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1 Introduction

Decaying infrastructure in municipalities is becoming a problem of increasing
importance as growing populations put increasing stress on all service sys-
tems. In tough economic times, renewing and maintaining infrastructure has
become increasingly difficult. As an example, many municipal water networks
were installed several decades ago and were designed to handle much smaller
demand and additionally have decayed due to age.

For example, consider the case of Modena, a city northwest of Bologna in
the Emilia-Romagna region of Italy. We can see in Figure 1 how the popu-
lation has increased by more than a factor of 2.5 over the last century. The
Modena water distribution network comprises 4 reservoirs, 272 junctions, and
317 pipes. Its complexity can be gleaned from Figure 2.

The aim is to replace all the pipes using the same network topology at
minimum cost to achieve pressure demands at junctions of the network. Pipes
are only available from commercial suppliers that produce pipes in a limited
number of diameters. Reservoirs pressurize the network while most pressure
is lost due to friction in pipes (some pressure is also lost at the junctions). Our
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Fig. 1 Population of Modena

Fig. 2 Water distribution network of Modena

goal is to model the problem using continuous variables as flow rates in the
pipes, and pressures at the junctions; and discrete variables for the diameters
of the pipes. Noting that pressure loss due to friction behaves nonlinearly, this
puts us in the domain of Mixed Integer Nonlinear Programming (MINLP).
Thus, we will try to obtain a model which is tractable by standard MINLP
solvers.
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In fluid dynamics, hydraulic head equates the energy in an incompress-
ible fluid with the height of an equivalent static column of that fluid. The
hydraulic head of a fluid is composed of pressure head and elevation head.
The pressure head is the internal energy of a fluid due to the pressure ex-
erted on its container and the elevation head is the energy given by the
gravitational force acting on a column of fluid, in this case water. As a con-
vention, the unit of hydraulic, pressure, elevation head are meters, i.e., each
unit represents the energy provided by a column of water of the height of
one meter. The water in its way from the reservoir to the rest of the junc-
tions loose energy. This loss is called head loss. Head loss is divided into
two main categories, “major losses” associated with energy loss per length
of pipe, and “minor losses” associated with bends and relatively small ob-
structions. For our purposes, considering that we are interested in networks
covering relatively large geographic areas, it suffices to ignore minor losses.

2 Nomenclature

In this section we introduce the sets and parameters, i.e., the data input of
our problem.

2.1 Sets

The water network will be represented as a directed graph G = (N,E) where
N is the set of node that represent the junctions and E is the set of pipes.
Moreover we define the set of reservoirs S as a subset of N . Finally, for ease
of notation, we define δ− (i) (δ+ (i)) as the sets of pipes with an head (tail)
at junction i.

2.2 Parameters

In the following, we introduce the notation for the parameters.
For each junction but the reservoirs i ∈ N \ S we have:

elev(i) = physical elevation of juction i, i.e., the heigh of junction i ([m]).
dem(i) = water demand at junction i ([m3/s]).
phmin(i) = minimum pressure head at junction i ([m]).
phmax(i) = maximum pressure head at junction i ([m]).
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Moreover, for each reservoir i ∈ S, we have hs(i), i.e., the fixed hydraulic
head at junction i.
Finally, for each pipe e = (i, j) ∈ E the following parameters are needed:

l(e) = length of pipe e ([m]).
vmax(e) = maximum velocity of water in pipe e ([m/s]).
k(e) = physical constant depending on the roughness of pipe e.
D(e, r) = r-th diameter that can be choosen for pipe e ([m]).
C(e, r) = cost of the r-th diameter that can be choosen for pipe e ([e/m]).

Note that all the parameters described above are data input and are used to
define constraints and objective function of the model.

We proceed further, in describing the problem.

2.3 Decision Variables of the Problem

First, we specify the variables which are also the expected output of our
problem:

Q(e) = flow in pipe e, for all e ∈ E [m3/s].
D(e) = diameter of pipe e, for all e ∈ E [m].
H(i) = hydraulic head of junction i, for all i ∈ N [m].

For modeling purposes, suppose that each pipe e has a nominal orientation,
and negative flow corresponds to water flow in the direction opposite to the
nominal orientation of the pipe.

The goals of the problem are to chose, for each edge, the diameter of the
pipe that has to be installed in order to implement the drinkable water distri-
bution network by minimizing the installation costs and satisfying physical
and operational constraints.

2.4 Constraints in the Problem

Each reservoir have a fixed hydraulic head that is specified hs(i).
Typically, there are inequalities imposed that bound the velocity of the
water in each pipe. Because the water flow is given by the product be-
tween the cross-sectional area of the pipe π(D(e)/2)2 and the velocity, for
semplicity the velocity bounds can be written as bounds on the flow.
Flow-conservation equations for junctions that are not reservoirs.
Upper and lower limits on the pressure head at each junction that are not
reservoirs.
Head loss along each pipe is modeled via a nonlinear function of the diam-
eter of the pipe and the flow in the pipe. Typically, one uses the so-called
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Hazen-Williams equation, which is an empirical formula relating the head
loss caused by frictions to the physical properties of the pipe.
For each pipe e, the available diameters belong to a discrete set of re
elements.

2.5 Objective function

Our objective to be minimized is represented by the installation cost, i.e,
euros spent to install pipes of the selected diameters.

3 Example

In this section, we describe a real-world instance as an example. The data are
taken from a neighborhood of Bologna called Fossolo. We have 37 junctions
(of which 1 reservoir, identified by the index 37), and 58 pipes. The topology
of the network is represented in Figure 3 and provided in details in Table 3,
see Appendix.

Fig. 3 Fossolo network
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The hydraulic head at the reservoir is always fixed. In our example it is
fixed to 121.0 meters. The maximum speed of the water within the pipes is set
to 1 m3/s and the roughness coefficient is set to 100. The lower bound on the
pressure head phmin(i) is equal to 40 meters and the upper bound phmax(i)
is equal to 121− eval(i) meters for all i ∈ N . The values of the elevation and
the demand for each junction besides the reservoir are reported in Table 1.
The network topology and the length of the pipes are reported in Table 3.

Concerning the available diameters for each pipe, we have 13 different
possibilities. Table 2 reports for each e ∈ E the value of (D(e, r),C(e, r)) for
all r = 1, . . . , re.

4 Solution Found by the MINLP model

The solution found by Bonmin is depicted in Figure 4 where the size of each
diameter is proportional to the thickness of the arc. The diameters are ex-
pressed in meters, and the diameter is equal to 0.06 for the pipes without
explicit number, i.e., the minimum diameter permissible for this data set.

The analysis of this solution shows a configuration in which the size of
the selected diameters decreases from the reservoir toward the parts of the
network farther away from the inlet point. This characteristic of the allocation
of diameters to pipes plays in favor of a correct hydraulic operation of the
network and has a beneficial effect on water quality, see, e.g., the discussion
in [2].

This characteristic could be noticed in the solution of MINLP for different
instances, see Bragalli et al. [1] for details.

Note that the proposed solution is not guaranteed to be a global optimum
of the problem. However, because of the intrinsic difficulty of the problem
at hand, the proposed solution is, from a practical viewpoint, a very good
quality feasible solution. Other approaches based on heuristic algorithms,
mixed integer linear programming, or nonlinear programming models are not
effective for medium/large instances. In this application, modeling in the
most natural way the problem seems to be the most successful approach.

5 Conclusions

More details concerning our methodology and results can be found in [1].
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Fig. 4 Solution for Fossolo network: the size of each diameter is proportional to the
thickness of the arc. The diameter (expressend in meters) is equal to 0.06 m for the pipes
without explicit number.
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Appendix

i elev(i) dem(i)

1 65.15 0.00049
2 64.40 0.00104
3 63.35 0.00102
4 62.50 0.00081
5 61.24 0.00063
6 65.40 0.00079
7 67.90 0.00026
8 66.50 0.00058
9 66.00 0.00054
10 64.17 0.00111
11 63.70 0.00175
12 62.64 0.00091
13 61.90 0.00116
14 62.60 0.00054
15 63.50 0.00110
16 64.30 0.00121
17 65.50 0.00127
18 64.10 0.00202

i elev(i) dem(i)

19 62.90 0.00188
20 62.83 0.00093
21 62.80 0.00096
22 63.90 0.00097
23 64.20 0.00086
24 67.50 0.00067
25 64.40 0.00077
26 63.40 0.00169
27 63.90 0.00142
28 65.65 0.00030
29 64.50 0.00062
30 64.10 0.00054
31 64.40 0.00090
32 64.20 0.00103
33 64.60 0.00077
34 64.70 0.00074
35 65.43 0.00116
36 65.90 0.00047

Table 1 Elevation (meters) and water demand (m3/second) for instance Fossolo

r D(e, r) C(e, r)

1 0.060 19.8
2 0.080 24.5
3 0.100 27.2
4 0.125 37.0
5 0.150 39.4
6 0.200 54.4
7 0.250 72.9
8 0.300 90.7
9 0.350 119.5

10 0.400 139.1
11 0.450 164.4
12 0.500 186.0
13 0.600 241.3

Table 2 Diameter set (meters) and relative cost per meter (e/m) for instance Fossolo for
each pipe
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e = (i, j) i j l(e)

1 1 17 132.76
2 17 2 374.68
3 2 3 119.74
4 3 4 312.72
5 4 5 289.09
6 5 6 336.33
7 6 7 135.81
8 7 24 201.26
9 24 8 132.53
10 8 28 144.66
11 28 9 175.72
12 9 36 112.17
13 36 1 210.74
14 1 31 75.41
15 31 10 181.42
16 10 11 146.96
17 11 19 162.69
18 19 12 99.64
19 12 4 52.98
20 2 18 162.97
21 18 10 83.96
22 10 32 49.82
23 32 27 78.5
24 27 16 99.27
25 16 25 82.29
26 25 8 147.49
27 3 11 197.32
28 11 26 83.3
29 26 15 113.8

e = (i, j) i j l(e)

30 15 22 80.82
31 22 7 340.97
32 5 13 77.39
33 13 14 112.37
34 14 20 37.34
35 20 15 108.85
36 15 16 182.82
37 16 29 136.02
38 29 30 56.7
39 30 9 124.08
40 17 18 234.6
41 12 13 203.83
42 19 20 248.05
43 14 21 65.19
44 21 6 210.09
45 21 22 147.57
46 22 23 103.8
47 24 23 210.95
48 23 25 75.08
49 26 27 180.29
50 28 29 149.05
51 29 33 215.05
52 32 33 144.44
53 33 34 34.74
54 31 34 59.93
55 34 35 165.67
56 30 35 119.97
57 35 36 83.17
58 37 1 1.0

Table 3 Network topology and length of the pipes (meters) for instance Fossolo


