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Linear Programming problems

min
x

f (x)

gi (x) ≤ 0 ∀i = 1, . . . ,m

x ≤ x ≤ x

xj ∈ Z ∀j ∈ Z

Linear Programming (LP) problem:

min
x

f (x) → min
x

c⊤x

g(x) ≤ 0 → Ax ≤ b

x ≤ x ≤ x → x ≤ x ≤ x

xj ∈ Z ∀j ∈ Z → removed
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LP problems

min
x

c⊤x

Ax ≤ b

x ≤ x ≤ x

W.l.o.g. because
max c̃⊤x → −min−c̃⊤x

For some i , Ãix ≥ b̃i → −Ãix ≤ −b̃i

For some i , Ãix = b̃i → −Ãix ≤ −b̃i and Ãix ≤ b̃i

Moreover, x ∈ [−∞,+∞) and x ∈ (−∞,+∞].
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LPs characteristics

Feasible (solutions) set/region : X = {x | Ax ≤ b, x ≤ x ≤ x}

▶ optimal: when X ̸= ∅, bounded. In this case, an optimal
solution is found, i.e., a feasible point x∗ s.t. c⊤x∗ ≤ c⊤x for
all feasible x ∈ X

▶ infeasible: when X = ∅
▶ unbounded: when the min{c⊤x | x ∈ X} = −∞

Geometrical interpretation of LPs

How to draw constraints and objective function
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Example 1

max x1 + x2

3x1 + 2x2 ≤ 13

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 5.
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A few definitions

Consider some i ∈ {1, . . . ,m}
▶ Hyperplane : {x ∈ Rn | A⊤

i x = bi}

▶ Half-space : {x ∈ Rn | A⊤
i x ≤ bi} or {x ∈ Rn | A⊤

i x ≥ b}
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Some properties and theorems

Definition
Given points v1, v2, . . . , vp ∈ Rn, their convex combination is
z =

∑p
i=1 αiv

i s.t.
∑p

i=1 αi = 1 and αi ≥ 0 for all i = 1, . . . , p.

Theorem
Every polyhedron P ⊆ Rd can be written as

P = conv{v1, . . . , vk}+ cone{r1, . . . , r ℓ}

with points v1, . . . , vk ∈ Rd and rays r1, . . . , r ℓ ∈ Rd

where
cone{r1, . . . , r ℓ} = {x ∈ Rd | x = µ1r

1 + . . . µℓr
ℓ, µ1, . . . , µℓ ≥ 0}.
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Each point of a polytope is a convex combination of its vertices.

Theorem
Each convex combination of the vertices of a polytope is a point of
the polytope.

Theorem
A vertex is not a strict convex combination of two distinct points
of the polytope.

Thus, a polytope can be characterized/described by a finite
number of half-spaces (H-description) or its vertices
(V-description).
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