
SUMMER SCHOOL ON
ASPECTS OF OPTIMIZATION

Discrete Optimization
September 15th, 2022

Claudia D’Ambrosio
dambrosio@lix.polytechnique.fr

C. D’Ambrosio Discrete Optimization 1 / 40



Outline

1 Tailored cutting-plane methods
Introduction
Strong inequalities
Polytope Dimension
Facet and Convex Hull Proofs
Lifting
Separation procedure

2 Research Talk

C. D’Ambrosio Discrete Optimization 2 / 40



Outline

1 Tailored cutting-plane methods
Introduction
Strong inequalities
Polytope Dimension
Facet and Convex Hull Proofs
Lifting
Separation procedure

2 Research Talk

C. D’Ambrosio Discrete Optimization 3 / 40



Introduction

Inequalities:

valid: for a specific problem, not all (M)ILPs

strong: non-trivial, ideally facet-defining

A priori vs. on the fly addition

standard vs. tailored solving method

Potentially enormous number of inequalities vs. only a relevant subset

Decomposition :
X = X 1 ∩ X 2 → focus on a simpler set, e.g. X 2 because inequalities valid
for X 2 will be valid for X .
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Definition of strong inequalities

Polytope dimension and how to find it

Face, facets, extreme points
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Strong valid inequalities

Remark

Inequalities π⊤x ≤ π0 and λπ⊤x ≤ λπ0 are identical for any λ > 0.

Definition

If π⊤x ≤ π0 and µ⊤x ≤ µ0 are two valid inequalities for X ⊆ Rn
+,

π⊤x ≤ π0 dominates µ⊤x ≤ µ0 if there exists u > 0 such that π > uµ and
π0 ≤ uµ0.

Definition

An inequality π⊤x ≤ π0 is redundant in the description of X ⊆ Rn
+, if

there exist k ≥ 2 valid inequalities (πi )⊤x ≤ πi0 for i = 1, . . . , k for X and
weights ui > 0 for i = 1, . . . , k such that (

∑k
i=1 uiπ

i )⊤x ≤
∑k

i=1 uiπ
i0

dominates π⊤x ≤ π0.
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Strong valid inequalities

Checking redundancy may be very difficult

Theoretically: it is important to know which inequalities are
nonredundant

Practically : it is important to avoid using an inequality when one
that dominates it is available
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Valid inequalities for the 01-KP problem

Classical formulation

K =

x ∈ {0, 1}n |
n∑

j=1

wjxj ≤ c



Cover formulation

KC =

x ∈ {0, 1}n |
∑
j∈C

xj ≤ |C | − 1 ∀ minimal cover C for K



Proposition

The sets K and KC coincide.

Which formulation is stronger?
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Valid inequalities for the 01-KP problem

Numerical example # 1 (from Conforti et al.):

n = 3,w = (3, 3, 3), c = 5, thus

K = {x ∈ {0, 1}n | 3x1 + 3x2 + 3x3 ≤ 5}

KC = {x ∈ {0, 1}n | xi + xj ≤ 1 ∀i , j = 1, 2, 3; i ̸= j}

Summing up the 3 inequalities of KC we have 2x1 + 2x2 + 2x3 ≤ 3 which
implies 3x1 + 3x2 + 3x3 ≤ 5, thus KC is stronger than K (e.g. (1, 23 , 0)).
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Valid inequalities for the 01-KP problem

Numerical example # 2 (from Conforti et al.):

n = 3,w = (1, 1, 1), c = 1, thus

K = {x ∈ {0, 1}n | x1 + x2 + x3 ≤ 1}

KC = {x ∈ {0, 1}n | xi + xj ≤ 1 ∀i , j = 1, 2, 3; i ̸= j}

Summing up the 3 inequalities of KC we have 2x1 + 2x2 + 2x3 ≤ 3 which
is implied by x1 + x2 + x3 ≤ 1, thus K is stronger than KC (e.g. (12 ,

1
2 ,

1
2)).
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Valid inequalities for the 01-KP problem

Can we improve KC? → strong valid inequalities

KC has an exponential number of constraints → no a-priori addition

Use “some” constraints of KC to improve K → separation procedure
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Strong Valid Inequalities

Aim: how to (try to) identify the best possible cuts?

Theorem

If P is a full-dimensional polyhedron, it has a unique minimal description

P = {x ∈ Rn | (ai )⊤x ≤ bi for i = 1, . . . ,m}

where each inequality is unique within a positive multiple.

Thus, any other valid inequality is redundant.
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Polyhedra, Face, Facets

Definition

The points x1, x2, . . . , xk ∈ Rn are affinely independent if the only solution
to the linear system

n∑
j=1

λjx
j = 0

n∑
j=1

λj = 0

is λ1 = λ2 = · · · = λk = 0.

Definition

The dimension of P, dim(P), is one less than the maximum number of
affinely independent points in P.
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Polyhedra, Face, Facets

Definition

F defines a face of the polyhedron P if F = {x ∈ P | π⊤x = π0} for
some valid inequality π⊤x ≤ π0 of P. The valid inequality π⊤x ≤ π0

is said to represent or define a face.

Alternatively, F is a face of the polyhedron P if there is a vector c for
which F is the set of vectors attaining max{c⊤x | x ∈ P} provided
that this maximum is finite.

F is a facet of P if F is a face of P of dim(F ) = dim(P)− 1.
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Polyhedra, Face, Facets

Definition

An extreme point of P is a 0-dimensional face of P.

Proposition

If P is full-dimensional, a valid inequality π⊤x ≤ π0 is necessary in the
description of P if and only if it defines a facet of P.

Thus, for full-dimensional polyhedra, π⊤x ≤ π0 defines a facet of P if and
only if there are n affinely independent points of P satisfying it at equality.

C. D’Ambrosio Discrete Optimization 17 / 40



Polyhedra, Face, Facets

Definition

An extreme point of P is a 0-dimensional face of P.

Proposition

If P is full-dimensional, a valid inequality π⊤x ≤ π0 is necessary in the
description of P if and only if it defines a facet of P.

Thus, for full-dimensional polyhedra, π⊤x ≤ π0 defines a facet of P if and
only if there are n affinely independent points of P satisfying it at equality.

C. D’Ambrosio Discrete Optimization 17 / 40



Polyhedra, Face, Facets

Definition

An extreme point of P is a 0-dimensional face of P.

Proposition

If P is full-dimensional, a valid inequality π⊤x ≤ π0 is necessary in the
description of P if and only if it defines a facet of P.

Thus, for full-dimensional polyhedra, π⊤x ≤ π0 defines a facet of P if and
only if there are n affinely independent points of P satisfying it at equality.

C. D’Ambrosio Discrete Optimization 17 / 40



Outline

1 Tailored cutting-plane methods
Introduction
Strong inequalities
Polytope Dimension
Facet and Convex Hull Proofs
Lifting
Separation procedure

2 Research Talk

C. D’Ambrosio Discrete Optimization 18 / 40



Outline

1 Tailored cutting-plane methods
Introduction
Strong inequalities
Polytope Dimension
Facet and Convex Hull Proofs
Lifting
Separation procedure

2 Research Talk

C. D’Ambrosio Discrete Optimization 19 / 40



Polytope dimension

How to prove that the set S has dimension k?

Method 1:

Find a system Ax = b of equations such that S ⊆ {x ∈ Rn | Ax = b}
and rank(A) = n − k

Exhibit k + 1 affinely independent points in S .

Method 2:

Find a system Ax = b of equations such that S ⊆ {x ∈ Rn | Ax = b}
and rank(A) = n − k

Prove that every equation α⊤x = β satisfied by all x ∈ S is a linear
combination of Ax = b (i.e., there exists u s.t. α = uA and β = ub).
Thus, Ax = b is the affine hull of S , thus S has dimension k.
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Polytope dimension

Example: 01-KP

S = conv({x ∈ {0, 1}n | w⊤x ≤ c})

Proposition

The dimension of S is n − |J|, with J = {j | wj > c for j = 1, . . . n}.
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Facet and Convex Hull Proofs

Hp. conv(X ) is bounded and full-dimensional.

Given X ∈ Zn
+ and a valid inequality π⊤x ≤ π0 for X, how to prove

that π⊤x ≤ π0 is a facet of conv(X )?

Approach 1:

Find n points in X that satisfy π⊤x = π0 and prove they are affinely
independent.
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Hp. conv(X ) is bounded and full-dimensional.

Given X ∈ Zn
+ and a valid inequality π⊤x ≤ π0 for X, how to prove

that π⊤x ≤ π0 is a facet of conv(X )?

Approach 2:

Select t ≥ n points x1, . . . , x t ∈ X satisfying π⊤x = π0. Suppose
that all these points lie on a generic hyperplane µ⊤x = µ0.

Solve the linear equation system

n∑
j=1

µjx
k
j = µ0 for k = 1, . . . , t

in the n + 1 unknowns (µ, µ0)

If the only solution is (µ, µ0) = α(π, π0) for α ̸= 0, then the
inequality π⊤x = π0 is facet-defining.
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Facet and Convex Hull Proofs

Hp. conv(X ) is bounded and full-dimensional.

Given X ∈ Zn
+ and a polyhedron P = {x ∈ Rn | Ax ≤ b}, show P

describes the conv(X ).

Approach 1:

Show that matrix A have a special structure guaranteeing
P = conv(X ), like TUM.

Approach 2:

Show that points x∗ ∈ P with a fractional element are not extreme
points of P.
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Facet and Convex Hull Proofs

Hp. conv(X ) is bounded and full-dimensional.

Given X ∈ Zn
+ and a polyhedron P = {x ∈ Rn | Ax ≤ b}, show P

describes the conv(X ).

Approach 3:

Show that for all c ∈ Rn the linear program min{c⊤x | Ax ≤ b} has
an optimal solution x∗ ∈ X .

Approach 4:

Show that if π⊤x ≤ π0 defines a facet of conv(X ) then it must be
identical to one of the inequalities a⊤i x ≤ bi defining P.
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Facet and Convex Hull Proofs

Hp. conv(X ) is bounded and full-dimensional.

Given X ∈ Zn
+ and a polyhedron P = {x ∈ Rn | Ax ≤ b}, show P

describes the conv(X ).

Approach 5:

Show that for any c ∈ Rn, c ̸= 0 the set of optimal solutions to the
problem min{c⊤x | x ∈ X} lies in {x | a⊤i x = bi} for some
i = 1, . . . ,m.

Etc.
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Some remarks

Consider the decomposition X = X 1 ∩ X 2 → focus on a simpler set, e.g.
X 2 because inequalities valid for X 2 will be valid for X .

If π⊤x ≤ 0 is a facet of X 2, it might not be a facet of X – but we hope
they are strong enough inequalities to speed-up the solving process.

Computational results to show method effectiveness.
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Strengthening Cover Inequalities: Extended Covers

Yesterday we have seen the Extended Cover Inequalities for the 01-KP
problem.

Proposition

If C is a cover for X , the feasible set of the 01-KP problem, the extended
cover inequality ∑

j∈E(C)

xj ≤ |C | − 1

is valid for X , where E (C ) = C ∪ {j | wj ≥ wi for all i ∈ C}.

The Extended Cover inequality dominates the Cover inequality

The (Extended) Cover inequality can be strengthened by lifting
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Strengthening Cover Inequalities: Lifting

Proposition

Let C be a cover for K . The cover inequality associated with C is
facet-defining for PC = conv(K )∩ {x ∈ Rn | xj = 0 ∀j ∈ {1, . . . , n} \ C} if
and only if C is a minimal cover.

Given a cover C for the 01-KP problem, find the best possible values for
αj for j ∈ {1, . . . , n} \ C such that∑

j∈C
xj +

∑
j∈{1,...,n}\C

αjxj ≤ |C | − 1

is valid for X .
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Strengthening Cover Inequalities: Lifting

Given a cover C for the 01-KP problem, find the best possible values for
αj for j ∈ {1, . . . , n} \ C such that

∑
j∈C xj +

∑
j∈{1,...,n}\C αjxj ≤ |C | − 1

is valid for X .

Iteratively solve the problem

ξt = max
t−1∑
i=1

αji xji +
∑
j∈C

xj

t−1∑
i=1

αji xji +
∑
j∈C

wjxj ≤ b − wjt

x ∈ {0, 1}|C |+t−1

for t the current iteration and j1, . . . , jr be an ordering of N \ C .
Set αjt = |C | − 1− ξt and iterate.

The resulting Lift Cover Inequalities are facet-defining.
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Strengthening Cover Inequalities: Lifting

Generalization

Proposition

Consider a set S ⊆ {0, 1}n such that S ∩ {x | xn = 1} ≠ ∅ and let∑n−1
j=1 αjxj ≤ β be a valid inequality for S ∩ {x | xn = 0}. Then

αn = β −max


n=1∑
j=1

αjxj | x ∈ S , xn = 1


is the largest coefficient such that

∑n−1
j=1 αjxj + αnxn ≤ β is valid for S .

Furthermore, if
∑n−1

j=1 αjxj ≤ β defines a d-dimensional face of
conv(S) ∩ {xn = 0}, then

∑n
j=1 αjxj ≤ β defines a face of conv(S) of

dimension at least d + 1.
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Separation Procedure

We are given a fractional solution x∗ with x∗ ∈ [0, 1]n, the separation
procedure:

checks whether x∗ satisfies all the cover inequalities

if at least one cover inequality is not satisfied, identify it.

Formally: does it exist a set C ⊆ {1, . . . , n} with
∑

j∈C wj > c such that∑
j∈C (1− x∗j ) < 1?

As a mathematical programming problem:

min


n∑

j=1

(1− x∗j )zj |
n∑

j=1

wjzj > c , z ∈ {0, 1}n
 .

Is its optimal solution < 1?

Potentially as difficult as solving the 01-KP problem → heuristics!
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