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LP problems

minc'x
X

Ax < b
x<x < X

W.l.o.g. because

max &'

X — —min—¢&l x
For some i, Ajx>b; — —Aix < —b;

For some i, A,—x = E,— — —A,-x < —B,- and /Z\,-x < B,-

Moreover, x € [—00,+00) and X € (—o0, +00].
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Geometrical interpretation of LPs

How to draw constraints and objective function
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A few definitions

» Polyhedron : {x € R" | Ax < b}
» Polytope : a bounded polyhedron

Remark
The feasible region of a LP problem is a polyhedron (by definition).
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Some properties and theorems

Definition
Given points v, v2, ..., vP € R", their convex combination is
z=3F aivst. 3P jaj=landa;>0foralli=1,...,p.

Theorem
Every polyhedron P C R can be written as
P = conv{v!,... vk} + cone{rt,... r'}

with points vi,... vk € RY and rays rt,... r* € RY

where
cone{rt,....r'} ={x€RY | x = part + ... per® pu1,..., g >0}
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Some properties and theorems

Theorem
Each point of a polytope is a convex combination of its vertices.

Theorem
Each convex combination of the vertices of a polytope is a point of
the polytope.

Theorem
A vertex is not a strict convex combination of two distinct points
of the polytope.

Thus, a polytope can be characterized /described by a finite
number of half-spaces (H-description) or its vertices
(V-description).



