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Mixed Integer Linear Programming

min
x

c⊤x

Ax ≤ b

x ≤ x ≤ x

xj ∈ Z ∀j ∈ Z

where

▶ x is an n-dimensional vector of the decision variables,

▶ x and x are the given vectors of lower and upper bounds on
the variables,

▶ c is the cost vector, A the constraints matrix, and b the
right-hand-side vector,

▶ the set Z includes the indexes of the integer variables.
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(Mixed) Integer Linear Programming

Figure: Lattice points (in blue), feasible region of the continuous
relaxation (in gray), and their intersection (in red).



Reformulation

▶ An optimization problem could be modeled in several,
different ways

▶ Each of the possible MO models is a formulation of the
same problem

▶ A MO formulation Q is a reformulation of another MO
formulation P if they are different formulations of the same
optimization problem

▶ Reformulating a problem is interest when
▶ The reformulation shows nicer mathematical properties
▶ The reformulation is more tractable
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Reformulation Examples: equivalent forms of LPs

General form

Canonical form

Standard form

min c⊤x

a⊤i x = bi i ∈ M

a⊤i x ≥ bi i ∈ M

xj ≥ 0 j ∈ N

xj ⪋ 0 j ∈ N

min c⊤x

Ax ≥ b

x ≥ 0

min c⊤x

Ax = b

x ≥ 0



Reformulation Examples: equivalent forms of LPs

max c⊤x → −min(−c⊤x)

a⊤i x ≥ bi →

{
a⊤i x − si = bi

si ≥ 0

a⊤i x ≤ bi →

{
a⊤i x + si = bi

si ≥ 0

a⊤i x = bi →

{
a⊤i x ≥ bi

a⊤i x ≤ bi

xj ⪋ 0 →


xj = x+j − x−j
x+j ≥ 0

x−j ≥ 0
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Relaxation

min
y∈Rq

f̄ (y)

ḡi (y) ≤ 0 ∀i = 1, . . . , r
y ≤ y ≤ y

yj integer ∀j ∈ W


where W ⊆ Z ,
q ≥ n,
f̄ (y) ≤ f (x) for all x ⊆ y ,
and {x | g(x) ≤ 0, x ≤ x ≤ x} ⊆ Projx{y | ḡ(y) ≤ 0, y ≤ y ≤ y}.

Some classical relaxations are:

- continuous: when W = ∅, q = n, f (y) = f (x), g(y) = g(x),
y = x , y = x

- linear: obtained by defining f̄ (y) = c⊤y and ḡ(y) = Ay − b

- convex: obtained by defining f̄ and ḡ to be convex functions



Relaxation

min
y∈Rq

f̄ (y)
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Relaxation

min
y∈Rq

f̄ (y)
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Restriction

▶ The feasible region of the restriction is a subset of the
feasible region of the original problem (when mapped in the
same space).

▶ The restrictions are useful to obtain an upper bound on the
optimal value (feasible solutions) of the original problem.
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Restriction: example

max x1 + 2x2 + 10x3

x1 + x2 ≤ 4

−x1 + 3x3 ≤ 0

x1, x2 ≥ 0

x3 ∈ {0, 1, 2}

opt

opt
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Complete enumeration?

Any purely binary program can be solved by considering all the 2n

potential solutions.

As n grows, the time needed to compute all the 2n potential
solutions grows exponentially in n.

n 2n

10 1,024
100 1.26765060022823e+30

1,000 1.07150860718627e+301

Not an applicable approach in practice.

Which methods are used in practice?



Main ingredents

Ingredients for solving MILPs:

▶ Lower bound(s)

▶ Upper bound(s)

If LB = UB, then we found an optimal solution of the (M)ILP.

Otherwise: improve LB and UB.

We focus on how to improve the LB.


