AN “UNSIGNED” STOCHASTICLOT-SIZING PROBLEM

& @ INSTITUT & @y, INSTITUT
%.,.f POLYTECHNIQUE Z Z %".f POLYTECHNIQUE
EEEEEEEEEEEEEEEEE &Y DE PARIS {FREDERIC MEUNIER & ROSE SOSSOU EDOU } s V&Y DE PARIS

erCHAUSSEES | R ——————— T . CHAUSSEES

CERMICS, Ecole nationale des ponts et chaussées

PROBLEM FORMULATION CONTRIBUTIONS

We consider the following version of the dynamic Parameters: For the following results, we assume that the essential supremum and infimum of D;

e ' horizon

lot-sizing problem: are known. The policy m;(s;_1, P;—1)) decides ;.

e S: maximal inventory

Proposition 1 (Meunier and S. E. 2024). Deciding whether s, is a feasible inventory at time

A
minimize E Z Pixy + 0 (sT)
t=1

I ] e (C™?*: maximal inventory variation t can be done in linear time.
S.t. St = S4_1 + T4 — Dt YVt . .
o * Dy random demand Theorem 1 (Meunier and S. E. 2024). There exist measurable functions ¢, u;: [0,S] — R
s¢ € 0, Sl S vt P;: random price and f;: R"™' — R such that an optimal policy is given when s;_, is feasible by
r — Dy| € [-Cmax Omax Vi ,
. ! | [ | * 7): final cost U(Se—1) — se—1 if be(se—1) > fe(Pu—1),
s¢ a function of (Py;_1), D) »
-anticipativit x _ -
RoTHEIpARTY { r; a function of (Pyy_1}, Djy—_17) Decision variables: Ty (Se—1, D)) = q wilsi-1) = se1 ffulsin) < fil Pe-ny),

* s;: Inventory ft(Pi—1)) — si—1 otherwise.

(Note that x; is decided before D; is revealed.)

e 1. order size , , o
Up to an extra assumption, the previous theorem can be made more explicit.

Theorem 2 (Meunier and S. E. 2024). Suppose C™** = +o00. Then the value function

MOTIVATION AND DYNAMICS PRELIMINARY REMARKS depends affinely on the current inventory and an optimal policy when t < T’ is given by
The motivation comes from a collabora- * The optimal value is convex with re- o
tion with the French electricity provider spect to the initial inventory (easy to (501, Py1y) = { esssup(Dy) — s;-1 if E|Pry1 — P Py—11] =20,
t — 1 — B : :
EDF 3‘QEDF . how to manage optimally prove). S + essinf(D,;) — s;_1 otherwise.

a battery on the electricity “intraday” e Feasible initial inventories form an - - sene Sang

market? ' Case 1 Case 2 Case 3 — —
interval (easy to prove as well). o o o \ ./

Interpretation in the electricity context: - S
e Horizon <= T time steps of one | [E\ROAYE:0E (SF-NM0:8:55)0) iy s o o

@ the target inventory f;(Pp;_1)) at time t
hour

@ optimal order size at time t

Realistic instances: P; auto-regressive, D; uni-

Theorem 1 Theorem 2
* Inventory <= energy level form

Lower bound given by Theorem 2 (better than re- | | Proposition 2 (Meunier and S. E. 2024). Suppose ¢ = 0. Assume furthermore that the
moving non-anticipativity) prices form a martingale and all have the same sign with probability one. Up to a linear-time
precomputation, an optimal policy at time t can be computed in constant time.

e Order size <= electricity charge or
discharge

e Demand < reserve activation: the so O™ Anticipate Thm 2

battery can be activated by the trans- 30 20 -12521 - -2501
mission system operator (150) to 30 80 20055 -25U1
stabilize tﬁ]e netwogk. e i~ p~ 19999 2696 Ui QESTION . . .
50 30 ~22526  -2696 The functions ¢, and u; of Theorem 1 actually admit closed-form expressions. This is
* i) <= to anticipate the next day 70 20 "15270  -2692 not the case for the functions f;.

70 80 -22274  -2892

Open question. Under which conditions the quantity f,(Py;_1)) in Theorem 1 can be effi-
ciently computed?

S 1 \. s, Table 1: Experimental results for S

Theorem 2 and Proposition 2 provide examples of such conditions.



