is usually very difficult to find or can
include an exponential number of constraints.
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A few definitions

▶ Supporting hyperplane : {x | c⊤x = δ} s.t. c a nonzero
vector and δ = max{c⊤x | Ax ≤ b}

▶ Face : subset of polyhedron s.t. F = P or F = P ∩ H where
H is some supporting hyperplane
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MILP Methods

Definition
Given a polyhedron P, d⊤x ≤ δ is called valid inequality for P if it
holds for any x ∈ P.

Cutting plane

Based on continuous relaxation strengthening through valid
and non trivial inequalities which cut iteration after iteration part
of the feasible region of the relaxation (but no feasible point of the
MILP problems). R. E. Gomory (1958).
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Cutting Plane

▶ Iteratively adding to an initial formulation valid, non trivial
inequalities

▶ Called cuts because they cut fractional solutions

▶ Ideally , CP would add the cuts characterizing the convex hull
(continuous relaxation with integer vertices)

▶ Very challenging in general
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Cutting Plane

Require: a MILP problem P (let R0 be its continuous relaxation)

i = 0
solve R i and let x∗ be its optimal solution
while x∗ is non-integer do
solve the separation problem of x∗ from P and let α⊤x ≤ β
be the resulting cut
add α⊤x ≤ β to R i and obtain R i+1

i = i + 1
solve R i and let x∗ be its optimal solution

end while
return x∗
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Cutting Plane

Separation problem :

identifying α and β such that

▶ α⊤x ≤ β ∀x ∈ P

▶ α⊤x∗ > β

The CP method could be generic .

Cut α⊤x ≤ β should be easily identified for any (M)ILP problem.

General-purpose solvers and the cuts added are of several types
but all of them are generic.
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If the problem has some mathematical properties or specific
characteristics → a tailored cutting plane method.

In this case, separation procedure and cut α⊤x ≤ β specific
(valid for that class of problems).

Example of generic separation problem and cuts: Chvátal
Inequalities.
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Chvátal Inequalities

▶ P = min{c⊤x | Ax ≤ b, x integer}

▶ R = min{c⊤x | Ax ≤ b}

▶ x∗ be the optimal solution of the continuous relaxation of R
(fractional solution)

▶ Chvátal inequality:
α⊤x ≤ β with α = ⌊u⊤A⌋ and β = ⌊u⊤b⌋

Separation problem : find u ∈ Rm such that ⌊u⊤A⌋x∗ > ⌊u⊤b⌋.
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Properties:

⌊u⊤A⌋x ≤ ⌊u⊤b⌋ ∀x ∈ P

Given a fractional solution x∗ ∈ R, it is always possible to

▶ Find a u ∈ Rm such that ⌊u⊤A⌋x∗ > ⌊u⊤b⌋

▶ Separate x∗

▶ Find a cut to be added to R that strengthen it

→ CP with Chvátal inequalities is an exact method for solving
(M)ILPs.
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Chvátal Inequalities

Properties:

⌊u⊤A⌋x ≤ ⌊u⊤b⌋ ∀x ∈ P

Given a fractional solution x∗ ∈ R, it is always possible to

▶ Find a u ∈ Rm such that ⌊u⊤A⌋x∗ > ⌊u⊤b⌋

▶ Separate x∗

▶ Find a cut to be added to R that strengthen it
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Chvátal Inequalities: example

Let us consider the following IP:

max x1 + x2

2x1 + x2 ≤ 6

−x1 + x2 ≤ 1

x1, x2 ≥ 0

x1, x2 integer
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