
Mixed Integer Non Linear Optimization:
Methods and Applications

–
Solving LPs

Claudia D’Ambrosio
dambrosio@lix.polytechnique.fr



LP problems and methods

min
x

c⊤x

Ax ≤ b

x ≤ x ≤ x

Methods

▶ primal or dual simplex algorithm

▶ interior point method

▶ barrier method

▶ ...

Use as “black boxes” solvers in which the LP methods are
implemented

In this course: graphical solution of LPs and intuition on the
primal simplex method



LP problems and methods

min
x

c⊤x

Ax ≤ b

x ≤ x ≤ x

Methods

▶ primal or dual simplex algorithm

▶ interior point method

▶ barrier method

▶ ...

Use as “black boxes” solvers in which the LP methods are
implemented

In this course: graphical solution of LPs and intuition on the
primal simplex method



LP problems and methods

min
x

c⊤x

Ax ≤ b

x ≤ x ≤ x

Methods

▶ primal or dual simplex algorithm

▶ interior point method

▶ barrier method

▶ ...

Use as “black boxes” solvers in which the LP methods are
implemented

In this course: graphical solution of LPs and intuition on the
primal simplex method



LP problems and methods

min
x

c⊤x

Ax ≤ b

x ≤ x ≤ x

Methods

▶ primal or dual simplex algorithm

▶ interior point method

▶ barrier method

▶ ...

Use as “black boxes” solvers in which the LP methods are
implemented

In this course: graphical solution of LPs and intuition on the
primal simplex method



LP problems and methods

Possible outcomes:

▶ optimal: when X = {x | Ax ≤ b, x ≤ x ≤ x} ≠ ∅, bounded.
In this case, an optimal solution is found, i.e., a feasible point
x∗ s.t. c⊤x∗ ≤ c⊤x for all feasible x ∈ X

▶ infeasible: when X = {x | Ax ≤ b, x ≤ x ≤ x} = ∅
▶ unbounded: when the min{c⊤x | Ax ≤ b, x ≤ x ≤ x} = −∞



A few definitions

▶ Polytope : a bounded polyhedron (∃M > 0 s.t. ∥x∥ ≤ M for
all x ∈ P) (see Minkowski, 1896).

▶ Polytope dimension : dimension of the smallest subspace of
Rn which contains all the polytope points.



A few definitions

▶ Polytope : a bounded polyhedron (∃M > 0 s.t. ∥x∥ ≤ M for
all x ∈ P) (see Minkowski, 1896).

▶ Polytope dimension : dimension of the smallest subspace of
Rn which contains all the polytope points.



Example 1: optimal solution

max x1 + x2

3x1 + 2x2 ≤ 13

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 5.

x1 + x2 = 0x1 + x2 = 1x1 + x2 = 2x1 + x2 = 3x1 + x2 = 4x1 + x2 = 5

x1 + x2 = 6

opt.



Example 1: optimal solution

max x1 + x2

3x1 + 2x2 ≤ 13

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 5.

x1 + x2 = 0x1 + x2 = 1x1 + x2 = 2x1 + x2 = 3x1 + x2 = 4x1 + x2 = 5

x1 + x2 = 6

opt.



Example 1: optimal solution

max x1 + x2

3x1 + 2x2 ≤ 13

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 5.

x1 + x2 = 0x1 + x2 = 1x1 + x2 = 2x1 + x2 = 3x1 + x2 = 4x1 + x2 = 5

x1 + x2 = 6

opt.



Example 1: optimal solution

max x1 + x2

3x1 + 2x2 ≤ 13

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 5.

x1 + x2 = 0x1 + x2 = 1x1 + x2 = 2x1 + x2 = 3x1 + x2 = 4x1 + x2 = 5

x1 + x2 = 6

opt.



Example 1: optimal solution

max x1 + x2

3x1 + 2x2 ≤ 13

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 5.

x1 + x2 = 0x1 + x2 = 1x1 + x2 = 2x1 + x2 = 3x1 + x2 = 4x1 + x2 = 5

x1 + x2 = 6

opt.



Example 1: optimal solution

max x1 + x2

3x1 + 2x2 ≤ 13

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 5.

x1 + x2 = 0

x1 + x2 = 1x1 + x2 = 2x1 + x2 = 3x1 + x2 = 4x1 + x2 = 5

x1 + x2 = 6

opt.



Example 1: optimal solution

max x1 + x2

3x1 + 2x2 ≤ 13

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 5.

x1 + x2 = 0

x1 + x2 = 1

x1 + x2 = 2x1 + x2 = 3x1 + x2 = 4x1 + x2 = 5

x1 + x2 = 6

opt.



Example 1: optimal solution

max x1 + x2

3x1 + 2x2 ≤ 13

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 5.

x1 + x2 = 0x1 + x2 = 1

x1 + x2 = 2

x1 + x2 = 3x1 + x2 = 4x1 + x2 = 5

x1 + x2 = 6

opt.



Example 1: optimal solution

max x1 + x2

3x1 + 2x2 ≤ 13

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 5.

x1 + x2 = 0x1 + x2 = 1x1 + x2 = 2

x1 + x2 = 3

x1 + x2 = 4x1 + x2 = 5

x1 + x2 = 6

opt.



Example 1: optimal solution

max x1 + x2

3x1 + 2x2 ≤ 13

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 5.

x1 + x2 = 0x1 + x2 = 1x1 + x2 = 2x1 + x2 = 3

x1 + x2 = 4

x1 + x2 = 5

x1 + x2 = 6

opt.



Example 1: optimal solution

max x1 + x2

3x1 + 2x2 ≤ 13

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 5.

x1 + x2 = 0x1 + x2 = 1x1 + x2 = 2x1 + x2 = 3x1 + x2 = 4

x1 + x2 = 5

x1 + x2 = 6

opt.



Example 1: optimal solution

max x1 + x2

3x1 + 2x2 ≤ 13

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 5.

x1 + x2 = 0x1 + x2 = 1x1 + x2 = 2x1 + x2 = 3x1 + x2 = 4x1 + x2 = 5

x1 + x2 = 6

opt.



Example 2: infeasible problem

max x1 + 2x2

3x1 + 2x2 ≤ 3

−x1 − x2 ≤ −4

x1 ≥ 0

x2 ≥ 0.



Example 2: infeasible problem

max x1 + 2x2

3x1 + 2x2 ≤ 3

−x1 − x2 ≤ −4

x1 ≥ 0

x2 ≥ 0.



Example 2: infeasible problem

max x1 + 2x2

3x1 + 2x2 ≤ 3

−x1 − x2 ≤ −4

x1 ≥ 0

x2 ≥ 0.



Example 3: unbounded problem

max x1 + 2x2

x1 − x2 ≤ 1

−x1 + x2 ≤ 3

x1 ≥ 0

x2 ≥ 0.



Example 3: unbounded problem

max x1 + 2x2

x1 − x2 ≤ 1

−x1 + x2 ≤ 3

x1 ≥ 0

x2 ≥ 0.



Example 3: unbounded problem

max x1 + 2x2

x1 − x2 ≤ 1

−x1 + x2 ≤ 3

x1 ≥ 0

x2 ≥ 0.



Example 3: unbounded problem

max x1 + 2x2

x1 − x2 ≤ 1

−x1 + x2 ≤ 3

x1 ≥ 0

x2 ≥ 0.



Example 3: unbounded problem

max x1 + 2x2

x1 − x2 ≤ 1

−x1 + x2 ≤ 3

x1 ≥ 0

x2 ≥ 0.



Example 4: degenerate case

max 3x1 + 2x2

3x1 + 2x2 ≤ 13

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 5

3x1 + 2x2 = 03x1 + 2x2 = 13x1 + 2x2 = 23x1 + 2x2 = 33x1 + 2x2 = 43x1 + 2x2 = 53x1 + 2x2 = 63x1 + 2x2 = 73x1 + 2x2 = 83x1 + 2x2 = 93x1 + 2x2 = 103x1 + 2x2 = 113x1 + 2x2 = 123x1 + 2x2 = 13

opt



Example 4: degenerate case

max 3x1 + 2x2

3x1 + 2x2 ≤ 13

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 5

3x1 + 2x2 = 03x1 + 2x2 = 13x1 + 2x2 = 23x1 + 2x2 = 33x1 + 2x2 = 43x1 + 2x2 = 53x1 + 2x2 = 63x1 + 2x2 = 73x1 + 2x2 = 83x1 + 2x2 = 93x1 + 2x2 = 103x1 + 2x2 = 113x1 + 2x2 = 123x1 + 2x2 = 13

opt



Example 4: degenerate case

max 3x1 + 2x2

3x1 + 2x2 ≤ 13

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 5

3x1 + 2x2 = 03x1 + 2x2 = 13x1 + 2x2 = 23x1 + 2x2 = 33x1 + 2x2 = 43x1 + 2x2 = 53x1 + 2x2 = 63x1 + 2x2 = 73x1 + 2x2 = 83x1 + 2x2 = 93x1 + 2x2 = 103x1 + 2x2 = 113x1 + 2x2 = 123x1 + 2x2 = 13

opt



Example 4: degenerate case

max 3x1 + 2x2

3x1 + 2x2 ≤ 13

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 5

3x1 + 2x2 = 03x1 + 2x2 = 13x1 + 2x2 = 23x1 + 2x2 = 33x1 + 2x2 = 43x1 + 2x2 = 53x1 + 2x2 = 63x1 + 2x2 = 73x1 + 2x2 = 83x1 + 2x2 = 93x1 + 2x2 = 103x1 + 2x2 = 113x1 + 2x2 = 123x1 + 2x2 = 13

opt



Example 4: degenerate case

max 3x1 + 2x2

3x1 + 2x2 ≤ 13

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 5

3x1 + 2x2 = 03x1 + 2x2 = 13x1 + 2x2 = 23x1 + 2x2 = 33x1 + 2x2 = 43x1 + 2x2 = 53x1 + 2x2 = 63x1 + 2x2 = 73x1 + 2x2 = 83x1 + 2x2 = 93x1 + 2x2 = 103x1 + 2x2 = 113x1 + 2x2 = 123x1 + 2x2 = 13

opt



Example 4: degenerate case

max 3x1 + 2x2

3x1 + 2x2 ≤ 13

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 5

3x1 + 2x2 = 0

3x1 + 2x2 = 13x1 + 2x2 = 23x1 + 2x2 = 33x1 + 2x2 = 43x1 + 2x2 = 53x1 + 2x2 = 63x1 + 2x2 = 73x1 + 2x2 = 83x1 + 2x2 = 93x1 + 2x2 = 103x1 + 2x2 = 113x1 + 2x2 = 123x1 + 2x2 = 13

opt



Example 4: degenerate case

max 3x1 + 2x2

3x1 + 2x2 ≤ 13

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 5

3x1 + 2x2 = 0

3x1 + 2x2 = 1

3x1 + 2x2 = 23x1 + 2x2 = 33x1 + 2x2 = 43x1 + 2x2 = 53x1 + 2x2 = 63x1 + 2x2 = 73x1 + 2x2 = 83x1 + 2x2 = 93x1 + 2x2 = 103x1 + 2x2 = 113x1 + 2x2 = 123x1 + 2x2 = 13

opt



Example 4: degenerate case

max 3x1 + 2x2

3x1 + 2x2 ≤ 13

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 5

3x1 + 2x2 = 03x1 + 2x2 = 1

3x1 + 2x2 = 2

3x1 + 2x2 = 33x1 + 2x2 = 43x1 + 2x2 = 53x1 + 2x2 = 63x1 + 2x2 = 73x1 + 2x2 = 83x1 + 2x2 = 93x1 + 2x2 = 103x1 + 2x2 = 113x1 + 2x2 = 123x1 + 2x2 = 13

opt



Example 4: degenerate case

max 3x1 + 2x2

3x1 + 2x2 ≤ 13

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 5

3x1 + 2x2 = 03x1 + 2x2 = 13x1 + 2x2 = 2

3x1 + 2x2 = 3

3x1 + 2x2 = 43x1 + 2x2 = 53x1 + 2x2 = 63x1 + 2x2 = 73x1 + 2x2 = 83x1 + 2x2 = 93x1 + 2x2 = 103x1 + 2x2 = 113x1 + 2x2 = 123x1 + 2x2 = 13

opt



Example 4: degenerate case

max 3x1 + 2x2

3x1 + 2x2 ≤ 13

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 5

3x1 + 2x2 = 03x1 + 2x2 = 13x1 + 2x2 = 23x1 + 2x2 = 3

3x1 + 2x2 = 4

3x1 + 2x2 = 53x1 + 2x2 = 63x1 + 2x2 = 73x1 + 2x2 = 83x1 + 2x2 = 93x1 + 2x2 = 103x1 + 2x2 = 113x1 + 2x2 = 123x1 + 2x2 = 13

opt



Example 4: degenerate case

max 3x1 + 2x2

3x1 + 2x2 ≤ 13

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 5

3x1 + 2x2 = 03x1 + 2x2 = 13x1 + 2x2 = 23x1 + 2x2 = 33x1 + 2x2 = 4

3x1 + 2x2 = 5

3x1 + 2x2 = 63x1 + 2x2 = 73x1 + 2x2 = 83x1 + 2x2 = 93x1 + 2x2 = 103x1 + 2x2 = 113x1 + 2x2 = 123x1 + 2x2 = 13

opt



Example 4: degenerate case

max 3x1 + 2x2

3x1 + 2x2 ≤ 13

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 5

3x1 + 2x2 = 03x1 + 2x2 = 13x1 + 2x2 = 23x1 + 2x2 = 33x1 + 2x2 = 43x1 + 2x2 = 5

3x1 + 2x2 = 6

3x1 + 2x2 = 73x1 + 2x2 = 83x1 + 2x2 = 93x1 + 2x2 = 103x1 + 2x2 = 113x1 + 2x2 = 123x1 + 2x2 = 13

opt



Example 4: degenerate case

max 3x1 + 2x2

3x1 + 2x2 ≤ 13

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 5

3x1 + 2x2 = 03x1 + 2x2 = 13x1 + 2x2 = 23x1 + 2x2 = 33x1 + 2x2 = 43x1 + 2x2 = 53x1 + 2x2 = 6

3x1 + 2x2 = 7

3x1 + 2x2 = 83x1 + 2x2 = 93x1 + 2x2 = 103x1 + 2x2 = 113x1 + 2x2 = 123x1 + 2x2 = 13

opt



Example 4: degenerate case

max 3x1 + 2x2

3x1 + 2x2 ≤ 13

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 5

3x1 + 2x2 = 03x1 + 2x2 = 13x1 + 2x2 = 23x1 + 2x2 = 33x1 + 2x2 = 43x1 + 2x2 = 53x1 + 2x2 = 63x1 + 2x2 = 7

3x1 + 2x2 = 8

3x1 + 2x2 = 93x1 + 2x2 = 103x1 + 2x2 = 113x1 + 2x2 = 123x1 + 2x2 = 13

opt



Example 4: degenerate case

max 3x1 + 2x2

3x1 + 2x2 ≤ 13

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 5

3x1 + 2x2 = 03x1 + 2x2 = 13x1 + 2x2 = 23x1 + 2x2 = 33x1 + 2x2 = 43x1 + 2x2 = 53x1 + 2x2 = 63x1 + 2x2 = 73x1 + 2x2 = 8

3x1 + 2x2 = 9

3x1 + 2x2 = 103x1 + 2x2 = 113x1 + 2x2 = 123x1 + 2x2 = 13

opt



Example 4: degenerate case

max 3x1 + 2x2

3x1 + 2x2 ≤ 13

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 5

3x1 + 2x2 = 03x1 + 2x2 = 13x1 + 2x2 = 23x1 + 2x2 = 33x1 + 2x2 = 43x1 + 2x2 = 53x1 + 2x2 = 63x1 + 2x2 = 73x1 + 2x2 = 83x1 + 2x2 = 9

3x1 + 2x2 = 10

3x1 + 2x2 = 113x1 + 2x2 = 123x1 + 2x2 = 13

opt



Example 4: degenerate case

max 3x1 + 2x2

3x1 + 2x2 ≤ 13

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 5

3x1 + 2x2 = 03x1 + 2x2 = 13x1 + 2x2 = 23x1 + 2x2 = 33x1 + 2x2 = 43x1 + 2x2 = 53x1 + 2x2 = 63x1 + 2x2 = 73x1 + 2x2 = 83x1 + 2x2 = 93x1 + 2x2 = 10

3x1 + 2x2 = 11

3x1 + 2x2 = 123x1 + 2x2 = 13

opt



Example 4: degenerate case

max 3x1 + 2x2

3x1 + 2x2 ≤ 13

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 5

3x1 + 2x2 = 03x1 + 2x2 = 13x1 + 2x2 = 23x1 + 2x2 = 33x1 + 2x2 = 43x1 + 2x2 = 53x1 + 2x2 = 63x1 + 2x2 = 73x1 + 2x2 = 83x1 + 2x2 = 93x1 + 2x2 = 103x1 + 2x2 = 11

3x1 + 2x2 = 12

3x1 + 2x2 = 13

opt



Example 4: degenerate case

max 3x1 + 2x2

3x1 + 2x2 ≤ 13

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 5

3x1 + 2x2 = 03x1 + 2x2 = 13x1 + 2x2 = 23x1 + 2x2 = 33x1 + 2x2 = 43x1 + 2x2 = 53x1 + 2x2 = 63x1 + 2x2 = 73x1 + 2x2 = 83x1 + 2x2 = 93x1 + 2x2 = 103x1 + 2x2 = 113x1 + 2x2 = 12

3x1 + 2x2 = 13

opt



Some theoretical results

Theorem
Given a bounded LP min{c⊤x | Ax ≤ b}, an optimal vertex does
always exist.

Proof.
Let v1, . . . , vp be the vertices of the polytope corresponding to the
feasible region of LP.
Let x̃ be the optimal solution of LP. As x̃ ∈ P, then

x̃ =

p∑
i=1

αiv
i with

p∑
i=1

αi = 1, α ≥ 0.

Let v j be the vertex with minimum cost. We then have:

c⊤x̃ = c⊤
p∑

i=1

αiv
i =

p∑
i=1

c⊤αiv
i ≥ c⊤v j

p∑
i=1

αi = c⊤v j .

Thus, as this excludes c⊤v j > c⊤x̃ , then c⊤v j = c⊤x̃ .



Some theoretical results

Theorem
Given a bounded LP min{c⊤x | Ax ≤ b}, an optimal vertex does
always exist.

Proof.
Let v1, . . . , vp be the vertices of the polytope corresponding to the
feasible region of LP.

Let x̃ be the optimal solution of LP. As x̃ ∈ P, then

x̃ =

p∑
i=1

αiv
i with

p∑
i=1

αi = 1, α ≥ 0.

Let v j be the vertex with minimum cost. We then have:

c⊤x̃ = c⊤
p∑

i=1

αiv
i =

p∑
i=1

c⊤αiv
i ≥ c⊤v j

p∑
i=1

αi = c⊤v j .

Thus, as this excludes c⊤v j > c⊤x̃ , then c⊤v j = c⊤x̃ .



Some theoretical results

Theorem
Given a bounded LP min{c⊤x | Ax ≤ b}, an optimal vertex does
always exist.

Proof.
Let v1, . . . , vp be the vertices of the polytope corresponding to the
feasible region of LP.
Let x̃ be the optimal solution of LP.

As x̃ ∈ P, then

x̃ =

p∑
i=1

αiv
i with

p∑
i=1

αi = 1, α ≥ 0.

Let v j be the vertex with minimum cost. We then have:

c⊤x̃ = c⊤
p∑

i=1

αiv
i =

p∑
i=1

c⊤αiv
i ≥ c⊤v j

p∑
i=1

αi = c⊤v j .

Thus, as this excludes c⊤v j > c⊤x̃ , then c⊤v j = c⊤x̃ .



Some theoretical results

Theorem
Given a bounded LP min{c⊤x | Ax ≤ b}, an optimal vertex does
always exist.

Proof.
Let v1, . . . , vp be the vertices of the polytope corresponding to the
feasible region of LP.
Let x̃ be the optimal solution of LP. As x̃ ∈ P, then

x̃ =

p∑
i=1

αiv
i with

p∑
i=1

αi = 1, α ≥ 0.

Let v j be the vertex with minimum cost. We then have:

c⊤x̃ = c⊤
p∑

i=1

αiv
i =

p∑
i=1

c⊤αiv
i ≥ c⊤v j

p∑
i=1

αi = c⊤v j .

Thus, as this excludes c⊤v j > c⊤x̃ , then c⊤v j = c⊤x̃ .



Some theoretical results

Theorem
Given a bounded LP min{c⊤x | Ax ≤ b}, an optimal vertex does
always exist.

Proof.
Let v1, . . . , vp be the vertices of the polytope corresponding to the
feasible region of LP.
Let x̃ be the optimal solution of LP. As x̃ ∈ P, then

x̃ =

p∑
i=1

αiv
i with

p∑
i=1

αi = 1, α ≥ 0.

Let v j be the vertex with minimum cost.

We then have:

c⊤x̃ = c⊤
p∑

i=1

αiv
i =

p∑
i=1

c⊤αiv
i ≥ c⊤v j

p∑
i=1

αi = c⊤v j .

Thus, as this excludes c⊤v j > c⊤x̃ , then c⊤v j = c⊤x̃ .



Some theoretical results

Theorem
Given a bounded LP min{c⊤x | Ax ≤ b}, an optimal vertex does
always exist.

Proof.
Let v1, . . . , vp be the vertices of the polytope corresponding to the
feasible region of LP.
Let x̃ be the optimal solution of LP. As x̃ ∈ P, then

x̃ =

p∑
i=1

αiv
i with

p∑
i=1

αi = 1, α ≥ 0.

Let v j be the vertex with minimum cost. We then have:

c⊤x̃ = c⊤
p∑

i=1

αiv
i =

p∑
i=1

c⊤αiv
i ≥ c⊤v j

p∑
i=1

αi = c⊤v j .

Thus, as this excludes c⊤v j > c⊤x̃ , then c⊤v j = c⊤x̃ .



Some theoretical results

Theorem
Given a bounded LP min{c⊤x | Ax ≤ b}, an optimal vertex does
always exist.

Proof.
Let v1, . . . , vp be the vertices of the polytope corresponding to the
feasible region of LP.
Let x̃ be the optimal solution of LP. As x̃ ∈ P, then

x̃ =

p∑
i=1

αiv
i with

p∑
i=1

αi = 1, α ≥ 0.

Let v j be the vertex with minimum cost. We then have:

c⊤x̃ = c⊤
p∑

i=1

αiv
i =

p∑
i=1

c⊤αiv
i ≥ c⊤v j

p∑
i=1

αi = c⊤v j .

Thus, as this excludes c⊤v j > c⊤x̃ , then c⊤v j = c⊤x̃ .



Intuition

Simplex Methods based on the property of LP that

▶ At least one of the optimal solutions is a vertex of the
polytope

▶ unless problem infeasible or unbounded.

Phase 1 : find a feasible solution

Phase 2 : move from a vertex to an “improving” vertex



Intuition

Simplex Methods based on the property of LP that

▶ At least one of the optimal solutions is a vertex of the
polytope

▶ unless problem infeasible or unbounded.

Phase 1 : find a feasible solution

Phase 2 : move from a vertex to an “improving” vertex



Intuition

Simplex Methods based on the property of LP that

▶ At least one of the optimal solutions is a vertex of the
polytope

▶ unless problem infeasible or unbounded.

Phase 1 : find a feasible solution

Phase 2 : move from a vertex to an “improving” vertex



Intuition

Simplex Methods based on the property of LP that

▶ At least one of the optimal solutions is a vertex of the
polytope

▶ unless problem infeasible or unbounded.

Phase 1 : find a feasible solution

Phase 2 : move from a vertex to an “improving” vertex



Intuition

Simplex Methods

From the Research Gate’s page of by Laura Leal-Taixé



The Simplex Method

Require: an LP problem

optimal = false; unbounded = false
if the origin (x = (0, 0, . . . , 0)) is feasible then

x∗ = (0, 0, . . . , 0)
else

Phase 1: find a first feasible solution x∗

if impossible to find a feasible solution then
return x∗ = (+∞,+∞, . . . ,+∞)

end if
end if
{Phase 2}
while optimal = false and unbounded = false do

if no vertex adjacent to x∗ has a better objective function value then
optimal = true

else
if there is an improvement direction but it goes to infinity then

unbounded = true
else

x∗ = the vertex adjacent to the current x∗ with the best objective function value
end if

end if
end while
if optimal = true then

return x∗

end if



The Simplex Method

Require: an LP problem

optimal = false; unbounded = false

if the origin (x = (0, 0, . . . , 0)) is feasible then
x∗ = (0, 0, . . . , 0)

else
Phase 1: find a first feasible solution x∗

if impossible to find a feasible solution then
return x∗ = (+∞,+∞, . . . ,+∞)

end if
end if
{Phase 2}
while optimal = false and unbounded = false do

if no vertex adjacent to x∗ has a better objective function value then
optimal = true

else
if there is an improvement direction but it goes to infinity then

unbounded = true
else

x∗ = the vertex adjacent to the current x∗ with the best objective function value
end if

end if
end while
if optimal = true then

return x∗

end if



The Simplex Method

Require: an LP problem

optimal = false; unbounded = false
if the origin (x = (0, 0, . . . , 0)) is feasible then

x∗ = (0, 0, . . . , 0)

else
Phase 1: find a first feasible solution x∗

if impossible to find a feasible solution then
return x∗ = (+∞,+∞, . . . ,+∞)

end if
end if
{Phase 2}
while optimal = false and unbounded = false do

if no vertex adjacent to x∗ has a better objective function value then
optimal = true

else
if there is an improvement direction but it goes to infinity then

unbounded = true
else

x∗ = the vertex adjacent to the current x∗ with the best objective function value
end if

end if
end while
if optimal = true then

return x∗

end if



The Simplex Method

Require: an LP problem

optimal = false; unbounded = false
if the origin (x = (0, 0, . . . , 0)) is feasible then

x∗ = (0, 0, . . . , 0)
else

Phase 1: find a first feasible solution x∗

if impossible to find a feasible solution then
return x∗ = (+∞,+∞, . . . ,+∞)

end if
end if
{Phase 2}
while optimal = false and unbounded = false do

if no vertex adjacent to x∗ has a better objective function value then
optimal = true

else
if there is an improvement direction but it goes to infinity then

unbounded = true
else

x∗ = the vertex adjacent to the current x∗ with the best objective function value
end if

end if
end while
if optimal = true then

return x∗

end if



The Simplex Method

Require: an LP problem

optimal = false; unbounded = false
if the origin (x = (0, 0, . . . , 0)) is feasible then

x∗ = (0, 0, . . . , 0)
else

Phase 1: find a first feasible solution x∗

if impossible to find a feasible solution then
return x∗ = (+∞,+∞, . . . ,+∞)

end if
end if

{Phase 2}
while optimal = false and unbounded = false do

if no vertex adjacent to x∗ has a better objective function value then
optimal = true

else
if there is an improvement direction but it goes to infinity then

unbounded = true
else

x∗ = the vertex adjacent to the current x∗ with the best objective function value
end if

end if
end while
if optimal = true then

return x∗

end if



The Simplex Method

Require: an LP problem

optimal = false; unbounded = false
if the origin (x = (0, 0, . . . , 0)) is feasible then

x∗ = (0, 0, . . . , 0)
else

Phase 1: find a first feasible solution x∗

if impossible to find a feasible solution then
return x∗ = (+∞,+∞, . . . ,+∞)

end if
end if
{Phase 2}
while optimal = false and unbounded = false do

if no vertex adjacent to x∗ has a better objective function value then
optimal = true

else
if there is an improvement direction but it goes to infinity then

unbounded = true
else

x∗ = the vertex adjacent to the current x∗ with the best objective function value
end if

end if
end while
if optimal = true then

return x∗

end if



The Simplex Method

Require: an LP problem

optimal = false; unbounded = false
if the origin (x = (0, 0, . . . , 0)) is feasible then

x∗ = (0, 0, . . . , 0)
else

Phase 1: find a first feasible solution x∗

if impossible to find a feasible solution then
return x∗ = (+∞,+∞, . . . ,+∞)

end if
end if
{Phase 2}
while optimal = false and unbounded = false do

if no vertex adjacent to x∗ has a better objective function value then
optimal = true

else
if there is an improvement direction but it goes to infinity then

unbounded = true
else

x∗ = the vertex adjacent to the current x∗ with the best objective function value
end if

end if
end while
if optimal = true then

return x∗

end if



The Simplex Method

Require: an LP problem

optimal = false; unbounded = false
if the origin (x = (0, 0, . . . , 0)) is feasible then

x∗ = (0, 0, . . . , 0)
else

Phase 1: find a first feasible solution x∗

if impossible to find a feasible solution then
return x∗ = (+∞,+∞, . . . ,+∞)

end if
end if
{Phase 2}
while optimal = false and unbounded = false do

if no vertex adjacent to x∗ has a better objective function value then
optimal = true

else
if there is an improvement direction but it goes to infinity then

unbounded = true

else
x∗ = the vertex adjacent to the current x∗ with the best objective function value

end if
end if

end while
if optimal = true then

return x∗

end if



The Simplex Method

Require: an LP problem

optimal = false; unbounded = false
if the origin (x = (0, 0, . . . , 0)) is feasible then

x∗ = (0, 0, . . . , 0)
else

Phase 1: find a first feasible solution x∗

if impossible to find a feasible solution then
return x∗ = (+∞,+∞, . . . ,+∞)

end if
end if
{Phase 2}
while optimal = false and unbounded = false do

if no vertex adjacent to x∗ has a better objective function value then
optimal = true

else
if there is an improvement direction but it goes to infinity then

unbounded = true
else

x∗ = the vertex adjacent to the current x∗ with the best objective function value
end if

end if
end while

if optimal = true then
return x∗

end if



The Simplex Method

Require: an LP problem

optimal = false; unbounded = false
if the origin (x = (0, 0, . . . , 0)) is feasible then

x∗ = (0, 0, . . . , 0)
else

Phase 1: find a first feasible solution x∗

if impossible to find a feasible solution then
return x∗ = (+∞,+∞, . . . ,+∞)

end if
end if
{Phase 2}
while optimal = false and unbounded = false do

if no vertex adjacent to x∗ has a better objective function value then
optimal = true

else
if there is an improvement direction but it goes to infinity then

unbounded = true
else

x∗ = the vertex adjacent to the current x∗ with the best objective function value
end if

end if
end while
if optimal = true then

return x∗

end if



Some theoretical results

Theorem
Each convex combination of optimal vertices is optimal.

Proof.
Let v1, . . . , vp be the optimal vertices of the polyhedron
corresponding to the feasible region of LP.
Let x =

∑p
i=1 αiv

i with
∑p

i=1 αi = 1, α ≥ 0.
Then, its cost is

c⊤x = c⊤
p∑

i=1

αiv
i = c⊤v1

p∑
i=1

αi = c⊤v1

.



Some theoretical results

Theorem
Each convex combination of optimal vertices is optimal.

Proof.
Let v1, . . . , vp be the optimal vertices of the polyhedron
corresponding to the feasible region of LP.

Let x =
∑p

i=1 αiv
i with

∑p
i=1 αi = 1, α ≥ 0.

Then, its cost is

c⊤x = c⊤
p∑

i=1

αiv
i = c⊤v1

p∑
i=1

αi = c⊤v1

.



Some theoretical results

Theorem
Each convex combination of optimal vertices is optimal.

Proof.
Let v1, . . . , vp be the optimal vertices of the polyhedron
corresponding to the feasible region of LP.
Let x =

∑p
i=1 αiv

i with
∑p

i=1 αi = 1, α ≥ 0.

Then, its cost is

c⊤x = c⊤
p∑

i=1

αiv
i = c⊤v1

p∑
i=1

αi = c⊤v1

.



Some theoretical results

Theorem
Each convex combination of optimal vertices is optimal.

Proof.
Let v1, . . . , vp be the optimal vertices of the polyhedron
corresponding to the feasible region of LP.
Let x =

∑p
i=1 αiv

i with
∑p

i=1 αi = 1, α ≥ 0.
Then, its cost is

c⊤x = c⊤
p∑

i=1

αiv
i = c⊤v1

p∑
i=1

αi = c⊤v1

.



Example 4: degenerate case

max 3x1 + 2x2

3x1 + 2x2 ≤ 13

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 5

3x1 + 2x2 = 13

opt



A few references

▶ R. Faure, J.-P. Boss, A. Le Garff, “La recherche
Opérationnelle”. Series “Que sais-je ?” n. 941, Presses
Universitaires de France (1974).

▶ M. Fischetti, “Introduction to Mathematical Optimization”
(2019).

▶ S. Hansson, “Decision theory – a brief introduction” (1994).

▶ S. Kassouf, “Normative decision making”(1970).

▶ A. Schrijver, “Combinatorial Optimization: Polyhedra and
Efficiency” (2003).


