Integrated crew management for rail freight

Héloïse Gachet,^{1,2} Frédéric Meunier,¹ and Juliette Pouzet²

¹ CERMICS, ENPC, Institut Polytechnique de Paris ² SNCF DTIPG

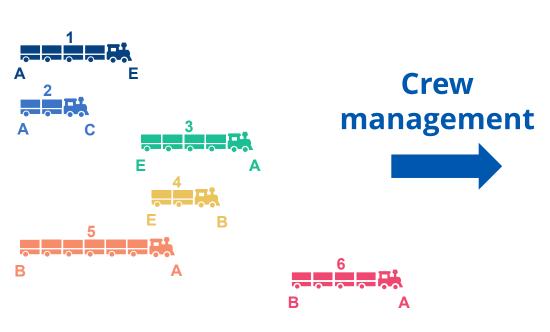
ID: 193

trains

Context

Rail freight in France:

- > 10% of overall freight: trains per week
- > Passenger traffic has priority over freight: trains mostly at night


Problem statement

Crew management problem

Input: Trains on a typical week

Output: Covering of trains by "rosters" with minimum cost, each roster assigned to a team

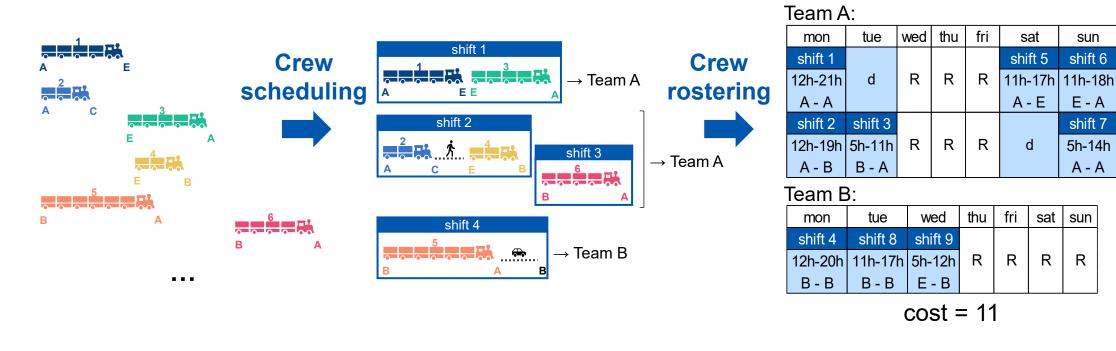
Team A

icani / t.									
mon	tue	wed	thu	fri	sat	sun			
shift 1					shift 5	shift 6			
12h-21h	d	R	R	R	11h-17h	5h-16h			
A - A					A - E	E-A			
shift 2	shift 3					shift 7			
12h-19h	5h-11h	R	R	R	R	10h-17h			
A - B	B-A					A - A			

Team B:										
mon	tue	wed	thu	fri	sat	sun				
shift 4	shift 8	shift 9								
12h-20h	11h-17h	5h-12h	R	R	R	R				
B - B	B - B	E-B								

cost = 10

Standard decomposition^{1,2} (sub-optimal):


Crew scheduling problem

Input: Trains on a typical week

Output: Covering of trains by daily shifts with minimum cost, each shift assigned to a team

Crew rostering problem

Input: Shifts, each assigned to a team
Output: Covering of trains by "rosters"
with minimum cost, each roster
assigned to a team

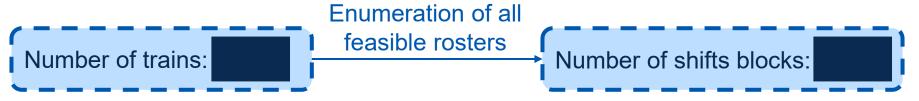
Contributions

Optimal decomposition:

- Covering of trains by "shifts blocks" with minimum cost, each assigned to a team ("shifts blocks" = working period between two days off)
- Construction of rosters with these shifts blocks

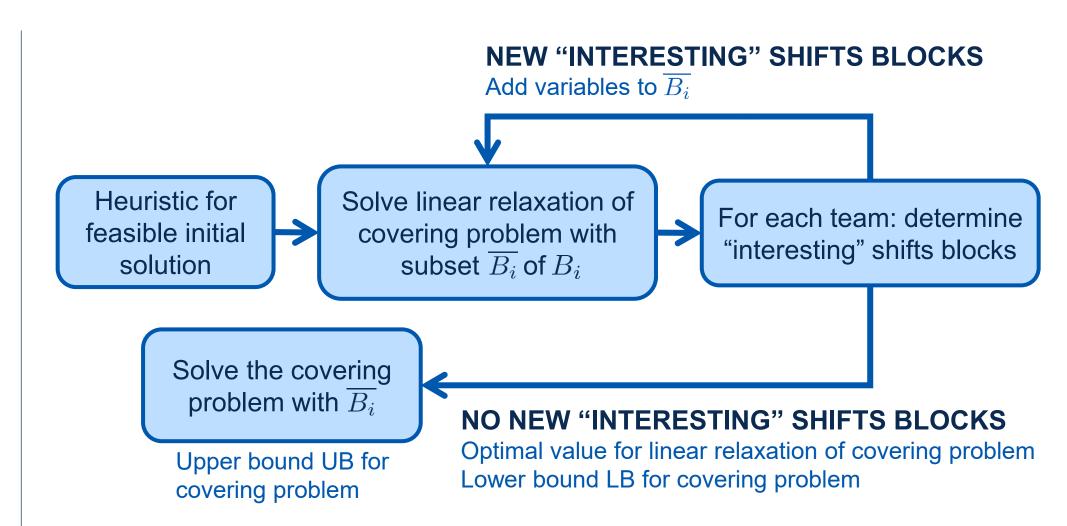
Trains' covering problem:

Min
$$\sum_{i \in I} \sum_{b \in B_i} c_b x_{b,i}$$
s.t.
$$\sum_{i \in I} \sum_{b \in B_i} x_{b,i} \ge 1 \quad \forall t \in T$$


$$x_{b,i} \in \{0,1\} \qquad \forall i \in I, \forall b \in B_i$$

 $t \in T$: train

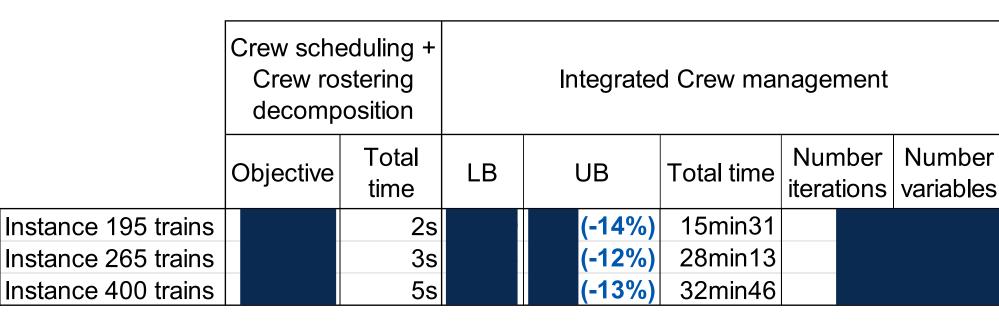
 $x_{b,i}$: the shifts block $b \in B_i$ is selected for team $i \in I$

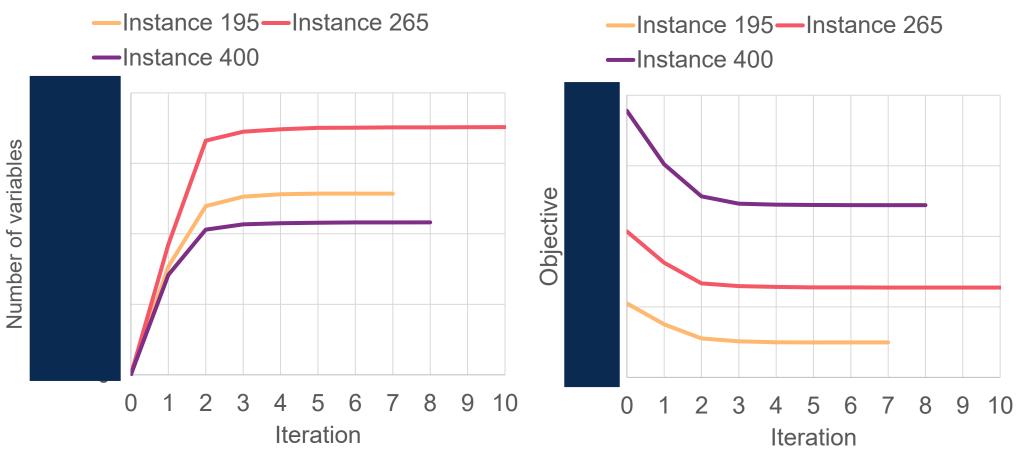

 B_i : set of all feasible shifts blocks for team $i \in I$

Naïve enumeration/selection approach: non tractable

Resolution of the relaxation of the covering problem using column generation

- > Determining "interesting" shifts blocks = solving the pricing sub-problem
- Pricing sub-problem = optimization problem with
 - Objective = "reduced costs"
 - Shift feasibility constraints
 - Shifts block feasibility constraints


Solving the pricing sub-problem: contribution = modeling as Shortest Path with Constraints Problem


- Shortest Path with Constraints
 - NP-hard, bound-discarding enumeration algorithms³

Results

Results obtained on 3 instances:

- > 195 trains, 265 trains: extracted from a national dataset with
- > 400 trains: regional dataset

Convergence of column generation with:

- Average gain of 13%
- Increased computation time
- Quality lower bound
- Tractable number of variables

Perspectives

- > Speeding up the total computation time:
 - Analysis of the parameters in the column generation
 - Number of variables added at each iteration
 - Stopping sub-problem resolution before finding best path
 - Implicit description of graph in Shortest Path with Constraints for pricing sub-problem
- Running the algorithm on a full national dataset

Bibliography

- 1. Caprara, A., Fischetti, M., Toth, P., Vigo, D., and Guida, P. (1997). Algorithms for Railway Crew Management. Mathematical Programming, 79, pp. 125–141.
- 2. Lin, D.-Y., Tsai, M.-T. (2019). Integrated Crew Scheduling and Roster Problem for Trainmasters of Passenger Railway Transportation. IEEE Access, 7, pp. 27362–27375.
- 3. Parmentier, A. (2019). Algorithms for non-linear and stochastic resource constrained shortest path, Mathematical Methods of Operations Research, 89, pp. 281-317.

