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Abstract Mixed integer programming (MIP) is commonly used to model indicator
constraints, i.e., constraints that either hold or are relaxed depending on the value
of a binary variable. Unfortunately, those models tend to lead to weak continuous
relaxations and turn out to be unsolvable in practice; this is what happens, for e.g.,
in the case of Classification problems with Ramp Loss functions that represent an
important application in this context. In this paperwe show the computational evidence
that a relevant class of these Classification instances can be solved far more efficiently
if a nonlinear, nonconvex reformulation of the indicator constraints is used instead
of the linear one. Inspired by this empirical and surprising observation, we show that
aggressive bound tightening is the crucial ingredient for solving this class of instances,
and we devise a pair of computationally effective algorithmic approaches that exploit
it within MIP. One of these methods is currently part of the arsenal of IBM-Cplex
since version 12.6.1. More generally, we argue that aggressive bound tightening is
often overlooked inMIP, while it represents a significant building block for enhancing
MIP technology when indicator constraints and disjunctive terms are present.
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1 Introduction

Let us consider the linear inequality

αT x ≤ x0, (1)

in which both x ∈ R
d and x0 ∈ R are variables, while α is a given d-dimensional

vector. It is a very well-known modeling trick in Mixed Integer Linear Programming
(MILP) to use a binary variable to control whether linear constraint (1) is active or
not depending on other parts of the model or at the price of paying a penalty in the
objective function. Then, the constraint is reformulated as the following big-M or
indicator constraint

αT x ≤ x0 + Mt, (2)

where t ∈ {0, 1} and M is a large-enough value that guarantees that the constraint is
inactive if t = 1. As similar tricks may be used in Mixed Integer Quadratic Program-
ming (MIQP), from now on, we will write MIP to denote both classes of problems.

Although they provide a clean and flexible modeling tool to deal with nonlinearities
and logical implications by staying within the MIP framework, it is well-known that
indicator constraints present the drawback of having a weak continuous relaxation.
Indeed, depending on the valueM and on the value attained by expression “αT x−x0”,
very small (fractional) values of t might be sufficient to satisfy the constraint. This
leads to quality issues with a continuous relaxation value typically very far away from
the mixed integer optimum, but, sometimes even more importantly, might lead to
numerical issues, with the MIP solvers being unable to assert if a t value below the
integer tolerance is in fact a true solution.

An alternative for logical implications that has been used in theMixed Integer Non-
linear Programming (MINLP) literature for decades is provided by the complementary
formulation

(αT x − x0)t̄ ≤ 0, (3)

where t̄ = 1−t . However, (3) is a nonconvex constraint. Such a source of nonconvexity
might not significantly complicate the solution of already nonconvex MINLP models
arising, for example, in Chemical Engineering applications, see [19]. In addition,
numerical issues on the choice of the value of M do not appear anymore, at least in
the formulation. On the contrary, in the cases where those logical constraints were the
only sources of nonconvexity, the common approach has always been that of using
constraints (2) and MIP techniques.

Before stating the contribution of the present paper it is worth mentioning that the
big-M formulation (2) is just the weakest (but easiest and commonly used) disjunctive
programming approach (see, e.g., [2,11,19]) to deal with indicator constraints and
disjunctions in general. The reader is referred to [6] for a detailed and more theoretical
discussion on the topic that is outside the scope of this paper.
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Contribution of the paper In this paper we expose a class of convex Mixed Inte-
ger Quadratic Programming problems arising in Supervised Classification where the
Global Optimization (GO) solver Couenne [13] using reformulation (3) is con-
sistently faster than the state-of-the-art commercial MIP solvers IBM-Cplex [21],
Gurobi [20] and FICO Xpress [17] on the big-M formulation (2). This is quite
counter-intuitive because, in general, convex MIPs admit more efficient solution tech-
niques both in theory and in practice, especially by benefiting from virtually all
machinery of MIP solvers. Inspired by this empirical and surprising observation, we
show that aggressive bound tightening is the crucial ingredient for solving this class of
instances, and we devise a pair of computationally effective algorithmic approaches
that exploit it within MIP.

Specifically,

• On the one side, we were able with a specialized algorithm to optimally solve in
just seconds instances that could not be solved by state-of-the-art MIP solver in
hours;

• On the other side, one of the devised methods is currently part of the arsenal of
IBM-Cplex since version 12.6.1.

More generally, we argue that aggressive bound tightening is often overlooked in
MIP, while it represents a significant building block for enhancing MIP technology
when indicator constraints and disjunctive terms are present.

Organization of the paper The remainder of the paper is organized as follows. In Sect.
2 we discuss the application we use as an example. In Sect. 3 we show the initial set
of computational results, showing that state-of-the-art commercial MIP solvers have
similar performance on the instances in our testbed, and are clearly dominated by
a global optimization solver. In Sect. 4 we discuss why those results are surprising
while in Sect. 5 we carefully analyze the reasons of the success of Couenne versus
IBM-Cplex. In Sect. 6 we present two approaches to enhance IBM-Cplex trying
to mimic Couenne’s behavior, and present some computational experiments both on
our specific testbed and on the general MIPLIB2010 library of instances [23]. Finally,
some conclusions are drawn in Sect. 7.

2 Support vector machines with the ramp loss

In Supervised Classification, see, e.g., [31], we are given a set of objects� partitioned
into classes and the aim is to build a procedure for classifying new objects. In its
simplest form, each object i ∈ � has associated a pair (xi , yi ), where the predictor
vector xi takes values on a set X ⊆ R

d and yi ∈ {−1, 1} is the class membership of
object i , also known as the label of object i .

Support Vector Machines (SVM) methods, see, e.g., [14], have proven to be one of
the state-of-the-artmethods for SupervisedClassification. The SVMaims at separating
the two classes by means of a hyperplane, ω�x + b = 0, found by solving the
optimization problem
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min
ω∈Rd , b∈R

ω�ω

2
+ C

n

n∑

i=1

g((1 − yi (ω
�xi + b))+),

where n is the size of the sample used to build the classifier, (a)+ = max{a, 0}, C
is a nonnegative parameter, and g a nondecreasing function in R+, the so-called loss
function. The reader is referred to [9] for a recent reviewonMathematicalOptimization
and SVMs.

Several recent papers have been devoted to analyzing SVMwith the so-called ramp
loss function, g(t) = (min{t, 2})+, discussed in detail in the next section.

2.1 An MIQP formulation

In this paper, we are interested in the SVM with the ramp loss function, see [12,29].
In this model, objects are penalized in a different way depending on whether or not
they fall inside or outside the margin, i.e., if they fall between ω�x + b = −1 and
ω�x + b = 1. Misclassified objects that fall outside the margin have a fixed loss of
2, while objects that fall inside the margin have a continuous loss between 0 and 2.
The state-of-the-art algorithm is given in [8], where the ramp loss model, denoted as
RLM, is formulated as the MIQP problem

(RLM) min
ω,b,ξ,z

1

2

d∑

j=1

ω2
j + C

n

(
n∑

i=1

ξi + 2
n∑

i=1

zi

)

(4)

s.t.

yi (ω
�xi + b) ≥ 1 − ξi − Mzi ∀i = 1, . . . , n (5)

0 ≤ ξi ≤ 2 ∀i = 1, . . . , n (6)

z ∈ {0, 1}n (7)

ω ∈ R
d (8)

b ∈ R, (9)

whereM > 0 is a big enough constant, ξ = (ξi )denotes the vector of deviation/penalty
variables and C is the tradeoff parameter that calls for tuning. For a given object i ,
the binary variable zi is equal to 1 if object i is misclassified outside the margin and 0
otherwise. The reader is referred to [8] for further details on this formulation, which
is denoted as “SVMIP1(ramp)” in [8].

The appeal of model (4)–(9) relies in the fact that it can (potentially) be solved
by a black-box MIQP solver, e.g., IBM-Cplex. More precisely, objective function
(4) is convex while constraints are linear, thus virtually all the very sophisticated
and effective machinery for MIP problems can be applied—the effectiveness of the
resulting approach deserving evaluation from a computational point of view. However,
the solution method proposed in [8] is able to solve to optimality only a quite limited
number of instances, although some problem-specific cutting planes and reductions
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are used to help theMIP solver, namely,IBM-Cplex. Essentially, this difficulty is due
to the big-M constraints (5) that make the continuous relaxation of model (4)–(9) very
weak. Branching is effective for small problems but the almost-complete enumeration
is ineffective for instances of serious size. Cutting planes are not likely to solve the
problem, unless they would be specifically designed to face the big-M issue, or, more
precisely, the disjunctive nature of constraints (5).

2.2 A nonconvex formulation

Motivated by the difficulty of dealing with constraints (5), we analyzed the alternative
nonlinear, nonconvex, formulation of the RLM

min
ω,b,ξ,z̄

1

2

d∑

j=1

ω2
j + C

n

(
n∑

i=1

ξi + 2
n∑

i=1

(1 − z̄i )

)
(10)

s.t.

(yi (ω
�xi + b) − 1 + ξi ) · z̄i ≥ 0 ∀i = 1, . . . , n (11)

0 ≤ ξi ≤ 2 ∀i = 1, . . . , n (12)

z̄ ∈ {0, 1}n (13)

ω ∈ R
d (14)

b ∈ R. (15)

Precisely as in RLM (4)–(9), binary variables are used to disable constraints (11),
which replace constraints (5), but are the complemented version of z variables (13),
i.e., z̄i = 1 − zi . Namely, z̄i = 1 forces the i-th constraint to be active, thus allowing
a maximum violation of ξi = 2, while z̄i = 0 disables the constraint in a classical
“complementary” way.

Of course, constraints (11) are responsible for the nonconvexity of the MINLP
model (10)–(15). However, its continuous version obtained by simply replacing
constraints (13) with z̄ ∈ [0, 1]n is solved to (local) optimality by the Nonlinear
Programming (NLP) solver IPOPT [22] providing a mixed binary solution that is
very accurate, and relatively quick to compute. Indeed, it is easy to prove that

Proposition 2.1 Any local optimal solution of the continuous version of model (10)–
(15) is mixed binary.

Proof The proposition is proven by contradiction. By definition, a local optimal solu-
tion (ω, b, ξ, z̄) satisfies constraints (11). For any i = 1, . . . , n, either z̄i = 0 (integer),
or z̄i ∈ (0, 1). In the latter case, there exists an equivalent (still feasible) solution
(ω, b, ξ, z̄1, . . . , z̄i−1, z̄i + ε, z̄i+1, . . . , z̄n) having smaller objective function value
for any ε ∈ (0, 1 − z̄i ]. �	

Proposition 2.1 above implies that the global optimal solution is mixed binary
as well, thus solving the continuous version of the problem with a GO solver like
Couenne solves the overall problem to optimality. On the other hand,Couenne is an
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MINLP solver, hence it can handle integrality constraints on (a subset of) the variables.
Thus, in the results presented in the next sectionwe have kept integrality on variables z̄.

3 A raw set of computational results

We have performed an exploratory test for the nonconvex MINLP formulation pro-
posed in Sect. 2. We consider only the artificial datasets proposed by [8], to be able to
control both the dataset and the problem size. In this paper we focus on a challenging
subset of instances, namely 23 instances of size n = 100, d = 2, TypeB proposed in
[8].

Ourfirst set of experiments compares three state-of-the-art commercialMIP solvers,
namely FICO Xpress 7.8, Gurobi 6.0.2 and IBM-Cplex 12.6.1, applied to
model (4)–(9). These experiments were run on an Intel i5-750 CPU running at 2.67
GHz with 4 threads, imposing a time limit of 1 h per instance. As our model contains
big-M coefficients, all solvers were run with zero integer feasibility tolerance. Table
1 reports computing times (time), number of nodes (nodes), percentage gap1 of the
upper (ub) and lower (lb) bounds. All computing times are expressed in CPU seconds;
in case the time limit is hit, the entry in the column “time” indicates a “×”. Gaps
associated with instances solved to optimality are reported as “–”.

The results in Table 1 clearly show that MIP solvers are quite ineffective on this
class of instances: they are typically able to compute the optimal primal solution
(especially Gurobi and IBM-Cplex), though in many cases a considerable dual
gap may remain at the time limit. We have run the solvers with default algorithmic
setting, i.e., a branch-and-cut based on solving a QP relaxation at every node of the
branch-and-bound tree. Since there are other alternatives to solve MIQPs (the main
ones being variants of outer approximation [16,27], or hybrid approaches, see Bonami
et al. [5] for algorithmic approaches to convex MINLPs), it is legitimate to ask if
some alternative choice would lead to better results. To answer that question from
a methodological standpoint (instead of running quite a large number of tests with
different parameter setting for each commercial MIP solver) we ran the open-source
convexMINLP solver Bonmin [4,7] by using the three available algorithmic options,
namely B-BB, B-OA and B-Hyb. The NLP-based branch and bound B-BB gives by
far the best results by consistently computing decent upper bounds but it is unable to
solve to optimality any of the instances. Both the other algorithms, namely B-OA and
B-Hyb, encounter numerical problems and routinely fail. In view of these results it
appears likely that the QP-based branch and bound applied by MIP solvers is indeed
the best approach and is faster thanBonminB-BB because they do exploit the fact that
the objective function is quadratic and the constraints linear, while Bonmin does not.

The second set of raw experiments compares IBM-Cplex2 with Couenne exe-
cuted “out-of-the-box” on model (10)–(15). Quite surprisingly, this latter approach

1 Percentage gaps are computed with respect to the optimal solution value, which is, instead, reported in
Table 2.
2 Because the results of the commercialMIP solvers are reasonably aligned, IBM-Cplex being, according
to Table 1, better thanFICO Xpress andGurobi, we concentrate in the rest of the paper onIBM-Cplex
and we assume the improvements of Sect. 6 apply to FICO Xpress and Gurobi as well.
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Table 1 Computational results for state-of-the-art commercial MIP solvers

FICO Xpress Gurobi IBM-Cplex

Time Nodes % gap Time Nodes % gap Time Nodes % gap

ub lb ub lb ub lb

1 1658.12 5726k – – 601.45 8563k – – 1510.54 15,928k – –

2 × 14,116k 10.81 18.15 × 55,748k – 6.46 × 28,467k – 17.20

3 × 10,050k 9.35 37.89 × 24,464k – 31.70 × 23,375k – 37.63

4 × 13,159k – 4.64 × 450k – 42.66 2294.11 26,952k – –

5 × 11,420k 11.00 25.19 × 37,511k – 17.49 × 23,821k – 21.31

6 × 13,910k 5.88 17.65 × 106k – 70.58 × 29,551k – 16.14

7 × 15,352k – 17.00 × 136k – 58.82 × 30,959k – 13.91

8 2894.31 10,900k – – 261.37 26k – – 3104.27 34,784k – –

9 × 14,541k 5.88 17.58 × 89k – 83.11 × 27,976k – 17.37

10 × 14,592k 5.87 17.31 × 106k – 35.29 × 30,681k – 16.10

11 × 14,082k – 7.36 99.70 81k – – 3526.42 37,986k – –

12 × 14,350k 5.86 17.53 × 210k – 52.82 × 25,958k – 17.51

13 × 14,503k – 16.04 × 943k – 38.44 × 30,902k – 15.85

14 × 14,167k – 8.43 1767.02 15,609k – – 3,103.51 35,402k – –

15 × 14,598k 5.83 17.02 × 833k – 37.72 × 29,375k – 13.93

16 × 14,873k 5.84 16.87 × 1006k – 38.28 × 30,139k – 14.63

17 × 14,707k – 9.02 × 178k – 50.01 3,368.02 37,750k – –

18 × 14,363k 5.80 17.55 × 120k – 70.61 × 27,444k – 17.55

19 × 14,578k 0.03 16.40 × 49,620k – 9.04 × 30,548k – 16.30

20 × 14,684k 1.68 9.14 × 261k – 48.54 3,249.70 36,008k – –

21 × 14,681k 5.67 17.66 × 1356k – 36.33 × 25,638k – 17.73

22 × 14,395k – 16.04 × 34,996k – 11.90 × 30,175k – 16.68

23 × 14,080k – 9.75 1456.30 16,214k – – 3578.31 38,990k – –

Instances of TypeB proposed by [8], n = 100, time limit of 1 h, executed on an Intel i5-750 CPU running
at 2.67 GHz with 4 threads

performs better than running IBM-Cplex on the MIQP formulation. Table 2 gives
this comparison, and provides the same information as in Table 1, plus the optimal
value of each instance (for future reference). All these experiments were executed
on an Intel Xeon E3-1220V2 with a time limit of 1 h per run. As Couenne can be
executed in sequential mode only, IBM-Cplex was also run in single-thread mode
on the same hardware. For IBM-Cplex, we also set to zero the integer feasibility
tolerance parameters, the remaining parameters being left to their default.

The results of Table 2 are quite straightforward to interpret, with a strict dominance
of Couenne with respect to IBM-Cplex: the former solves all instances but one,
while the latter can solve only three of them; for these instances,IBM-Cplex requires
a considerably larger computing time and number of nodes with respect to Couenne.
The above results suggest that a GO solver is intrinsically more suitable for solving
this class of problems. In the unique instance Couenne is unable to solve to optimal-
ity (instance 3) the issue is probably that the upper bound is not improved enough,
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Table 2 Computational results for Couenne and IBM-Cplex

Optimal value Couenne IBM-Cplex

Time Nodes % gap Time Nodes % gap

ub lb ub lb

1 157,994.959 151.87 22,574 – – 2201.36 14,596,206 – –

2 179,368.534 595.06 108,682 – – × 22,055,893 – 18.04

3 220,673.592 × 646,606 4.59 10.60 × 20,502,574 – 37.77

4 5,225.994 142.95 22,934 – – 2106.66 11,874,373 – –

5 5,957.083 1180.24 251,678 – – × 18,024,207 – 22.97

6 11,409,617.494 1571.70 257,749 – – × 19,929,191 – 17.28

7 11,409,058.363 698.72 120,425 – – × 25,499,307 – 13.84

8 10,737,725.660 448.38 70,342 – – × 24,616,925 – 6.92

9 5,705,364.054 1,433.84 238,028 – – × 21,880,932 – 15.83

10 5,704,804.923 578.12 104,368 – – × 25,439,344 – 12.60

11 5,369,016.540 348.82 56,161 – – 3474.71 24,885,164 – –

12 2,853,237.334 1637.12 267,588 – – × 21,428,199 – 17.30

13 2,852,678.203 565.32 101,677 – – × 24,928,209 – 16.92

14 2,684,661.980 340.74 54,212 – – × 21,016,707 – 7.81

15 1,427,173.974 1508.68 247,860 – – × 19,753,234 – 17.15

16 1,426,614.843 525.55 93,268 – – × 22,589,650 – 17.41

17 1,342,484.700 394.45 61,247 – – × 23,383,761 – 3.41

18 714,142.294 1156.81 186,351 – – × 18,182,507 – 15.06

19 713,583.163 513.23 91,329 – – × 23,144,030 – 11.56

20 671,396.060 498.46 77,747 – – × 26,976,870 – 6.60

21 357,626.454 1084.87 180,408 – – × 21,317,307 – 17.85

22 357,067.323 669.17 117,288 – – × 23,654,707 – 11.61

23 335,851.740 448.92 71,110 – – × 23,722,223 – 7.14

Instances of TypeB proposed by [8], n = 100, time limit of 1 h, executed on an Intel Xeon E3-1220V2

thus being unable to propagate (see next section) and strengthen the formulation.
Conversely, IBM-Cplex is always able to find the right upper bound (namely, the
optimal solution value) but the lower bound value remains far from the optimal value,
thus being unable to prove optimality. Comparison between Tables 1 and 2 shows that
a considerable deterioration of IBM-Cplex’s performance is experienced, which is
mainly due to the fact that the latter refers to single-thread runs.

4 Why are these results surprising?

Although, as anticipated in the introduction, convex MIQP solvers should be more
effective than GO ones especially because they can exploit the very sophisticated MIP
machinery, one can still argue that a comparison in performance between two different
solution methods and computer codes is anyway hard to perform. However, digging
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into the way Couenne solves the problem leads to confirm the initial surprise or even
increase it.

4.1 McCormick linearization

The first observation is that the way constraints (11) are managed by Couenne is
through the classical McCormick linearization [25]. Namely, for i = 1, . . . , n, two
new auxiliary variables ϑi and ui are introduced that are associated with expressions
in (11):

1. ϑi = yi (ω�xi + b) − 1 + ξi , with ϑ L
i ≤ ϑi ≤ ϑU

i
2. ui = ϑi z̄i .

Then, the product corresponding to each new variable ui is linearized as

ui ≥ 0 (16)

ui ≥ ϑ L
i z̄i (17)

ui ≥ ϑi + ϑU
i z̄i − ϑU

i (18)

ui ≤ ϑi + ϑ L
i z̄i − ϑ L

i (19)

ui ≤ ϑU
i z̄i , (20)

again for i = 1, . . . , n, where (16) corresponds precisely to (11), and (17)–(20) are
the McCormick envelopes. Essentially, setting z̄i = 0 again deactivates constraint i
by simply enforcing the loose ϑi ∈ [ϑ L

i , ϑU
i ], where ϑ L

i plays the role of the big-M .
In otherwords,Couenne initially builds a linear big-M formulation itself, with the

difference that a specific ϑ L
i value for each i is computed. Although such an internal

computation is not responsible for the higher effectiveness of Couenne (typically
Couenne is more conservative than the static values of M used in the literature and
especially by [8]) this is, in practice, not a negligible issue because a safe value of M
is not trivial to be determined a priori.

In the next section we will extensively discuss how McCormick inequalities are
strengthened, as well as the bounds on ϑ variables. This will be shown to be crucial
for Couenne but, at first, this similarity confirms the surprise.

4.2 Branching

It is well known that a major component of GO solvers is the iterative tightening
of the convex (most of the time linear) relaxation of the nonconvex feasible region
by branching on continuous variables (see, e.g., [3]). Another surprising fact here is
that the default version of Couenne does not take advantage of this possibility and
branches on the binary variables z̄’s. Because everything is linear (after McCormick
linearization) and the objective function convex, as soon as all binaries are fixed the
problem is solved.

Even better performance for Couenne could be obtained by branching on con-
tinuous variables. Namely, instructed to branch preferably on continuous variables,
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Table 3 Computational results for Couenne default and Couenne branching emphasis on continuous
variables

Optimal value Couenne default Couenne continuous

Time (s) Nodes % gap Time (s) Nodes % gap

ub lb ub lb

1 157,994.959 151.87 22,574 – – 257.54 74,424 – –

2 179,368.534 595.06 108,682 – – 479.86 140,405 – –

3 220,673.592 × 646,606 4.59 10.60 774.60 216,118 – –

4 5,225.994 142.95 22,934 – – 408.33 121,896 – –

5 5,957.083 1180.24 251,678 – – 724.94 209,346 – –

6 11,409,617.494 1571.70 257,749 – – 640.58 184,391 – –

7 11,409,058.363 698.72 120,425 – – 912.07 269,332 – –

8 10,737,725.660 448.38 70,342 – – 492.00 143,426 – –

9 5,705,364.054 1433.84 238,028 – – 609.29 177,236 – –

10 5,704,804.923 578.12 104,368 – – 921.80 276,704 – –

11 5,369,016.540 348.82 56,161 – – 505.37 145,282 – –

12 2,853,237.334 1637.12 267,588 – – 624.38 176,251 – –

13 2,852,678.203 565.32 101,677 – – 855.99 255,654 – –

14 2,684,661.980 340.74 54,212 – – 466.56 138,252 – –

15 1,427,173.974 1508.68 247,860 – – 571.29 163,552 – –

16 1,426,614.843 525.55 93,268 – – 811.76 251,205 – –

17 1,342,484.700 394.45 61,247 – – 361.27 108,762 – –

18 714,142.294 1156.81 186,351 – – 513.45 148,947 – –

19 713,583.163 513.23 91,329 – – 722.22 219,986 – –

20 671,396.060 498.46 77,747 – – 382.18 118,811 – –

21 357,626.454 1084.87 180,408 – – 459.15 133,964 – –

22 357,067.323 669.17 117,288 – – 611.38 185,459 – –

23 335,851.740 448.92 71,110 – – 404.87 116,966 – –

Instances of TypeB proposed by [8], n = 100, time limit of 1 h, executed on an Intel Xeon E3-1220V2

Couenne always selects ϑ variables, which clearly leads to additional bound tighten-
ing with respect to branch on binaries. Indeed, if in a given relaxation we have ϑi = c,
the two branches ϑi ≤ c OR ϑi ≥ c propagate as follows: (i) if c < 0 then ϑi ≤ c
implies z̄i = 0 OR (ii) if c > 0 then ϑi ≥ c implies z̄i = 1. The results are reported in
Table 3 and clearly show the computational advantage of this choice. Thus, again, it is
surprising that the default branching strategy of Couenne leads to an improvement
over the sophisticated branching framework of IBM-Cplex.

4.3 L1 norm

A natural question is if the results reported in Table 2 are due to the somehow less
sophisticated evolution of IBM-Cplex in its MIQP extension with respect to the
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MILP one. In order to answer this question we performed an experiment in which
the quadratic part of the objective function was replaced by the L1 norm on ω. More
precisely, the sum of the absolute values of ωi is minimized (and linear constraints to
deal with the absolute value are added). This results in a pure MILP once the big-M
constraints (5) are considered (solved by IBM-Cplex) or a nonconvex MINLP with
linear objective function (solved by Couenne) if constraints (11) are used instead.
This linear objective variant of the RLM does not result in any change for the com-
parison and Couenne continues achieving better results than IBM-Cplex.

5 Bound reduction in nonconvex MINLP problems

Bound reduction is a crucial tool in MINLP: it allows one to eliminate portions of the
feasible set while guaranteeing that at least one optimal solution is retained. Although
its origins can be traced back to Artificial Intelligence (see [15]), it finds wide applica-
tion in Constraint Programming and in solvers for both Nonlinear Optimization [26]
and for MIP problems [1,28].

Consider a generic optimization problem min{ f (x) : x ∈ X, � ≤ x ≤ u}, where
X ⊂ R

n and x, �, u ∈ R
n . Also, suppose an upper bound U ∈ R ∪ {+∞} on the

objective function value of the optimal solution is available: if U < +∞, then a
feasible solution x ∈ X ∩ [�, u] is available such that f (x) = U . Bound reduction
attempts to find tighter lower bounds �′

i > �i and upper bounds u′
i < ui . In general, a

good upper bound is often the key to a strong bound reduction.
An ideal bound reduction procedure obtains bounds by exploiting the full problem

structure:
�′
i = max {xi : x ∈ X, � ≤ x ≤ u, f (x) ≤ U },
u′
i = min {xi : x ∈ X, � ≤ x ≤ u, f (x) ≤ U }. (21)

However, the 2n optimization problems above can be as hard as the original optimiza-
tion problem itself, therefore this approach is impractical.

A fast bound reduction procedure, known as Feasibility Based Bound Tightening
(FBBT), yields new bounds on a variable xi using bounds on other variables that are
linked to xi through a constraint or the objective function. For instance, the constraint
x1x2 ≤ 4 and the bounds x1 ≥ 1, x2 ≥ 1 yield new upper bounds x1 ≤ 4, x2 ≤ 4. An
example that is closer to our application is the constraint x2i ≤ u, where u ≥ 0, which
obviously implies xi ∈ [−√

u,
√
u
]
.

A specialized version of this procedure applies to affine functions, and is commonly
used in MIP solvers, see [1]. Consider the range constraint

�0 ≤ α0 +
n∑

j=1

α j x j ≤ u0.

Define J+ = { j = 1, . . . , n : α j > 0} and J− = { j = 1, . . . , n : α j < 0}.
Bounds �0, u0 on the expression imply new (possibly tighter) bounds �′

j , u
′
j on x j , j =

1, . . . , n : α j �= 0:
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∀ j : α j > 0, �′
j = 1

α j

(
�0 −

(
α0 + ∑

i∈J+\{ j}
αi ui + ∑

i∈J−
αi�i

))
,

u′
j = 1

α j

(
u0 −

(
α0 + ∑

i∈J+\{ j}
αi�i + ∑

i∈J−
αi ui

))
;

∀ j : α j < 0, �′
j = 1

α j

(
u0 −

(
α0 + ∑

i∈J+
αi�i + ∑

i∈J−\{ j}
αi ui

))
,

u′
j = 1

α j

(
�0 −

(
α0 + ∑

i∈J+
αi ui + ∑

i∈J−\{ j}
αi�i

))
.

(22)

5.1 Applying bound reduction to model (10)–(15)

Couenne is a branch-and-bound solver forMINLPproblems that uses, among others,
several bound reduction techniques, including FBBT. At the beginning, Couenne
runs a greedy rounding procedure to obtain a feasible solution of the problem, and
hence an upper boundU . Applying FBBT using two rules mentioned above (for affine
functions and for the square operator) yields tight bounds on ωi at the root node of
Couenne’s branch-and-bound tree. Consider the objective function of our problem

1

2

d∑

j=1

ω2
j + C

n

(
n∑

i=1

ξi + 2
n∑

i=1

(1 − z̄i )

)
,

which is bounded from above by U . Also, note that
∑n

i=1 ξi + 2
∑n

i=1(1 − z̄i ) is
nonnegative. Since

∑d
j=1 ω2

j ≥ 0 and
∑n

i=1 ξi + 2
∑n

i=1(1− z̄i ) ≥ 0, and also ξi and
z̄i are nonnegative, we have

ωi ∈
[
−√

2U ,
√
2U

]
∀i = 1, . . . , d.

A related observation concerns the constraints of our model. The tighter bounds
on the ωi ’s variables, which are initially unbounded in the definition of the problem,
do not seem to have an influence on constraints (11), where the variable b remains
unbounded. This family of nonlinear constraints can be simplified to ϑi z̄i ≥ 0, with
ϑi = (yi (ω�xi + b) − 1 + ξi ) ∈ [−∞,+∞] and z̄i ∈ {0, 1}, for all i = 1, . . . , n.
Due to the infinite bounds, this constraint does not admit a linear relaxation, which
is useful for any MINLP solver to obtain a lower bound. When imposing fictitious
bounds [−M, M] on ϑi , with large enough M , one gets the constraint ϑi ≥ M(z̄i −1),
which is the big-M constraint used in MIP. In these cases, probing techniques can be
of help. A probing bound reduction algorithm works as follows: impose a fictitious
upper bound λi ∈ (�i , ui ) on a variable xi , thereby restricting xi to [�i , λi ]. If the
restricted problem can be proven (through FBBT, for example) to be infeasible or to
have a lower bound that is above a cutoff U , then no feasible solution with better
objective function value can be found in the restriction. Therefore, the new lower
bound xi ≥ λi is valid. This procedure can be applied to tighten the upper bound as
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well, by imposing a fictitious lower bound μi ∈ (�i , ui ). Although applying it to all
variables is time consuming, it is especially useful for unbounded variables. Probing
is a common tightening technique in MIP and MINLP solvers (see [28], and [3] and
[30], respectively.)

We will now describe the specific reductions that Couenne applied to the RLM,
andwewill computationally show that these reductions are crucial to obtain the results
shown in Sect. 4.

5.2 Strengthening McCormick constraints

The coefficients of the McCormick constraints are the lower and upper bounds on the
variables involved. Hence, these constraints can be replaced by stronger ones as soon
as tighter bounds on the variables are available. Couenne does this automatically by
means of a cut separator that is called at every branch-and-bound node, and only adds
tighter McCormick cuts if they are violated by the Linear Programming (LP) solution
available at that node.

Note thatMcCormick cuts are only useful if both variablesϑi and z̄i are not fixed, as,
otherwise, the constraint ui = ϑi z̄i becomes linear. Of course, new McCormick cuts
are making previous ones redundant and Couenne relies on the branch-and-bound
manager (specifically, Cbc [10]) to deal with redundancy in the constraint set.

While looking for reasons of Couenne’s performance, we have run an experiment
where McCormick cuts were only added to the initial LP relaxation but excluded
from separation at all nodes. The performance worsened dramatically on all instances,
which indicates that the bound on the involved variables ui , ϑi , z̄i is tightened and
should be exploited.

5.3 Bound tightening

Couenne uses several techniques for bound tightening among those described above.
In the context of this problem, tightening is based on the following elements:

• the objective function, if a cutoff U is available;
• the definition ui = ϑi z̄i (≥ 0) and related constraint ui ≥ 0;
• the definition ϑi = (yi (ω�xi + b) − 1 + ξi ).

Propagation possibly generates new bounds on ω, b, ξ , which are obtained through
standard presolve procedures [1]. For the sake of completeness, we add them here by
defining the coefficients αik = xik yi , where xik is the k−th feature (k = 1, . . . , d)
of object i (i = 1, . . . , n). Also, we use superscripts “L” (resp. “U”) to denote lower
(resp. upper) bounds. The bounds are then updated by formulas

∀k : αik > 0 ωL
k = 1

αik

⎛

⎝ϑ L
i −

∑

j :αi j<0

αi jω
L
j −

∑

j �=k:αi j>0

αi jω
U
j − (yi b)

U − ξU + 1

⎞

⎠ ,

ωU
k = 1

αik

⎛

⎝ϑU
i −

∑

j :αi j<0

αi jω
U
j −

∑

j �=k:αi j>0

αi jω
L
j − (yi b)

L − ξ L + 1

⎞

⎠ ,
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∀k : αik < 0 ωL
k = 1

αik

⎛

⎝ϑU
i −

∑

j �=k:αi j<0

αi jω
U
j −

∑

j :αi j>0

αi jω
L
j − (yi b)

L − ξ L + 1

⎞

⎠ ,

ωU
k = 1

αik

⎛

⎝ϑ L
i −

∑

j �=k:αi j<0

αi jω
L
j −

∑

j :αi j>0

αi jω
U
j − (yi b)

U − ξU + 1

⎞

⎠ ,

∀i : yi > 0, bL = 1

yi

⎛

⎝ϑ L
i −

∑

j :αi j<0

αi jω
L
j −

∑

j :αi j>0

αi jω
U
j − ξU + 1

⎞

⎠ ,

bU = 1

yi

⎛

⎝ϑU
i −

∑

j :αi j<0

αi jω
U
j −

∑

j :αi j>0

αi jω
L
j − ξ L + 1

⎞

⎠ ,

∀i : yi < 0, bL = 1

yi

⎛

⎝ϑU
i −

∑

j :αi j<0

αi jω
U
j −

∑

j :αi j>0

αi jω
L
j − ξ L + 1

⎞

⎠ ,

bU = 1

yi

⎛

⎝ϑ L
i −

∑

j :αi j<0

αi jω
L
j −

∑

j :αi j>0

αi jω
U
j − ξU + 1

⎞

⎠ ,

ξ L = ϑ L
i −

∑

j :αi j<0

αi jω
L
j −

∑

j :αi j>0

αi jω
U
j − (yi b)

U + 1,

ξU = ϑU
i −

∑

j :αi j<0

αi jω
U
j −

∑

j :αi j>0

αi jω
L
j − (yi b)

L + 1,

where, as an example, the value ωL
k is the maximum lower bound value on ωk over all

i = 1, . . . , n of the first formula above. The same holds for all other bounds.
When solving an instance of our problem, tightening typically happens after obtain-

ing a new integer feasible solution or after branching on a variable.We describe here in
detail the tightening steps. Note that the sequence of tightening steps is often repeated
to ensure “tight enough” bounds on all variables, especially the “critical” ones, i.e.,
those that can be free and unbounded, like ω’s and b in out case. This loop is of fun-
damental importance in GO solvers that, generally, cannot rely on tight continuous
relaxations.

• After branching on a binary variable z̄i , if z̄i is fixed to 0 the lower bound on
the objective function is increased, which may allow for extra tightening on the
variables appearing in the objective or, if the lower bound is above the cutoff, for
pruning the node.

• If z̄i is instead fixed to 1, Couenne uses the new lower bound on ϑi to obtain a
better bound on ω and b.

• When a newupper boundU is found (Couennefinds a good one at the beginning),
this triggers a tightening on ω. No tightening is done on any z̄i variable since all
of them have the same coefficient in the objective.

Note that in both cases (branching on z̄i and new boundU ) the tightening ofω’s and
b above allows one to strengthen the McCormick inequalities, which are necessary
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to build a linear relaxation of the problem. To summarize, both branches and a new
cutoff value allow to tighten the bounds on ϑ , ω, and b, and this, in turn, allows for
strengthening McCormick inequalities at every node.

Needless to say, disabling bound reduction inCouenne leads to a dramaticworsen-
ing of the performance. It appears therefore that both bound reduction andMcCormick
cuts are the responsible for the success of Couenne on this class of instances, and,
conversely, the lack of those ingredients, or at least their “too light” use, seems to be
crucial in the troubles encountered by MIP solvers. In the next section we will show
that enhancing the MIP solvers in this line is possible.

6 Enhancing MIP solvers

Inspired by the outperforming results of Couenne over IBM-Cplex (and virtually
all other MIP solvers), and by the analysis in the previous section, we have tried
to exploit the successful MINLP tools, namely bound tightening, to deal with the
weak MIP relaxations associated with big-M constraints. We will show two ways of
enhancing the behavior of IBM-Cplex

• either by using online (and cheap) tightening of Sect. 5.3 and locally-valid
McCormick constraints,

• or by an a priori (more expensive) strengthening of the formulation, where the
bounds on ω’s and b are computed by solving MIPs as in (21).

The former approach, outlined in Sect. 6.1, leans towards a real integration of aggres-
sive bound tightening in MIP, while the latter can be seen as a sophisticated MIP
algorithm that exploits bound tightening and is described in Sect. 6.2.

6.1 Local cuts

As explained in Section 5.2, one of the main ingredients used by Couenne to solve
the classification instances is the iterative strengthening of constraints (5) in the tree.
This process can be mimicked in a MIP solver by using locally valid versions of the
big-M constraints (5).

Basically, any time one tightens the upper and lower bounds on ω and b through
propagation, one can recompute a potentially smaller value of M by recomputing the
minimal value the left-hand-side of constraint (5) can take under these new bounds.
If this value is indeed smaller, one can add a tighter version of (5). Note that this new
constraint strictly dominates the previous one. As explained in Sect. 5, the combination
of branching and propagation gives tighter bounds for ω and b at the nodes of the
branch-and-bound tree. However, since these bounds on ω and b are computed for a
node of the tree, the resulting strengthened version of (5) is only valid for the sub-tree
rooted in that node.

InIBM-Cplex, since version 12.6.1, locally valid versions of constraints (5) can be
automatically added as local cutswithin the branch-and-bound tree. These inequalities
as referred to as local implied bound cuts.
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The way in which IBM-Cplex generates these cuts is through the use of so-
called implications. An implication is the logical description of an indicator constraint:
t = 0 (or 1) ⇒ α�x ≤ x0. Implications can be either automatically found by presolve
procedures that analyze the structure of the model or, alternatively, they can be directly
given as an input to the solver (see, [17,21]). Implications naturally imply linear cuts
by using their big-M form (2).

To assess the efficiency of local implied bound cuts on the supervised classification
instances, we replaced the constraints (5) with the indicator constraints

z = 0 ⇒ yi (ω
�xi + b) ≥ 1 − ξi ∀i = 1, . . . , n.

We then solved the 23 instances of Table 1, using the same parameters forIBM-Cplex
and imposing a very aggressive setting for separating local implied bound cuts. In this
very aggressive settings, IBM-Cplex tries to recompute a smaller big-M for each
indicator constraint at every node of the branch-and-bound tree. Every time a smaller
big-M is found, the previous big-M constraint is removed and replaced by the tighter
one.

Computing times in CPU seconds and number of nodes are reported in Table 4.
IBM-Cplex is executed (using 4 threads), in the default settings and with local
implied bound cuts set to very aggressive. While default IBM-Cplex is able to solve
to optimality only 8 instances within the time limit, the enhanced version solves to
optimality 17 out of 23 instances.

To test the effectiveness of the local implied bound cuts in IBM-Cplex 12.6.1 on a
larger set of instances we considered the general MIPLIB2010 library and solved each
instance without and with local implied bound cuts (default and aggressive settings,
respectively). It is worth observing that these instances do not explicitly have indicator
constraints, so local implied bound cuts are generated on the implications discovered
by IBM-Cplex during the preprocessing phase. In addition, many of the instances
might not even have either big-Ms or implications and, even when these implications
exist, and are discovered by IBM-Cplex, they might be less crucial than in our
SVM instances where all constraints are of that kind. Nevertheless, the aim of this
experiment is to assert if local implied bound cuts could be beneficial in general as a
first step to (i) devise effective heuristics to estimate the interest of generating these
cuts and (ii) improve on the heuristics devoted to find effective implications.

The results of the experiment are reported in Table 5, whose first line concerns
the entire testbed of 358 instances. The experiments were run on an Intel Xeon E3-
1220V2 at 3.10 GHz using 4 threads with a time limit equal to 1 h and a memory limit
of 8GB; all other parameters were left to their default values. For each setting of the
solver, we give the number of instances solved to proven optimality and the average
computing time and number of nodes, both in arithmetic and geometric means. The
second line refers to the 200 instances that are solved to proven optimality in both
settings. Geometric means are shifted by 1 second and 10 nodes for computing times
and number of nodes, respectively.

To possibly reduce the erratic behaviour of MIP solvers (see, e.g., [18,24]) we
selected the 18 instances forwhich adding local implied bound cuts produced a speedup
larger than 1.5 (including 3 problems that were solved using local cuts and that were
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Table 4 Computational results for IBM-Cplex default and IBM-Cplex with local implied bound cuts

Optimal value Default Local implied bound cuts

Time (s) Nodes % gap Time (s) Nodes % gap

ub lb ub lb

1 157,994.959 1510.54 15,928,227 – – 264.41 1,249,006 – –

2 179,368.534 × 28,467,361 – 17.20 × 15,213,623 – 9.43

3 220,673.592 × 23,375,230 – 37.63 × 9,862,566 – 26.05

4 5,225.994 2294.11 26,952,817 – – 263.90 1,474,124 – –

5 5,957.083 × 23,821,213 – 21.31 × 16,422,588 – 7.48

6 11,409,617.494 × 29,551,078 – 16.14 1694.17 9,146,159 – –

7 11,409,058.363 × 30,959,870 – 13.91 577.51 3,408,553 – –

8 10,737,725.660 3104.27 34,784,855 – – 776.55 6,193,222 – –

9 5,705,364.054 × 27,976,050 – 17.37 1682.58 11,230,059 – –

10 5,704,804.923 × 30,681,973 – 16.10 574.09 4,128,400 – –

11 5,369,016.540 3526.42 37,986,138 – – 1026.54 8,189,774 – –

12 2,853,237.334 × 25,958,736 – 17.51 2,149.25 13,497,192 – –

13 2,852,678.203 × 30,902,369 – 15.85 485.87 3,069,338 – –

14 2,684,661.980 3103.51 35,402,901 – – 836.03 6,461,712 – –

15 1,427,173.974 × 29,375,413 – 13.93 × 14,170,081 – 9.52

16 1,426,614.843 × 30,139,333 – 14.63 446.72 2,544,316 – –

17 1,342,484.700 3368.02 37,750,319 – – 715.83 5,632,229 – –

18 714,142.294 × 27,444,832 – 17.55 × 13,783,012 – 12.08

19 713,583.163 × 30,548,097 – 16.30 721.45 5,138,203 – –

20 671,396.060 3249.70 36,008,315 – – 746.76 5,207,078 – –

21 357,626.454 × 25,638,748 – 17.73 × 14,254,749 – 11.55

22 357,067.323 × 30,175,822 – 16.68 341.16 1,551,983 – –

23 335,851.740 3578.31 38,990,037 – – 1742.39 11,689,501 – –

Instances of Type B proposed by [8], n = 100, executed on an Intel i5-750 CPU running at 2.67 GHz with
4 threads

Table 5 Computational results for IBM-Cplex default and IBM-Cplex with local implied bound cuts

#inst. Default Local implied bound cuts

#opt. arit. mean geom. mean #opt. arit. mean geom. mean

Time Nodes Time Nodes Time Nodes Time Nodes

ALL 358 202 1,764 1,334,421 333 12,330 203 1,760 1,032,553 339 11,894

OPT 200 200 323 855,490 50 4,733 200 345 816,893 53 4,726

Instances of MIPLIB2010, executed using 4 threads on an Intel Xeon E3-1220V2 at 3.10 GHz

not solved otherwise) and solved each of them using 10 different random seeds. Table
6 gives the number of optimal solutions and average number of nodes and computing
time for each setting of IBM-Cplex and each random seed, whereas Table 7 gives
similar information for each setting of IBM-Cplex and each instance.
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Table 6 Computational results for IBM-Cplex default and IBM-Cplex with local implied bound cuts

Seed Default Local implied bound cuts

#opt. Time Nodes #opt. Time Nodes

0 15 1282 1,364,859 18 477 438,924

1 16 1118 1,252,240 16 1025 1,075,938

2 16 942 1,351,707 17 824 454,438

3 16 863 725,954 17 1013 705,262

4 17 810 1,495,415 15 1124 778,474

5 16 1241 1,478,112 15 1134 1,276,767

6 16 967 1,041,608 18 686 510,572

7 16 758 707,348 16 1001 741,095

8 17 924 1,462,432 17 925 579,676

9 17 1004 1,082,111 18 578 365,557

162 991 1196,178 167 879 692,670

Selected instances from MIPLIB2010, executed using 4 threads on an Intel Xeon E3-1220V2 at 3.10 GHz

Table 7 Computational results for IBM-Cplex default and IBM-Cplex with local implied bound cuts

Instance Default Local implied bound cuts

#opt. Time Nodes #opt. Time Nodes

atlanta-ip 10 2600 25,299 10 2335 22,868

blp-ic97 10 398 209,959 10 403 205,085

glass4 10 506 1,757,770 10 195 631,617

gmu-35-40 10 37 400,522 10 44 440,854

gmut-77-40 10 515 524,877 10 428 399,682

lectsched-4-obj 10 5 2558 10 4 2795

neos-1440460 10 8 16,712 10 10 17,974

neos-1442119 10 349 562,066 9 667 966,298

neos-1605061 10 1,467 23,486 9 1,390 24,218

neos16 2 3,276 13,634,651 7 1989 7,524,606

ns1702808 10 3 9067 10 1 5962

ns1952667 10 161 10,053 10 109 7003

ns2081729 10 422 2,142,646 10 203 883,369

ns894244 9 2659 41,791 10 3078 53,032

ofi 10 468 9330 10 406 7063

p2m2p1m1p0n100 10 0 19,094 10 1 26,186

reblock166 3 2961 1,719,778 4 2538 867,706

wachplan 8 2,002 421,553 8 2018 381,747

162 991 1,196,178 167 879 692,670

Selected instances from MIPLIB2010, executed using 4 threads on an Intel Xeon E3-1220V2 at 3.10 GHz
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The results are encouraging: very aggressive local implied bound cuts do not dete-
riorate the results of IBM-Cplex default (which was not obvious for what discussed
above concerning MIPLIB2010 instances) and there is an improvement on certain
instances that does not look caused by random noise. Indeed, by concentrating on the
18 instances (roughly 5% of the total) that have shown a notable improvement and
by repeating the experiments with 10 different random seeds the results are consis-
tent, which means that IBM-Cplex is able to guess implications and on some cases
strengthening the variable bounds at the nodes with locally valid cuts is extremely ben-
eficial. This shows that our encouraging results are not restricted to SVM instances.

6.2 Iterative domain reduction

Iterative domain reduction can be seen as a preprocessing tool to enhance the behavior
of a MIP solver. An initial bound tightening is performed by solving a sequence of
MIPs to strengthen the lower and upper bounds on the ω variables and on b.

Let us denote by P the set of feasible solutions of the RLM, by Z(ω, ξ, z) the
objective value (4) of solution (ω, ξ, z), and byU the value of an upper bound on (4).
To simplify notation, let ω0 denote the b variable. Lower (li ) and upper (ui ) bounds
on each ωi are iteratively tightened by solving the following MIPs:

li = min{ωi : (w, ξ, z) ∈ P, Z(w, ξ, z) ≤ U }, ∀i = 0, . . . , d, (23)

ui = max{ωi : (w, ξ, z) ∈ P, Z(w, ξ, z) ≤ U }, ∀i = 0, . . . , d. (24)

where, at each step, solutions in P must satisfy all the ω-bounds computed in the
previous iterations. In order to limit computing time, MIPs (23) and (24) are solved
within a node limit. This iterative process is applied in a cyclic way until no bound
improvement is obtained.

We have tested this approach on the 23 instances fromTable 1. First, an initial upper
bound U is computed by solving the RLM with a node limit of 100k (plus 25 polish
nodes). Then, for each lower and upper bound tightening, the MIPs problems are
solved within a node limit of 10k. When no bound improvement is obtained, the final
RLM is solved with all new bounds on ω variables, unless each variable has lower and
upper bounds equal each other. The results are reported in Table 8, where computing
times and nodes refer to the overall scheme, i.e., they include the computation of
the initial solution, the iterative bound tightening and possibly the final run. To our
pleasant surprise, all instances were solved to optimality in less than 90 s, and required
less that 1 min and 150k nodes on average.

7 Conclusions

We have shown that the nonconvex reformulation of so-called big-M constraints and
the consequent use of a general-purpose MINLP solver instead of a MIP solver can
lead, surprisingly, to faster computing times for a special class of classification prob-
lems. Through a careful analysis of Couenne’s features and components we have
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Table 8 Computational results for IBM-Cplex default and IBM-Cplex enhanced with iterative domain
reduction (i.d.r.)

Optimal value IBM-Cplex default IBM-Cplex i.d.r.

Time (s) Nodes % gap Time (s) Nodes % gap

ub lb ub lb

1 157,994.959 1510.54 15,928,227 – – 42.50 145,231 – –

2 179,368.534 × 28,467,361 – 17.20 56.62 148,105 – –

3 220,673.592 × 23,375,230 – 37.63 49.06 149,472 – –

4 5,225.994 2294.11 26,952,817 – – 52.19 145,716 – –

5 5,957.083 × 23,821,213 – 21.31 40.66 148,682 – –

6 11,409,617.494 × 29,551,078 – 16.14 53.55 157,290 – –

7 11,409,058.363 × 30,959,870 – 13.91 43.21 146,247 – –

8 10,737,725.660 3104.27 34,784,855 – – 78.81 146,013 – –

9 5,705,364.054 × 27,976,050 – 17.37 49.49 147,621 – –

10 5,704,804.923 × 30,681,973 – 16.10 51.25 145,978 – –

11 5,369,016.540 3526.42 37,986,138 – – 57.40 147,397 – –

12 2,853,237.334 × 25,958,736 – 17.51 59.77 147,909 – –

13 2,852,678.203 × 30,902,369 – 15.85 76.12 145,499 – –

14 2,684,661.980 3103.51 35,402,901 – – 48.12 146,772 – –

15 1,427,173.974 × 29,375,413 – 13.93 50.83 148,504 – –

16 1,426,614.843 × 30,139,333 – 14.63 41.02 145,243 – –

17 1,342,484.700 3368.02 37,750,319 – – 57.32 156,405 – –

18 714,142.294 × 27,444,832 – 17.55 50.06 148,358 – –

19 713,583.163 × 30,548,097 – 16.30 79.69 145,439 – –

20 671,396.060 3249.70 36,008,315 – – 61.33 146,101 – –

21 357,626.454 × 25,638,748 – 17.73 50.28 161,660 – –

22 357,067.323 × 30,175,822 – 16.68 45.28 145,992 – –

23 335,851.740 3578.31 38,990,037 – – 48.05 145,657 – –

Instances of TypeB proposed by [8], n = 100, executed on an Intel i5-750 CPU running at 2.67 GHz with
4 threads

been able to isolate those that make a difference, namely aggressive bound tighten-
ing and iterative strengthening of the McCormick linearization. We have proposed
two ways of integrating these ingredients within MIP approaches, both leading to
finally being able to computationally solve these classification problems. One of these
methods is currently part of the arsenal of IBM-Cplex 12.6.1.

More generally, we argue that aggressive bound tightening is often overlooked in
MIP, while it represents a significant building block for enhancing MIP technology
when indicator constraints and disjunctive terms are present. Finally, it is also con-
ceivable that other ingredients that are fundamental in MINLP could prove beneficial
for MIP.
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