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where

» x is an n-dimensional vector of the decision variables,

> x and X are the given vectors of lower and upper bounds on
the variables,

» c is the cost vector, A the constraints matrix, and b the
right-hand-side vector,

P the set Z includes the indexes of the integer variables.



(Mixed) Integer Linear Programming
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Figure: Lattice points (in blue), feasible region of the continuous
relaxation (in gray), and their intersection (in red).
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» An optimization problem could be modeled in several,
different ways

» Each of the possible MO models is a formulation of the
same problem

» A MO formulation Q is a reformulation of another MO
formulation P if they are different formulations of the same
optimization problem

» Reformulating a problem is interest when

» The reformulation shows nicer mathematical properties
» The reformulation is more tractable



Reformulation Examples:
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i f
min (¥)
Bly) < 0 Vi=1,...r
y< y =Yy
Yj integer Vj e W
where W C Z,
q=n,

f(y) < f(x) forall x C y,
and {x | g(x) <0,x <x <X} CProj,{y [ g(y) <0,y <y <y}

Some classical relaxations are:
- continuous: when W =0, g = n, f(y) = f(x), g(y) = g(x),
Z = K, y = Y
- linear: obtained by defining f(y) = c'y and g(y) = Ay — b

- convex: obtained by defining f and Z to be convex functions



» The feasible region of the restriction is a subset of the
feasible region of the original problem (when mapped in the
same space).



» The feasible region of the restriction is a subset of the
feasible region of the original problem (when mapped in the
same space).

» The restrictions are useful to obtain an upper bound on the
optimal value (feasible solutions) of the original problem.
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Complete enumeration?

Any purely binary program can be solved by considering all the 2"
potential solutions.

As n grows, the time needed to compute all the 2" potential
solutions grows exponentially in n.

n 2"

10 1,024
100 | 1.26765060022823e+30
1,000 | 1.07150860718627e+301

Not an applicable approach in practice.

Which methods are used in practice?



Main ingredents

Ingredients for solving MILPs:
» Lower bound(s)
» Upper bound(s)

If LB = UB, then we found an optimal solution of the (M)ILP.
Otherwise: improve LB and UB.

We focus on how to improve the LB.



