SUMMER SCHOOL ON ASPECTS OF OPTIMIZATION Discrete Optimization September 15th, 2022

> Claudia D'Ambrosio dambrosio@lix.polytechnique.fr

Tailored cutting-plane methods

- Introduction
- Strong inequalities
- Polytope Dimension
- Facet and Convex Hull Proofs
- Lifting
- Separation procedure

2 Research Talk

-∢ ∃ ▶

1 Tailored cutting-plane methods

Introduction

- Strong inequalities
- Polytope Dimension
- Facet and Convex Hull Proofs
- Lifting
- Separation procedure

2 Research Talk

▶ ∢ ∃ ▶

• valid: for a specific problem, not all (M)ILPs

æ

イロト イヨト イヨト イヨト

- valid: for a specific problem, not all (M)ILPs
- strong: non-trivial, ideally facet-defining

- (日)

- E > - E >

- valid: for a specific problem, not all (M)ILPs
- strong: non-trivial, ideally facet-defining

A priori vs. on the fly addition

• standard vs. tailored solving method

-∢ ∃ ▶

- valid: for a specific problem, not all (M)ILPs
- strong: non-trivial, ideally facet-defining

A priori vs. on the fly addition

- standard vs. tailored solving method
- Potentially enormous number of inequalities vs. only a relevant subset

- valid: for a specific problem, not all (M)ILPs
- strong: non-trivial, ideally facet-defining

A priori vs. on the fly addition

- standard vs. tailored solving method
- Potentially enormous number of inequalities vs. only a relevant subset

Decomposition :

 $X = X^1 \cap X^2 \rightarrow$ focus on a simpler set, e.g. X^2 because inequalities valid for X^2 will be valid for X.

• Definition of strong inequalities

2

イロト イヨト イヨト イヨト

- Definition of strong inequalities
- Polytope dimension and how to find it

э

(日) (四) (日) (日) (日)

- Definition of strong inequalities
- Polytope dimension and how to find it
- Face, facets, extreme points

→ ∢ ∃ →

- Definition of strong inequalities
- Polytope dimension and how to find it
- Face, facets, extreme points
- Separation

▶ ∢ ∃ ▶

- Definition of strong inequalities
- Polytope dimension and how to find it
- Face, facets, extreme points
- Separation
- Lifting

▶ ∢ ∃ ▶

Tailored cutting-plane methods

- Introduction
- Strong inequalities
- Polytope Dimension
- Facet and Convex Hull Proofs
- Lifting
- Separation procedure

2 Research Talk

-∢ ∃ ▶

1 Tailored cutting-plane methods

- Introduction
- Strong inequalities
- Polytope Dimension
- Facet and Convex Hull Proofs
- Lifting
- Separation procedure

2 Research Talk

▶ ∢ ∃ ▶

Strong valid inequalities

Remark

Inequalities $\pi^{\top}x \leq \pi^{0}$ and $\lambda \pi^{\top}x \leq \lambda \pi^{0}$ are identical for any $\lambda > 0$.

э

イロト イヨト イヨト イヨト

Strong valid inequalities

Remark

Inequalities $\pi^{\top}x \leq \pi^{0}$ and $\lambda \pi^{\top}x \leq \lambda \pi^{0}$ are identical for any $\lambda > 0$.

Definition

If $\pi^{\top}x \leq \pi^{0}$ and $\mu^{\top}x \leq \mu^{0}$ are two valid inequalities for $X \subseteq \mathbb{R}^{n}_{+}$, $\pi^{\top}x \leq \pi^{0}$ dominates $\mu^{\top}x \leq \mu^{0}$ if there exists u > 0 such that $\pi > u\mu$ and $\pi^{0} \leq u\mu^{0}$.

イロト イポト イヨト イヨト

Strong valid inequalities

Remark

Inequalities
$$\pi^{\top}x \leq \pi^{0}$$
 and $\lambda \pi^{\top}x \leq \lambda \pi^{0}$ are identical for any $\lambda > 0$.

Definition

If $\pi^{\top}x \leq \pi^{0}$ and $\mu^{\top}x \leq \mu^{0}$ are two valid inequalities for $X \subseteq \mathbb{R}^{n}_{+}$, $\pi^{\top}x \leq \pi^{0}$ dominates $\mu^{\top}x \leq \mu^{0}$ if there exists u > 0 such that $\pi > u\mu$ and $\pi^{0} \leq u\mu^{0}$.

Definition

An inequality $\pi^{\top}x \leq \pi^{0}$ is redundant in the description of $X \subseteq \mathbb{R}^{n}_{+}$, if there exist $k \geq 2$ valid inequalities $(\pi^{i})^{\top}x \leq \pi^{i0}$ for i = 1, ..., k for X and weights $u_{i} > 0$ for i = 1, ..., k such that $(\sum_{i=1}^{k} u_{i}\pi^{i})^{\top}x \leq \sum_{i=1}^{k} u_{i}\pi^{i0}$ dominates $\pi^{\top}x \leq \pi^{0}$.

• Checking redundancy may be very difficult

æ

イロト イ理ト イヨト イヨト

- Checking redundancy may be very difficult
- **Theoretically**: it is important to know which inequalities are nonredundant

イロト イポト イヨト イヨト

- Checking redundancy may be very difficult
- **Theoretically**: it is important to know which inequalities are nonredundant
- **Practically** : it is important to avoid using an inequality when one that dominates it is available

Classical formulation

$$K = \left\{ x \in \{0,1\}^n \mid \sum_{j=1}^n w_j x_j \le c \right\}$$

э

(日) (四) (日) (日) (日)

Classical formulation

$$\mathcal{K} = \left\{ x \in \{0,1\}^n \mid \sum_{j=1}^n w_j x_j \leq c \right\}$$

Cover formulation

$$\mathcal{K}^{\mathcal{C}} = \left\{ x \in \{0,1\}^n \mid \sum_{j \in \mathcal{C}} x_j \leq |\mathcal{C}| - 1 \; \forall \text{ minimal cover } \mathcal{C} \text{ for } \mathcal{K} \right\}$$

э

(日) (四) (日) (日) (日)

Classical formulation

$$K = \left\{ x \in \{0,1\}^n \mid \sum_{j=1}^n w_j x_j \leq c \right\}$$

Cover formulation

$$\mathcal{K}^{\mathcal{C}} = \left\{ x \in \{0,1\}^n \mid \sum_{j \in \mathcal{C}} x_j \leq |\mathcal{C}| - 1 \; \forall \text{ minimal cover } \mathcal{C} \text{ for } \mathcal{K} \right\}$$

Proposition

The sets K and K^C coincide.

Image: Image:

- E > - E >

Classical formulation

$$K = \left\{ x \in \{0,1\}^n \mid \sum_{j=1}^n w_j x_j \leq c \right\}$$

Cover formulation

$$\mathcal{K}^{\mathcal{C}} = \left\{ x \in \{0,1\}^n \mid \sum_{j \in \mathcal{C}} x_j \leq |\mathcal{C}| - 1 \; \forall \text{ minimal cover } \mathcal{C} \text{ for } \mathcal{K} \right\}$$

Proposition

The sets K and K^C coincide.

Which formulation is stronger?

C. D'Ambrosio

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Image: Image:

(日) (四) (日) (日) (日)

$$n = 3, w = (3, 3, 3), c = 5$$
, thus
 $K = \{x \in \{0, 1\}^n \mid 3x_1 + 3x_2 + 3x_3 \le 5\}$
 $K^C = \{x \in \{0, 1\}^n \mid x_i + x_j \le 1 \ \forall i, j = 1, 2, 3; i \ne j\}$

(日) (四) (日) (日) (日)

$$n = 3, w = (3, 3, 3), c = 5$$
, thus
 $K = \{x \in \{0, 1\}^n \mid 3x_1 + 3x_2 + 3x_3 \le 5\}$
 $K^C = \{x \in \{0, 1\}^n \mid x_i + x_j \le 1 \ \forall i, j = 1, 2, 3; i \ne j\}$

Summing up the 3 inequalities of K^C we have $2x_1 + 2x_2 + 2x_3 \le 3$

$$n = 3, w = (3, 3, 3), c = 5$$
, thus
 $K = \{x \in \{0, 1\}^n \mid 3x_1 + 3x_2 + 3x_3 \le 5\}$
 $K^C = \{x \in \{0, 1\}^n \mid x_i + x_j \le 1 \ \forall i, j = 1, 2, 3; i \ne j\}$
Summing up the 3 inequalities of K^C we have $2w + 2w + 2w \le 2$ whi

Summing up the 3 inequalities of K^{c} we have $2x_1 + 2x_2 + 2x_3 \le 3$ which implies $3x_1 + 3x_2 + 3x_3 \le 5$,

$$n = 3, w = (3, 3, 3), c = 5$$
, thus
 $K = \{x \in \{0, 1\}^n \mid 3x_1 + 3x_2 + 3x_3 \le 5\}$
 $K^C = \{x \in \{0, 1\}^n \mid x_i + x_j \le 1 \ \forall i, j = 1, 2, 3; i \ne j\}$

Summing up the 3 inequalities of K^C we have $2x_1 + 2x_2 + 2x_3 \le 3$ which implies $3x_1 + 3x_2 + 3x_3 \le 5$, thus K^C is stronger than K (e.g. $(1, \frac{2}{3}, 0)$).

(日) (四) (日) (日) (日)

$$n = 3, w = (1, 1, 1), c = 1$$
, thus
 $K = \{x \in \{0, 1\}^n \mid x_1 + x_2 + x_3 \le 1\}$
 $K^C = \{x \in \{0, 1\}^n \mid x_i + x_j \le 1 \ \forall i, j = 1, 2, 3; i \ne j\}$

(日) (四) (日) (日) (日)

$$n = 3, w = (1, 1, 1), c = 1$$
, thus
 $K = \{x \in \{0, 1\}^n \mid x_1 + x_2 + x_3 \le 1\}$
 $K^C = \{x \in \{0, 1\}^n \mid x_i + x_j \le 1 \ \forall i, j = 1, 2, 3; i \ne j\}$

Summing up the 3 inequalities of K^C we have $2x_1 + 2x_2 + 2x_3 \le 3$

$$n = 3, w = (1, 1, 1), c = 1$$
, thus
 $\mathcal{K} = \{x \in \{0, 1\}^n \mid x_1 + x_2 + x_3 \le 1\}$
 $\mathcal{K}^{\mathcal{C}} = \{x \in \{0, 1\}^n \mid x_i + x_j \le 1 \ \forall i, j = 1, 2, 3; i \neq j\}$

Summing up the 3 inequalities of K^C we have $2x_1 + 2x_2 + 2x_3 \le 3$ which is implied by $x_1 + x_2 + x_3 \le 1$,

$$n = 3, w = (1, 1, 1), c = 1$$
, thus
 $\mathcal{K} = \{x \in \{0, 1\}^n \mid x_1 + x_2 + x_3 \le 1\}$
 $\mathcal{K}^{\mathcal{C}} = \{x \in \{0, 1\}^n \mid x_i + x_j \le 1 \ \forall i, j = 1, 2, 3; i \neq j\}$

Summing up the 3 inequalities of K^C we have $2x_1 + 2x_2 + 2x_3 \le 3$ which is implied by $x_1 + x_2 + x_3 \le 1$, thus K is stronger than K^C (e.g. $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$).

• Can we improve K^C ? \rightarrow strong valid inequalities

∃ ► < ∃ ►
- Can we improve K^C ? \rightarrow strong valid inequalities
- K^C has an exponential number of constraints \rightarrow no a-priori addition

- Can we improve K^C ? \rightarrow strong valid inequalities
- K^C has an exponential number of constraints \rightarrow no a-priori addition
- Use "some" constraints of K^C to improve $K \rightarrow$ separation procedure

Aim: how to (try to) identify the best possible cuts?

イロト 不得下 イヨト イヨト

Aim: how to (try to) identify the best possible cuts?

Theorem

If P is a full-dimensional polyhedron, it has a unique minimal description

$$P = \{x \in \mathbb{R}^n \mid (a^i)^\top x \le b_i \text{ for } i = 1, \dots, m\}$$

where each inequality is unique within a positive multiple.

∃ ► < ∃ ►

Aim: how to (try to) identify the best possible cuts?

Theorem

If P is a full-dimensional polyhedron, it has a unique minimal description

$$P = \{x \in \mathbb{R}^n \mid (a^i)^\top x \le b_i \text{ for } i = 1, \dots, m\}$$

where each inequality is unique within a positive multiple.

Thus, any other valid inequality is redundant.

Polyhedra, Face, Facets

Definition

The points $x^1, x^2, \ldots, x^k \in \mathbb{R}^n$ are affinely independent if the only solution to the linear system

$$\sum_{j=1}^{n} \lambda_j x^j = 0$$
$$\sum_{j=1}^{n} \lambda_j = 0$$

is $\lambda_1 = \lambda_2 = \cdots = \lambda_k = 0.$

4 B K 4 B K

Polyhedra, Face, Facets

Definition

The points $x^1, x^2, \ldots, x^k \in \mathbb{R}^n$ are affinely independent if the only solution to the linear system

$$\sum_{j=1}^{n} \lambda_j x^j = 0$$
$$\sum_{j=1}^{n} \lambda_j = 0$$

is
$$\lambda_1 = \lambda_2 = \cdots = \lambda_k = 0.$$

Definition

The dimension of P, dim(P), is one less than the maximum number of affinely independent points in P.

C. D'Ambrosio

• *F* defines a face of the polyhedron *P* if $F = \{x \in P \mid \pi^{\top}x = \pi^{0}\}$ for some valid inequality $\pi^{\top}x \leq \pi^{0}$ of *P*. The valid inequality $\pi^{\top}x \leq \pi^{0}$ is said to represent or define a face.

- *F* defines a face of the polyhedron *P* if $F = \{x \in P \mid \pi^{\top}x = \pi^{0}\}$ for some valid inequality $\pi^{\top}x \leq \pi^{0}$ of *P*. The valid inequality $\pi^{\top}x \leq \pi^{0}$ is said to represent or define a face.
- Alternatively, F is a face of the polyhedron P if there is a vector c for which F is the set of vectors attaining max{c[⊤]x | x ∈ P} provided that this maximum is finite.

- *F* defines a face of the polyhedron *P* if $F = \{x \in P \mid \pi^{\top}x = \pi^{0}\}$ for some valid inequality $\pi^{\top}x \leq \pi^{0}$ of *P*. The valid inequality $\pi^{\top}x \leq \pi^{0}$ is said to represent or define a face.
- Alternatively, F is a face of the polyhedron P if there is a vector c for which F is the set of vectors attaining max{c[⊤]x | x ∈ P} provided that this maximum is finite.
- F is a facet of P if F is a face of P of $\dim(F) = \dim(P) 1$.

An extreme point of P is a 0-dimensional face of P.

Image: Image:

э

.

An extreme point of P is a 0-dimensional face of P.

Proposition

If *P* is full-dimensional, a valid inequality $\pi^{\top} x \leq \pi^{0}$ is necessary in the description of *P* if and only if it defines a facet of *P*.

An extreme point of P is a 0-dimensional face of P.

Proposition

If *P* is full-dimensional, a valid inequality $\pi^{\top} x \leq \pi^{0}$ is necessary in the description of *P* if and only if it defines a facet of *P*.

Thus, for full-dimensional polyhedra, $\pi^{\top} x \leq \pi^0$ defines a facet of *P* if and only if there are *n* affinely independent points of *P* satisfying it at equality.

Tailored cutting-plane methods

- Introduction
- Strong inequalities
- Polytope Dimension
- Facet and Convex Hull Proofs
- Lifting
- Separation procedure

2 Research Talk

1 Tailored cutting-plane methods

- Introduction
- Strong inequalities
- Polytope Dimension
- Facet and Convex Hull Proofs
- Lifting
- Separation procedure

2 Research Talk

▶ ∢ ∃ ▶

Polytope dimension

How to prove that the set S has dimension k?

< □ > < 同 > < 回 > < 回 > < 回 >

Method 1:

• Find a system Ax = b of equations such that $S \subseteq \{x \in \mathbb{R}^n \mid Ax = b\}$ and rank(A) = n - k

- E > - E >

Method 1:

- Find a system Ax = b of equations such that $S \subseteq \{x \in \mathbb{R}^n \mid Ax = b\}$ and rank(A) = n - k
- Exhibit k + 1 affinely independent points in S.

Method 1:

- Find a system Ax = b of equations such that $S \subseteq \{x \in \mathbb{R}^n \mid Ax = b\}$ and rank(A) = n - k
- Exhibit k + 1 affinely independent points in S.

Method 2:

• Find a system Ax = b of equations such that $S \subseteq \{x \in \mathbb{R}^n \mid Ax = b\}$ and rank(A) = n - k

Method 1:

- Find a system Ax = b of equations such that $S \subseteq \{x \in \mathbb{R}^n \mid Ax = b\}$ and rank(A) = n - k
- Exhibit k + 1 affinely independent points in S.

Method 2:

- Find a system Ax = b of equations such that $S \subseteq \{x \in \mathbb{R}^n \mid Ax = b\}$ and rank(A) = n - k
- Prove that every equation α^Tx = β satisfied by all x ∈ S is a linear combination of Ax = b (i.e., there exists u s.t. α = uA and β = ub). Thus, Ax = b is the affine hull of S, thus S has dimension k.

イロト イヨト イヨト ・

Example: 01-KP

æ

イロト イヨト イヨト イヨト

Example: 01-KP

$$S = \text{conv}(\{x \in \{0,1\}^n \mid w^{\top}x \le c\})$$

Proposition

The dimension of S is n - |J|, with $J = \{j \mid w_j > c \text{ for } j = 1, \dots n\}$.

æ

Tailored cutting-plane methods

- Introduction
- Strong inequalities
- Polytope Dimension
- Facet and Convex Hull Proofs
- Lifting
- Separation procedure

2 Research Talk

1 Tailored cutting-plane methods

- Introduction
- Strong inequalities
- Polytope Dimension

• Facet and Convex Hull Proofs

- Lifting
- Separation procedure

2 Research Talk

▶ ∢ ∃ ▶

• Given $X \in \mathbb{Z}_+^n$ and a valid inequality $\pi^\top x \le \pi^0$ for X, how to prove that $\pi^\top x \le \pi^0$ is a facet of conv(X)?

• Given $X \in \mathbb{Z}_+^n$ and a valid inequality $\pi^\top x \le \pi^0$ for X, how to prove that $\pi^\top x \le \pi^0$ is a facet of conv(X)?

Approach 1:

• Find *n* points in *X* that satisfy $\pi^{\top}x = \pi^{0}$ and prove they are affinely independent.

Facet and Convex Hull Proofs

Hp. conv(X) is bounded and full-dimensional.

• Given $X \in \mathbb{Z}_+^n$ and a valid inequality $\pi^\top x \le \pi^0$ for X, how to prove that $\pi^\top x \le \pi^0$ is a facet of conv(X)?

.

Facet and Convex Hull Proofs

Hp. conv(X) is bounded and full-dimensional.

• Given $X \in \mathbb{Z}_+^n$ and a valid inequality $\pi^\top x \le \pi^0$ for X, how to prove that $\pi^\top x \le \pi^0$ is a facet of conv(X)?

Approach 2:

• Select $t \ge n$ points $x^1, \ldots, x^t \in X$ satisfying $\pi^\top x = \pi^0$. Suppose that all these points lie on a generic hyperplane $\mu^\top x = \mu^0$.

• Solve the linear equation system

$$\sum_{j=1}^n \mu_j x_j^k = \mu_0 \quad \text{ for } k = 1, \dots, t$$

in the n+1 unknowns (μ, μ^0)

• If the only solution is $(\mu, \mu^0) = \alpha(\pi, \pi^0)$ for $\alpha \neq 0$, then the inequality $\pi^\top x = \pi^0$ is facet-defining.

• Given $X \in \mathbb{Z}_+^n$ and a polyhedron $P = \{x \in \mathbb{R}^n \mid Ax \le b\}$, show P describes the conv(X).

• Given $X \in \mathbb{Z}_+^n$ and a polyhedron $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$, show P describes the conv(X).

Approach 1:

• Show that matrix A have a special structure guaranteeing $P = \operatorname{conv}(X)$, like TUM.

• Given $X \in \mathbb{Z}_+^n$ and a polyhedron $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$, show P describes the conv(X).

Approach 1:

• Show that matrix A have a special structure guaranteeing $P = \operatorname{conv}(X)$, like TUM.

Approach 2:

 Show that points x^{*} ∈ P with a fractional element are not extreme points of P.

• Given $X \in \mathbb{Z}_+^n$ and a polyhedron $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$, show P describes the conv(X).

∃ ► < ∃ ►

• Given $X \in \mathbb{Z}_+^n$ and a polyhedron $P = \{x \in \mathbb{R}^n \mid Ax \le b\}$, show P describes the conv(X).

Approach 3:

• Show that for all $c \in \mathbb{R}^n$ the linear program min $\{c^\top x \mid Ax \leq b\}$ has an optimal solution $x^* \in X$.

• Given $X \in \mathbb{Z}_+^n$ and a polyhedron $P = \{x \in \mathbb{R}^n \mid Ax \le b\}$, show P describes the conv(X).

Approach 3:

• Show that for all $c \in \mathbb{R}^n$ the linear program min $\{c^\top x \mid Ax \leq b\}$ has an optimal solution $x^* \in X$.

Approach 4:

Show that if π[⊤]x ≤ π⁰ defines a facet of conv(X) then it must be identical to one of the inequalities a[⊤]_ix ≤ b_i defining P.

• Given $X \in \mathbb{Z}_+^n$ and a polyhedron $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$, show P describes the conv(X).

• Given $X \in \mathbb{Z}_+^n$ and a polyhedron $P = \{x \in \mathbb{R}^n \mid Ax \le b\}$, show P describes the conv(X).

Approach 5:

Show that for any c ∈ ℝⁿ, c ≠ 0 the set of optimal solutions to the problem min{c^Tx | x ∈ X} lies in {x | a_i^Tx = b_i} for some i = 1,..., m.
Hp. conv(X) is bounded and full-dimensional.

• Given $X \in \mathbb{Z}_+^n$ and a polyhedron $P = \{x \in \mathbb{R}^n \mid Ax \le b\}$, show P describes the conv(X).

Approach 5:

Show that for any c ∈ ℝⁿ, c ≠ 0 the set of optimal solutions to the problem min{c^Tx | x ∈ X} lies in {x | a_i^Tx = b_i} for some i = 1,..., m.

Etc.

Consider the decomposition $X = X^1 \cap X^2 \rightarrow$ focus on a simpler set, e.g. X^2 because inequalities valid for X^2 will be valid for X.

Consider the decomposition $X = X^1 \cap X^2 \rightarrow$ focus on a simpler set, e.g. X^2 because inequalities valid for X^2 will be valid for X.

If $\pi^{\top} x \leq 0$ is a facet of X^2 , it might not be a facet of X – but we hope they are strong enough inequalities to speed-up the solving process.

Consider the decomposition $X = X^1 \cap X^2 \rightarrow$ focus on a simpler set, e.g. X^2 because inequalities valid for X^2 will be valid for X.

If $\pi^{\top} x \leq 0$ is a facet of X^2 , it might not be a facet of X – but we hope they are strong enough inequalities to speed-up the solving process.

Computational results to show method effectiveness.

Strengthening Cover Inequalities: Extended Covers

Yesterday we have seen the Extended Cover Inequalities for the 01-KP problem.

Proposition

If C is a cover for X, the feasible set of the 01-KP problem, the extended cover inequality

$$\sum_{\in E(C)} x_j \le |C| - 1$$

is valid for X, where $E(C) = C \cup \{j \mid w_j \ge w_i \text{ for all } i \in C\}$.

i

Strengthening Cover Inequalities: Extended Covers

Yesterday we have seen the Extended Cover Inequalities for the 01-KP problem.

Proposition

If C is a cover for X, the feasible set of the 01-KP problem, the extended cover inequality

$$\sum_{\in E(C)} x_j \le |C| - 1$$

is valid for X, where $E(C) = C \cup \{j \mid w_j \ge w_i \text{ for all } i \in C\}$.

i

• The Extended Cover inequality dominates the Cover inequality

Strengthening Cover Inequalities: Extended Covers

Yesterday we have seen the Extended Cover Inequalities for the 01-KP problem.

Proposition

If C is a cover for X, the feasible set of the 01-KP problem, the extended cover inequality

$$\sum_{\in E(C)} x_j \le |C| - 1$$

is valid for X, where $E(C) = C \cup \{j \mid w_j \ge w_i \text{ for all } i \in C\}$.

i

• The Extended Cover inequality dominates the Cover inequality

• The (Extended) Cover inequality can be strengthened by lifting

- Introduction
- Strong inequalities
- Polytope Dimension
- Facet and Convex Hull Proofs
- Lifting
- Separation procedure

2 Research Talk

- Introduction
- Strong inequalities
- Polytope Dimension
- Facet and Convex Hull Proofs
- Lifting
- Separation procedure

2 Research Talk

▶ ∢ ∃ ▶

Proposition

Let C be a cover for K. The cover inequality associated with C is facet-defining for $P_C = \operatorname{conv}(K) \cap \{x \in \mathbb{R}^n \mid x_j = 0 \ \forall j \in \{1, \ldots, n\} \setminus C\}$ if and only if C is a minimal cover.

Proposition

Let C be a cover for K. The cover inequality associated with C is facet-defining for $P_C = \operatorname{conv}(K) \cap \{x \in \mathbb{R}^n \mid x_j = 0 \ \forall j \in \{1, \ldots, n\} \setminus C\}$ if and only if C is a minimal cover.

Given a cover C for the 01-KP problem, find the best possible values for α_j for $j \in \{1, ..., n\} \setminus C$ such that

$$\sum_{j\in C} x_j + \sum_{j\in\{1,\ldots,n\}\setminus C} \alpha_j x_j \le |C| - 1$$

is valid for X.

Given a cover *C* for the 01-KP problem, find the best possible values for α_j for $j \in \{1, \ldots, n\} \setminus C$ such that $\sum_{j \in C} x_j + \sum_{j \in \{1, \ldots, n\} \setminus C} \alpha_j x_j \leq |C| - 1$ is valid for *X*.

Given a cover *C* for the 01-KP problem, find the best possible values for α_j for $j \in \{1, \ldots, n\} \setminus C$ such that $\sum_{j \in C} x_j + \sum_{j \in \{1, \ldots, n\} \setminus C} \alpha_j x_j \leq |C| - 1$ is valid for *X*.

Iteratively solve the problem

$$\xi_t = \max \sum_{i=1}^{t-1} \alpha_{j_i} x_{j_i} + \sum_{j \in C} x_j$$
$$\sum_{i=1}^{t-1} \alpha_{j_i} x_{j_i} + \sum_{j \in C} w_j x_j \le b - w_{j_t}$$
$$x \in \{0, 1\}^{|C|+t-1}$$

for t the current iteration and j_1, \ldots, j_r be an ordering of $N \setminus C$.

イロト イヨト イヨト ・

Given a cover *C* for the 01-KP problem, find the best possible values for α_j for $j \in \{1, \ldots, n\} \setminus C$ such that $\sum_{j \in C} x_j + \sum_{j \in \{1, \ldots, n\} \setminus C} \alpha_j x_j \leq |C| - 1$ is valid for *X*.

Iteratively solve the problem

$$\xi_t = \max \sum_{i=1}^{t-1} \alpha_{j_i} x_{j_i} + \sum_{j \in C} x_j$$
$$\sum_{i=1}^{t-1} \alpha_{j_i} x_{j_i} + \sum_{j \in C} w_j x_j \le b - w_{j_t}$$
$$x \in \{0, 1\}^{|C|+t-1}$$

for t the current iteration and j_1, \ldots, j_r be an ordering of $N \setminus C$. Set $\alpha_{j_t} = |C| - 1 - \xi_t$ and iterate.

イロト イヨト イヨト イヨト 二日

Given a cover *C* for the 01-KP problem, find the best possible values for α_j for $j \in \{1, \ldots, n\} \setminus C$ such that $\sum_{j \in C} x_j + \sum_{j \in \{1, \ldots, n\} \setminus C} \alpha_j x_j \leq |C| - 1$ is valid for *X*.

Iteratively solve the problem

$$\xi_t = \max \sum_{i=1}^{t-1} \alpha_{j_i} x_{j_i} + \sum_{j \in C} x_j$$
$$\sum_{i=1}^{t-1} \alpha_{j_i} x_{j_i} + \sum_{j \in C} w_j x_j \le b - w_{j_t}$$
$$x \in \{0, 1\}^{|C|+t-1}$$

for t the current iteration and j_1, \ldots, j_r be an ordering of $N \setminus C$. Set $\alpha_{j_t} = |C| - 1 - \xi_t$ and iterate.

The resulting Lift Cover Inequalities are facet-defining

Generalization

æ

イロト イヨト イヨト イヨト

Generalization

Proposition

Consider a set $S \subseteq \{0,1\}^n$ such that $S \cap \{x \mid x_n = 1\} \neq \emptyset$ and let $\sum_{j=1}^{n-1} \alpha_j x_j \leq \beta$ be a valid inequality for $S \cap \{x \mid x_n = 0\}$. Then

$$\alpha_n = \beta - \max\left\{\sum_{j=1}^{n=1} \alpha_j x_j \mid x \in S, x_n = 1\right\}$$

is the largest coefficient such that $\sum_{j=1}^{n-1} \alpha_j x_j + \alpha_n x_n \leq \beta$ is valid for S. Furthermore, if $\sum_{j=1}^{n-1} \alpha_j x_j \leq \beta$ defines a d-dimensional face of $\operatorname{conv}(S) \cap \{x_n = 0\}$, then $\sum_{j=1}^n \alpha_j x_j \leq \beta$ defines a face of $\operatorname{conv}(S)$ of dimension at least d + 1.

- Introduction
- Strong inequalities
- Polytope Dimension
- Facet and Convex Hull Proofs
- Lifting
- Separation procedure

2 Research Talk

-∢ ∃ ▶

- Introduction
- Strong inequalities
- Polytope Dimension
- Facet and Convex Hull Proofs
- Lifting
- Separation procedure

2 Research Talk

▶ ∢ ∃ ▶

• checks whether x* satisfies all the cover inequalities

∃ ► < ∃ ►

- checks whether x* satisfies all the cover inequalities
- if at least one cover inequality is not satisfied, identify it.

- checks whether x^{*} satisfies all the cover inequalities
- if at least one cover inequality is not satisfied, identify it.

Formally: does it exist a set $C \subseteq \{1, ..., n\}$ with $\sum_{j \in C} w_j > c$ such that $\sum_{j \in C} (1 - x_j^*) < 1$?

- checks whether x^{*} satisfies all the cover inequalities
- if at least one cover inequality is not satisfied, identify it.

Formally: does it exist a set $C \subseteq \{1, ..., n\}$ with $\sum_{j \in C} w_j > c$ such that $\sum_{j \in C} (1 - x_j^*) < 1$? As a mathematical programming problem:

$$\min\left\{\sum_{j=1}^n (1-x_j^*)z_j \mid \sum_{j=1}^n w_j z_j > c, z \in \{0,1\}^n
ight\}.$$

Is its optimal solution < 1?

- checks whether x^{*} satisfies all the cover inequalities
- if at least one cover inequality is not satisfied, identify it.

Formally: does it exist a set $C \subseteq \{1, ..., n\}$ with $\sum_{j \in C} w_j > c$ such that $\sum_{j \in C} (1 - x_j^*) < 1$? As a mathematical programming problem:

$$\min\left\{\sum_{j=1}^n (1-x_j^*)z_j \mid \sum_{j=1}^n w_j z_j > c, z \in \{0,1\}^n
ight\}.$$

Is its optimal solution < 1?

Potentially as difficult as solving the 01-KP problem \rightarrow heuristics!

- Introduction
- Strong inequalities
- Polytope Dimension
- Facet and Convex Hull Proofs
- Lifting
- Separation procedure

2 Research Talk

-∢ ∃ ▶

- Introduction
- Strong inequalities
- Polytope Dimension
- Facet and Convex Hull Proofs
- Lifting
- Separation procedure

2 Research Talk

- ∢ ∃ →