
Mixed Integer Non Linear Optimization:
Methods and Applications

–
Introduction to AMPL

Claudia D’Ambrosio
dambrosio@lix.polytechnique.fr

Algebraic modeling languages

▶ AMPL (and others): algebraic modeling languages

▶ Syntax: very similar to mathematical notation

▶ Model mathematical optimization problems

▶ Develop algorithms based on mathematical optimization

▶ Linked to solvers for LP/MILP/MINLP problems

▶ Download:
https:

//www.lix.polytechnique.fr/~dambrosio/teaching/

▶ AMPL book:
https://ampl.com/learn/ampl-book/

▶ Quick-start guide:
https://www.lix.polytechnique.fr/~dambrosio/

teaching/ampl-quick-start-guide_dambrosio.pdf

https://www.lix.polytechnique.fr/~dambrosio/teaching/
https://www.lix.polytechnique.fr/~dambrosio/teaching/
https://ampl.com/learn/ampl-book/
https://www.lix.polytechnique.fr/~dambrosio/teaching/ampl-quick-start-guide_dambrosio.pdf
https://www.lix.polytechnique.fr/~dambrosio/teaching/ampl-quick-start-guide_dambrosio.pdf

Algebraic modeling languages

▶ AMPL (and others): algebraic modeling languages

▶ Syntax: very similar to mathematical notation

▶ Model mathematical optimization problems

▶ Develop algorithms based on mathematical optimization

▶ Linked to solvers for LP/MILP/MINLP problems

▶ Download:
https:

//www.lix.polytechnique.fr/~dambrosio/teaching/

▶ AMPL book:
https://ampl.com/learn/ampl-book/

▶ Quick-start guide:
https://www.lix.polytechnique.fr/~dambrosio/

teaching/ampl-quick-start-guide_dambrosio.pdf

https://www.lix.polytechnique.fr/~dambrosio/teaching/
https://www.lix.polytechnique.fr/~dambrosio/teaching/
https://ampl.com/learn/ampl-book/
https://www.lix.polytechnique.fr/~dambrosio/teaching/ampl-quick-start-guide_dambrosio.pdf
https://www.lix.polytechnique.fr/~dambrosio/teaching/ampl-quick-start-guide_dambrosio.pdf

Algebraic modeling languages

▶ AMPL (and others): algebraic modeling languages

▶ Syntax: very similar to mathematical notation

▶ Model mathematical optimization problems

▶ Develop algorithms based on mathematical optimization

▶ Linked to solvers for LP/MILP/MINLP problems

▶ Download:
https:

//www.lix.polytechnique.fr/~dambrosio/teaching/

▶ AMPL book:
https://ampl.com/learn/ampl-book/

▶ Quick-start guide:
https://www.lix.polytechnique.fr/~dambrosio/

teaching/ampl-quick-start-guide_dambrosio.pdf

https://www.lix.polytechnique.fr/~dambrosio/teaching/
https://www.lix.polytechnique.fr/~dambrosio/teaching/
https://ampl.com/learn/ampl-book/
https://www.lix.polytechnique.fr/~dambrosio/teaching/ampl-quick-start-guide_dambrosio.pdf
https://www.lix.polytechnique.fr/~dambrosio/teaching/ampl-quick-start-guide_dambrosio.pdf

Algebraic modeling languages

▶ AMPL (and others): algebraic modeling languages

▶ Syntax: very similar to mathematical notation

▶ Model mathematical optimization problems

▶ Develop algorithms based on mathematical optimization

▶ Linked to solvers for LP/MILP/MINLP problems

▶ Download:
https:

//www.lix.polytechnique.fr/~dambrosio/teaching/

▶ AMPL book:
https://ampl.com/learn/ampl-book/

▶ Quick-start guide:
https://www.lix.polytechnique.fr/~dambrosio/

teaching/ampl-quick-start-guide_dambrosio.pdf

https://www.lix.polytechnique.fr/~dambrosio/teaching/
https://www.lix.polytechnique.fr/~dambrosio/teaching/
https://ampl.com/learn/ampl-book/
https://www.lix.polytechnique.fr/~dambrosio/teaching/ampl-quick-start-guide_dambrosio.pdf
https://www.lix.polytechnique.fr/~dambrosio/teaching/ampl-quick-start-guide_dambrosio.pdf

Algebraic modeling languages

▶ AMPL (and others): algebraic modeling languages

▶ Syntax: very similar to mathematical notation

▶ Model mathematical optimization problems

▶ Develop algorithms based on mathematical optimization

▶ Linked to solvers for LP/MILP/MINLP problems

▶ Download:
https:

//www.lix.polytechnique.fr/~dambrosio/teaching/

▶ AMPL book:
https://ampl.com/learn/ampl-book/

▶ Quick-start guide:
https://www.lix.polytechnique.fr/~dambrosio/

teaching/ampl-quick-start-guide_dambrosio.pdf

https://www.lix.polytechnique.fr/~dambrosio/teaching/
https://www.lix.polytechnique.fr/~dambrosio/teaching/
https://ampl.com/learn/ampl-book/
https://www.lix.polytechnique.fr/~dambrosio/teaching/ampl-quick-start-guide_dambrosio.pdf
https://www.lix.polytechnique.fr/~dambrosio/teaching/ampl-quick-start-guide_dambrosio.pdf

Algebraic modeling languages

▶ AMPL (and others): algebraic modeling languages

▶ Syntax: very similar to mathematical notation

▶ Model mathematical optimization problems

▶ Develop algorithms based on mathematical optimization

▶ Linked to solvers for LP/MILP/MINLP problems

▶ Download:
https:

//www.lix.polytechnique.fr/~dambrosio/teaching/

▶ AMPL book:
https://ampl.com/learn/ampl-book/

▶ Quick-start guide:
https://www.lix.polytechnique.fr/~dambrosio/

teaching/ampl-quick-start-guide_dambrosio.pdf

https://www.lix.polytechnique.fr/~dambrosio/teaching/
https://www.lix.polytechnique.fr/~dambrosio/teaching/
https://ampl.com/learn/ampl-book/
https://www.lix.polytechnique.fr/~dambrosio/teaching/ampl-quick-start-guide_dambrosio.pdf
https://www.lix.polytechnique.fr/~dambrosio/teaching/ampl-quick-start-guide_dambrosio.pdf

Algebraic modeling languages

▶ AMPL (and others): algebraic modeling languages

▶ Syntax: very similar to mathematical notation

▶ Model mathematical optimization problems

▶ Develop algorithms based on mathematical optimization

▶ Linked to solvers for LP/MILP/MINLP problems

▶ Download:
https:

//www.lix.polytechnique.fr/~dambrosio/teaching/

▶ AMPL book:
https://ampl.com/learn/ampl-book/

▶ Quick-start guide:
https://www.lix.polytechnique.fr/~dambrosio/

teaching/ampl-quick-start-guide_dambrosio.pdf

https://www.lix.polytechnique.fr/~dambrosio/teaching/
https://www.lix.polytechnique.fr/~dambrosio/teaching/
https://ampl.com/learn/ampl-book/
https://www.lix.polytechnique.fr/~dambrosio/teaching/ampl-quick-start-guide_dambrosio.pdf
https://www.lix.polytechnique.fr/~dambrosio/teaching/ampl-quick-start-guide_dambrosio.pdf

Algebraic modeling languages

▶ AMPL (and others): algebraic modeling languages

▶ Syntax: very similar to mathematical notation

▶ Model mathematical optimization problems

▶ Develop algorithms based on mathematical optimization

▶ Linked to solvers for LP/MILP/MINLP problems

▶ Download:
https:

//www.lix.polytechnique.fr/~dambrosio/teaching/

▶ AMPL book:
https://ampl.com/learn/ampl-book/

▶ Quick-start guide:
https://www.lix.polytechnique.fr/~dambrosio/

teaching/ampl-quick-start-guide_dambrosio.pdf

https://www.lix.polytechnique.fr/~dambrosio/teaching/
https://www.lix.polytechnique.fr/~dambrosio/teaching/
https://ampl.com/learn/ampl-book/
https://www.lix.polytechnique.fr/~dambrosio/teaching/ampl-quick-start-guide_dambrosio.pdf
https://www.lix.polytechnique.fr/~dambrosio/teaching/ampl-quick-start-guide_dambrosio.pdf

AMPL files

▶ Each problem instance is coded in AMPL using three files:

▶ a model file (extension .mod): contains the mathematical
formulation of the problem.

▶ a data file (extension .dat): contains the numerical values of
the problem parameters.

▶ a run file (extension .run): specifies the solution algorithm
(external and/or coded by the user in the AMPL language
itself).

AMPL files

▶ Each problem instance is coded in AMPL using three files:

▶ a model file (extension .mod): contains the mathematical
formulation of the problem.

▶ a data file (extension .dat): contains the numerical values of
the problem parameters.

▶ a run file (extension .run): specifies the solution algorithm
(external and/or coded by the user in the AMPL language
itself).

AMPL files

▶ Each problem instance is coded in AMPL using three files:

▶ a model file (extension .mod): contains the mathematical
formulation of the problem.

▶ a data file (extension .dat): contains the numerical values of
the problem parameters.

▶ a run file (extension .run): specifies the solution algorithm
(external and/or coded by the user in the AMPL language
itself).

AMPL files

▶ Each problem instance is coded in AMPL using three files:

▶ a model file (extension .mod): contains the mathematical
formulation of the problem.

▶ a data file (extension .dat): contains the numerical values of
the problem parameters.

▶ a run file (extension .run): specifies the solution algorithm
(external and/or coded by the user in the AMPL language
itself).

File .mod

▶ parameters, lines starting with the keyword
param

▶ sets, lines starting with the keyword
set

▶ decision variables, lines starting with the keyword
var

▶ objective function(s), lines starting with the keyword
minimize or maximize

▶ constraints, lines starting with the keyword
subject to

File .mod

▶ parameters, lines starting with the keyword
param

▶ sets, lines starting with the keyword
set

▶ decision variables, lines starting with the keyword
var

▶ objective function(s), lines starting with the keyword
minimize or maximize

▶ constraints, lines starting with the keyword
subject to

File .mod

▶ parameters, lines starting with the keyword
param

▶ sets, lines starting with the keyword
set

▶ decision variables, lines starting with the keyword
var

▶ objective function(s), lines starting with the keyword
minimize or maximize

▶ constraints, lines starting with the keyword
subject to

File .mod

▶ parameters, lines starting with the keyword
param

▶ sets, lines starting with the keyword
set

▶ decision variables, lines starting with the keyword
var

▶ objective function(s), lines starting with the keyword
minimize or maximize

▶ constraints, lines starting with the keyword
subject to

File .mod

▶ parameters, lines starting with the keyword
param

▶ sets, lines starting with the keyword
set

▶ decision variables, lines starting with the keyword
var

▶ objective function(s), lines starting with the keyword
minimize or maximize

▶ constraints, lines starting with the keyword
subject to

File .mod

� �
param n > 0;� �

� �
param w{1..n} > 0;� �� �
param n > 0;

param m > 0;

param a{1..n, 1..m};� �

File .mod

� �
param n > 0;� �� �
param w{1..n} > 0;� �

� �
param n > 0;

param m > 0;

param a{1..n, 1..m};� �

File .mod

� �
param n > 0;� �� �
param w{1..n} > 0;� �� �
param n > 0;

param m > 0;

param a{1..n, 1..m};� �

File .mod

� �
set N := 1..n;� �

� �
param w{N} > 0;� �� �
param w{N} > 0;

param p{j in N} <= 10*w[j];� �

File .mod

� �
set N := 1..n;� �� �
param w{N} > 0;� �

� �
param w{N} > 0;

param p{j in N} <= 10*w[j];� �

File .mod

� �
set N := 1..n;� �� �
param w{N} > 0;� �� �
param w{N} > 0;

param p{j in N} <= 10*w[j];� �

File .mod

Decision variables:� �
var x{j in 1..n} >= 0, <= 1, binary;� �

Objective function:� �
maximize total_profit:

sum{j in N} p[j]*x[j];� �

File .mod

Decision variables:� �
var x{j in 1..n} >= 0, <= 1, binary;� �
Objective function:� �
maximize total_profit:

sum{j in N} p[j]*x[j];� �

File .mod

� �
subject to capacity_constraint:

sum{j in N} w[j]*x[j] <= c;� �

� �
subject to random_constraint{j in 2..n}:

w[j]*x[j] - w[j-1]*x[j-1]<= 1;� �

File .mod

� �
subject to capacity_constraint:

sum{j in N} w[j]*x[j] <= c;� �� �
subject to random_constraint{j in 2..n}:

w[j]*x[j] - w[j-1]*x[j-1]<= 1;� �

Continuous knapsack problem: File .mod

� �
param N > 0; # number of objects

set VARS ordered := {1..N};

param U {j in VARS} > 0;

param c {j in VARS} > 0;

param w {j in VARS} > 0;

param C > 0; # knapsack capacity

var x {j in VARS} >= 0, <= U[j]; # variables

maximize Total_Profit: # objective function

sum {j in VARS} c[j]*x[j];

subject to KP_constraint: # constraint

sum{j in VARS} w[j]*x[j] <= C;� �

Continuous knapsack problem: File .dat

� �
Author: Claudia D’AMBROSIO

Date: 20200106

kp.dat

param N := 10 ;
param C := 546 .000000 ;

param : w :=
1 78.770199
2 77.468892
3 93.324757
4 96.180080
5 55.137398
6 40.101851
7 36.007819
8 5.317250
9 9.964929
10 60.265707
;� �

� �
param : c :=
1 3.062328
2 43.280130
3 52.983122
4 62.101010
5 58.531125
6 47.574366
7 53.101406
8 6.902601
9 16.985577
10 62.576610
;

param : U :=
1 100.000000
2 100.000000
3 100.000000
4 100.000000
5 100.000000
6 100.000000
7 100.000000
8 100.000000
9 100.000000
10 100.000000
;� �

Continuous knapsack problem: File .run

� �
Author: Claudia D’Ambrosio

Date: 20190121

kp.run

reset;

reset data;

model kp.mod;

data "../ dat/kp.dat";

option solver "gurobi ";

option gurobi_options "outlev 1";

solve > kp.out;� �

Other commands

� �
reset;

reset data;� �

� �
option solver gurobi;

option gurobi_options "outlev 1";

solve;� �

Other commands

� �
reset;

reset data;� �
� �
option solver gurobi;

option gurobi_options "outlev 1";

solve;� �

Other commands

� �
model myMILPmodel.mod;

data myInstance.dat;

option solver cplex;

option relax_integrality 1; # relaxing the

integrality requirements on all the decision

variables

solve;

option relax_integrality 0; # restoring the

integrality requirements on all the decision

variables

solve;� �

Other commands� �
display n, c;

display N;

display w, p;� �

n = 7

c = 19

set N := 1 2 3 4 5 6 7;

: w p :=

1 11 10

2 6 3

3 6 4

4 5 5

5 5 6

6 4 7

7 1 2

;

Other commands� �
display n, c;

display N;

display w, p;� �
n = 7

c = 19

set N := 1 2 3 4 5 6 7;

: w p :=

1 11 10

2 6 3

3 6 4

4 5 5

5 5 6

6 4 7

7 1 2

;

Other commands

� �
display x;

display cost;� �

x [*] :=

1 0.363636

2 0

3 0

4 1

5 1

6 1

7 1

;

cost = 23.6364

Other commands

� �
display x;

display cost;� �
x [*] :=

1 0.363636

2 0

3 0

4 1

5 1

6 1

7 1

;

cost = 23.6364

Other commands

� �
display capacity_constraint;� �

capacity_constraint = 0.909091

Other commands

� �
display capacity_constraint;� �
capacity_constraint = 0.909091

Other commands

� �
expand capacity_constraint;� �

subject to capacity_constraint:

11*x[1] + 6*x[2] + 6*x[3] + 5*x[4] + 5*x[5] + 4*x[6] + x[7] <= 19;

Other commands

� �
expand capacity_constraint;� �
subject to capacity_constraint:

11*x[1] + 6*x[2] + 6*x[3] + 5*x[4] + 5*x[5] + 4*x[6] + x[7] <= 19;

Other commands

� �
printf "param n := %d;\n", n;

printf "\n";

param c

printf "param c :";

for {j in N} {

printf "\t%d", j;

}

printf "\t:=\n";

for {i in N} {

printf "\t%d", i;

for {j in N} {

printf "\t%d", c[i,j];

}

printf "\n";

}

printf ";\n\n";� �

Other commands

� �
for {j in 1..n} {

...

}� �

� �
repeat {

. . .

}

until x[n] > 0;� �

Other commands

� �
for {j in 1..n} {

...

}� �
� �
repeat {

. . .

}

until x[n] > 0;� �

How to call AMPL from the command line:

Claudias -MacBook -Pro -8: ampl myrunfile.run

or

Claudias -MacBook -Pro -8: ampl myrunfile.run > myoutputfile.out

How to call AMPL from the command line:

Claudias -MacBook -Pro -8: ampl myrunfile.run

or

Claudias -MacBook -Pro -8: ampl myrunfile.run > myoutputfile.out

How to call AMPL from the AMPL environment/IDE:

ampl: include "../ myfolder/myrunfile.run";

Continuous knapsack problem: File kp.out obtained

Gurobi 9.5.2: Set parameter Username

outlev 1

logfreq 1

Set parameter OutputFlag to value 1

Set parameter InfUnbdInfo to value 1

Gurobi Optimizer version 9.5.2 build v9.5.2 rc0 (mac64[rosetta2])

Thread count: 10 physical cores , 10 logical processors , using up to 10 threads

Optimize a model with 1 rows , 10 columns and 10 nonzeros

Model fingerprint: 0x93cf5499

Coefficient statistics:

Matrix range [5e+00, 1e+02]

Objective range [3e+00, 6e+01]

Bounds range [1e+02, 1e+02]

RHS range [5e+02, 5e+02]

Presolve removed 1 rows and 10 columns

Presolve time: 0.00s

Presolve: All rows and columns removed

Iteration Objective Primal Inf. Dual Inf. Time

0 9.3067648e+02 0.000000e+00 0.000000e+00 0s

Solved in 0 iterations and 0.00 seconds (0.00 work units)

Optimal objective 9.306764797e+02

Gurobi 9.5.2: optimal solution; objective 930.6764797

How to use AMPL

AMPL

▶ Either use the IDE or console

▶ To open the console: the executable ampl is already in the
path, thus callable from any directory

▶ Available solvers: baron, conopt, cplex, gurobi, knitro, minos,
snopt, xpress

How to use AMPL

AMPL

▶ Either use the IDE or console

▶ To open the console: the executable ampl is already in the
path, thus callable from any directory

▶ Available solvers: baron, conopt, cplex, gurobi, knitro, minos,
snopt, xpress

How to use AMPL

AMPL

▶ Either use the IDE or console

▶ To open the console: the executable ampl is already in the
path, thus callable from any directory

▶ Available solvers: baron, conopt, cplex, gurobi, knitro, minos,
snopt, xpress

References

▶ Manual: https://ampl.com/learn/ampl-book/

▶ Modeling languages like ampl: ampl.com
or gams: www.gams.com or jump
https://jump.dev/JuMP.jl/ or pyomo
http://www.pyomo.org/

▶ Open source solvers like scip: scip.zib.de

▶ NEOS Server, State-of-the-Art Solvers for Numerical
Optimization: www.neos-server.org/neos/

https://ampl.com/learn/ampl-book/
ampl.com
www.gams.com
https://jump.dev/JuMP.jl/
http://www.pyomo.org/
scip.zib.de
www.neos-server.org/neos/

