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LP problems and methods

min
x

c⊤x

Ax ≤ b

x ≤ x ≤ x

Methods

▶ primal or dual simplex algorithm

▶ interior point method

▶ barrier method

▶ ...

Use as “black boxes” solvers in which the LP methods are
implemented

In this course: graphical solution of LPs and intuition on the
primal simplex method
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LP problems and methods

Possible outcomes:

▶ optimal: when X = {x | Ax ≤ b, x ≤ x ≤ x} ≠ ∅, bounded.
In this case, an optimal solution is found, i.e., a feasible point
x∗ s.t. c⊤x∗ ≤ c⊤x for all feasible x ∈ X

▶ infeasible: when X = {x | Ax ≤ b, x ≤ x ≤ x} = ∅
▶ unbounded: when the min{c⊤x | Ax ≤ b, x ≤ x ≤ x} = −∞



A few definitions

▶ Polytope : a bounded polyhedron (∃M > 0 s.t. ∥x∥ ≤ M for
all x ∈ P) (see Minkowski, 1896).

▶ Polytope dimension : dimension of the smallest subspace of
Rn which contains all the polytope points.
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Example 1: optimal solution

max x1 + x2

3x1 + 2x2 ≤ 13

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 5.

x1 + x2 = 0x1 + x2 = 1x1 + x2 = 2x1 + x2 = 3x1 + x2 = 4x1 + x2 = 5

x1 + x2 = 6

opt.
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max x1 + 2x2

3x1 + 2x2 ≤ 3
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Some theoretical results

Theorem
Given a bounded LP min{c⊤x | Ax ≤ b}, an optimal vertex does
always exist.

Proof.
Let v1, . . . , vp be the vertices of the polytope corresponding to the
feasible region of LP.
Let x̃ be the optimal solution of LP. As x̃ ∈ P, then

x̃ =

p∑
i=1

αiv
i with

p∑
i=1

αi = 1, α ≥ 0.

Let v j be the vertex with minimum cost. We then have:

c⊤x̃ = c⊤
p∑

i=1

αiv
i =

p∑
i=1

c⊤αiv
i ≥ c⊤v j

p∑
i=1

αi = c⊤v j .

Thus, as this excludes c⊤v j > c⊤x̃ , then c⊤v j = c⊤x̃ .
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Intuition

Simplex Methods based on the property of LP that

▶ At least one of the optimal solutions is a vertex of the
polytope

▶ unless problem infeasible or unbounded.

Phase 1 : find a feasible solution

Phase 2 : move from a vertex to an “improving” vertex
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Intuition

Simplex Methods

From the Research Gate’s page of by Laura Leal-Taixé



The Simplex Method

Require: an LP problem

optimal = false; unbounded = false
if the origin (x = (0, 0, . . . , 0)) is feasible then

x∗ = (0, 0, . . . , 0)
else

Phase 1: find a first feasible solution x∗

if impossible to find a feasible solution then
return x∗ = (+∞,+∞, . . . ,+∞)

end if
end if
{Phase 2}
while optimal = false and unbounded = false do

if no vertex adjacent to x∗ has a better objective function value then
optimal = true

else
if there is an improvement direction but it goes to infinity then

unbounded = true
else

x∗ = the vertex adjacent to the current x∗ with the best objective function value
end if

end if
end while
if optimal = true then

return x∗

end if
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Some theoretical results

Theorem
Each convex combination of optimal vertices is optimal.

Proof.
Let v1, . . . , vp be the optimal vertices of the polyhedron
corresponding to the feasible region of LP.
Let x =

∑p
i=1 αiv

i with
∑p

i=1 αi = 1, α ≥ 0.
Then, its cost is

c⊤x = c⊤
p∑

i=1

αiv
i = c⊤v1

p∑
i=1

αi = c⊤v1

.
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Example 4: degenerate case

max 3x1 + 2x2

3x1 + 2x2 ≤ 13

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 5

3x1 + 2x2 = 13

opt
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