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Introduction

Inequalities:
e valid: for a specific problem, not all (M)ILPs

@ strong: non-trivial, ideally facet-defining

A priori vs. on the fly addition
@ standard vs. tailored solving method

@ Potentially enormous number of inequalities vs. only a relevant subset
Decomposition :

X = X1 N X? = focus on a simpler set, e.g. X2 because inequalities valid
for X2 will be valid for X.
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@ Tailored cutting-plane methods

@ Strong inequalities
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Strong valid inequalities

Inequalities 7" x < 70 and Aw"x < Ax© are identical for any A > 0.
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Strong valid inequalities

Inequalities 7" x < 70 and Aw"x < Ax© are identical for any A > 0.

Definition

If 77x < 70 and uTx < MO are two valid inequalities for X C R,
7' x < 70 dominates ;" x < 10 if there exists u > 0 such that 7 > up and
70 < u,uo.
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Strong valid inequalities

Inequalities 71 x <70 and A" x < A0 are identical for any A > 0.

Definition

If #"x < 7% and u'x < u® are two valid inequalities for X C R,
7' x < 70 dominates ;" x < 10 if there exists u > 0 such that 7 > up and
70 < u,uo.

Definition

An inequality 7" x < 70 is redundant in the description of X C R”, if
there exist k > 2 valid inequalities (7')"x < 70 for i = 1,..., k for X and
weights u; > 0 for i =1, ..., k such that (3% uim')Tx < 0K | ujn'©
dominates 7" x < 0.

= = = = =
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Strong valid inequalities

@ Checking redundancy may be very difficult
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Strong valid inequalities

@ Checking redundancy may be very difficult

o Theoretically: it is important to know which inequalities are
nonredundant

@ Practically : it is important to avoid using an inequality when one
that dominates it is available
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Valid inequalities for the 01-KP problem

Classical formulation

n
K={xef{0,1}"| Y wx<c
j=1
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Valid inequalities for the 01-KP problem

Classical formulation

n
K={xef{0,1}"| Y wx<c
j=1

Cover formulation

K¢ ={xe{0,1}"| ij <|C| =1V minimal cover C for K
Jjec
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Valid inequalities for the 01-KP problem

Classical formulation

n
K={xef{0,1}"| Y wx<c
j=1

Cover formulation

K¢ ={xe{0,1}"| ij <|C| =1V minimal cover C for K
Jjec

Proposition
The sets K and K€ coincide.
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Valid inequalities for the 01-KP problem

Classical formulation

n
K={xef{0,1}"| Y wx<c
j=1

Cover formulation

K¢ ={xe{0,1}"| ij <|C| =1V minimal cover C for K
Jjec

Proposition
The sets K and K€ coincide.

Which formulation is stronger?
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Valid inequalities for the 01-KP problem

Numerical example # 1 (from Conforti et al.):
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Valid inequalities for the 01-KP problem

Numerical example # 1 (from Conforti et al.):
n=3,w=(3,3,3),c =5, thus

K:{XE{O,I}"’3X1+3X2+3X3§5}

KC={xe{0,1}" | x;+x <1Vij=1,23;i#j}
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K:{XE{O,I}"’3X1+3X2+3X3§5}
KC={xe{0,1}" | x;+x <1Vij=1,23;i#j}

Summing up the 3 inequalities of K¢ we have 2x; + 2x» + 2x3 < 3
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n=3,w=(3,3,3),c =5, thus

K:{XE{O,I}"’3X1+3X2+3X3§5}
KC={xe{0,1}" | x;+x <1Vij=1,23;i#j}

Summing up the 3 inequalities of K¢ we have 2x; + 2x» + 2x3 < 3 which
implies 3x; + 3x + 3x3 < b,

C. D'Ambrosio Discrete Optimization 11/40



Valid inequalities for the 01-KP problem

Numerical example # 1 (from Conforti et al.):
n=3,w=(3,3,3),c =5, thus

K:{XE{O,I}"’3X1+3X2+3X3§5}
KC={xe{0,1}" | x;+x <1Vij=1,23;i#j}

Summing up the 3 inequalities of K¢ we have 2x; + 2x» + 2x3 < 3 which
implies 3x; + 3x2 + 3x3 < 5, thus K€ is stronger than K (e.g. (1, %, 0)).
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Valid inequalities for the 01-KP problem

Numerical example # 2 (from Conforti et al.):
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Valid inequalities for the 01-KP problem

Numerical example # 2 (from Conforti et al.):
n=3,w=(1,1,1),c =1, thus

K:{X€{071}n|X1+X2+X3§1}

KC={xe{0,1}" | x;+x <1Vij=1,23;i#j}
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Valid inequalities for the 01-KP problem

Numerical example # 2 (from Conforti et al.):
n=3,w=(1,1,1),c =1, thus

K:{X€{071}n|X1+X2+X3§1}
KC={xe{0,1}" | x;+x <1Vij=1,23;i#j}

Summing up the 3 inequalities of K¢ we have 2x; + 2x» + 2x3 < 3 which
is implied by x3 +x2 + x3 < 1,
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Valid inequalities for the 01-KP problem

Numerical example # 2 (from Conforti et al.):
n=3,w=(1,1,1),c =1, thus
K= {XE {0,1}" | X1+ x4+ x3 < 1}
KC={xe{0,1}" | x;+x <1Vij=1,23;i#j}

Summing up the 3 inequalities of K¢ we have 2x; + 2x» + 2x3 < 3 which

is implied by x; + xo +x3 < 1, thus K is stronger than K€ (e.g. (%, %,% ).
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Valid inequalities for the 01-KP problem

e Can we improve K¢? — strong valid inequalities
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Valid inequalities for the 01-KP problem

e Can we improve K¢? — strong valid inequalities

@ K€ has an exponential number of constraints — no a-priori addition
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Valid inequalities for the 01-KP problem

e Can we improve K¢? — strong valid inequalities
@ K€ has an exponential number of constraints — no a-priori addition

e Use “some” constraints of K¢ to improve K — separation procedure
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Strong Valid Inequalities

Aim: how to (try to) identify the best possible cuts?
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Strong Valid Inequalities

Aim: how to (try to) identify the best possible cuts?

If P is a full-dimensional polyhedron, it has a unique minimal description

P={xeR"|(a) x<bfori=1,...,m}

where each inequality is unique within a positive multiple.
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Strong Valid Inequalities

Aim: how to (try to) identify the best possible cuts?

If P is a full-dimensional polyhedron, it has a unique minimal description

P={xeR"|(a) x<bfori=1,...,m}

where each inequality is unique within a positive multiple.

Thus, any other valid inequality is redundant.
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Polyhedra, Face, Facets

The points x1, x2,...,xX € R" are affinely independent if the only solution
to the linear system

zn: )\J'Xj =0
j=1
j=1

iS)\lz)\zz”':)\k:O.
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Polyhedra, Face, Facets

The points x1, x2,...,xK € R" are affinely independent if the only solution
to the linear system

zn:ijf =0
j=1
d A=0
j=1

is)\lz)\QZ"':)\kZO.

Definition

The dimension of P, dim(P), is one less than the maximum number of
affinely independent points in P.

T (il = — oyt
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Polyhedra, Face, Facets

o F defines a face of the polyhedron P if F = {x € P | 7" x = 7%} for
some valid inequality 7"x < 70 of P. The valid inequality 7' x < 7°

is said to represent or define a face.
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Polyhedra, Face, Facets

o F defines a face of the polyhedron P if F = {x € P | 7" x = 7%} for
some valid inequality 7"x < 70 of P. The valid inequality 7' x < 7°
is said to represent or define a face.

@ Alternatively, F is a face of the polyhedron P if there is a vector ¢ for
which F is the set of vectors attaining max{c'x | x € P} provided
that this maximum is finite.
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Polyhedra, Face, Facets

o F defines a face of the polyhedron P if F = {x € P | 7" x = 7%} for
some valid inequality 7"x < 70 of P. The valid inequality 7' x < 7°
is said to represent or define a face.

@ Alternatively, F is a face of the polyhedron P if there is a vector ¢ for
which F is the set of vectors attaining max{c'x | x € P} provided
that this maximum is finite.

e F is a facet of P if F is a face of P of dim(F) = dim(P) — 1.
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Polyhedra, Face, Facets

Definition
An extreme point of P is a 0-dimensional face of P.

C. D'Ambrosio Discrete Optimization 17 /40



Polyhedra, Face, Facets

Definition

An extreme point of P is a 0-dimensional face of P.

Proposition

If P is full-dimensional, a valid inequality 7" x < 79 is necessary in the
description of P if and only if it defines a facet of P.
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Polyhedra, Face, Facets

Definition
An extreme point of P is a 0-dimensional face of P.

Proposition

If P is full-dimensional, a valid inequality 7" x < 79 is necessary in the
description of P if and only if it defines a facet of P.

Thus, for full-dimensional polyhedra, 71 x < 79 defines a facet of P if and
only if there are n affinely independent points of P satisfying it at equality.
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@ Tailored cutting-plane methods

@ Polytope Dimension
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Polytope dimension

How to prove that the set S has dimension k7?7
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Polytope dimension

How to prove that the set S has dimension k7?7

Method 1:

e Find a system Ax = b of equations such that S C {x € R" | Ax = b}
and rank(A) = n—k
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Polytope dimension

How to prove that the set S has dimension k7?7

Method 1:

e Find a system Ax = b of equations such that S C {x € R" | Ax = b}
and rank(A) = n—k
@ Exhibit k 4 1 affinely independent points in S.
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Polytope dimension

How to prove that the set S has dimension k7?7
Method 1:

e Find a system Ax = b of equations such that S C {x € R" | Ax = b}
and rank(A) = n—k

@ Exhibit k 4 1 affinely independent points in S.
Method 2:

e Find a system Ax = b of equations such that S C {x € R" | Ax = b}
and rank(A) =n—k
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Polytope dimension

How to prove that the set S has dimension k7?7

Method 1:
e Find a system Ax = b of equations such that S C {x € R" | Ax = b}
and rank(A) = n—k
@ Exhibit k 4 1 affinely independent points in S.

Method 2:
e Find a system Ax = b of equations such that S C {x € R" | Ax = b}
and rank(A) =n—k
@ Prove that every equation a' x = (3 satisfied by all x € S is a linear
combination of Ax = b (i.e., there exists u s.t. @ = vA and § = ub).
Thus, Ax = b is the affine hull of S, thus S has dimension k.
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Polytope dimension

Example: 01-KP
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Polytope dimension

Example: 01-KP

S =conv({x € {0,1}" | w'x < ¢})

Proposition
The dimension of S is n —|J|, with J = {j | w; > c for j =1,...n}.
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@ Tailored cutting-plane methods

@ Facet and Convex Hull Proofs
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Facet and Convex Hull Proofs

Hp. conv(X) is bounded and full-dimensional.

@ Given X € Z! and a valid inequality 7 'x < 7% for X, how to prove
that 7" x < 7% is a facet of conv(X)?
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Facet and Convex Hull Proofs

Hp. conv(X) is bounded and full-dimensional.

@ Given X € Z! and a valid inequality 7 'x < 7% for X, how to prove
that 7" x < 7% is a facet of conv(X)?

Approach 1:

@ Find n points in X that satisfy 7" x = 7% and prove they are affinely
independent.

C. D'Ambrosio Discrete Optimization



Facet and Convex Hull Proofs

Hp. conv(X) is bounded and full-dimensional.

e Given X € Z" and a valid inequality 7 'x < 7% for X, how to prove
that 77 x < 7% is a facet of conv(X)?
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Facet and Convex Hull Proofs

Hp. conv(X) is bounded and full-dimensional.

e Given X € Z" and a valid inequality 7 'x < 7% for X, how to prove
that 77 x < 7% is a facet of conv(X)?

Approach 2:

@ Select t > n points x1, ..., xt € X satisfying 7' x = 7°. Suppose

that all these points lie on a generic hyperplane ;" x = 1°.

@ Solve the linear equation system
n
Zujxf‘:uo fork=1,...,t
Jj=1

in the n + 1 unknowns (u, u°)

e If the only solution is (i, u°) = a(m, 7°) for a # 0, then the
inequality " x = 70 is facet-defining.
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Facet and Convex Hull Proofs

Hp. conv(X) is bounded and full-dimensional.

e Given X € Z" and a polyhedron P = {x € R" | Ax < b}, show P
describes the conv(X).
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Facet and Convex Hull Proofs

Hp. conv(X) is bounded and full-dimensional.

e Given X € Z" and a polyhedron P = {x € R" | Ax < b}, show P
describes the conv(X).

Approach 1:

@ Show that matrix A have a special structure guaranteeing
P = conv(X), like TUM.
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Facet and Convex Hull Proofs

Hp. conv(X) is bounded and full-dimensional.

e Given X € Z" and a polyhedron P = {x € R" | Ax < b}, show P
describes the conv(X).

Approach 1:

@ Show that matrix A have a special structure guaranteeing
P = conv(X), like TUM.

Approach 2:

@ Show that points x* € P with a fractional element are not extreme
points of P.
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Facet and Convex Hull Proofs

Hp. conv(X) is bounded and full-dimensional.

e Given X € Z" and a polyhedron P = {x € R" | Ax < b}, show P
describes the conv(X).
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Facet and Convex Hull Proofs

Hp. conv(X) is bounded and full-dimensional.

e Given X € Z" and a polyhedron P = {x € R" | Ax < b}, show P
describes the conv(X).

Approach 3:

@ Show that for all ¢ € R” the linear program min{c'x | Ax < b} has
an optimal solution x* € X.
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Facet and Convex Hull Proofs

Hp. conv(X) is bounded and full-dimensional.

e Given X € Z" and a polyhedron P = {x € R" | Ax < b}, show P
describes the conv(X).

Approach 3:

@ Show that for all ¢ € R” the linear program min{c'x | Ax < b} has
an optimal solution x* € X.

Approach 4:

o Show that if 7" x < 70 defines a facet of conv(X) then it must be
identical to one of the inequalities a,Tx < b; defining P.
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Facet and Convex Hull Proofs

Hp. conv(X) is bounded and full-dimensional.

e Given X € Z" and a polyhedron P = {x € R" | Ax < b}, show P
describes the conv(X).
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Facet and Convex Hull Proofs

Hp. conv(X) is bounded and full-dimensional.

e Given X € Z" and a polyhedron P = {x € R" | Ax < b}, show P
describes the conv(X).

Approach 5:
@ Show that for any ¢ € R”, ¢ # 0 the set of optimal solutions to the
problem min{c'x | x € X} lies in {x | a] x = b;} for some
i=1,...,m
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Facet and Convex Hull Proofs

Hp. conv(X) is bounded and full-dimensional.

e Given X € Z" and a polyhedron P = {x € R" | Ax < b}, show P
describes the conv(X).

Approach 5:

@ Show that for any ¢ € R”, ¢ # 0 the set of optimal solutions to the
problem min{c'x | x € X} lies in {x | a] x = b;} for some
i=1,...,m

Etc.
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Some remarks

Consider the decomposition X = X N X2 — focus on a simpler set, e.g.
X2 because inequalities valid for X2 will be valid for X.
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Some remarks

Consider the decomposition X = X N X2 — focus on a simpler set, e.g.
X2 because inequalities valid for X2 will be valid for X.

If #7x < 0 is a facet of X?, it might not be a facet of X — but we hope
they are strong enough inequalities to speed-up the solving process.
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Some remarks

Consider the decomposition X = X N X2 — focus on a simpler set, e.g.
X2 because inequalities valid for X2 will be valid for X.

If #7x < 0 is a facet of X?, it might not be a facet of X — but we hope
they are strong enough inequalities to speed-up the solving process.

Computational results to show method effectiveness.
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Strengthening Cover Inequalities: Extended Covers

Yesterday we have seen the Extended Cover Inequalities for the 01-KP
problem.

Proposition

If C is a cover for X, the feasible set of the 01-KP problem, the extended
cover inequality
Y x<Icl-1
JEE(C)

is valid for X, where E(C) = CU{j | w; > w; for all i € C}.
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Strengthening Cover Inequalities: Extended Covers

Yesterday we have seen the Extended Cover Inequalities for the 01-KP
problem.

Proposition

If C is a cover for X, the feasible set of the 01-KP problem, the extended
cover inequality
Y x<Icl-1
JEE(C)

is valid for X, where E(C) = CU{j | w; > w; for all i € C}.

@ The Extended Cover inequality dominates the Cover inequality

C. D'Ambrosio Discrete Optimization 30/40



Strengthening Cover Inequalities: Extended Covers

Yesterday we have seen the Extended Cover Inequalities for the 01-KP
problem.

Proposition

If C is a cover for X, the feasible set of the 01-KP problem, the extended
cover inequality
Y x<Icl-1
JEE(C)

is valid for X, where E(C) = CU{j | w; > w; for all i € C}.

@ The Extended Cover inequality dominates the Cover inequality

@ The (Extended) Cover inequality can be strengthened by lifting
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@ Tailored cutting-plane methods

o Lifting
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Strengthening Cover Inequalities: Lifting

Proposition

Let C be a cover for K. The cover inequality associated with C is
facet-defining for Pc = conv(K)N{x € R" | x; =0V € {1,...,n}\ C} if
and only if C is a minimal cover.
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Strengthening Cover Inequalities: Lifting

Proposition

Let C be a cover for K. The cover inequality associated with C is
facet-defining for Pc = conv(K)N{x € R" | x; =0V € {1,...,n}\ C} if
and only if C is a minimal cover.

Given a cover C for the 01-KP problem, find the best possible values for
aj for j € {1,...,n}\ C such that

Dot D, ax<|C-1

jec je{1,...n\C

is valid for X.
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Strengthening Cover Inequalities: Lifting

Given a cover C for the 01-KP problem, find the best possible values for

ajforje{l,...,n}\ Csuchthat 3 ;cc X+ > jcqr, opcaix < |Cl—1
is valid for X.
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Strengthening Cover Inequalities: Lifting

Given a cover C for the 01-KP problem, find the best possible values for
ajforje{l,...,n}\ Csuchthat 3 ;cc X+ > jcqr, opcaix < |Cl—1

is valid for X.

Iteratively solve the problem

& = maxZaJXJ, —|—ZXJ

jec

Z%,XJ, +) wix <b-

jec
x € {O, 1}|C|+f—1

for t the current iteration and ji, ..., j, be an ordering of N'\ C.
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Strengthening Cover Inequalities: Lifting

Given a cover C for the 01-KP problem, find the best possible values for
ajforje{l,...,n}\ Csuchthat 3 ;cc X+ > jcqr, opcaix < |Cl—1

is valid for X.

Iteratively solve the problem

& = maxZaJXJ, —l—ZXJ

jec

Z%,XJ, +) wix <b-

jec
x € {O, 1}|C|+t—1

for t the current iteration and ji, ..., j, be an ordering of N'\ C.

Set oj, = |C| — 1 — & and iterate.
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Strengthening Cover Inequalities: Lifting

Given a cover C for the 01-KP problem, find the best possible values for
ajforje{l,...,n}\ Csuchthat 3 ;cc X+ > jcqr, opcaix < |Cl—1

is valid for X.

Iteratively solve the problem

& = maxZaJXJ, —l—ZXJ

jec

Z%,XJ, +) wix <b-

jec
x € {O, 1}|C|+t—1

for t the current iteration and ji, ..., j, be an ordering of N'\ C.

Set oj, = |C| — 1 — & and iterate.

The resulting Lift Cover Inequalities are facet-defining.
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Strengthening Cover Inequalities: Lifting

Generalization
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Strengthening Cover Inequalities: Lifting

Generalization

Proposition

Consider aset S C{0,1}" such that SN {x | x, =1} # 0 and let
ZJ 1 ajxj < [ be a valid inequality for SN {x | x, = 0}. Then

n=1
ap = B — max g ajxj | x €S, xp=1
j=1

is the largest coefficient such that EJ":_ll ajXj + apx, < B is valid for S.

Furthermore, if Ej";ll ajx; < 3 defines a d-dimensional face of
conv(S) N {x, = 0}, then > 7, a;x; < B defines a face of conv(S) of
dimension at least d + 1.
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Separation Procedure

We are given a fractional solution x* with x* € [0, 1]", the separation
procedure:

@ checks whether x* satisfies all the cover inequalities
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Separation Procedure

We are given a fractional solution x* with x* € [0, 1]", the separation
procedure:

@ checks whether x* satisfies all the cover inequalities

o if at least one cover inequality is not satisfied, identify it.
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Separation Procedure

We are given a fractional solution x* with x* € [0, 1]", the separation
procedure:

@ checks whether x* satisfies all the cover inequalities
o if at least one cover inequality is not satisfied, identify it.

Formally: does it exist a set C C {1,...,n} with > .- w; > c such that
>jec(l—x7) <17
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Separation Procedure

We are given a fractional solution x* with x* € [0, 1]", the separation
procedure:

@ checks whether x* satisfies all the cover inequalities
o if at least one cover inequality is not satisfied, identify it.

Formally: does it exist a set C C {1,...,n} with > .- w; > c such that
>jec(l—x7) <17

As a mathematical programming problem:

n

min Z(l —x7)z | Z wjzj > ¢,z € {0,1}"

j=1 j=1

Is its optimal solution < 17
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Separation Procedure

We are given a fractional solution x* with x* € [0, 1]", the separation
procedure:

@ checks whether x* satisfies all the cover inequalities
o if at least one cover inequality is not satisfied, identify it.

Formally: does it exist a set C C {1,...,n} with > .- w; > c such that
Zjec(l_xj*) < 17 _
As a mathematical programming problem:

n n
min Z(l —x7)z | Z wjzj > ¢,z € {0,1}"

Jj=1 Jj=1

Is its optimal solution < 17

Potentially as difficult as solving the 01-KP problem — heuristics!
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