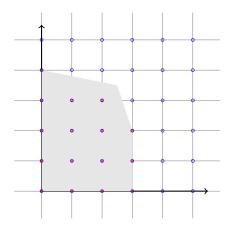
Mixed Integer Non Linear Optimization: Methods and Applications

Cutting Planes

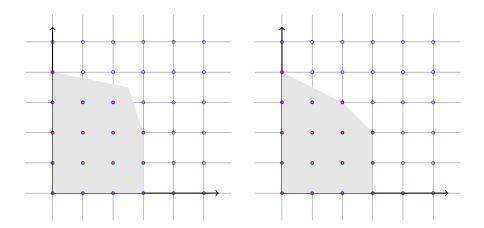
Claudia D'Ambrosio dambrosio@lix.polytechnique.fr

MILP Methods



◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

MILP Methods



<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

When S is the set of solutions of an IP, Conv(S) is a polyhedron whose vertices are integer points.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

When S is the set of solutions of an IP, Conv(S) is a polyhedron whose vertices are integer points.

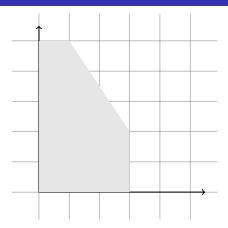
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Ideal formulation of *S* : $\{x \in \mathbb{R}^n \mid \tilde{A}x \leq \tilde{b}, \underline{x} \leq x \leq \overline{x}\} = \operatorname{conv}(S).$

When S is the set of solutions of an IP, Conv(S) is a polyhedron whose vertices are integer points.

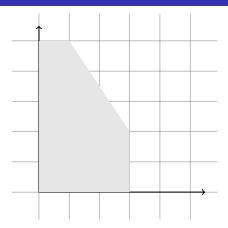
Ideal formulation of *S* : $\{x \in \mathbb{R}^n \mid \tilde{A}x \leq \tilde{b}, \underline{x} \leq x \leq \overline{x}\} = \operatorname{conv}(S).$

The ideal formulation is usually **very difficult** to find or can include an **exponential** number of constraints.

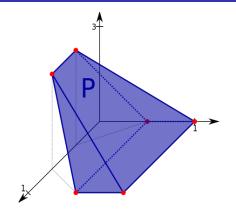


Supporting hyperplane : {x | c^Tx = δ} s.t. c a nonzero vector and δ = max{c^Tx | Ax ≤ b}

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで



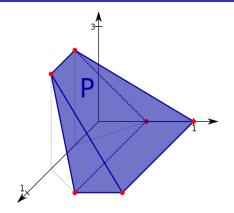
- Supporting hyperplane : {x | c^Tx = δ} s.t. c a nonzero vector and δ = max{c^Tx | Ax ≤ b}
- ► Face : subset of polyhedron s.t. F = P or F = P ∩ H where H is some supporting hyperplane



Source: https://en.wikipedia.org/wiki/Convex_polytope

► Facet of P: bounded face of dimension n − 1 (where n is the dimension of P).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

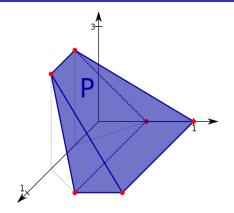


Source: https://en.wikipedia.org/wiki/Convex_polytope

► Facet of P: bounded face of dimension n − 1 (where n is the dimension of P).

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Edge of *P*: bounded face of dimension 1.



Source: https://en.wikipedia.org/wiki/Convex_polytope

- ► Facet of P: bounded face of dimension n − 1 (where n is the dimension of P).
- Edge of P: bounded face of dimension 1.

Definition

Given a polyhedron P, $d^{\top}x \leq \delta$ is called *valid* inequality for P if it holds for any $x \in P$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Definition

Given a polyhedron P, $d^{\top}x \leq \delta$ is called *valid* inequality for P if it holds for any $x \in P$.

Cutting plane

Based on **continuous relaxation strengthening** through valid and non trivial inequalities which **cut** iteration after iteration part of the feasible region of the relaxation (but no feasible point of the MILP problems). R. E. Gomory (1958).

Iteratively adding to an initial formulation valid, non trivial inequalities

(ロ)、(型)、(E)、(E)、 E) の(()

Iteratively adding to an initial formulation valid, non trivial inequalities

Called cuts because they cut fractional solutions

- Iteratively adding to an initial formulation valid, non trivial inequalities
- Called cuts because they cut fractional solutions
- Ideally, CP would add the cuts characterizing the convex hull (continuous relaxation with integer vertices)

- Iteratively adding to an initial formulation valid, non trivial inequalities
- Called cuts because they cut fractional solutions
- Ideally, CP would add the cuts characterizing the convex hull (continuous relaxation with integer vertices)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Very challenging in general

Require: a MILP problem P (let R^0 be its continuous relaxation)

(ロ)、(型)、(E)、(E)、 E) の(()

Require: a MILP problem *P* (let R^0 be its continuous relaxation) i = 0

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Require: a MILP problem P (let R^0 be its continuous relaxation) i = 0solve R^i and let x^* be its optimal solution

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Require: a MILP problem *P* (let R^0 be its continuous relaxation) i = 0solve R^i and let x^* be its optimal solution **while** x^* is non-integer **do** solve the **separation problem** of x^* from *P* and let $\alpha^T x \le \beta$ be the resulting cut

Require: a MILP problem *P* (let R^0 be its continuous relaxation) i = 0solve R^i and let x^* be its optimal solution **while** x^* is non-integer **do** solve the **separation problem** of x^* from *P* and let $\alpha^{\top}x \leq \beta$ be the resulting cut add $\alpha^{\top}x \leq \beta$ to R^i and obtain R^{i+1}

Require: a MILP problem *P* (let R^0 be its continuous relaxation) i = 0solve R^i and let x^* be its optimal solution **while** x^* is non-integer **do** solve the **separation problem** of x^* from *P* and let $\alpha^T x \leq \beta$ be the resulting cut add $\alpha^T x \leq \beta$ to R^i and obtain R^{i+1} i = i + 1

```
Require: a MILP problem P (let R^0 be its continuous relaxation)

i = 0

solve R^i and let x^* be its optimal solution

while x^* is non-integer do

solve the separation problem of x^* from P and let \alpha^T x \le \beta

be the resulting cut

add \alpha^T x \le \beta to R^i and obtain R^{i+1}

i = i + 1

solve R^i and let x^* be its optimal solution

end while
```

```
Require: a MILP problem P (let R^0 be its continuous relaxation)
  i = 0
  solve R^i and let x^* be its optimal solution
  while x^* is non-integer do
    solve the separation problem of x^* from P and let \alpha^T x < \beta
     be the resulting cut
    add \alpha^{\top} x < \beta to R^{i} and obtain R^{i+1}
     i = i + 1
     solve R^i and let x^* be its optimal solution
  end while
  return x^*
```

identifying α and β such that $\blacktriangleright \alpha^{\top} x \leq \beta \quad \forall x \in P$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

identifying α and β such that $\triangleright \alpha^{\top} x \leq \beta \quad \forall x \in P$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$\blacktriangleright \alpha^{\top} x^* > \beta$$

identifying α and β such that

- $\blacktriangleright \ \alpha^{\top} x \leq \beta \quad \forall x \in P$
- $\blacktriangleright \ \alpha^\top x^* > \beta$

The CP method could be generic .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

identifying α and β such that

- $\blacktriangleright \ \alpha^{\top} x \leq \beta \quad \forall x \in P$
- $\blacktriangleright \ \alpha^\top x^* > \beta$

The CP method could be generic .

Cut $\alpha^{\top} x \leq \beta$ should be easily identified for any (M)ILP problem.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

identifying α and β such that $_{\!\!\!\!\!\!\!-}$

- $\blacktriangleright \ \alpha^{\top} x \leq \beta \quad \forall x \in P$
- $\blacktriangleright \ \alpha^\top x^* > \beta$

The CP method could be generic .

Cut $\alpha^{\top} x \leq \beta$ should be easily identified for any (M)ILP problem.

General-purpose solvers and the cuts added are of several types but all of them are generic.

If the problem has some mathematical properties or specific characteristics \rightarrow a **tailored cutting plane** method.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

If the problem has some mathematical properties or specific characteristics \rightarrow a **tailored cutting plane** method.

In this case, separation procedure and cut $\alpha^{\top} x \leq \beta$ specific (valid for that class of problems).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

If the problem has some mathematical properties or specific characteristics \rightarrow a **tailored cutting plane** method.

In this case, separation procedure and cut $\alpha^{\top} x \leq \beta$ specific (valid for that class of problems).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example of generic separation problem and cuts: **Chvátal Inequalities**.

$$\blacktriangleright P = \min\{c^{\top}x \mid Ax \leq b, x \text{ integer}\}\$$

(ロ)、(型)、(E)、(E)、 E) の(()

$$\blacktriangleright P = \min\{c^{\top}x \mid Ax \leq b, x \text{ integer}\}\$$

(ロ)、(型)、(E)、(E)、 E) の(()

$$R = \min\{c^{\top}x \mid Ax \le b\}$$

 $\blacktriangleright P = \min\{c^{\top}x \mid Ax \leq b, x \text{ integer}\}\$

$$\triangleright R = \min\{c^{\top}x \mid Ax \leq b\}$$

 x* be the optimal solution of the continuous relaxation of R (fractional solution)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

•
$$P = \min\{c^{\top}x \mid Ax \leq b, x \text{ integer}\}$$

$$\triangleright R = \min\{c^{\top}x \mid Ax \leq b\}$$

 x* be the optimal solution of the continuous relaxation of R (fractional solution)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Chvátal inequality: $\alpha^{\top} x \leq \beta$ with $\alpha = \lfloor u^{\top} A \rfloor$ and $\beta = \lfloor u^{\top} b \rfloor$

•
$$P = \min\{c^{\top}x \mid Ax \leq b, x \text{ integer}\}$$

$$\triangleright R = \min\{c^{\top}x \mid Ax \leq b\}$$

 x* be the optimal solution of the continuous relaxation of R (fractional solution)

• Chvátal inequality: $\alpha^{\top} x \leq \beta$ with $\alpha = \lfloor u^{\top} A \rfloor$ and $\beta = \lfloor u^{\top} b \rfloor$

Separation problem : find $u \in \mathbb{R}^m$ such that $\lfloor u^\top A \rfloor x^* > \lfloor u^\top b \rfloor$.

Chvátal Inequalities

Properties:

$$\lfloor u^{\top}A \rfloor x \leq \lfloor u^{\top}b \rfloor \quad \forall x \in P$$

(ロ)、(型)、(E)、(E)、 E) の(()

 $\lfloor u^{\top} A \rfloor x \leq \lfloor u^{\top} b \rfloor \quad \forall x \in P$

Given a fractional solution $x^* \in R$, it is always possible to

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Find a $u \in \mathbb{R}^m$ such that $\lfloor u^\top A \rfloor x^* > \lfloor u^\top b \rfloor$

 $\lfloor u^{\top} A \rfloor x \leq \lfloor u^{\top} b \rfloor \quad \forall x \in P$

Given a fractional solution $x^* \in R$, it is always possible to

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Find a $u \in \mathbb{R}^m$ such that $\lfloor u^\top A \rfloor x^* > \lfloor u^\top b \rfloor$

Separate x*

 $\lfloor u^{\top} A \rfloor x \leq \lfloor u^{\top} b \rfloor \quad \forall x \in P$

Given a fractional solution $x^* \in R$, it is always possible to

- Find a $u \in \mathbb{R}^m$ such that $\lfloor u^\top A \rfloor x^* > \lfloor u^\top b \rfloor$
- Separate x*
- Find a cut to be added to R that strengthen it

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $\lfloor u^{\top} A \rfloor x \leq \lfloor u^{\top} b \rfloor \quad \forall x \in P$

Given a fractional solution $x^* \in R$, it is always possible to

- Find a $u \in \mathbb{R}^m$ such that $\lfloor u^\top A \rfloor x^* > \lfloor u^\top b \rfloor$
- Separate x*
- Find a cut to be added to *R* that strengthen it

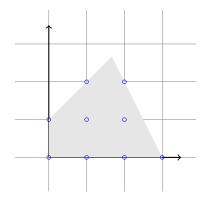
 \rightarrow CP with Chvátal inequalities is an exact method for solving (M)ILPs.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let us consider the following IP:

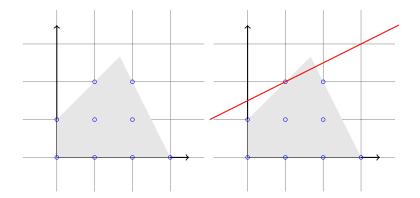
◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Chvátal Inequalities: example



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Chvátal Inequalities: example



◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□ ● ●