Mixed Integer Non Linear Optimization: Methods and Applications

Introduction to AMPL

Claudia D'Ambrosio dambrosio@lix.polytechnique.fr

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

AMPL (and others): algebraic modeling languages

AMPL (and others): algebraic modeling languages

Syntax: very similar to mathematical notation

AMPL (and others): algebraic modeling languages

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Syntax: very similar to mathematical notation
- Model mathematical optimization problems

- AMPL (and others): algebraic modeling languages
- **Syntax**: very similar to mathematical notation
- Model mathematical optimization problems
- Develop algorithms based on mathematical optimization

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- AMPL (and others): algebraic modeling languages
- **Syntax**: very similar to mathematical notation
- Model mathematical optimization problems
- Develop algorithms based on mathematical optimization

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Linked to solvers for LP/MILP/MINLP problems

- AMPL (and others): algebraic modeling languages
- Syntax: very similar to mathematical notation
- Model mathematical optimization problems
- Develop algorithms based on mathematical optimization
- Linked to solvers for LP/MILP/MINLP problems

Download:

https: //www.lix.polytechnique.fr/~dambrosio/teaching/

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- AMPL (and others): algebraic modeling languages
- Syntax: very similar to mathematical notation
- Model mathematical optimization problems
- Develop algorithms based on mathematical optimization
- Linked to solvers for LP/MILP/MINLP problems

Download:

https:

//www.lix.polytechnique.fr/~dambrosio/teaching/

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

AMPL book:

https://ampl.com/learn/ampl-book/

- AMPL (and others): algebraic modeling languages
- Syntax: very similar to mathematical notation
- Model mathematical optimization problems
- Develop algorithms based on mathematical optimization
- Linked to solvers for LP/MILP/MINLP problems

Download:

https:

//www.lix.polytechnique.fr/~dambrosio/teaching/

AMPL book:

https://ampl.com/learn/ampl-book/

Quick-start guide:

https://www.lix.polytechnique.fr/~dambrosio/ teaching/ampl-quick-start-guide_dambrosio.pdf

・ロト・4回ト・4回ト・目・9900

• Each problem instance is coded in AMPL using three files:

- Each problem instance is coded in AMPL using three files:
 - a model file (extension .mod): contains the mathematical formulation of the problem.

- Each problem instance is coded in AMPL using three files:
 - a model file (extension .mod): contains the mathematical formulation of the problem.
 - a data file (extension .dat): contains the numerical values of the problem parameters.

Each problem instance is coded in AMPL using three files:

- a model file (extension .mod): contains the mathematical formulation of the problem.
- a data file (extension .dat): contains the numerical values of the problem parameters.
- a run file (extension .run): specifies the solution algorithm (external and/or coded by the user in the AMPL language itself).

 parameters, lines starting with the keyword param

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

 parameters, lines starting with the keyword param

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 sets, lines starting with the keyword set

- parameters, lines starting with the keyword param
- sets, lines starting with the keyword set
- decision variables, lines starting with the keyword var

(ロ)、(型)、(E)、(E)、 E) の(()

- parameters, lines starting with the keyword param
- sets, lines starting with the keyword set
- decision variables, lines starting with the keyword var
- objective function(s), lines starting with the keyword minimize or maximize

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- parameters, lines starting with the keyword param
- sets, lines starting with the keyword set
- decision variables, lines starting with the keyword var
- objective function(s), lines starting with the keyword minimize or maximize

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 constraints, lines starting with the keyword subject to param n > 0;

param n > 0;

param $w{1..n} > 0;$

param n > 0;

param $w\{1...n\} > 0;$

param n > 0; param m > 0; param a{1..n, 1..m};

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

set N := 1..n;

set N := 1..n;

param $w{N} > 0;$

set N := 1..n;

param $w{N} > 0;$

param w{N} > 0; param p{j in N} <= 10*w[j];</pre>

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Decision variables:

var x{j in 1..n} >= 0, <= 1, binary;</pre>

Decision variables:

var x{j in 1..n} >= 0, <= 1, binary;</pre>

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Objective function:

maximize total_profit: sum{j in N} p[j]*x[j]; subject to capacity_constraint: sum{j in N} w[j]*x[j] <= c;</pre>

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

```
subject to capacity_constraint:
    sum{j in N} w[j]*x[j] <= c;</pre>
```

```
subject to random_constraint{j in 2..n}:
    w[j]*x[j] - w[j-1]*x[j-1]<= 1;</pre>
```

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

```
param N > 0;  # number of objects
set VARS ordered := {1..N};
param U {j in VARS} > 0;
param c {j in VARS} > 0;
param w {j in VARS} > 0;
param C > 0; # knapsack capacity
var x {j in VARS} >= 0, <= U[j]; # variables</pre>
maximize Total_Profit: # objective function
  sum {j in VARS} c[j]*x[j];
subject to KP_constraint: # constraint
  sum{j in VARS} w[j]*x[j] <= C;</pre>
```

Continuous knapsack problem: File .dat

	param: c :=
	1 3.062328
~	2 43.280130
# Author: Claudia D'AMBROSIO	3 52.983122
# Date: 20200106	4 62.101010
# kp.dat	5 58.531125
	6 47.574366
param $N := 10;$	7 53.101406
param C := 546.000000;	8 6.902601
	9 16.985577
param: w :=	10 62.576610
1 78.770199	;
2 77.468892	
3 93.324757	param: U :=
4 96.180080	1 100.000000
5 55.137398	2 100.000000
6 40.101851	3 100.000000
7 36.007819	4 100.000000
8 5.317250	5 100.000000
9 9.964929	6 100.000000
10 60.265707	7 100.000000
;	8 100.000000
	f 9 100.000000
	10 100.000000
	;

Continuous knapsack problem: File .run

```
Author: Claudia D'Ambrosio
#
#
   Date: 20190121
#
  kp.run
reset:
reset data;
model kp.mod;
data "../dat/kp.dat";
option solver "gurobi";
option gurobi_options "outlev 1";
solve > kp.out;
```

reset;
reset data;

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

```
reset;
reset data;
```

```
option solver gurobi;
option gurobi_options "outlev 1";
solve;
```

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

```
model myMILPmodel.mod;
data myInstance.dat;
option solver cplex;
option relax_integrality 1; # relaxing the
    integrality requirements on all the decision
    variables
solve;
option relax_integrality 0; # restoring the
    integrality requirements on all the decision
    variables
solve;
```

Other commands

display n, c; display N; display w, p;

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Other commands

;

display n, c; display N; display w, p;

n = c =	7 19		
set	N :=	123	4 5 6 7;
:	W	р	:=
1	11	10	
2	6	3	
3	6	4	
4	5	5	
5	5	6	
6	4	7	
7	1	2	

Other commands

display x; display cost;

Other commands

display x;
display cost;

display capacity_constraint;

display capacity_constraint;

capacity_constraint = 0.909091

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

expand capacity_constraint;

expand capacity_constraint;

```
printf "param n := %d;\n", n;
printf "\n";
# param c
printf "param c :";
for \{j \text{ in } N\}
  printf "\t%d", j;
}
printf "\t:=\n";
for {i in N} {
  printf "\t%d", i;
  for \{j \text{ in } N\}
    printf "\t%d", c[i,j];
  }
  printf "\n";
}
printf ";\n\n";
```

for {j in 1..n} { ... }

```
for {j in 1..n} {
    ...
}
```

```
repeat {
    . . .
    }
until x[n] > 0;
```

How to call AMPL from the command line:

Claudias-MacBook-Pro-8: ampl myrunfile.run

How to call AMPL from the command line:

Claudias-MacBook-Pro-8: ampl myrunfile.run

or

Claudias-MacBook-Pro-8: ampl myrunfile.run > myoutputfile.out

How to call AMPL from the AMPL environment/IDE:

ampl: include "../myfolder/myrunfile.run";

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

```
Gurobi 9.5.2: Set parameter Username
outlev 1
logfreq 1
Set parameter OutputFlag to value 1
Set parameter InfUnbdInfo to value 1
Gurobi Optimizer version 9.5.2 build v9.5.2rc0 (mac64[rosetta2])
Thread count: 10 physical cores, 10 logical processors, using up to 10 threads
Optimize a model with 1 rows, 10 columns and 10 nonzeros
Model fingerprint: 0x93cf5499
Coefficient statistics:
 Matrix range [5e+00, 1e+02]
 Objective range [3e+00, 6e+01]
 Bounds range [1e+02, 1e+02]
 RHS range [5e+02, 5e+02]
Presolve removed 1 rows and 10 columns
Presolve time: 0.00s
Presolve: All rows and columns removed
Iteration Objective Primal Inf.
                                           Dual Inf.
                                                         Time
           9.3067648e+02 0.000000e+00
                                          0.00000e+00
                                                           0.8
Solved in 0 iterations and 0.00 seconds (0.00 work units)
Optimal objective 9.306764797e+02
Gurobi 9.5.2: optimal solution: objective 930.6764797
```

AMPL

Either use the IDE or console

AMPL

- Either use the IDE or console
- To open the console: the executable *ampl* is already in the path, thus callable from any directory

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

AMPL

- Either use the IDE or console
- To open the console: the executable *ampl* is already in the path, thus callable from any directory
- Available solvers: baron, conopt, cplex, gurobi, knitro, minos, snopt, xpress

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Manual: https://ampl.com/learn/ampl-book/
- Modeling languages like <u>ampl</u>: ampl.com or <u>gams</u>: www.gams.com or jump https://jump.dev/JuMP.jl/ or pyomo http://www.pyomo.org/
- Open source solvers like scip: scip.zib.de
- NEOS Server, State-of-the-Art Solvers for Numerical Optimization: www.neos-server.org/neos/