SUMMER SCHOOL ON ASPECTS OF OPTIMIZATION Discrete Optimization September 15th, 2022

Claudia D'Ambrosio dambrosio@lix.polytechnique.fr

Outline

(1) Tailored cutting-plane methods

- Introduction
- Strong inequalities
- Polytope Dimension
- Facet and Convex Hull Proofs
- Lifting
- Separation procedure
(2) Research Talk

Outline

(1) Tailored cutting-plane methods

- Introduction
- Strong inequalities
- Polytope Dimension
- Facet and Convex Hull Proofs
- Lifting
- Separation procedure
(2) Research Talk

Introduction

Inequalities:

- valid: for a specific problem, not all (M)ILPs

Introduction

Inequalities:

- valid: for a specific problem, not all (M)ILPs
- strong: non-trivial, ideally facet-defining

Introduction

Inequalities:

- valid: for a specific problem, not all (M)ILPs
- strong: non-trivial, ideally facet-defining

A priori vs. on the fly addition

- standard vs. tailored solving method

Introduction

Inequalities:

- valid: for a specific problem, not all (M)ILPs
- strong: non-trivial, ideally facet-defining

A priori vs. on the fly addition

- standard vs. tailored solving method
- Potentially enormous number of inequalities vs. only a relevant subset

Introduction

Inequalities:

- valid: for a specific problem, not all (M)ILPs
- strong: non-trivial, ideally facet-defining

A priori vs. on the fly addition

- standard vs. tailored solving method
- Potentially enormous number of inequalities vs. only a relevant subset

Decomposition :

$X=X^{1} \cap X^{2} \rightarrow$ focus on a simpler set, e.g. X^{2} because inequalities valid for X^{2} will be valid for X.

Introduction

- Definition of strong inequalities

Introduction

- Definition of strong inequalities
- Polytope dimension and how to find it

Introduction

- Definition of strong inequalities
- Polytope dimension and how to find it
- Face, facets, extreme points

Introduction

- Definition of strong inequalities
- Polytope dimension and how to find it
- Face, facets, extreme points
- Separation

Introduction

- Definition of strong inequalities
- Polytope dimension and how to find it
- Face, facets, extreme points
- Separation
- Lifting

Outline

(1) Tailored cutting-plane methods

- Introduction
- Strong inequalities
- Polytope Dimension
- Facet and Convex Hull Proofs
- Lifting
- Separation procedure
(2) Research Talk

Outline

(1) Tailored cutting-plane methods

- Introduction
- Strong inequalities
- Polytope Dimension
- Facet and Convex Hull Proofs
- Lifting
- Separation procedure

(2) Research Talk

Strong valid inequalities

Remark

Inequalities $\pi^{\top} x \leq \pi^{0}$ and $\lambda \pi^{\top} x \leq \lambda \pi^{0}$ are identical for any $\lambda>0$.

Strong valid inequalities

Remark

Inequalities $\pi^{\top} x \leq \pi^{0}$ and $\lambda \pi^{\top} x \leq \lambda \pi^{0}$ are identical for any $\lambda>0$.

Definition

If $\pi^{\top} x \leq \pi^{0}$ and $\mu^{\top} x \leq \mu^{0}$ are two valid inequalities for $X \subseteq \mathbb{R}_{+}^{n}$, $\pi^{\top} x \leq \pi^{0}$ dominates $\mu^{\top} x \leq \mu^{0}$ if there exists $u>0$ such that $\pi>u \mu$ and $\pi^{0} \leq u \mu^{0}$.

Strong valid inequalities

Remark

Inequalities $\pi^{\top} x \leq \pi^{0}$ and $\lambda \pi^{\top} x \leq \lambda \pi^{0}$ are identical for any $\lambda>0$.

Definition

If $\pi^{\top} x \leq \pi^{0}$ and $\mu^{\top} x \leq \mu^{0}$ are two valid inequalities for $X \subseteq \mathbb{R}_{+}^{n}$, $\pi^{\top} x \leq \pi^{0}$ dominates $\mu^{\top} x \leq \mu^{0}$ if there exists $u>0$ such that $\pi>u \mu$ and $\pi^{0} \leq u \mu^{0}$.

Definition

An inequality $\pi^{\top} x \leq \pi^{0}$ is redundant in the description of $X \subseteq \mathbb{R}_{+}^{n}$, if there exist $k \geq 2$ valid inequalities $\left(\pi^{i}\right)^{\top} x \leq \pi^{i 0}$ for $i=1, \ldots, k$ for X and weights $u_{i}>0$ for $i=1, \ldots, k$ such that $\left(\sum_{i=1}^{k} u_{i} \pi^{i}\right)^{\top} x \leq \sum_{i=1}^{k} u_{i} \pi^{i 0}$ dominates $\pi^{\top} x \leq \pi^{0}$.

Strong valid inequalities

- Checking redundancy may be very difficult

Strong valid inequalities

- Checking redundancy may be very difficult
- Theoretically: it is important to know which inequalities are nonredundant

Strong valid inequalities

- Checking redundancy may be very difficult
- Theoretically: it is important to know which inequalities are nonredundant
- Practically : it is important to avoid using an inequality when one that dominates it is available

Valid inequalities for the 01-KP problem

Classical formulation

$$
K=\left\{x \in\{0,1\}^{n} \mid \sum_{j=1}^{n} w_{j} x_{j} \leq c\right\}
$$

Valid inequalities for the 01-KP problem

Classical formulation

$$
K=\left\{x \in\{0,1\}^{n} \mid \sum_{j=1}^{n} w_{j} x_{j} \leq c\right\}
$$

Cover formulation

$$
K^{C}=\left\{x \in\{0,1\}^{n}\left|\sum_{j \in C} x_{j} \leq|C|-1 \forall \text { minimal cover } C \text { for } K\right\}\right.
$$

Valid inequalities for the 01-KP problem

Classical formulation

$$
K=\left\{x \in\{0,1\}^{n} \mid \sum_{j=1}^{n} w_{j} x_{j} \leq c\right\}
$$

Cover formulation

$$
K^{C}=\left\{x \in\{0,1\}^{n}\left|\sum_{j \in C} x_{j} \leq|C|-1 \forall \text { minimal cover } C \text { for } K\right\}\right.
$$

Proposition

The sets K and K^{C} coincide.

Valid inequalities for the 01-KP problem

Classical formulation

$$
K=\left\{x \in\{0,1\}^{n} \mid \sum_{j=1}^{n} w_{j} x_{j} \leq c\right\}
$$

Cover formulation

$$
K^{C}=\left\{x \in\{0,1\}^{n}\left|\sum_{j \in C} x_{j} \leq|C|-1 \forall \text { minimal cover } C \text { for } K\right\}\right.
$$

Proposition

The sets K and K^{C} coincide.

Which formulation is stronger?

Valid inequalities for the 01-KP problem

Numerical example \# 1 (from Conforti et al.):

Valid inequalities for the 01-KP problem

Numerical example \# 1 (from Conforti et al.):

$$
n=3, w=(3,3,3), c=5, \text { thus }
$$

$$
\begin{gathered}
K=\left\{x \in\{0,1\}^{n} \mid 3 x_{1}+3 x_{2}+3 x_{3} \leq 5\right\} \\
K^{C}=\left\{x \in\{0,1\}^{n} \mid x_{i}+x_{j} \leq 1 \forall i, j=1,2,3 ; i \neq j\right\}
\end{gathered}
$$

Valid inequalities for the 01-KP problem

Numerical example \# 1 (from Conforti et al.):
$n=3, w=(3,3,3), c=5$, thus

$$
\begin{gathered}
K=\left\{x \in\{0,1\}^{n} \mid 3 x_{1}+3 x_{2}+3 x_{3} \leq 5\right\} \\
K^{C}=\left\{x \in\{0,1\}^{n} \mid x_{i}+x_{j} \leq 1 \forall i, j=1,2,3 ; i \neq j\right\}
\end{gathered}
$$

Summing up the 3 inequalities of K^{C} we have $2 x_{1}+2 x_{2}+2 x_{3} \leq 3$

Valid inequalities for the 01-KP problem

Numerical example \# 1 (from Conforti et al.):
$n=3, w=(3,3,3), c=5$, thus

$$
\begin{gathered}
K=\left\{x \in\{0,1\}^{n} \mid 3 x_{1}+3 x_{2}+3 x_{3} \leq 5\right\} \\
K^{C}=\left\{x \in\{0,1\}^{n} \mid x_{i}+x_{j} \leq 1 \forall i, j=1,2,3 ; i \neq j\right\}
\end{gathered}
$$

Summing up the 3 inequalities of K^{C} we have $2 x_{1}+2 x_{2}+2 x_{3} \leq 3$ which implies $3 x_{1}+3 x_{2}+3 x_{3} \leq 5$,

Valid inequalities for the 01-KP problem

Numerical example \# 1 (from Conforti et al.):
$n=3, w=(3,3,3), c=5$, thus

$$
\begin{gathered}
K=\left\{x \in\{0,1\}^{n} \mid 3 x_{1}+3 x_{2}+3 x_{3} \leq 5\right\} \\
K^{C}=\left\{x \in\{0,1\}^{n} \mid x_{i}+x_{j} \leq 1 \forall i, j=1,2,3 ; i \neq j\right\}
\end{gathered}
$$

Summing up the 3 inequalities of K^{C} we have $2 x_{1}+2 x_{2}+2 x_{3} \leq 3$ which implies $3 x_{1}+3 x_{2}+3 x_{3} \leq 5$, thus K^{C} is stronger than K (e.g. $\left(1, \frac{2}{3}, 0\right)$).

Valid inequalities for the 01-KP problem

Numerical example \# 2 (from Conforti et al.):

Valid inequalities for the 01-KP problem

Numerical example \# 2 (from Conforti et al.):

$$
n=3, w=(1,1,1), c=1, \text { thus }
$$

$$
K=\left\{x \in\{0,1\}^{n} \mid x_{1}+x_{2}+x_{3} \leq 1\right\}
$$

$$
K^{C}=\left\{x \in\{0,1\}^{n} \mid x_{i}+x_{j} \leq 1 \forall i, j=1,2,3 ; i \neq j\right\}
$$

Valid inequalities for the 01-KP problem

Numerical example \# 2 (from Conforti et al.):
$n=3, w=(1,1,1), c=1$, thus

$$
\begin{gathered}
K=\left\{x \in\{0,1\}^{n} \mid x_{1}+x_{2}+x_{3} \leq 1\right\} \\
K^{C}=\left\{x \in\{0,1\}^{n} \mid x_{i}+x_{j} \leq 1 \forall i, j=1,2,3 ; i \neq j\right\}
\end{gathered}
$$

Summing up the 3 inequalities of K^{C} we have $2 x_{1}+2 x_{2}+2 x_{3} \leq 3$

Valid inequalities for the 01-KP problem

Numerical example \# 2 (from Conforti et al.):
$n=3, w=(1,1,1), c=1$, thus

$$
\begin{gathered}
K=\left\{x \in\{0,1\}^{n} \mid x_{1}+x_{2}+x_{3} \leq 1\right\} \\
K^{C}=\left\{x \in\{0,1\}^{n} \mid x_{i}+x_{j} \leq 1 \forall i, j=1,2,3 ; i \neq j\right\}
\end{gathered}
$$

Summing up the 3 inequalities of K^{C} we have $2 x_{1}+2 x_{2}+2 x_{3} \leq 3$ which is implied by $x_{1}+x_{2}+x_{3} \leq 1$,

Valid inequalities for the 01-KP problem

Numerical example \# 2 (from Conforti et al.):
$n=3, w=(1,1,1), c=1$, thus

$$
\begin{gathered}
K=\left\{x \in\{0,1\}^{n} \mid x_{1}+x_{2}+x_{3} \leq 1\right\} \\
K^{C}=\left\{x \in\{0,1\}^{n} \mid x_{i}+x_{j} \leq 1 \forall i, j=1,2,3 ; i \neq j\right\}
\end{gathered}
$$

Summing up the 3 inequalities of K^{C} we have $2 x_{1}+2 x_{2}+2 x_{3} \leq 3$ which is implied by $x_{1}+x_{2}+x_{3} \leq 1$, thus K is stronger than K^{C} (e.g. $\left.\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)\right)$.

Valid inequalities for the 01-KP problem

- Can we improve K^{C} ? \rightarrow strong valid inequalities

Valid inequalities for the 01-KP problem

- Can we improve K^{C} ? \rightarrow strong valid inequalities
- K^{C} has an exponential number of constraints \rightarrow no a-priori addition

Valid inequalities for the 01-KP problem

- Can we improve K^{C} ? \rightarrow strong valid inequalities
- K^{C} has an exponential number of constraints \rightarrow no a-priori addition
- Use "some" constraints of K^{C} to improve $K \rightarrow$ separation procedure

Strong Valid Inequalities

Aim: how to (try to) identify the best possible cuts?

Strong Valid Inequalities

Aim: how to (try to) identify the best possible cuts?

Theorem

If P is a full-dimensional polyhedron, it has a unique minimal description

$$
P=\left\{x \in \mathbb{R}^{n} \mid\left(a^{i}\right)^{\top} x \leq b_{i} \text { for } i=1, \ldots, m\right\}
$$

where each inequality is unique within a positive multiple.

Strong Valid Inequalities

Aim: how to (try to) identify the best possible cuts?

Theorem

If P is a full-dimensional polyhedron, it has a unique minimal description

$$
P=\left\{x \in \mathbb{R}^{n} \mid\left(a^{i}\right)^{\top} x \leq b_{i} \text { for } i=1, \ldots, m\right\}
$$

where each inequality is unique within a positive multiple.

Thus, any other valid inequality is redundant.

Polyhedra, Face, Facets

Definition

The points $x^{1}, x^{2}, \ldots, x^{k} \in \mathbb{R}^{n}$ are affinely independent if the only solution to the linear system

$$
\begin{aligned}
\sum_{j=1}^{n} \lambda_{j} x^{j} & =0 \\
\sum_{j=1}^{n} \lambda_{j} & =0
\end{aligned}
$$

is $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{k}=0$.

Polyhedra, Face, Facets

Definition

The points $x^{1}, x^{2}, \ldots, x^{k} \in \mathbb{R}^{n}$ are affinely independent if the only solution to the linear system

$$
\begin{aligned}
\sum_{j=1}^{n} \lambda_{j} x^{j} & =0 \\
\sum_{j=1}^{n} \lambda_{j} & =0
\end{aligned}
$$

is $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{k}=0$.

Definition

The dimension of $P, \operatorname{dim}(P)$, is one less than the maximum number of affinely independent points in P.

Polyhedra, Face, Facets

Definition

- F defines a face of the polyhedron P if $F=\left\{x \in P \mid \pi^{\top} x=\pi^{0}\right\}$ for some valid inequality $\pi^{\top} x \leq \pi^{0}$ of P. The valid inequality $\pi^{\top} x \leq \pi^{0}$ is said to represent or define a face.

Polyhedra, Face, Facets

Definition

- F defines a face of the polyhedron P if $F=\left\{x \in P \mid \pi^{\top} x=\pi^{0}\right\}$ for some valid inequality $\pi^{\top} x \leq \pi^{0}$ of P. The valid inequality $\pi^{\top} x \leq \pi^{0}$ is said to represent or define a face.
- Alternatively, F is a face of the polyhedron P if there is a vector c for which F is the set of vectors attaining $\max \left\{c^{\top} x \mid x \in P\right\}$ provided that this maximum is finite.

Polyhedra, Face, Facets

Definition

- F defines a face of the polyhedron P if $F=\left\{x \in P \mid \pi^{\top} x=\pi^{0}\right\}$ for some valid inequality $\pi^{\top} x \leq \pi^{0}$ of P. The valid inequality $\pi^{\top} x \leq \pi^{0}$ is said to represent or define a face.
- Alternatively, F is a face of the polyhedron P if there is a vector c for which F is the set of vectors attaining $\max \left\{c^{\top} x \mid x \in P\right\}$ provided that this maximum is finite.
- F is a facet of P if F is a face of P of $\operatorname{dim}(F)=\operatorname{dim}(P)-1$.

Polyhedra, Face, Facets

Definition

An extreme point of P is a 0 -dimensional face of P.

Polyhedra, Face, Facets

Definition

An extreme point of P is a 0 -dimensional face of P.

Proposition

If P is full-dimensional, a valid inequality $\pi^{\top} x \leq \pi^{0}$ is necessary in the description of P if and only if it defines a facet of P.

Polyhedra, Face, Facets

Definition

An extreme point of P is a 0 -dimensional face of P.

Proposition

If P is full-dimensional, a valid inequality $\pi^{\top} x \leq \pi^{0}$ is necessary in the description of P if and only if it defines a facet of P.

Thus, for full-dimensional polyhedra, $\pi^{\top} x \leq \pi^{0}$ defines a facet of P if and only if there are n affinely independent points of P satisfying it at equality.

Outline

(1) Tailored cutting-plane methods

- Introduction
- Strong inequalities
- Polytope Dimension
- Facet and Convex Hull Proofs
- Lifting
- Separation procedure
(2) Research Talk

Outline

(1) Tailored cutting-plane methods

- Introduction
- Strong inequalities
- Polytope Dimension
- Facet and Convex Hull Proofs
- Lifting
- Separation procedure

(2) Research Talk

Polytope dimension

How to prove that the set S has dimension k ?

Polytope dimension

How to prove that the set S has dimension k ?

Method 1:

- Find a system $A x=b$ of equations such that $S \subseteq\left\{x \in \mathbb{R}^{n} \mid A x=b\right\}$ and $\operatorname{rank}(A)=n-k$

Polytope dimension

How to prove that the set S has dimension k ?

Method 1:

- Find a system $A x=b$ of equations such that $S \subseteq\left\{x \in \mathbb{R}^{n} \mid A x=b\right\}$ and $\operatorname{rank}(A)=n-k$
- Exhibit $k+1$ affinely independent points in S.

Polytope dimension

How to prove that the set S has dimension k ?

Method 1:

- Find a system $A x=b$ of equations such that $S \subseteq\left\{x \in \mathbb{R}^{n} \mid A x=b\right\}$ and $\operatorname{rank}(A)=n-k$
- Exhibit $k+1$ affinely independent points in S.

Method 2:

- Find a system $A x=b$ of equations such that $S \subseteq\left\{x \in \mathbb{R}^{n} \mid A x=b\right\}$ and $\operatorname{rank}(A)=n-k$

Polytope dimension

How to prove that the set S has dimension k ?

Method 1:

- Find a system $A x=b$ of equations such that $S \subseteq\left\{x \in \mathbb{R}^{n} \mid A x=b\right\}$ and $\operatorname{rank}(A)=n-k$
- Exhibit $k+1$ affinely independent points in S.

Method 2:

- Find a system $A x=b$ of equations such that $S \subseteq\left\{x \in \mathbb{R}^{n} \mid A x=b\right\}$ and $\operatorname{rank}(A)=n-k$
- Prove that every equation $\alpha^{\top} x=\beta$ satisfied by all $x \in S$ is a linear combination of $A x=b$ (i.e., there exists u s.t. $\alpha=u A$ and $\beta=u b$). Thus, $A x=b$ is the affine hull of S, thus S has dimension k.

Polytope dimension

Example: 01-KP

Polytope dimension

Example: 01-KP
$S=\operatorname{conv}\left(\left\{x \in\{0,1\}^{n} \mid w^{\top} x \leq c\right\}\right)$

Proposition

The dimension of S is $n-|J|$, with $J=\left\{j \mid w_{j}>c\right.$ for $\left.j=1, \ldots n\right\}$.

Outline

(1) Tailored cutting-plane methods

- Introduction
- Strong inequalities
- Polytope Dimension
- Facet and Convex Hull Proofs
- Lifting
- Separation procedure
(2) Research Talk

Outline

(1) Tailored cutting-plane methods

- Introduction
- Strong inequalities
- Polytope Dimension
- Facet and Convex Hull Proofs
- Lifting
- Separation procedure

(2) Research Talk

Facet and Convex Hull Proofs

Hp. conv (X) is bounded and full-dimensional.

- Given $X \in \mathbb{Z}_{+}^{n}$ and a valid inequality $\pi^{\top} x \leq \pi^{0}$ for X, how to prove that $\pi^{\top} x \leq \pi^{0}$ is a facet of $\operatorname{conv}(X)$?

Facet and Convex Hull Proofs

Hp. conv (X) is bounded and full-dimensional.

- Given $X \in \mathbb{Z}_{+}^{n}$ and a valid inequality $\pi^{\top} x \leq \pi^{0}$ for X, how to prove that $\pi^{\top} x \leq \pi^{0}$ is a facet of $\operatorname{conv}(X)$?

Approach 1:

- Find n points in X that satisfy $\pi^{\top} x=\pi^{0}$ and prove they are affinely independent.

Facet and Convex Hull Proofs

Hp. conv (X) is bounded and full-dimensional.

- Given $X \in \mathbb{Z}_{+}^{n}$ and a valid inequality $\pi^{\top} x \leq \pi^{0}$ for X , how to prove that $\pi^{\top} x \leq \pi^{0}$ is a facet of $\operatorname{conv}(X)$?

Facet and Convex Hull Proofs

Hp. conv (X) is bounded and full-dimensional.

- Given $X \in \mathbb{Z}_{+}^{n}$ and a valid inequality $\pi^{\top} x \leq \pi^{0}$ for X, how to prove that $\pi^{\top} x \leq \pi^{0}$ is a facet of $\operatorname{conv}(X)$?

Approach 2:

- Select $t \geq n$ points $x^{1}, \ldots, x^{t} \in X$ satisfying $\pi^{\top} x=\pi^{0}$. Suppose that all these points lie on a generic hyperplane $\mu^{\top} x=\mu^{0}$.
- Solve the linear equation system

$$
\sum_{j=1}^{n} \mu_{j} x_{j}^{k}=\mu_{0} \quad \text { for } k=1, \ldots, t
$$

in the $n+1$ unknowns (μ, μ^{0})

- If the only solution is $\left(\mu, \mu^{0}\right)=\alpha\left(\pi, \pi^{0}\right)$ for $\alpha \neq 0$, then the inequality $\pi^{\top} x=\pi^{0}$ is facet-defining.

Facet and Convex Hull Proofs

Hp. $\operatorname{conv}(X)$ is bounded and full-dimensional.

- Given $X \in \mathbb{Z}_{+}^{n}$ and a polyhedron $P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}$, show P describes the $\operatorname{conv}(X)$.

Facet and Convex Hull Proofs

Hp. conv (X) is bounded and full-dimensional.

- Given $X \in \mathbb{Z}_{+}^{n}$ and a polyhedron $P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}$, show P describes the $\operatorname{conv}(X)$.

Approach 1:

- Show that matrix A have a special structure guaranteeing $P=\operatorname{conv}(X)$, like TUM.

Facet and Convex Hull Proofs

Hp. conv (X) is bounded and full-dimensional.

- Given $X \in \mathbb{Z}_{+}^{n}$ and a polyhedron $P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}$, show P describes the $\operatorname{conv}(X)$.

Approach 1:

- Show that matrix A have a special structure guaranteeing $P=\operatorname{conv}(X)$, like TUM.

Approach 2:

- Show that points $x^{*} \in P$ with a fractional element are not extreme points of P.

Facet and Convex Hull Proofs

Hp. $\operatorname{conv}(X)$ is bounded and full-dimensional.

- Given $X \in \mathbb{Z}_{+}^{n}$ and a polyhedron $P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}$, show P describes the conv (X).

Facet and Convex Hull Proofs

Hp. $\operatorname{conv}(X)$ is bounded and full-dimensional.

- Given $X \in \mathbb{Z}_{+}^{n}$ and a polyhedron $P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}$, show P describes the conv (X).

Approach 3:

- Show that for all $c \in \mathbb{R}^{n}$ the linear program $\min \left\{c^{\top} x \mid A x \leq b\right\}$ has an optimal solution $x^{*} \in X$.

Facet and Convex Hull Proofs

Hp. conv (X) is bounded and full-dimensional.

- Given $X \in \mathbb{Z}_{+}^{n}$ and a polyhedron $P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}$, show P describes the conv (X).

Approach 3:

- Show that for all $c \in \mathbb{R}^{n}$ the linear program $\min \left\{c^{\top} x \mid A x \leq b\right\}$ has an optimal solution $x^{*} \in X$.

Approach 4:

- Show that if $\pi^{\top} x \leq \pi^{0}$ defines a facet of $\operatorname{conv}(X)$ then it must be identical to one of the inequalities $a_{i}^{\top} x \leq b_{i}$ defining P.

Facet and Convex Hull Proofs

Hp. conv (X) is bounded and full-dimensional.

- Given $X \in \mathbb{Z}_{+}^{n}$ and a polyhedron $P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}$, show P describes the $\operatorname{conv}(X)$.

Facet and Convex Hull Proofs

Hp. conv (X) is bounded and full-dimensional.

- Given $X \in \mathbb{Z}_{+}^{n}$ and a polyhedron $P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}$, show P describes the $\operatorname{conv}(X)$.

Approach 5:

- Show that for any $c \in \mathbb{R}^{n}, c \neq 0$ the set of optimal solutions to the problem $\min \left\{c^{\top} x \mid x \in X\right\}$ lies in $\left\{x \mid a_{i}^{\top} x=b_{i}\right\}$ for some $i=1, \ldots, m$.

Facet and Convex Hull Proofs

Hp. conv (X) is bounded and full-dimensional.

- Given $X \in \mathbb{Z}_{+}^{n}$ and a polyhedron $P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}$, show P describes the $\operatorname{conv}(X)$.

Approach 5:

- Show that for any $c \in \mathbb{R}^{n}, c \neq 0$ the set of optimal solutions to the problem $\min \left\{c^{\top} x \mid x \in X\right\}$ lies in $\left\{x \mid a_{i}^{\top} x=b_{i}\right\}$ for some $i=1, \ldots, m$.

Etc.

Some remarks

Consider the decomposition $X=X^{1} \cap X^{2} \rightarrow$ focus on a simpler set, e.g. X^{2} because inequalities valid for X^{2} will be valid for X.

Some remarks

Consider the decomposition $X=X^{1} \cap X^{2} \rightarrow$ focus on a simpler set, e.g. X^{2} because inequalities valid for X^{2} will be valid for X.

If $\pi^{\top} x \leq 0$ is a facet of X^{2}, it might not be a facet of X - but we hope they are strong enough inequalities to speed-up the solving process.

Some remarks

Consider the decomposition $X=X^{1} \cap X^{2} \rightarrow$ focus on a simpler set, e.g. X^{2} because inequalities valid for X^{2} will be valid for X.

If $\pi^{\top} x \leq 0$ is a facet of X^{2}, it might not be a facet of X - but we hope they are strong enough inequalities to speed-up the solving process.

Computational results to show method effectiveness.

Strengthening Cover Inequalities: Extended Covers

Yesterday we have seen the Extended Cover Inequalities for the 01-KP problem.

Proposition

If C is a cover for X, the feasible set of the 01-KP problem, the extended cover inequality

$$
\sum_{j \in E(C)} x_{j} \leq|C|-1
$$

is valid for X, where $E(C)=C \cup\left\{j \mid w_{j} \geq w_{i}\right.$ for all $\left.i \in C\right\}$.

Strengthening Cover Inequalities: Extended Covers

Yesterday we have seen the Extended Cover Inequalities for the 01-KP problem.

Proposition

If C is a cover for X, the feasible set of the 01-KP problem, the extended cover inequality

$$
\sum_{j \in E(C)} x_{j} \leq|C|-1
$$

is valid for X, where $E(C)=C \cup\left\{j \mid w_{j} \geq w_{i}\right.$ for all $\left.i \in C\right\}$.

- The Extended Cover inequality dominates the Cover inequality

Strengthening Cover Inequalities: Extended Covers

Yesterday we have seen the Extended Cover Inequalities for the 01-KP problem.

Proposition

If C is a cover for X, the feasible set of the 01-KP problem, the extended cover inequality

$$
\sum_{j \in E(C)} x_{j} \leq|C|-1
$$

is valid for X, where $E(C)=C \cup\left\{j \mid w_{j} \geq w_{i}\right.$ for all $\left.i \in C\right\}$.

- The Extended Cover inequality dominates the Cover inequality
- The (Extended) Cover inequality can be strengthened by lifting

Outline

(1) Tailored cutting-plane methods

- Introduction
- Strong inequalities
- Polytope Dimension
- Facet and Convex Hull Proofs
- Lifting
- Separation procedure
(2) Research Talk

Outline

(1) Tailored cutting-plane methods

- Introduction
- Strong inequalities
- Polytope Dimension
- Facet and Convex Hull Proofs
- Lifting
- Separation procedure

(2) Research Talk

Strengthening Cover Inequalities: Lifting

Proposition

Let C be a cover for K. The cover inequality associated with C is facet-defining for $P_{C}=\operatorname{conv}(K) \cap\left\{x \in \mathbb{R}^{n} \mid x_{j}=0 \forall j \in\{1, \ldots, n\} \backslash C\right\}$ if and only if C is a minimal cover.

Strengthening Cover Inequalities: Lifting

Proposition

Let C be a cover for K. The cover inequality associated with C is facet-defining for $P_{C}=\operatorname{conv}(K) \cap\left\{x \in \mathbb{R}^{n} \mid x_{j}=0 \forall j \in\{1, \ldots, n\} \backslash C\right\}$ if and only if C is a minimal cover.

Given a cover C for the 01-KP problem, find the best possible values for α_{j} for $j \in\{1, \ldots, n\} \backslash C$ such that

$$
\sum_{j \in C} x_{j}+\sum_{j \in\{1, \ldots, n\} \backslash C} \alpha_{j} x_{j} \leq|C|-1
$$

is valid for X.

Strengthening Cover Inequalities: Lifting

Given a cover C for the 01-KP problem, find the best possible values for α_{j} for $j \in\{1, \ldots, n\} \backslash C$ such that $\sum_{j \in C} x_{j}+\sum_{j \in\{1, \ldots, n\} \backslash C} \alpha_{j} x_{j} \leq|C|-1$ is valid for X.

Strengthening Cover Inequalities: Lifting

Given a cover C for the 01-KP problem, find the best possible values for α_{j} for $j \in\{1, \ldots, n\} \backslash C$ such that $\sum_{j \in C} x_{j}+\sum_{j \in\{1, \ldots, n\} \backslash C} \alpha_{j} x_{j} \leq|C|-1$ is valid for X.

Iteratively solve the problem

$$
\begin{array}{r}
\xi_{t}=\max \sum_{i=1}^{t-1} \alpha_{j_{i}} x_{j_{i}}+\sum_{j \in C} x_{j} \\
\sum_{i=1}^{t-1} \alpha_{j_{i}} x_{j_{i}}+\sum_{j \in C} w_{j} x_{j} \leq b-w_{j_{t}} \\
x \in\{0,1\}^{|C|+t-1}
\end{array}
$$

for t the current iteration and j_{1}, \ldots, j_{r} be an ordering of $N \backslash C$.

Strengthening Cover Inequalities: Lifting

Given a cover C for the 01-KP problem, find the best possible values for α_{j} for $j \in\{1, \ldots, n\} \backslash C$ such that $\sum_{j \in C} x_{j}+\sum_{j \in\{1, \ldots, n\} \backslash C} \alpha_{j} x_{j} \leq|C|-1$ is valid for X.

Iteratively solve the problem

$$
\begin{array}{r}
\xi_{t}=\max \sum_{i=1}^{t-1} \alpha_{j_{i}} x_{j_{i}}+\sum_{j \in C} x_{j} \\
\sum_{i=1}^{t-1} \alpha_{j_{i}} x_{j_{i}}+\sum_{j \in C} w_{j} x_{j} \leq b-w_{j_{t}} \\
x \in\{0,1\}^{|C|+t-1}
\end{array}
$$

for t the current iteration and j_{1}, \ldots, j_{r} be an ordering of $N \backslash C$. Set $\alpha_{j_{t}}=|C|-1-\xi_{t}$ and iterate.

Strengthening Cover Inequalities: Lifting

Given a cover C for the 01-KP problem, find the best possible values for α_{j} for $j \in\{1, \ldots, n\} \backslash C$ such that $\sum_{j \in C} x_{j}+\sum_{j \in\{1, \ldots, n\} \backslash C} \alpha_{j} x_{j} \leq|C|-1$ is valid for X.

Iteratively solve the problem

$$
\begin{array}{r}
\xi_{t}=\max \sum_{i=1}^{t-1} \alpha_{j_{i}} x_{j_{i}}+\sum_{j \in C} x_{j} \\
\sum_{i=1}^{t-1} \alpha_{j_{i}} x_{j_{i}}+\sum_{j \in C} w_{j} x_{j} \leq b-w_{j_{t}} \\
x \in\{0,1\}^{|C|+t-1}
\end{array}
$$

for t the current iteration and j_{1}, \ldots, j_{r} be an ordering of $N \backslash C$. Set $\alpha_{j_{t}}=|C|-1-\xi_{t}$ and iterate.

The resulting Lift Cover Inequalities are facet-defining.

Strengthening Cover Inequalities: Lifting

Generalization

Strengthening Cover Inequalities: Lifting

Generalization

Proposition

Consider a set $S \subseteq\{0,1\}^{n}$ such that $S \cap\left\{x \mid x_{n}=1\right\} \neq \emptyset$ and let $\sum_{j=1}^{n-1} \alpha_{j} x_{j} \leq \beta$ be a valid inequality for $S \cap\left\{x \mid x_{n}=0\right\}$. Then

$$
\alpha_{n}=\beta-\max \left\{\sum_{j=1}^{n=1} \alpha_{j} x_{j} \mid x \in S, x_{n}=1\right\}
$$

is the largest coefficient such that $\sum_{j=1}^{n-1} \alpha_{j} x_{j}+\alpha_{n} x_{n} \leq \beta$ is valid for S. Furthermore, if $\sum_{j=1}^{n-1} \alpha_{j} x_{j} \leq \beta$ defines a d-dimensional face of $\operatorname{conv}(S) \cap\left\{x_{n}=0\right\}$, then $\sum_{j=1}^{n} \alpha_{j} x_{j} \leq \beta$ defines a face of $\operatorname{conv}(S)$ of dimension at least $d+1$.

Outline

(1) Tailored cutting-plane methods

- Introduction
- Strong inequalities
- Polytope Dimension
- Facet and Convex Hull Proofs
- Lifting
- Separation procedure
(2) Research Talk

Outline

(1) Tailored cutting-plane methods

- Introduction
- Strong inequalities
- Polytope Dimension
- Facet and Convex Hull Proofs
- Lifting
- Separation procedure

(2) Research Talk

Separation Procedure

We are given a fractional solution x^{*} with $x^{*} \in[0,1]^{n}$, the separation procedure:

- checks whether x^{*} satisfies all the cover inequalities

Separation Procedure

We are given a fractional solution x^{*} with $x^{*} \in[0,1]^{n}$, the separation procedure:

- checks whether x^{*} satisfies all the cover inequalities
- if at least one cover inequality is not satisfied, identify it.

Separation Procedure

We are given a fractional solution x^{*} with $x^{*} \in[0,1]^{n}$, the separation procedure:

- checks whether x^{*} satisfies all the cover inequalities
- if at least one cover inequality is not satisfied, identify it.

Formally: does it exist a set $C \subseteq\{1, \ldots, n\}$ with $\sum_{j \in C} w_{j}>c$ such that $\sum_{j \in C}\left(1-x_{j}^{*}\right)<1$?

Separation Procedure

We are given a fractional solution x^{*} with $x^{*} \in[0,1]^{n}$, the separation procedure:

- checks whether x^{*} satisfies all the cover inequalities
- if at least one cover inequality is not satisfied, identify it.

Formally: does it exist a set $C \subseteq\{1, \ldots, n\}$ with $\sum_{j \in C} w_{j}>c$ such that $\sum_{j \in C}\left(1-x_{j}^{*}\right)<1$?
As a mathematical programming problem:

$$
\min \left\{\sum_{j=1}^{n}\left(1-x_{j}^{*}\right) z_{j} \mid \sum_{j=1}^{n} w_{j} z_{j}>c, z \in\{0,1\}^{n}\right\}
$$

Is its optimal solution <1 ?

Separation Procedure

We are given a fractional solution x^{*} with $x^{*} \in[0,1]^{n}$, the separation procedure:

- checks whether x^{*} satisfies all the cover inequalities
- if at least one cover inequality is not satisfied, identify it.

Formally: does it exist a set $C \subseteq\{1, \ldots, n\}$ with $\sum_{j \in C} w_{j}>c$ such that $\sum_{j \in C}\left(1-x_{j}^{*}\right)<1$?
As a mathematical programming problem:

$$
\min \left\{\sum_{j=1}^{n}\left(1-x_{j}^{*}\right) z_{j} \mid \sum_{j=1}^{n} w_{j} z_{j}>c, z \in\{0,1\}^{n}\right\}
$$

Is its optimal solution <1 ?
Potentially as difficult as solving the 01-KP problem \rightarrow heuristics!

Outline

(1) Tailored cutting-plane methods

- Introduction
- Strong inequalities
- Polytope Dimension
- Facet and Convex Hull Proofs
- Lifting
- Separation procedure
(2) Research Talk

Outline

(1) Tailored cutting-plane methods

- Introduction
- Strong inequalities
- Polytope Dimension
- Facet and Convex Hull Proofs
- Lifting
- Separation procedure

(2) Research Talk

