Mixed Integer Non Linear Optimization: Methods and Applications

Linear Programming

Claudia D'Ambrosio dambrosio@lix.polytechnique.fr

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

$$egin{array}{lll} \min_{x} & f(x) \ & g_{i}(x) \leq & 0 & orall i=1,\ldots,m \ & \underline{x} & \leq x \leq & \overline{x} \ & x_{j} \in & \mathbb{Z} & orall j \in Z \end{array}$$

$$egin{array}{lll} \min_{x} & f(x) \ & g_{i}(x) \leq & 0 & orall i=1,\ldots,m \ & \underline{x} & \leq x \leq & \overline{x} \ & x_{j} \in & \mathbb{Z} & orall j \in Z \end{array}$$

Linear Programming (LP) problem:

$$\min_{x} f(x) \rightarrow \min_{x} c^{\top} x$$

$$egin{array}{lll} \min_{x} & f(x) \ & g_{i}(x) \leq & 0 & orall i=1,\ldots,m \ & \underline{x} & \leq x \leq & \overline{x} \ & x_{j} \in & \mathbb{Z} & orall j \in Z \end{array}$$

Linear Programming (LP) problem:

$$\min_{x} f(x) \rightarrow \min_{x} c^{\top} x g(x) \le 0 \rightarrow Ax \le b$$

$$egin{array}{lll} \min_{x} & f(x) \ & g_{i}(x) \leq & 0 & orall i=1,\ldots,m \ & \underline{x} & \leq x \leq & \overline{x} \ & x_{j} \in & \mathbb{Z} & orall j \in Z \end{array}$$

Linear Programming (LP) problem:

$$\begin{array}{rcl} \min_{x} f(x) & \to & \min_{x} c^{\top} x \\ g(x) \leq 0 & \to & Ax \leq b \\ \underline{x} \leq x \leq \overline{x} & \to & \underline{x} \leq x \leq \overline{x} \end{array}$$

$$egin{array}{lll} \min_{x} & f(x) \ & g_{i}(x) \leq & 0 & orall i=1,\ldots,m \ & \underline{x} & \leq x \leq & \overline{x} \ & x_{j} \in & \mathbb{Z} & orall j \in Z \end{array}$$

Linear Programming (LP) problem:

$$\min_{x} f(x) \rightarrow \min_{x} c^{\top} x$$
$$g(x) \leq 0 \rightarrow Ax \leq b$$
$$\underline{x} \leq x \leq \overline{x} \rightarrow \underline{x} \leq x \leq \overline{x}$$
$$x_{j} \in \mathbb{Z} \quad \forall j \in Z \rightarrow \text{ removed}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

 $\min_{x} c^{\top} x$ $Ax \leq b$ $\underline{x} \leq x \leq \overline{x}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$\min_{x} c^{\top} x$$

$$Ax \leq b$$

$$x < x < \overline{x}$$

W.l.o.g. because

$$\max \tilde{c}^\top x \rightarrow$$

$$\min_{x} c^{\top} x$$

$$Ax \leq b$$

$$\underline{x} \leq x \leq \overline{x}$$

W.I.o.g. because

$$\max \tilde{c}^{\top} x \rightarrow -\min -\tilde{c}^{\top} x$$

$$\min_{x} c^{\top} x$$

$$Ax \leq b$$

$$\underline{x} \leq x \leq \overline{x}$$

W.I.o.g. because

$$\max \tilde{c}^{\top}x \rightarrow -\min -\tilde{c}^{\top}x$$

For some i , $\tilde{A}_i x \geq \tilde{b}_i \rightarrow$

$$\min_{x} c^{\top} x$$

$$Ax \leq b$$

$$\underline{x} \leq x \leq \overline{x}$$

W.I.o.g. because

$$\max \tilde{c}^{\top}x \rightarrow -\min -\tilde{c}^{\top}x$$

For some i , $\tilde{A}_ix \ge \tilde{b}_i \rightarrow -\tilde{A}_ix \le -\tilde{b}_i$

$$\min_{x} c^{\top} x$$

$$Ax \leq b$$

$$\underline{x} \leq x \leq \overline{x}$$

W.I.o.g. because

$$\max \tilde{c}^{\top}x \rightarrow -\min -\tilde{c}^{\top}x$$

For some i , $\tilde{A}_i x \ge \tilde{b}_i \rightarrow -\tilde{A}_i x \le -\tilde{b}_i$
For some i , $\tilde{A}_i x = \tilde{b}_i \rightarrow$

$$\min_{x} c^{\top} x Ax \leq b \underline{x} \leq x \leq \overline{x}$$

W.I.o.g. because

$$\max \tilde{c}^{\top}x \rightarrow -\min -\tilde{c}^{\top}x$$

For some i , $\tilde{A}_i x \ge \tilde{b}_i \rightarrow -\tilde{A}_i x \le -\tilde{b}_i$
For some i , $\tilde{A}_i x = \tilde{b}_i \rightarrow -\tilde{A}_i x \le -\tilde{b}_i$ and $\tilde{A}_i x \le \tilde{b}_i$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

$$\min_{x} c^{\top} x$$

$$Ax \leq b$$

$$\underline{x} \leq x \leq \overline{x}$$

W.l.o.g. because

$$\max \tilde{c}^{\top}x \rightarrow -\min - \tilde{c}^{\top}x$$
For some i , $\tilde{A}_i x \ge \tilde{b}_i \rightarrow -\tilde{A}_i x \le -\tilde{b}_i$
For some i , $\tilde{A}_i x = \tilde{b}_i \rightarrow -\tilde{A}_i x \le -\tilde{b}_i$ and $\tilde{A}_i x \le \tilde{b}_i$

Moreover, $\underline{x} \in [-\infty, +\infty)$ and $\overline{x} \in (-\infty, +\infty]$.

optimal: when X ≠ Ø, bounded. In this case, an optimal solution is found, i.e., a feasible point x* s.t. c^Tx* ≤ c^Tx for all feasible x ∈ X

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

optimal: when X ≠ Ø, bounded. In this case, an optimal solution is found, i.e., a feasible point x* s.t. c^Tx* ≤ c^Tx for all feasible x ∈ X

• infeasible: when $X = \emptyset$

optimal: when X ≠ Ø, bounded. In this case, an optimal solution is found, i.e., a feasible point x* s.t. c^Tx* ≤ c^Tx for all feasible x ∈ X

- infeasible: when $X = \emptyset$
- **unbounded**: when the min $\{c^{\top}x \mid x \in X\} = -\infty$

optimal: when X ≠ Ø, bounded. In this case, an optimal solution is found, i.e., a feasible point x* s.t. c^Tx* ≤ c^Tx for all feasible x ∈ X

- infeasible: when $X = \emptyset$
- **unbounded**: when the min $\{c^{\top}x \mid x \in X\} = -\infty$

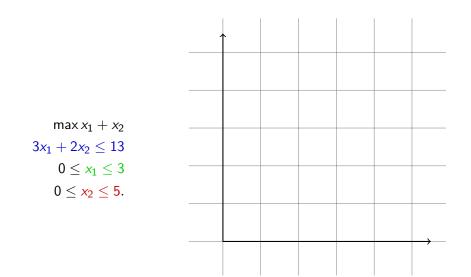
Geometrical interpretation of LPs

optimal: when X ≠ Ø, bounded. In this case, an optimal solution is found, i.e., a feasible point x* s.t. c^Tx* ≤ c^Tx for all feasible x ∈ X

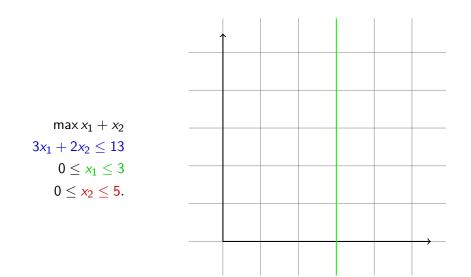
- infeasible: when $X = \emptyset$
- **unbounded**: when the min $\{c^{\top}x \mid x \in X\} = -\infty$

Geometrical interpretation of LPs

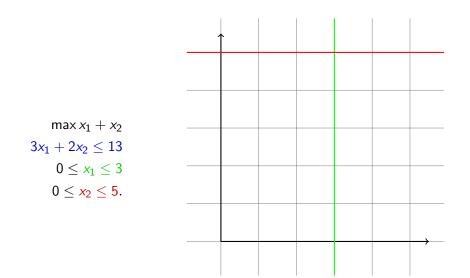
How to draw constraints and objective function



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

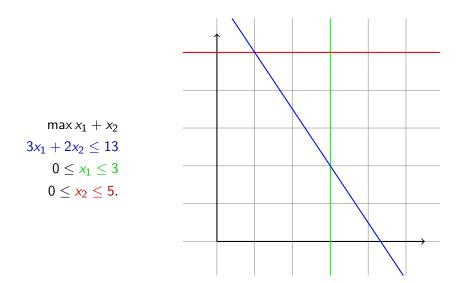


◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ● ●



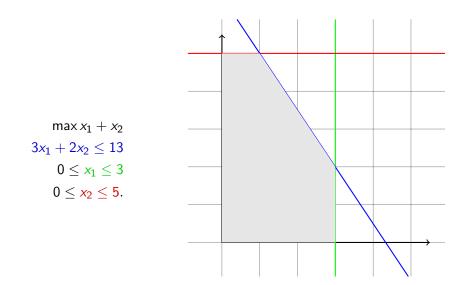
◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ● ●

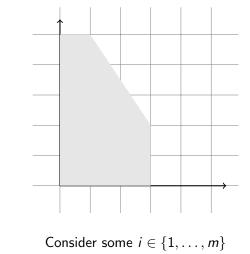
Example 1



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

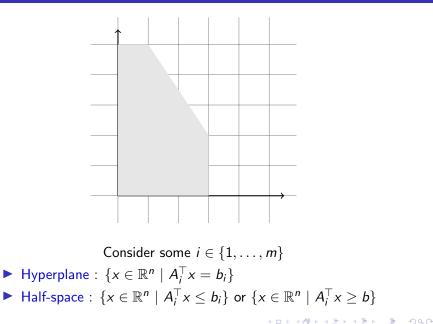
Example 1

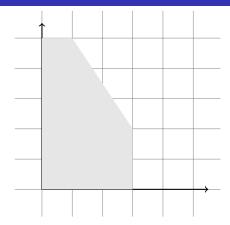




◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

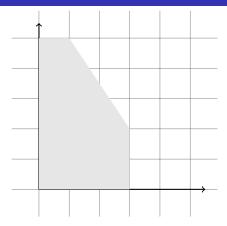
• Hyperplane : $\{x \in \mathbb{R}^n \mid A_i^\top x = b_i\}$





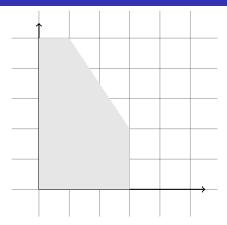
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

▶ Polyhedron : $\{x \in \mathbb{R}^n \mid Ax \leq b\}$



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- ▶ Polyhedron : $\{x \in \mathbb{R}^n \mid Ax \le b\}$
- Polytope : a bounded polyhedron



- ▶ Polyhedron : $\{x \in \mathbb{R}^n \mid Ax \le b\}$
- Polytope : a bounded polyhedron

Remark

The feasible region of a LP problem is a polyhedron (by definition).

Definition

Given points $v^1, v^2, \ldots, v^p \in \mathbb{R}^n$, their convex combination is $z = \sum_{i=1}^p \alpha_i v^i$ s.t. $\sum_{i=1}^p \alpha_i = 1$ and $\alpha_i \ge 0$ for all $i = 1, \ldots, p$.

Definition

Given points $v^1, v^2, \ldots, v^p \in \mathbb{R}^n$, their convex combination is $z = \sum_{i=1}^{p} \alpha_i v^i$ s.t. $\sum_{i=1}^{p} \alpha_i = 1$ and $\alpha_i \ge 0$ for all $i = 1, \ldots, p$.

Theorem

Every polyhedron $P \subseteq \mathbb{R}^d$ can be written as

$$P = conv\{v^1, \dots, v^k\} + cone\{r^1, \dots, r^\ell\}$$

with points $v^1, \ldots, v^k \in \mathbb{R}^d$ and rays $r^1, \ldots, r^\ell \in \mathbb{R}^d$ where $\operatorname{cone}\{r^1, \ldots, r^\ell\} = \{x \in \mathbb{R}^d \mid x = \mu_1 r^1 + \ldots + \mu_\ell r^\ell, \mu_1, \ldots, \mu_\ell > 0\}.$

Each point of a polytope is a convex combination of its vertices.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Each point of a polytope is a convex combination of its vertices.

Theorem

Each convex combination of the vertices of a polytope is a point of the polytope.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Each point of a polytope is a convex combination of its vertices.

Theorem

Each convex combination of the vertices of a polytope is a point of the polytope.

Theorem

A vertex is not a strict convex combination of two distinct points of the polytope.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Each point of a polytope is a convex combination of its vertices.

Theorem

Each convex combination of the vertices of a polytope is a point of the polytope.

Theorem

A vertex is not a strict convex combination of two distinct points of the polytope.

Thus, a polytope can be **characterized/described** by a finite number of half-spaces (H-description) or its vertices (V-description).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00