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Mixed Integer Linear Programming

min
x

c⊤x

Ax ≤ b

x ≤ x ≤ x

xj ∈ Z ∀j ∈ Z

where

▶ x is an n-dimensional vector of the decision variables,

▶ x and x are the given vectors of lower and upper bounds on
the variables,

▶ c is the cost vector, A the constraints matrix, and b the
right-hand-side vector,

▶ the set Z includes the indexes of the integer variables.
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Figure: Lattice points (in blue), feasible region of the continuous
relaxation (in gray), and their intersection (in red).



Applications

▶ Finance, e.g., robust portfolio selection

▶ Power systems , e.g., unit commitment, optimal power flow

▶ Air traffic management , e.g., aircraft conflicts detection
and resolution

▶ Transportation , e.g., vehicle routing problem

▶ etc.



A motivating example: the (less simplified) Unit
Commitment

min
p

∑
t∈T

∑
j∈J

cjpjt (1)

∑
j∈J

pjt = Dt ∀t ∈ T (2)

0 ≤ pjt ≤ pj ∀j ∈ J, t ∈ T (3)

where (4) is the objective function minimizing the cost for
producing electricity, (5) is the set of constraints satisfying the
demand Dt at each time period t ∈ T , and (6) are the simple
bounds on the electricity production by each unit j at each time
period j .

The production of unit ȷ̃ can only be either 0 or within [plȷ̃, p
u
ȷ̃ ]

The production of unit ȷ̂ can be only in {0, p1ȷ̂ , p2ȷ̂ , . . . , pkȷ̂ }
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Examples of modeling with integer/binary variables:
Discrete domain of one (or more) variables

How to model the condition: x ∈ R and x ∈ {x̃1, x̃2, . . . , x̃k̃} where

x̃k ∈ R for k = 1, . . . , k̃ within a MILP?
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Value of M:
Max LHS : 10 · 10 + 5 · 10 = 150
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Tricky to set big-M value. Overestimate (valid model)
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|x | = x+ + x−

x = x+ − x−

0 ≤ x+ ≤ xy

0 ≤ x− ≤ −x(1− y)

y ∈ {0, 1}.

If x ≤ 0, y = 0, x+ = 0, and x− ∈ [0,−x ].
If x ≥ 0, y = 1, x− = 0, and x+ ∈ [0, x ].

Where x ≤ x ≤ x , hp. x < 0 w.l.o.g.
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Exercises

Formulate the following as mixed integer linear programs:

1. u = min{x1, x2}, assuming that 0 ≤ xj ≤ C for j = 1, 2.

2. v = ∥x1 − x2∥∞ with 0 ≤ xj ≤ C for j = 1, 2.

3. the set X \ {x∗} where X = {x ∈ Zn | Ax ≤ b} and x∗ ∈ X .


