# Programmation Mathématique Avancée: Mixed Integer Non Linear Programming

#### Claudia D'Ambrosio

LIX, CNRS & École Polytechnique

#### MPRO – PMA

http://www.lix.polytechnique.fr/~dambrosio/teaching/MPRO/PMA-2024/pma-2024.php

# Exam starting at 09:30

**H N** 

< 17 ▶

#### Outline

#### Recap

- What is a MINLP?
- Exact reformulations
- Relaxations

#### 2 Motivating Applications

#### 3 Global Optimization methods

Multistart

#### Spatial Branch-and-Bound

- Standard form
- Convexification
- Expression trees
- Variable ranges
- Bounds tightening
- Reformulation Linearization Technique (RLT)

#### (MINLP)

and

$$\begin{array}{rcl} \min f(x,y) & g_i(x,y) & \leq & 0 \quad \forall i=1,\ldots,m \\ & x & \in & X \\ & y & \in & Y \end{array}$$
  
where  $f(x,y): \mathbb{R}^n \to \mathbb{R}, \, g_i(x): \mathbb{R}^n \to \mathbb{R} \; \forall i,\ldots,m, \, X \subseteq \mathbb{R}^{n_1}, \, Y \subseteq \mathbb{N}^{n_2},$   
and  $n = n_1 + n_2.$ 

Hp. f and g are twice continuously differentiable functions.

- < ⊒ →

#### (MINLP')

$$\min h(w,z) \tag{1}$$

$$p_i(w,z) \leq 0 \quad \forall i=1,\ldots,r$$
 (2)

$$w \in W$$
 (3)

$$z \in Z$$
 (4)

where  $h(w, z) : \mathbb{R}^q \to \mathbb{R}$ ,  $p_i(w, z) : \mathbb{R}^q \to \mathbb{R} \ \forall i = 1, ..., r$ ,  $W \subseteq \mathbb{R}^{q_1}$ ,  $Z \subseteq \mathbb{N}^{q_2}$  and  $q = q_1 + q_2$ .

## Recap: Exact reformulations

(MINLP')

$$\min h(w, z) \tag{1}$$

$$p_i(w,z) \leq 0 \quad \forall i=1,\ldots,r$$
 (2)

$$w \in W$$
 (3)

$$z \in Z$$
 (4)

where  $h(w, z) : \mathbb{R}^q \to \mathbb{R}$ ,  $p_i(w, z) : \mathbb{R}^q \to \mathbb{R} \ \forall i = 1, ..., r$ ,  $W \subseteq \mathbb{R}^{q_1}$ ,  $Z \subseteq \mathbb{N}^{q_2}$  and  $q = q_1 + q_2$ .

The formulation (MINLP') is an exact reformulation of (MINLP) if

- $\forall$ (*w*', *z*') satisfying (2)-(4),  $\exists$ (*x*', *y*') feasible solution of (MINLP) s.t.  $\phi$ (*w*', *z*') = (*x*', *y*')
- $\phi$  is efficiently computable
- ∀(w', z') global solution of (MINLP'), then φ(w', z') is a global solution of (MINLP)
- ∀(x', y') global solution of (MINLP), there is a (w', z') global solution of (MINLP')

#### **Recap: Exact reformulations**

(MINLP')

$$\min h(w, z) \tag{1}$$

$$p_i(w,z) \leq 0 \quad \forall i=1,\ldots,r$$
 (2)

$$w \in W$$
 (3)

$$z \in Z$$
 (4)

where  $h(w, z) : \mathbb{R}^q \to \mathbb{R}$ ,  $p_i(w, z) : \mathbb{R}^q \to \mathbb{R} \ \forall i = 1, ..., r$ ,  $W \subseteq \mathbb{R}^{q_1}$ ,  $Z \subseteq \mathbb{N}^{q_2}$  and  $q = q_1 + q_2$ .



### **Recap: Relaxations**

n

(rMINLP)

$$\frac{\min \underline{f(w,z)}}{\underline{g_i(w,z)}} \leq 0 \quad \forall i = 1, \dots, r$$

$$\frac{w \in W}{z \in Z}$$

where  $X \subseteq W \subseteq \mathbb{R}^{q_1}$ ,  $Y \subseteq Z \subseteq \mathbb{Z}^{q_2}$ ,  $q_1 \ge n_1$ ,  $q_2 \ge n_2$ ,  $\underline{f(w, z)} \le f(x, y)$  $\forall (x, y) \subseteq (w, z)$ , and  $\{(x, y)|g(x, y) \le 0\} \subseteq \operatorname{Proj}_{(x, y)}\{(w, z)|\underline{g(w, z)} \le 0\}$ . Examples:

- continuous relaxation: when  $(w, z) \in \mathbb{R}^n$ , W = X,  $\frac{f(x, y)}{1} = f(x, y), \quad \underline{g(x, y)} = g(x, y)$
- linear relaxation: when q = n, W = X, Z = Y, f(w, z) and g(w, z) are linear
- convex relaxation: when q = n, W = X, Z = Y, f(w, z) and g(w, z) are convex

э.

### Outline

#### Reca

- What is a MINLP?
- Exact reformulations
- Relaxations

#### Motivating Applications

- 3 Global Optimization methods
  - Multistart
  - Spatial Branch-and-Bound
    - Standard form
    - Convexification
    - Expression trees
    - Variable ranges
    - Bounds tightening
    - Reformulation Linearization Technique (RLT)

# **Pooling Problem**

æ

#### • refinery processes in the petroleum industry

- refinery processes in the petroleum industry
- different specifications: e.g., sulphur/carbon concentrations or physical properties such as density, octane number, ...

- refinery processes in the petroleum industry
- different specifications: e.g., sulphur/carbon concentrations or physical properties such as density, octane number, ...
- wastewater treatment, e.g., Karuppiah and Grossmann (2006)

- refinery processes in the petroleum industry
- different specifications: e.g., sulphur/carbon concentrations or physical properties such as density, octane number, ...
- wastewater treatment, e.g., Karuppiah and Grossmann (2006)
- Formally introduced by Haverly (1978)

- refinery processes in the petroleum industry
- different specifications: e.g., sulphur/carbon concentrations or physical properties such as density, octane number, ...
- wastewater treatment, e.g., Karuppiah and Grossmann (2006)
- Formally introduced by Haverly (1978)
- Alfaki and Haugland (2012) formally proved it is strongly NP-hard

# Pooling problem: Citations

- Haverly, *Studies of the behaviour of recursion for the pooling problem*, ACM SIGMAP Bulletin, 1978
- Adhya, Tawarmalani, Sahinidis, *A Lagrangian approach to the pooling problem*, Ind. Eng. Chem., 1999
- Audet et al., *Pooling Problem: Alternate Formulations and Solution Methods*, Manag. Sci., 2004
- Liberti, Pantelides, An exact reformulation algorithm for large nonconvex NLPs involving bilinear terms, JOGO, 2006
- Misener, Floudas, Advances for the pooling problem: modeling, global optimization, and computational studies, Appl. Comput. Math., 2009
- D'Ambrosio, Linderoth, Luedtke, Valid inequalities for the pooling problem with binary variables, IPCO, 2011
- Tawarmalani and Sahinidis. Convexification and global optimization in continuous and mixed-integer nonlinear programming: theory, algorithms, software, and applications, Ch.
   Kluwer Academic Publishers, 2002.



Figure: The Haverly Instance. Source: Alfaki.

イロト イヨト イヨト イヨト



Figure: The Haverly Instance. Source: Alfaki.

demand = (100,200); unit profit = (9, 15)



Figure: The Haverly Instance. Source: Alfaki.

demand = (100,200); unit profit = (9, 15) cost = (6, 16, 10)



Figure: The Haverly Instance. Source: Alfaki.

demand = (100,200); unit profit = (9, 15) cost = (6, 16, 10) sulphur concentration = (3, 1, 2)

11/60

< 🗇 🕨 < 🖃 >



Figure: The Haverly Instance. Source: Alfaki.

 demand = (100,200); unit profit = (9, 15)

 cost = (6, 16, 10)

 sulphur concentration = (3, 1, 2)

 sulphur c. max = (2.5, 1.5)

 Claudia D'Ambrosio (CNRS&LIX)



æ



Figure: A generic Instance. Source: Alfaki.

MPRO – PMA

<ロ> <問> <問> < 回> < 回> 、

æ



Figure: The Haverly Instance. Source: Alfaki.

14/60



Figure: The Haverly Instance. Source: Alfaki.

 $\max 9x_{l,j_1} + 9x_{i_3,j_1} + 15x_{l,j_2} + 15x_{i_3,j_2} - 6x_{i_1,l} - 16x_{i_2,l} - 10x_{i_3,j_1} - 10x_{i_3,j_2}$ 

Ξ.

14/60

< 日 > < 同 > < 回 > < 回 > < □ > <



Figure: The Haverly Instance. Source: Alfaki.

 $\max 9x_{l,j_1} + 9x_{i_3,j_1} + 15x_{l,j_2} + 15x_{i_3,j_2} - 6x_{i_1,l} - 16x_{i_2,l} - 10x_{i_3,j_1} - 10x_{i_3,j_2}$  $x_{l,j_1} + x_{i_3,j_1} \le 100$  $x_{l,j_2} + x_{i_3,j_2} \le 200$ 

Ξ.

14/60



Figure: The Haverly Instance. Source: Alfaki.

 $\begin{aligned} \max 9x_{l,j_1} + 9x_{i_3,j_1} + 15x_{l,j_2} + 15x_{i_3,j_2} - 6x_{i_1,l} - 16x_{i_2,l} - 10x_{i_3,j_1} - 10x_{i_3,j_2} \\ x_{l,j_1} + x_{i_3,j_1} &\leq 100 \\ x_{l,j_2} + x_{i_3,j_2} &\leq 200 \\ x_{i_1,l} + x_{i_2,l} &= x_{l,j_1} + x_{l,j_2} \end{aligned}$ 

э.

イロト 不得 トイヨト イヨト



Figure: The Haverly Instance. Source: Alfaki.



-



Figure: The Haverly Instance. Source: Alfaki.



# **Pooling Problem**



- Nodes  $N = I \cup L \cup J$
- Arcs A  $(i, j) \in (I \times L) \cup (L \times J) \cup (I \times J)$ on which materials flow
- Material attributes: K

- Arc capacities:  $u_{ij}$ ,  $(i, j) \in A$
- Node capacities:  $C_i$ ,  $i \in N$
- Attribute requirements  $\alpha_{kj}, k \in K, j \in J$

#### "Simple" constraints

- Variables x<sub>ij</sub> for flow on arcs
- Flow balance constraints at pools:

$$\sum_{i\in I_l} x_{il} - \sum_{j\in J_l} x_{lj} = 0, \quad \forall l \in L$$



< A >

### Example: Pooling Problem

#### "Simple" constraints

Inputs / Variables  $x_{ii}$  for flow on arcs Pools L Outputs J Flow balance constraints at pools:  $\sum_{i\in I_l} x_{il} - \sum_{i\in J_l} x_{lj} = 0, \quad \forall l \in L$ Capacity constraints:  $\sum x_{ij} + \sum x_{il} \leq C_i, \quad \forall i \in I$  $i \in J_i$   $l \in L_i$  $\sum x_{lj} \leq C_l, \quad \forall l \in L$ i∈Jı  $\sum x_{ij} + \sum x_{lj} \leq C_j, \quad \forall j \in J_{i}$ 

#### "Complicating" constraints

- Inputs have associated attribute concentrations  $\lambda_{ki}, k \in K, i \in I$
- Concentration of attribute in pool is the weighted average of the concentrations of its inputs.
- This results in bilinear constraints.

#### "Complicating" constraints

- Inputs have associated attribute concentrations  $\lambda_{ki}, k \in K, i \in I$
- Concentration of attribute in pool is the weighted average of the concentrations of its inputs.
- This results in bilinear constraints.
- P-formulation (Haverly 78):
   Keep track of concentration *p<sub>kl</sub>* of attribute *k* in pool *l*

#### "Complicating" constraints

- Inputs have associated attribute concentrations  $\lambda_{ki}, k \in K, i \in I$
- Concentration of attribute in pool is the weighted average of the concentrations of its inputs.
- This results in bilinear constraints.
- P-formulation (Haverly 78):
   Keep track of concentration p<sub>kl</sub> of attribute k in pool l
- **Q-formulation** (Ben-Tal et al. 94): Variables *q<sub>il</sub>* for proportion of flow into pool *l* coming from input *i*

#### **Example: Pooling Problem**

#### **P-formulation**

$$\begin{split} \sum_{j \in J_i} x_{ij} + \sum_{l \in L_i} x_{il} &\leq C_i, \qquad \forall i \in I \\ \sum_{j \in J_l} x_{lj} &\leq C_l, \qquad \forall l \in L \\ \sum_{i \in I_j} x_{ij} + \sum_{l \in L_j} x_{lj} &\leq C_j, \qquad \forall l \in L \\ \sum_{i \in I_l} x_{il} - \sum_{j \in J_l} x_{lj} &= 0, \qquad \forall l \in L \\ p_{kl} &= \frac{\sum_{i \in I_l} \lambda_{ki} x_{il}}{\sum_{j \in J_l} x_{lj}} \quad \forall k \in K, l \in L \\ \frac{\sum_{i \in I_j} \lambda_{ki} x_{ij} + \sum_{l \in L_j} p_{kl} x_{lj}}{\sum_{i \in I_j \cup L_j} x_{ij}} &\leq \alpha_{kj}, \qquad \forall k \in K, j \in J \end{split}$$

MPRO – PMA

イロト イポト イヨト イヨト

æ
## **Example: Pooling Problem**

#### **P-formulation**

$$\sum_{j \in J_i} x_{ij} + \sum_{l \in L_i} x_{il} \leq C_i, \qquad \forall i \in I$$

$$\sum_{j \in J_i} x_{lj} \leq C_l, \qquad \forall l \in L$$

$$\sum_{i \in I_j} x_{ij} + \sum_{l \in L_j} x_{lj} \leq C_j, \qquad \forall j \in J$$

$$\sum_{i \in I_i} x_{il} - \sum_{j \in J_i} x_{lj} = 0, \qquad \forall l \in L$$

$$\mathbf{p_{kl}} \sum_{j \in J_l} \mathbf{x_{lj}} = \sum_{i \in I_l} \lambda_{ki} x_{il} \qquad \forall k \in K, l \in L$$

$$\sum_{i \in I_j} \lambda_{ki} x_{ij} + \sum_{l \in L_j} \mathbf{p_{kl}} \mathbf{x_{lj}} \leq \alpha_{kj} \sum_{i \in I_j \cup L_j} x_{ij}, \quad \forall k \in K, j \in J$$

イロト イポト イヨト イヨト

æ

## **Example: Pooling Problem**

#### **Q**-formulation

$$egin{aligned} x_{il} &= q_{il} \sum_{j \in J_l} x_{lj}, & orall i \in I, l \in L_i \ & \sum_{i \in I_l} q_{il} = 1, & orall l \in L \end{aligned}$$

イロト イポト イヨト イヨト

æ

#### **Q**-formulation

$$\begin{aligned} x_{il} &= q_{il} \sum_{j \in J_l} x_{lj}, \quad \forall i \in I, l \in L_i \\ \sum_{i \in I_l} q_{il} &= 1, \qquad \forall l \in L \end{aligned}$$

• Attribute constraints

$$\sum_{i \in I_j} \lambda_{ki} x_{ij} + \sum_{l \in L_j} x_{lj} \Big( \sum_{i \in I_l} \lambda_{ki} q_{il} \Big) \le \alpha_{kj} \sum_{i \in I_j \cup L_j} x_{ij}, \quad \forall k \in K, j \in J$$

## **Example: Pooling Problem**

### **Q**-formulation



### From NLP to MINLP

- Decide whether to install pipes or not (0/1 decision)
- Associate a binary variable z<sub>ij</sub> with each pipe (suppose for now on arcs from input to output)

Extra constraints:

$$egin{aligned} x_{ij} &\leq \min(m{C}_i, m{C}_j) z_{ij} & \forall i \in I, j \in J_i \ z_{ij} \in \{0, 1\} & \forall i \in I, j \in J_i \end{aligned}$$

**Objective Function** 

Fixed cost for installing pipe

$$\min \sum_{i \in I} c_i \left( \sum_{l \in L_i} x_{il} + \sum_{j \in J_i} x_{ij} \right) - \sum_{j \in J} \rho_j \left( \sum_{i \in I_j} x_{ij} + \sum_{l \in L_j} x_{lj} \right) + \sum_{i \in I} \sum_{j \in J_i} f_{ij} z_{ij}$$

## Outline

### Reca

- What is a MINLP?
- Exact reformulations
- Relaxations

### 2 Motivating Applications

### 3 Global Optimization methods

- Multistart
- Spatial Branch-and-Bound
  - Standard form
  - Convexification
  - Expression trees
  - Variable ranges
  - Bounds tightening
  - Reformulation Linearization Technique (RLT)

## Global Optimization methods



#### Exact

- "Exact" in continuous space:
   ε-approximate (find solution within pre-determined ε distance from optimum in obj. fun. value)
- For some problems, finite convergence to optimum (ε = 0)



### Heuristic

 Find solution with probability 1 in infinite time

## Outline

### Reca

- What is a MINLP?
- Exact reformulations
- Relaxations

### 2 Motivating Applications

- Global Optimization methods
   Multistart
  - Spatial Branch-and-Bound
    - Standard form
    - Convexification
    - Expression trees
    - Variable ranges
    - Bounds tightening
    - Reformulation Linearization Technique (RLT)

### • The easiest GO method

1: 
$$f^* = \infty$$

2: 
$$X^* = (\infty, \dots, \infty)$$

3: while  $\neg$  termination do

4: 
$$x' = (random(), \dots, random())$$

5: 
$$x = \text{localSolve}(P, x')$$

6: **if** 
$$f_P(x) < f^*$$
 **then**

7: 
$$f^* \leftarrow f_P(x)$$

B: 
$$X^* \leftarrow X$$

- 9: **end if**
- 10: end while
- Termination condition: e.g. repeat k times

$$f(x_1, x_2) = 4x_1^2 - 2.1x_1^4 + \frac{1}{3}x_1^6 + x_1x_2 - 4x_2^2 + 4x_2^4$$



#### Global optimum (COUENNE)

MPRO – PMA

ъ

< A

$$f(x_1, x_2) = 4x_1^2 - 2.1x_1^4 + \frac{1}{3}x_1^6 + x_1x_2 - 4x_2^2 + 4x_2^4$$



#### Multistart with IPOPT, k = 5

Claudia D'Ambrosio (CNRS&LIX)

MPRO – PMA

$$f(x_1, x_2) = 4x_1^2 - 2.1x_1^4 + \frac{1}{3}x_1^6 + x_1x_2 - 4x_2^2 + 4x_2^4$$



#### Multistart with IPOPT, k = 10

Claudia D'Ambrosio (CNRS&LIX)

MPRO – PMA

$$f(x_1, x_2) = 4x_1^2 - 2.1x_1^4 + \frac{1}{3}x_1^6 + x_1x_2 - 4x_2^2 + 4x_2^4$$



#### Multistart with IPOPT, k = 20

Claudia D'Ambrosio (CNRS&LIX)

MPRO – PMA

$$f(x_1, x_2) = 4x_1^2 - 2.1x_1^4 + \frac{1}{3}x_1^6 + x_1x_2 - 4x_2^2 + 4x_2^4$$



#### Multistart with IPOPT, k = 50

Claudia D'Ambrosio (CNRS&LIX)

MPRO – PMA

ъ

$$f(x_1, x_2) = 4x_1^2 - 2.1x_1^4 + \frac{1}{3}x_1^6 + x_1x_2 - 4x_2^2 + 4x_2^4$$



#### Multistart with SNOPT, k = 20

Claudia D'Ambrosio (CNRS&LIX)

MPRO – PMA

## Outline

### Reca

- What is a MINLP?
- Exact reformulations
- Relaxations

### 2 Motivating Applications

### 3 Global Optimization methods

Multistart

### Spatial Branch-and-Bound

- Standard form
- Convexification
- Expression trees
- Variable ranges
- Bounds tightening
- Reformulation Linearization Technique (RLT)

A (10) A (10) A (10)

Falk and Soland (1969) "An algorithm for separable nonconvex programming problems".

35/40 years ago: first general-purpose "exact" algorithms for nonconvex MINLP.

### Tree-like search

- Explores search space exhaustively but implicitly
- Builds a sequence of decreasing upper bounds and increasing lower bounds to the global optimum
- Exponential worst-case
- Only general-purpose "exact" algorithm for MINLP Since continuous vars are involved, should say "ε-approximate"
- Like BB for MILP, but may branch on continuous vars Done whenever one is involved in a nonconvex term





Claudia D'Ambrosio (CNRS&LIX)

MPRO – PMA



Claudia D'Ambrosio (CNRS&LIX)

MPRO – PMA



Claudia D'Ambrosio (CNRS&LIX)

MPRO – PMA

크



Claudia D'Ambrosio (CNRS&LIX)

MPRO – PMA



Convex relaxation on  $C_1$ : lower bounding solution  $\bar{x}$ 

Claudia D'Ambrosio (CNRS&LIX)

TH 161 MPRO – PMA

< ∃⇒



localSolve. from  $\bar{x}$ : new upper bounding solution  $x^*$ 

∃ ► < ∃ ►</p>



Claudia D'Ambrosio (CNRS&LIX)

MINLP II

MPRO – PMA

크



Repeat on  $C_3$ : get  $\bar{x} = x^*$  and  $|f^* - \bar{f}| < \varepsilon$ , no more branching

**B** 5

A D M A A A M M



Claudia D'Ambrosio (CNRS&LIX)

MPRO – PMA





No more subproblems left, return x<sup>\*</sup> and terminate

Claudia D'Ambrosio (CNRS&LIX)

MPRO – PMA

## Spatial B&B: Pruning

- *P* was branched into  $C_1, C_2$
- 2  $C_1$  was branched into  $C_3, C_4$
- C<sub>3</sub> was pruned by optimality  $(x^* \in \mathcal{G}(C_3) \text{ was found})$
- C<sub>2</sub>, C<sub>4</sub> were pruned by bound (lower bound for C<sub>2</sub> worse than f\*)
- So No more nodes: whole space explored,  $x^* \in \mathcal{G}(P)$ 
  - Search generates a tree
  - Suproblems are nodes
  - Nodes can be pruned by optimality, bound or infeasibility (when subproblem is infeasible)
  - Otherwise, they are branched

$$\sum_{h}\prod_{k}f_{hk}(x,y)$$

where  $f_{hk}(x, y)$  are univariate functions  $\forall h, k$ .

36/60

A D M A A A M M

$$\sum_{h}\prod_{k}f_{hk}(x,y)$$

where  $f_{hk}(x, y)$  are univariate functions  $\forall h, k$ .

• Exact reformulation of MINLP so as to have "**isolated basic nonlinear functions**" (additional variables and constraints).

$$\sum_{h}\prod_{k}f_{hk}(x,y)$$

where  $f_{hk}(x, y)$  are univariate functions  $\forall h, k$ .

- Exact reformulation of MINLP so as to have "**isolated basic nonlinear functions**" (additional variables and constraints).
- Relax (linear/convex) the basic nonlinear terms (library of envelopes/underestimators).

$$\sum_{h}\prod_{k}f_{hk}(x,y)$$

where  $f_{hk}(x, y)$  are univariate functions  $\forall h, k$ .

- Exact reformulation of MINLP so as to have "**isolated basic nonlinear functions**" (additional variables and constraints).
- Relax (linear/convex) the basic nonlinear terms (library of envelopes/underestimators).
- Relaxation depends on variable bounds, thus **branching** potentially strengthen it.

## Outline

### Reca

- What is a MINLP?
- Exact reformulations
- Relaxations

### 2 Motivating Applications

## 3 Global Optimization methods

Multistart

# Spatial Branch-and-Bound Standard form

- Convexification
- Convexincation
   Evenue a since the second secon
- Expression trees
- Variable ranges
- Bounds tightening
- Reformulation Linearization Technique (RLT)

A (10) A (10) A (10)

Consider a NLP for simplicity. Transform it in a standard form like:

$$\begin{array}{rcl} \min {\mathcal C}^{\mathsf{T}}(x,w) & \leq & b \\ & {\mathcal M}_{ij} & = & x_i \bigotimes x_j & \text{ for suitable } i,j \\ & x & \in & X \\ & w & \in & W \end{array}$$

where, for example,  $\bigotimes \in \{$ sum, product, quotient, power, exp, log, sin, cos, abs $\}$  (Couenne).
## Outline

#### Reca

- What is a MINLP?
- Exact reformulations
- Relaxations

## 2 Motivating Applications

#### 3 Global Optimization methods

Multistart

#### Spatial Branch-and-Bound

Standard form

#### Convexification

- Expression trees
- Variable ranges
- Bounds tightening
- Reformulation Linearization Technique (RLT)

39/60

A (10) A (10) A (10)

Relax  $w_{ij} = x_i \bigotimes x_j \forall$  suitable *i*, *j* where  $\bigotimes \in \{$ sum, product, quotient, power, exp, log, sin, cos, abs $\}$  such that:

$$w_{ij} \leq ext{overestimator}(x_i \bigotimes x_j)$$
  
 $w_{ij} \geq ext{underestimator}(x_i \bigotimes x_j)$ 

Convex relaxation is **not the tightest possible**, but **built automatically**.

40/60

Relax  $w_{ij} = x_i \bigotimes x_j \forall$  suitable *i*, *j* where  $\bigotimes \in \{$ sum, product, quotient, power, exp, log, sin, cos, abs $\}$  such that:

$$egin{array}{rcl} w_{ij} &\leq & ext{overestimator}(x_i \bigotimes x_j) \ w_{ij} &\geq & ext{underestimator}(x_i \bigotimes x_j) \end{array}$$

Convex relaxation is **not the tightest possible**, but **built automatically**.

- Underestimator/overestimator of convex/concave function: tangent cuts (OA)
- Odd powers or Trigonometric functions: separate intervals in which function is convex or concave and do as for convex/concave functions
- Product or Quotient: Mc Cormick relaxation

# Spatial B&B: Examples of Convexifications



P. Belotti, J. Lee, L. Liberti, F. Margot, A. Wächter, "Branching and bounds tightening techniques for non-convex MINLP". Optimization Methods and Software 24(4-5): 597-634 (2009).

## Example: Standard Form Reformulation

$$\min x_1^2 + x_1 x_2 \\ x_1 + x_2 \ge 1 \\ x_1 \in [0, 1] \\ x_2 \in [0, 1]$$

MPRO – PMA

æ

42/60

イロト イポト イヨト イヨト

## Example: Standard Form Reformulation

$$\min x_1^2 + x_1 x_2 \\ x_1 + x_2 \ge 1 \\ x_1 \in [0, 1] \\ x_2 \in [0, 1]$$

becomes

$$\min w_{1} + w_{2}$$

$$w_{1} = x_{1}^{2}$$

$$w_{2} = x_{1}x_{2}$$

$$x_{1} + x_{2} \ge 1$$

$$x_{1} \in [0, 1]$$

$$x_{2} \in [0, 1]$$

MPRO – PMA

- < ⊒ →

var x1 <= 1, >= 0; var x2 <= 1, >= 0;

minimize of:  $x1^{**2} + x1^{*}x2$ ; subject to constraint:  $x1 + x2 \ge 1$ ;

3

43/60

## Example: .mod from Couenne

var x1 <= 1, >= 0; var x2 <= 1, >= 0;

minimize of:  $x1^{**2} + x1^{*}x2;$ subject to constraint:  $x1 + x2 \ge 1;$  # Problem name: extended-aw.mod

# original variables

var x\_0 >= 0 <= 1 default 0; var w\_1 >= 0 <= 1 default 1; var w\_2 >= 0 <= 1 default 0; var w\_3 >= 0 <= 1 default 0; var w\_4 >= 0 <= 2 default 0;

# objective

minimize obj: w\_4;

# aux. variables defined

aux1: w\_1 = (1-x\_0); aux2: w\_2 = (x\_0\*\*2); aux3: w\_3 = (x\_0\*w\_1); aux4: w\_4 = (w\_2+w\_3);

# constraints

# Convex hull of pieces is weaker than the whole convex hull

Consider the following feasible set:

$$egin{array}{rcl} x_1^2+x_2^2&\geq &1\ x_1,x_2&\in &[0,2] \end{array}$$

44/60

< < >>

# Convex hull of pieces is weaker than the whole convex hull

Consider the following feasible set:

$$egin{array}{rcl} x_1^2+x_2^2&\geq &1\ x_1,x_2&\in &[0,2] \end{array}$$

Convex hull:  $x_1 + x_2 \ge 1$ 

44/60

A D M A A A M M

# Convex hull of pieces is weaker than the whole convex hull

Consider the following feasible set:

$$egin{array}{rcl} x_1^2+x_2^2&\geq &1\ x_1,x_2&\in & [0,2] \end{array}$$

Convex hull:  $x_1 + x_2 \ge 1$ 

1



$$egin{array}{rcl} x_3+x_4&\geq&1\ x_3&\leq&x_1^2\ x_4&\leq&x_1^2\ x_1,x_2&\in&[0,2] \end{array}$$



Claudia D'Ambrosio (CNRS&LIX)

MINLP II

MPRO – PMA

44/60

## Outline

#### Reca

- What is a MINLP?
- Exact reformulations
- Relaxations

## 2 Motivating Applications

### 3 Global Optimization methods

Multistart

#### Spatial Branch-and-Bound

- Standard form
- Convexification

#### Expression trees

- Variable ranges
- Bounds tightening
- Reformulation Linearization Technique (RLT)

45/60

A (10) A (10) A (10)

#### Representation of objective f and constraints g

Encode mathematical expressions in trees or DAGs

E.g. 
$$x_1^2 + x_1 x_2$$
:



#### Representation of objective f and constraints g

Encode mathematical expressions in trees or DAGs

E.g. 
$$x_1^2 + x_1 x_2$$
:



## Outline

#### Reca

- What is a MINLP?
- Exact reformulations
- Relaxations

## 2 Motivating Applications

#### 3 Global Optimization methods

Multistart

#### Spatial Branch-and-Bound

- Standard form
- Convexification
- Expression trees

#### Variable ranges

- Bounds tightening
- Reformulation Linearization Technique (RLT)

A (10) A (10) A (10)

- Crucial property for sBB convergence: convex relaxation tightens as variable range widths decrease
- convex/concave under/over-estimator constraints are (convex) functions of x<sup>L</sup>, x<sup>U</sup>
- it makes sense to **tighten**  $x^L$ ,  $x^U$  at the sBB root node (trading off speed for efficiency) and at each other node (trading off efficiency for speed)

49/60

## Outline

#### Reca

- What is a MINLP?
- Exact reformulations
- Relaxations

## 2 Motivating Applications

### 3 Global Optimization methods

Multistart

#### Spatial Branch-and-Bound

- Standard form
- Convexification
- Expression trees
- Variable ranges
- Bounds tightening
- Reformulation Linearization Technique (RLT)

50/60

A (10) A (10) A (10)

- In sBB we need to tighten variable bounds at each node
- Two methods:
  - Optimization Based Bounds Tightening (OBBT)
  - Feasibility Based Bounds Tightening (FBBT)
- OBBT: for each variable *x* in *P* compute
  - $\underline{x} = \min\{x \mid \text{conv. rel. constr.}\}$
  - $\overline{x} = \max\{x \mid \text{conv. rel. constr.}\}$

Set  $\underline{x} \le x \le \overline{x}$ 

## **Bounds Tightening**

- In sBB we need to tighten variable bounds at each node
- Two methods:

FBBT:

- Optimization Based Bounds Tightening (OBBT)
- Feasibility Based Bounds Tightening (FBBT)

propagation of intervals up and down constraint expression trees, with tightening at the root node

Example:  $5x_1 - x_2 = 0$ .



< ロ > < 同 > < 回 > < 回 >

# **Bounds Tightening**

- In sBB we need to tighten variable bounds at each node
- Two methods:
  - Optimization Based Bounds Tightening (OBBT)
  - Feasibility Based Bounds Tightening (FBBT)

 FBBT: propagation of intervals up and down constraint expression trees, with tightening at the root node
 Example: 5x<sub>1</sub> - x<sub>2</sub> = 0. Up: ⊗:[5,5] × [0, 1] = [0, 5]; ⊖:[0, 5] - [0, 1] = [-1, 5].

Root node tightening:  $[-1, 5] \cap [0, 0] = [0, 0]$ .

Downwards:  $\otimes$ :[0, 0]+[0, 1]=[0, 1];

 $x_1:[0, 1]/[5, 5] = [0, \frac{1}{5}]$ 



## Outline

#### Reca

- What is a MINLP?
- Exact reformulations
- Relaxations

## 2 Motivating Applications

### 3 Global Optimization methods

Multistart

#### Spatial Branch-and-Bound

- Standard form
- Convexification
- Expression trees
- Variable ranges
- Bounds tightening
- Reformulation Linearization Technique (RLT)

A (10) A (10) A (10)

- All nonlinear terms are quadratic monomials
- Aim to reduce gap betwen the problem and its convex relaxation
- ⇒ replace quadratic terms with suitable linear constraints (fewer nonlinear terms to relax)
- Can be obtained by considering linear relations (called **reduced RLT constraints**) between original and linearizing variables

55/60

• For each 
$$k \leq n$$
, let  $w_k = (w_{k1}, \ldots, w_{kn})$ 

æ

56/60

- For each  $k \leq n$ , let  $w_k = (w_{k1}, \ldots, w_{kn})$
- Multiply Ax = b by each x<sub>k</sub>, substitute linearizing variables w<sub>k</sub>, get reduced RLT constraint system (RRCS)

$$\forall k \leq n \ (Aw_k = bx_k)$$

56/60

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- For each  $k \leq n$ , let  $w_k = (w_{k1}, \ldots, w_{kn})$
- Multiply Ax = b by each x<sub>k</sub>, substitute linearizing variables w<sub>k</sub>, get reduced RLT constraint system (RRCS)

$$\forall k \leq n \ (Aw_k = bx_k)$$

• 
$$\forall i, k \leq n$$
 define  $z_{ki} = w_{ki} - x_i x_k$ , let  $z_k = (z_{k1}, \ldots, z_{kn})$ 

56/60

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- For each  $k \leq n$ , let  $w_k = (w_{k1}, \ldots, w_{kn})$
- Multiply Ax = b by each x<sub>k</sub>, substitute linearizing variables w<sub>k</sub>, get reduced RLT constraint system (RRCS)

$$\forall k \leq n \ (Aw_k = bx_k)$$

- $\forall i, k \leq n$  define  $z_{ki} = w_{ki} x_i x_k$ , let  $z_k = (z_{k1}, \ldots, z_{kn})$
- Substitute b = Ax in RRCS, get  $\forall k \le n(A(w_k x_k x) = 0)$ , i.e.  $\forall k \le n(Az_k = 0)$ . Let B, N be the sets of basic and nonbasic variables of this system

56/60

- For each  $k \leq n$ , let  $w_k = (w_{k1}, \ldots, w_{kn})$
- Multiply Ax = b by each x<sub>k</sub>, substitute linearizing variables w<sub>k</sub>, get reduced RLT constraint system (RRCS)

$$\forall k \leq n \ (Aw_k = bx_k)$$

• 
$$\forall i, k \leq n$$
 define  $z_{ki} = w_{ki} - x_i x_k$ , let  $z_k = (z_{k1}, \dots, z_{kn})$ 

- Substitute b = Ax in RRCS, get  $\forall k \le n(A(w_k x_k x) = 0)$ , i.e.  $\forall k \le n(Az_k = 0)$ . Let B, N be the sets of basic and nonbasic variables of this system
- Setting z<sub>ki</sub> = 0 for each nonbasic variable implies that the RRCS is satisfied ⇒ It suffices to enforce quadratic constraints w<sub>ki</sub> = x<sub>i</sub>x<sub>k</sub> for (i, k) ∈ N (replace those for (i, k) ∈ B with the linear RRCS)

## Example: pooling problem

#### Q-formulation

$$\begin{split} \sum_{j \in J_i} x_{ij} + \sum_{l \in L_i} x_{il} &\leq C_i, &\forall i \in I \\ \sum_{j \in J_i} x_{lj} &\leq C_l, &\forall l \in L \\ \sum_{i \in I_j} x_{ij} + \sum_{l \in L_j} x_{lj} &\leq C_j, &\forall j \in J \\ \hline & & X_{il} - q_{il} \sum_{j \in J_l} x_{lj} = 0 &\forall i \in I, l \in L_i \\ & & \sum_{i \in I_j} \lambda_{ki} x_{ij} + \sum_{l \in L_j} x_{lj} \left(\sum_{i \in I_l} \lambda_{ki} q_{il}\right) \leq \alpha_{kj} \sum_{i \in I_j \cup L_j} x_{ij}, &\forall k \in K, j \in J \end{split}$$

イロト イポト イヨト イヨト

æ

PQ-formulation by Sahinidis and Tawarmalani (2005). Like Q-formulation but with extra (redundant) constraints:

• 
$$x_{lj} \sum_{i \in I_l} q_{il} = x_{lj} \quad \forall l \in L, j \in J_l$$

• 
$$q_{il} \sum_{j \in J_l} x_{lj} \leq C_l q_{il} \quad \forall i \in I, l \in L_i$$

58/60

A D M A A A M M

PQ-formulation by Sahinidis and Tawarmalani (2005). Like Q-formulation but with extra (redundant) constraints:

• 
$$x_{lj} \sum_{i \in I_l} q_{il} = x_{lj} \quad \forall l \in L, j \in J_l$$

• 
$$q_{il} \sum_{j \in J_l} x_{lj} \leq C_l q_{il} \quad \forall i \in I, l \in L_i$$

#### One of the strongest known formulation!

58/60

## Citations

- Sherali, Alameddine, A new reformulation-linearization technique for bilinear programming problems, JOGO, 1991
- Falk, Soland, An algorithm for separable nonconvex programming problems, Manag. Sci. 1969.
- Horst, Tuy, *Global Optimization*, Springer 1990.
- Ryoo, Sahinidis, Global optimization of nonconvex NLPs and MINLPs with applications in process design, Comp. Chem. Eng. 1995.
- Adjiman, Floudas et al., A global optimization method, αBB, for general twice-differentiable nonconvex NLPs, Comp. Chem. Eng. 1998.
- Smith, Pantelides, A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs, Comp. Chem. Eng. 1999.
- Nowak, Relaxation and decomposition methods for Mixed Integer Nonlinear Programming, Birkhäuser, 2005.
- Belotti, et al., Branching and bounds tightening techniques for nonconvex MINLP, Opt. Meth. Softw., 2009.
- Vigerske, PhD Thesis: Decomposition of Multistage Stochastic Programs and a Constraint Integer Programming Approach to Mixed-Integer Nonlinear Programming, Humboldt-University Berlin, 2013.

(日)

э

# Advertisement...

École Polytechnique in collaboration with other universities

- Strong formulations for Neural Networks, when they appear as part of a mathematical optimization model
- Optimal piecewise linear approximations of classes of MINLPs
- Learning for MINLPs
- ...

#### Abroad

- Green Software / Data Center optimization (proposed by A. Bischi, Università di Pisa, Italy)
- Computer Vision from Traffic Videos / Policy Evaluation with Transfer Learning based on various sensors such as dash cam and infrastructure-based cameras / VR/AR development for Traffic Simulation and Digital Twin Development (proposed by S. Di, Columbia University, Civil Engineering Department)