AN "UNSIGNED" STOCHASTIC LOT-SIZING PROBLEM

{FRÉDÉRIC MEUNIER & ROSE SOSSOU EDOU } CERMICS, École nationale des ponts et chaussées

PROBLEM FORMULATION

We consider the following version of the dynamic lot-sizing problem:

$$\begin{array}{ll} \textbf{minimize} & \mathbb{E}\left[\sum_{t=1}^T P_t x_t + \psi(s_T)\right] \\ \text{s.t.} & s_t = s_{t-1} + x_t - D_t \\ & s_t \overset{\text{a.s}}{\in} [0, S] \\ & |x_t - D_t| \overset{\text{a.s}}{\in} [-C^{\max}, C^{\max}] \\ & \\ \textbf{non-anticipativity} \left\{ \begin{array}{ll} s_t \text{ a function of } (P_{[t-1]}, D_{[t]}) \\ & x_t \text{ a function of } (P_{[t-1]}, D_{[t-1]}) \end{array} \right. \end{aligned}$$

(Note that x_t is decided before D_t is revealed.)

Parameters:

- T: horizon
- S: maximal inventory
- C^{\max} : maximal inventory variation
- D_t : random demand
- P_t : random price
- ψ : final cost

Decision variables:

- s_t : inventory
- x_t : order size

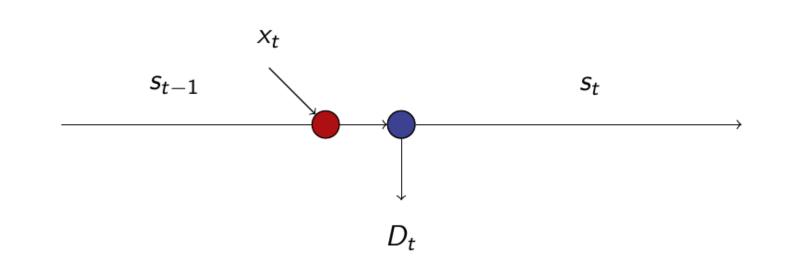
MOTIVATION AND DYNAMICS

The motivation comes from a collaboration with the French electricity provider

EDF **cepf**: how to manage optimally a battery on the electricity "intraday" market?

Interpretation in the electricity context:

- Horizon $\iff T$ time steps of one hour
- Inventory energy level
- Order size
 ⇔ electricity charge or discharge
- Demand
 ⇒ reserve activation: the battery can be activated by the transmission system operator (TSO) to stabilize the network.
- $\psi \Longleftrightarrow$ to anticipate the next day



PRELIMINARY REMARKS

- The optimal value is convex with respect to the initial inventory (easy to prove).
- Feasible initial inventories form an interval (easy to prove as well).

NUMERICAL RESULTS

Realistic instances: P_t auto-regressive, D_t uniform

Lower bound given by Theorem 2 (better than removing non-anticipativity)

s_0	C^{\max}	Anticipate	Thm 2
30	20	-12521	-2501
30	80	-20055	-2501
50	20	-13939	-2696
50	80	-22526	-2696
70	20	-15270	-2892
70	80	-22274	-2892

Table 1: Experimental results for S

CONTRIBUTIONS

For the following results, we assume that the essential supremum and infimum of D_t are known. The policy $\pi_t(s_{t-1}, P_{[t-1]})$ decides x_t .

Proposition 1 (Meunier and S. E. 2024). Deciding whether s_t is a feasible inventory at time t can be done in linear time.

Theorem 1 (Meunier and S. E. 2024). There exist measurable functions $\ell_t, u_t : [0, S] \to \mathbb{R}$ and $f_t : \mathbb{R}^{t-1} \to \overline{\mathbb{R}}$ such that an optimal policy is given when s_{t-1} is feasible by

$$\pi_t^{\star}(s_{t-1}, P_{[t-1]}) = \begin{cases} \ell_t(s_{t-1}) - s_{t-1} & \text{if } \ell_t(s_{t-1}) > f_t(P_{[t-1]}), \\ u_t(s_{t-1}) - s_{t-1} & \text{if } u_t(s_{t-1}) < f_t(P_{[t-1]}), \\ f_t(P_{[t-1]}) - s_{t-1} & \text{otherwise.} \end{cases}$$

Up to an extra assumption, the previous theorem can be made more explicit.

Theorem 2 (Meunier and S. E. 2024). Suppose $C^{\max} = +\infty$. Then the value function depends affinely on the current inventory and an optimal policy when t < T is given by

$$\pi_t^\star(s_{t-1},P_{[t-1]}) = \begin{cases} \operatorname{ess\,sup}(D_t) - s_{t-1} & \text{if } \mathbb{E}[P_{t+1} - P_t|P_{[t-1]}] \geqslant 0, \\ S + \operatorname{ess\,inf}(D_t) - s_{t-1} & \text{otherwise.} \end{cases}$$
Case 1
$$\operatorname{Case 2} \qquad \operatorname{Case 3} \qquad \operatorname{Optimal order\,size\,at\,time} t$$
Theorem 1
$$\operatorname{Theorem 2}$$

Proposition 2 (Meunier and S. E. 2024). Suppose $\psi = 0$. Assume furthermore that the prices form a martingale and all have the same sign with probability one. Up to a linear-time precomputation, an optimal policy at time t can be computed in constant time.

OPEN QUESTION

The functions ℓ_t and u_t of Theorem 1 actually admit closed-form expressions. This is not the case for the functions f_t .

Open question. Under which conditions the quantity $f_t(P_{[t-1]})$ in Theorem 1 can be efficiently computed?

Theorem 2 and Proposition 2 provide examples of such conditions.