SUMMER SCHOOL ON ASPECTS OF OPTIMIZATION Discrete Optimization September 13th, 2022

Claudia D'Ambrosio dambrosio@lix.polytechnique.fr

Outline

(1) Basic notions and definitions on MP and LP
(2) Introduction to Mixed Integer Linear Programming
(3) Motivation
4) Formulations

- Examples of Formulations Comparison
(5) When mixed integer linear programming is easy
(6) When mixed integer linear programming is NOT easy
(7) MILP Methods
- Cutting Plane
- Branch and Bound
- Branch and Cut

8 "Homeworks"

Outline

(1) Basic notions and definitions on MP and LP
(2) Introduction to Mixed Integer Linear Programming
(3) Motivation

4 Formulations

- Examples of Formulations Comparison
(5) When mixed integer linear programming is easy

6 When mixed integer linear programming is NOT easy
(7) MILP Methods

- Cutting Plane
- Branch and Bound
- Branch and Cut
(8) "Homeworks"

Mathematical Programming (MP)

$$
\begin{array}{cl}
\min _{x} & f(x) \\
& g_{i}(x) \leq 0 \quad \forall i=1, \ldots, m \\
\underline{x} \quad \leq x \leq \quad \bar{x} \\
& x_{j} \in \quad \mathbb{Z} \quad \forall j \in Z
\end{array}
$$

where

- x is an n-dimensional vector of the decision variables
- \underline{x} and \bar{x} are the given vectors of lower and upper bounds on the variables
- set $Z \subseteq\{1,2, \ldots, n\}$ is the set of the indexes of the integer variables

Mathematical Programming (MP)

$$
\begin{array}{cc}
\min _{x} & f(x) \\
& g_{i}(x) \leq 0 \quad \forall i=1, \ldots, m \\
\underline{x} \quad \leq x \leq \quad \bar{x} \\
& x_{j} \in \mathbb{Z} \quad \forall j \in Z
\end{array}
$$

where $f(x)$ and $g_{i}(x)(\forall i=1, \ldots, m)$:

- can be written in closed form
- are twice continuously differentiable functions of the variables

Mathematical Programming

A few definitions:

- Formulation : a MP modeling an optimization problem
- An optimization problem can be modeled in different ways \rightarrow several formulations
- Instance : when the expression of $f(x), g(x)$ and the values of \underline{x}, \bar{x}, and Z are known. The set of instances of a MP problems is potentially infinite.

Mathematical Programming

A few definitions:

- Feasible solutions :

$$
X=\left\{x \mid g(x) \leq 0, \quad \underline{x} \leq x \leq \bar{x}, \quad x_{j} \in \mathbb{Z} \forall j \in Z\right\}
$$

- Optimal solution : arg $\min _{x \in X} f(x)$
- Heuristc solution : a feasible solution (hopefully of good quality)

Classes of MP problems

$$
\begin{array}{cl}
\min _{x} & f(x) \\
& g_{i}(x) \leq 0 \quad \forall i=1, \ldots, m \\
\underline{x} \quad \leq x \leq \bar{x} \\
& x_{j} \in \quad \mathbb{Z} \quad \forall j \in Z
\end{array}
$$

- Linear Programming (LP): $f(x)$ and $g(x)$ are linear, $Z=\emptyset$
- Integer (Linear) Programming (ILP): $f(x)$ and $g(x)$ are linear, $Z=\{1,2, \ldots, n\}$
- Mixed Integer (Linear) Programming (MILP): $f(x)$ and $g(x)$ are linear, $Z \subset\{1,2, \ldots, n\}$
- Mixed Integer Non Linear Programming (MINLP): $f(x)$ and $g(x)$ are twice continuously differentiable, $Z \subset\{1,2, \ldots, n\}$
Black Box Optimization: $f(x)$ or $g(x) \rightarrow$ no closed form

Linear Programming problems

$$
\begin{array}{cc}
\min _{x} & f(x) \\
& g_{i}(x) \leq 0 \quad \forall i=1, \ldots, m \\
\underline{x} \quad \leq x \leq \bar{x} \\
& x_{j} \in \mathbb{Z} \quad \forall j \in Z
\end{array}
$$

Linear Programming (LP) problem:

$$
\begin{aligned}
\min _{x} f(x) & \rightarrow \min _{x} c^{\top} x \\
g(x) \leq 0 & \rightarrow A x \leq b \\
\underline{x} \leq x \leq \bar{x} & \rightarrow \underline{x} \leq x \leq \bar{x} \\
x_{j} \in \mathbb{Z} \quad \forall j \in Z & \rightarrow \text { removed }
\end{aligned}
$$

LP problems

$$
\begin{array}{r}
\min _{x} c^{\top} x \\
A x \leq b \\
\underline{x} \leq x \leq \bar{x}
\end{array}
$$

W.I.o.g. because

$$
\max \tilde{c}^{\top} x \rightarrow-\min -\tilde{c}^{\top} x
$$

For some $i, \quad \tilde{A}_{i} x \geq \tilde{b}_{i} \rightarrow-\tilde{A}_{i} x \leq-\tilde{b}_{i}$
For some $i, \quad \tilde{A}_{i} x=\tilde{b}_{i} \rightarrow-\tilde{A}_{i} x \leq-\tilde{b}_{i}$ and $\tilde{A}_{i} x \leq \tilde{b}_{i}$
Moreover, $\forall j \in 1, \ldots, n \underline{x}_{j} \in[-\infty,+\infty)$ and $\bar{x}_{j} \in(-\infty,+\infty]$.

LPs characteristics

Feasible (solutions) set/region : $X=\{x \mid A x \leq b, \underline{x} \leq x \leq \bar{x}\}$

- optimal: when $X \neq \emptyset$, bounded. In this case, an optimal solution is found, i.e., a feasible point x^{*} s.t. $c^{\top} x^{*} \leq c^{\top} x$ for all feasible $x \in X$
- infeasible: when $X=\emptyset$
- unbounded: when the $\min \left\{c^{\top} x \mid x \in X\right\}=-\infty$

Geometrical intuition of LPs

Example 1

$\max x_{1}+x_{2}$
$3 x_{1}+2 x_{2} \leq 13$
$0 \leq x_{1} \leq 3$
$0 \leq x_{2} \leq 5$.

Example 1

$\max x_{1}+x_{2}$
$3 x_{1}+2 x_{2} \leq 13$
$0 \leq x_{1} \leq 3$
$0 \leq x_{2} \leq 5$.

Example 1

$\max x_{1}+x_{2}$
$3 x_{1}+2 x_{2} \leq 13$
$0 \leq x_{1} \leq 3$
$0 \leq x_{2} \leq 5$.

Example 1

Example 1

$$
\begin{array}{r}
\max x_{1}+x_{2} \\
3 x_{1}+2 x_{2} \leq 13 \\
0 \leq x_{1} \leq 3 \\
0 \leq x_{2} \leq 5 .
\end{array}
$$

Example 1

$$
\begin{array}{r}
\max x_{1}+x_{2} \\
3 x_{1}+2 x_{2} \leq 13 \\
0 \leq x_{1} \leq 3 \\
0 \leq x_{2} \leq 5 .
\end{array}
$$

Example 1

$\max x_{1}+x_{2}$
$3 x_{1}+2 x_{2} \leq 13$ $0 \leq x_{1} \leq 3$ $0 \leq x_{2} \leq 5$.

A few definitions

Consider some $i \in\{1, \ldots, m\}$

- Hyperplane : $\left\{x \in \mathbb{R}^{n} \mid A_{i}^{\top} x=b_{i}\right\}$
- Half-space : $\left\{x \in \mathbb{R}^{n} \mid A_{i}^{\top} x \leq b_{i}\right\}$ or $\left\{x \in \mathbb{R}^{n} \mid A_{i}^{\top} x \geq b\right\}$

A few definitions

- Polyhedron : $\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}$
- Polytope : a bounded polyhedron

Remark

The feasible region of a LP problem is a polyhedron (by definition).

Some properties and theorems

Definition

Given points $v^{1}, v^{2}, \ldots, v^{p} \in \mathbb{R}^{n}$, their convex combination is $z=\sum_{i=1}^{p} \alpha_{i} v^{i}$ s.t. $\sum_{i=1}^{p} \alpha_{i}=1$ and $\alpha_{i} \geq 0$ for all $i=1, \ldots, p$.

Theorem

Every polyhedron $P \subseteq \mathbb{R}^{d}$ can be written as

$$
P=\operatorname{conv}\left\{v^{1}, \ldots, v^{k}\right\}+\operatorname{cone}\left\{r^{1}, \ldots, r^{\ell}\right\}
$$

with points $v^{1}, \ldots, v^{k} \in \mathbb{R}^{d}$ and rays $r^{1}, \ldots, r^{\ell} \in \mathbb{R}^{d}$
where cone $\left\{r^{1}, \ldots, r^{\ell}\right\}=\left\{x \in \mathbb{R}^{d} \mid x=\mu_{1} r^{1}+\ldots \mu_{\ell} r^{\ell}, \mu_{1}, \ldots, \mu_{\ell} \geq 0\right\}$.

Some properties and theorems

Theorem

Each point of a polytope is a convex combination of its vertices.

Theorem

Each convex combination of the vertices of a polytope is a point of the polytope.

Theorem

A vertex is not a strict convex combination of two distinct points of the polytope.

Thus, a polytope can be characterized/described by a finite number of half-spaces (H-description) or its vertices (V-description).

Outline

(1) Basic notions and definitions on MP and LP
(2) Introduction to Mixed Integer Linear Programming
(3) Motivation
4) Formulations

- Examples of Formulations Comparison
(5) When mixed integer linear programming is easy
(6) When mixed integer linear programming is NOT easy
(7) MILP Methods
- Cutting Plane
- Branch and Bound
- Branch and Cut

8 "Homeworks"

Outline

(1) Basic notions and definitions on MP and LP
(2) Introduction to Mixed Integer Linear Programming
(3) Motivation
4) Formulations

- Examples of Formulations Comparison
(5) When mixed integer linear programming is easy
(6) When mixed integer linear programming is NOT easy
(7) MIIP Methods
- Cutting Plane
- Branch and Bound
- Branch and Cut
(8) "Homeworks"

Mixed Integer Linear Programming

$$
\begin{aligned}
& \min _{x} c^{\top} x \\
& A x \leq b \\
& \underline{x} \leq x \leq \bar{x} \\
& x_{j} \in \mathbb{Z} \quad \forall j \in Z
\end{aligned}
$$

where

- x is an n-dimensional vector of the decision variables,
- \underline{x} and \bar{x} are the given vectors of lower and upper bounds on the variables,
- c is the cost vector, A the constraints matrix, and b the right-hand-side vector,
- the set Z includes the indexes of the integer variables.

(Mixed) Integer Linear Programming

Figure: Lattice points (in blue), feasible region of the continuous relaxation (in gray), and their intersection (in red).

Examples: the Assignment Problem (AP)

- n people available for n tasks.
- Cost $c_{i j}$ is invers. proportional to the suitedness of person i to task j.
- Find the minimum cost assignment.

Variables: $x_{i j}=1$ when person i is assigned to task $j, 0$ otherwise $(\forall i=1, \ldots, n ; j=1, \ldots, n)$

$$
\begin{aligned}
\min \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i j} & \\
\sum_{j=1}^{n} x_{i j}=1 & \forall i=1, \ldots, n \\
\sum_{i=1}^{n} x_{i j}=1 & \forall j=1, \ldots, n \\
x_{i j} \in\{0,1\} & \forall i=1, \ldots, n ; j=1, \ldots, n
\end{aligned}
$$

Examples: the 01-Knapsack Problem (KP)

- Knapsack capacity c (maximum weight).
- n available items
- w_{j} weight of item j, p_{j} profit given by item j
- Select the items so as to respect the capacity and maximize the profit.

Variables: $x_{i}=1$ when item j is selected, 0 otherwise $(\forall j=1, \ldots, n)$

$$
\begin{aligned}
& \max \sum_{j=1}^{n} p_{j} x_{j} \\
& \sum_{j=1}^{n} w_{j} x_{j} \leq c \\
& \quad x_{j} \in\{0,1\} \quad j=1, \ldots, n
\end{aligned}
$$

Outline

(1) Basic notions and definitions on MP and LP
(2) Introduction to Mixed Integer Linear Programming
(3) Motivation
4) Formulations

- Examples of Formulations Comparison
(5) When mixed integer linear programming is easy
(6) When mixed integer linear programming is NOT easy
(7) MILP Methods
- Cutting Plane
- Branch and Bound
- Branch and Cut

8 "Homeworks"

Outline

(1) Basic notions and definitions on MP and LP

2 Introduction to Mixed Integer Linear Programming
(3) Motivation
(4) Formulations

- Examples of Formulations Comparison
(5) When mixed integer linear programming is easy
(6) When mixed integer linear programming is NOT easy
(7) MILP Methods
- Cutting Plane
- Branch and Bound
- Branch and Cut
(8) "Homeworks"

Applications

- Finance, e.g., robust portfolio selection
- Power systems, e.g., unit commitment, optimal power flow
- Air traffic management, e.g., aircraft conflicts detection and resolution
- Transportation, e.g., vehicle routing problem
- etc.

Motivation

- Discrete domain of one (or more) variables
- Domain discontinuity
- Conditional constraints
- Fixed cost
- Disjunctive constraints
- Absolute value of a variable

Motivation

- Discrete domain of one (or more) variables
- Domain discontinuity
- Conditional constraints
- Fixed cost
- Disjunctive constraints
- Absolute value of a variable

Examples of modeling with integer/binary variables: Discrete domain of one (or more) variables

How to model the condition: $x \in \mathbb{R}$ and $x \in\left\{\tilde{x}_{1}, \tilde{x}_{2}, \ldots, \tilde{x}_{\tilde{k}}\right\}$ where $\tilde{x}_{k} \in \mathbb{R}$ for $k=1, \ldots, \tilde{k}$ within a MILP?

Examples of modeling with integer/binary variables: Discrete domain of one (or more) variables

How to model the condition: $x \in \mathbb{R}$ and $x \in\left\{\tilde{x}_{1}, \tilde{x}_{2}, \ldots, \tilde{x}_{\tilde{k}}\right\}$ where $\tilde{x}_{k} \in \mathbb{R}$ for $k=1, \ldots, \tilde{k}$ within a MILP?

- Additional binary variables: $y \in\{0,1\}^{\tilde{k}}$

$$
\begin{gathered}
x=\sum_{k=1}^{\tilde{k}} \tilde{x}_{k} y_{k} \\
\sum_{k=1}^{\tilde{k}} y_{k}=1 .
\end{gathered}
$$

Examples of modeling with integer/binary variables: Discrete domain of one (or more) variables

How to model the condition: $x \in \mathbb{R}$ and $x \in\left\{\tilde{x}_{1}, \tilde{x}_{2}, \ldots, \tilde{x}_{\tilde{k}}\right\}$ where $\tilde{x}_{k} \in \mathbb{R}$ for $k=1, \ldots, \tilde{k}$ within a MILP?

When $\tilde{x}_{1} \in \mathbb{Z}$ and $\tilde{x}_{k}-\tilde{x}_{k-1}=1$ for $k=2, \ldots, \tilde{k}$

Examples of modeling with integer/binary variables: Discrete domain of one (or more) variables

How to model the condition: $x \in \mathbb{R}$ and $x \in\left\{\tilde{x}_{1}, \tilde{x}_{2}, \ldots, \tilde{x}_{\tilde{k}}\right\}$ where $\tilde{x}_{k} \in \mathbb{R}$ for $k=1, \ldots, \tilde{k}$ within a MILP?

When $\tilde{x}_{1} \in \mathbb{Z}$ and $\tilde{x}_{k}-\tilde{x}_{k-1}=1$ for $k=2, \ldots, \tilde{k}$

- An integer variable x

$$
\begin{aligned}
\tilde{x}_{1} \leq x & \leq \tilde{x}_{\tilde{k}} \\
x & \in \text { integer. }
\end{aligned}
$$

Examples of modeling with integer/binary variables: Discrete domain of one (or more) variables

How to model the condition: $x \in \mathbb{R}$ and $x \in\left\{\tilde{x}_{1}, \tilde{x}_{2}, \ldots, \tilde{x}_{\tilde{k}}\right\}$ where $\tilde{x}_{k} \in \mathbb{R}$ for $k=1, \ldots, \tilde{k}$ within a MILP?

When $\tilde{x}_{k}-\tilde{x}_{k-1}=1$ for $k=2, \ldots, \tilde{k}$, another alternative

- Additional binary variables: $y \in\{0,1\}^{(\ell+1)}$ (ℓ is the smallest integer such that $\tilde{x}_{\tilde{k}}-\tilde{x}_{1}<2^{\ell+1}$)

$$
\begin{aligned}
x & =\tilde{x}_{1}+\sum_{i=0}^{\ell} 2^{i} y_{i} \\
\tilde{x}_{1} \leq x & \leq \tilde{x}_{\tilde{k}} \\
y_{i} & \in\{0,1\} \quad \forall i=0, \ldots, \ell
\end{aligned}
$$

Motivation

- Discrete domain of one (or more) variables
- Domain discontinuity
- Conditional constraints
- Fixed cost
- Disjunctive constraints
- Absolute value of a variable

Motivation

- Discrete domain of one (or more) variables
- Domain discontinuity
- Conditional constraints
- Fixed cost
- Disjunctive constraints
- Absolute value of a variable

Examples of modeling with integer/binary variables: Domain discontinuity

Discontinuous domain $x \in\{0\} \cup[\underline{x}, \bar{x}]$

Examples of modeling with integer/binary variables: Domain discontinuity

Discontinuous domain $x \in\{0\} \cup[\underline{x}, \bar{x}]$
MILP formulation:

$$
\begin{array}{r}
x y \leq x \leq \bar{x} y \\
y \in\{0,1\} .
\end{array}
$$

For $y=0, x=0$
For $y=1, x \in[\underline{x}, \bar{x}]$.

Motivation

- Discrete domain of one (or more) variables
- Domain discontinuity
- Conditional constraints
- Fixed cost
- Disjunctive constraints
- Absolute value of a variable

Motivation

- Discrete domain of one (or more) variables
- Domain discontinuity
- Conditional constraints
- Fixed cost
- Disjunctive constraints
- Absolute value of a variable

Examples of modeling with integer/binary variables: Conditional constraints

Impose a constraint $a_{i}^{\top} x \leq b_{i}$ only under certain conditions .
For example: If $x_{1} \geq \tilde{x}_{1}$ then $a_{i}^{\top} x \leq b_{i}$.

- Additional binary variable, say $y_{i} \in\{0,1\}$, allows to activate or deactivate both the condition and the conditional constraint

$$
\begin{aligned}
\tilde{x}_{1}\left(1-y_{i}\right) \leq x_{1} & \leq \tilde{x}_{1}+\left(1-y_{i}\right)\left(\bar{x}_{1}-\tilde{x}_{1}\right) \\
a_{i}^{\top} x & \leq b_{i}+M y_{i}
\end{aligned}
$$

where M is the so-called big- M, i.e., a large enough parameter (hp. $x_{1} \geq 0$).
$y_{i}=0 \rightarrow x_{1} \geq \tilde{x}_{1} \rightarrow a_{i}^{\top} x \leq b$
$y_{i}=1$ the constraint is deactivated and $x_{1} \geq 0, x_{1} \leq \tilde{x}_{1}$.
How to set the value of the big-M?

Examples of modeling with integer/binary variables: Conditional constraints

Example

If $x_{1} \geq 5$, then $10 x_{2}+5 x_{3} \leq 25$

$$
\begin{array}{r}
10 x_{2}+5 x_{3} \leq 25+M y_{1} \\
y_{1} \in\{0,1\} .
\end{array}
$$

$\mathrm{Hp}: x_{2} \leq 10$ and $x_{3} \leq 10$
Value of M :
Max LHS : $10 \cdot 10+5 \cdot 10=150$
$M \geq 150-25=125$.

Tricky to set big-M value. Overestimate (valid model)

Motivation

- Discrete domain of one (or more) variables
- Domain discontinuity
- Conditional constraints
- Fixed cost
- Disjunctive constraints
- Absolute value of a variable

Motivation

- Discrete domain of one (or more) variables
- Domain discontinuity
- Conditional constraints
- Fixed cost
- Disjunctive constraints
- Absolute value of a variable

Examples of modeling with integer/binary variables:

 Fixed costA cost: composed of a fixed part and a variables part (discontinuous):

$$
f(x)= \begin{cases}c x+d & \text { if } x>0 \\ 0 & \text { if } x=0\end{cases}
$$

Examples of modeling with integer/binary variables:

 Fixed costA cost: composed of a fixed part and a variables part (discontinuous):

$$
f(x)= \begin{cases}c x+d & \text { if } x>0 \\ 0 & \text { if } x=0\end{cases}
$$

MILP modeling:

$$
\begin{aligned}
\min f(x) & =c x+d y \\
x & \leq \bar{x} y \\
y & \in\{0,1\}
\end{aligned}
$$

If $x>0, y=1$, thus $f(x)=c x+d$.
If $x=0, y=0$ (because of \min of the obj function)

Motivation

- Discrete domain of one (or more) variables
- Domain discontinuity
- Conditional constraints
- Fixed cost
- Disjunctive constraints
- Absolute value of a variable

Motivation

- Discrete domain of one (or more) variables
- Domain discontinuity
- Conditional constraints
- Fixed cost
- Disjunctive constraints
- Absolute value of a variable

Examples of modeling with integer/binary variables: Disjunctive constraints

Disjunction : satisfy $a_{i}^{\top} x \leq b_{i}$ or $a_{k}^{\top} x \leq b_{k}$.

Examples of modeling with integer/binary variables: Disjunctive constraints

Disjunction : satisfy $a_{i}^{\top} x \leq b_{i}$ or $a_{k}^{\top} x \leq b_{k}$.

$$
\begin{aligned}
a_{i}^{\top} x & \leq b_{i}+M_{i} y_{i} \\
a_{k}^{\top} x & \leq b_{k}+M_{k} y_{k} \\
y_{i}+y_{k} & \leq 1 \\
y_{i} & \in\{0,1\} \\
y_{k} & \in\{0,1\}
\end{aligned}
$$

Motivation

- Discrete domain of one (or more) variables
- Domain discontinuity
- Conditional constraints
- Fixed cost
- Disjunctive constraints
- Absolute value of a variable

Motivation

- Discrete domain of one (or more) variables
- Domain discontinuity
- Conditional constraints
- Fixed cost
- Disjunctive constraints
- Absolute value of a variable

Examples of modeling with integer/binary variables:

 Absolute value of a variableMILP modeling of $|x|$?

Examples of modeling with integer/binary variables:

 Absolute value of a variableMILP modeling of $|x|$?

$$
\begin{array}{r}
|x|=x^{+}+x^{-} \\
x=x^{+}-x^{-} \\
0 \leq x^{+} \leq \bar{x} y \\
0 \leq x^{-} \leq-\underline{x}(1-y) \\
y \in\{0,1\} .
\end{array}
$$

If $x \leq 0, y=0, x^{+}=0$, and $x^{-} \in[0,-\underline{x}]$.
If $x \geq 0, y=1, x^{-}=0$, and $x^{+} \in[0, \bar{x}]$.
Where $\underline{x} \leq x \leq \bar{x}$, hp. $\underline{x}<0$ w.l.o.g.

Mixed Integer Linear Programming

$$
\begin{aligned}
& \min _{x} c^{\top} x \\
& A x \leq b \\
& \underline{x} \leq x \leq \bar{x} \\
& x_{j} \in \mathbb{Z} \quad \forall j \in Z
\end{aligned}
$$

where

- x is an n-dimensional vector of the decision variables,
- \underline{x} and \bar{x} are the given vectors of lower and upper bounds on the variables,
- c is the cost vector, A the constraints matrix, and b the right-hand-side vector,
- the set Z includes the indexes of the integer variables.

Mixed Integer Linear Programming

Figure: Lattice points (in blue), feasible region of the continuous relaxation (in gray), and their intersection (in red).

Exercises

Formulate the following as mixed integer linear programs:
(1) $u=\min \left\{x_{1}, x_{2}\right\}$, assuming that $0 \leq x_{j} \leq C$ for $j=1,2$.
(2) $v=\left\|x_{1}-x_{2}\right\|_{\infty}$ with $0 \leq x_{j} \leq C$ for $j=1,2$.
(3) the set $X \backslash\left\{x^{*}\right\}$ where $X=\left\{x \in \mathbb{Z}^{n} \mid A x \leq b\right\}$ and $x^{*} \in X$.

Outline

(1) Basic notions and definitions on MP and LP
(2) Introduction to Mixed Integer Linear Programming
(3) Motivation
4) Formulations

- Examples of Formulations Comparison
(5) When mixed integer linear programming is easy
(6) When mixed integer linear programming is NOT easy
(7) MILP Methods
- Cutting Plane
- Branch and Bound
- Branch and Cut

8 "Homeworks"

Outline

(1) Basic notions and definitions on MP and LP
(2) Introduction to Mixed Integer Linear Programming
(3) Motivation
4) Formulations

- Examples of Formulations Comparison
(5) When mixed integer linear programming is easy

6. When mixed integer linear programming is NOT easy
(7) MILP Methods

- Cutting Plane
- Branch and Bound
- Branch and Cut

8 "Homeworks"

Formulations/Reformulations

- An optimization problem could be modeled in several, different ways
- Each of the possible MP models is a formulation of the same problem
- A MP formulation \mathcal{Q} is a reformulation of another MP formulation \mathcal{P} if they are different formulations of the same optimization problem
- Reformulating a problem is interesting when
- The reformulation shows nicer mathematical properties
- The reformulation is more tractable

Reformulation Examples: equivalent forms of LPs

General form

Canonical form

Standard form

$$
\begin{aligned}
\min c^{\top} x & \\
a_{i}^{\top} x & =b_{i} \quad i \in M \\
a_{i}^{\top} x & \geq b_{i} \quad i \in \bar{M} \\
x_{j} & \geq 0 \quad j \in N \\
x_{j} & \risingdotseq 0 \quad j \in \bar{N}
\end{aligned}
$$

$$
\min c^{\top} x
$$

$$
\begin{aligned}
A x & \geq b \\
x & \geq 0
\end{aligned}
$$

$\min c^{\top} x$

$$
\begin{array}{r}
A x=b \\
x \geq 0
\end{array}
$$

Reformulation Examples: equivalent forms of LPs

$$
\begin{array}{rll}
\max c^{\top} x & \rightarrow & -\min \left(-c^{\top} x\right) \\
a_{i}^{\top} x \geq b_{i} & \rightarrow \begin{cases}a_{i}^{\top} x-s_{i}=b_{i} \\
s_{i} \geq 0\end{cases} \\
a_{i}^{\top} x \leq b_{i} & \rightarrow\left\{\begin{array}{l}
a_{i}^{\top} x+s_{i}=b_{i} \\
s i l^{2} 0
\end{array}\right. \\
a_{i}^{\top} x=b_{i} & \rightarrow\left\{\begin{array}{l}
a_{i}^{\top} x \geq b_{i} \\
a_{i}^{\top} x \leq b_{i}
\end{array}\right. \\
x_{j} \equiv 0 & \rightarrow\left\{\begin{array}{l}
x_{j}=x_{j}^{+}-x_{j}^{\top} \\
x_{j}^{+} \geq 0 \\
x_{j}^{\top} \geq 0
\end{array}\right.
\end{array}
$$

Relaxation

Definition

A problem $R: z^{R}=\min \left\{f(x) \mid x \in T \subseteq \mathbb{R}^{n}\right\}$ is a relaxation of problem P : $z=\min \left\{c^{\top} x \mid x \in X \subseteq \mathbb{R}^{n}\right\}$ if:

- $X \subseteq T$ and
- $f(x) \leq c^{\top} x \forall x \in X$.

Proposition

If R is a relaxation of P, then $z^{R} \leq z$.

Classical relaxation:

- continuous: integrality requirements are relaxed (also known as LP relaxation in the (MI)LP context)

Linear Programming Relaxation

Definition

For an integer program $\min \left\{c^{\top} x \mid x \in P \cap \mathbb{Z}^{n}\right\}$ with formulation $P=\left\{x \in \mathbb{R}_{+}^{n} \mid A x \leq b\right\}$, the linear programming relaxation is the linear program $z^{L P}=\min \left\{c^{\top} x \mid x \in P\right\}$.

Relationship between the solution of a relaxation and of the original problem

Proposition

(1) If a relaxation R is infeasible, the original problem P is infeasible.
(2) Let x^{*} be an optimal solution of R . If $x^{*} \in X$ and $f\left(x^{*}\right)=c^{\top} x^{*}$, then x^{*} is an optimal solution of P .

Formulations of the same IP problem

Example inspired by Example 1.2, "Integer Programming", Wolsey. $X=\{(1,1),(2,1),(3,1),(1,2),(2,2),(3,2),(2,3)\}$

Ideal formulation

Example inspired by Example 1.2, "Integer Programming", Wolsey. $X=\{(1,1),(2,1),(3,1),(1,2),(2,2),(3,2),(2,3)\}$

Comparing formulations

Convex hull

$\operatorname{conv}(X)=\left\{x \mid x=\sum_{i=1}^{t} \lambda_{i} x^{i}, \sum_{i=1}^{t} \lambda_{i}=1, \lambda_{i} \geq 0 \forall i=1, \ldots, t\right.$ for every subset $\left\{x^{1}, \ldots, x^{t}\right\}$ of $\left.X\right\}$.

Proposition

$\operatorname{conv}(X)$ is a polytope.

Proposition

The extreme points of $\operatorname{conv}(X)$ all lie in X.
Thus, $\left\{\min c^{\top} x \mid x \in X\right\}$ is equivalent to $\left\{\min c^{\top} x \mid x \in \operatorname{conv}(X)\right\}$.
Usually no simple characterization of $\operatorname{conv}(X)$ (exponential number of inequalities).

Comparing formulations

Given two formulations P_{1} and P_{2} for X, is one better than the other?

Definition

Given a set $X \subseteq \mathbb{R}^{n}$ and two formulations P_{1} and P_{2} for X, P_{1} is a better formulation than P_{2} if $P_{1} \subset P_{2}$.

Proposition

Suppose P_{1} and P_{2} are two formulations for the integer program $\min \left\{c^{\top} x \mid x \in X \subseteq \mathbb{Z}^{n}\right\}$ with P_{1} a better formulation than $P_{2}\left(P_{1} \subset P_{2}\right)$. If $z_{i}^{L P}=\min \left\{c^{\top} x \mid x \in P_{i}\right\}(i=1,2)$ are the values of the associated linear programming relaxations, then $z_{1}^{L P} \geq z_{2}^{L P}$.

$$
z_{1}=\min \left\{c^{\top} x \mid x \in P_{1}\right\} \geq z_{2}=\min \left\{c^{\top} x \mid x \in P_{2}\right\}
$$

Comparing formulations

P_{1} and P_{2} two formulations for X, where $P_{1} \subset P_{2}$.
$z_{1}=\min \left\{c^{\top} x \mid x \in P_{1}\right\} \geq z_{2}=\min \left\{c^{\top} x \mid x \in P_{2}\right\}$
$z^{*}=\min \left\{c^{\top} x \mid x \in \operatorname{conv}(X)\right\} \geq \min \left\{c^{\top} x \mid x \in P_{1}\right\}$
z^{*}, z_{1}, z_{2} are Lower Bounds (LB) of $\min \left\{c^{\top} x \mid x \in X\right\}$
Actually $z^{*}=\min \left\{c^{\top} x \mid x \in X\right\}!$
Ideal formulation : if we solve its LP relaxation, then we solve the IP as well (each extreme point is integer).

Outline

(1) Basic notions and definitions on MP and LP
(2) Introduction to Mixed Integer Linear Programming
(3) Motivation
4) Formulations

- Examples of Formulations Comparison
(5) When mixed integer linear programming is easy
(6) When mixed integer linear programming is NOT easy
(7) MILP Methods
- Cutting Plane
- Branch and Bound
- Branch and Cut

8 "Homeworks"

Outline

(1) Basic notions and definitions on MP and LP
(2) Introduction to Mixed Integer Linear Programming
(3) Motivation
4) Formulations

- Examples of Formulations Comparison
(5) When mixed integer linear programming is easy
(6) When mixed integer linear programming is NOT easy
(7) MIILP Methods
- Cutting Plane
- Branch and Bound
- Branch and Cut
"Homeworks"

An example of formulations comparison: the 01-KP problem

$$
\begin{aligned}
X= & \{(0,0,0,0),(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1) \\
& (0,1,0,1),(0,0,1,1)\}
\end{aligned}
$$

$$
\begin{aligned}
& P_{1}=\left\{x \in \mathbb{R}^{4}: 0 \leq x \leq 1,83 x_{1}+61 x_{2}+49 x_{3}+20 x_{4} \leq 100\right\} \\
& P_{2}=\left\{x \in \mathbb{R}^{4}: 0 \leq x \leq 1,4 x_{1}+3 x_{2}+2 x_{3}+1 x_{4} \leq 4\right\}
\end{aligned}
$$

$$
\begin{aligned}
P_{3}=\left\{x \in \mathbb{R}^{4}:\right. & \\
4 x_{1}+3 x_{2}+2 x_{3}+1 x_{4} & \leq 4 \\
1 x_{1}+1 x_{2}+1 x_{3} & \leq 1 \\
1 x_{1} & \leq 1 x_{4}
\end{aligned}
$$

An example of formulations comparison: Piecewise Linear Functions

- Breakpoints $\left(\tilde{x}_{k}, \tilde{z}_{k}\right)$ for $k=0, \ldots, s$
- Slope of k-th segment $\sigma_{k}=\frac{\tilde{z}_{k}-\tilde{z}_{k-1}}{\tilde{x}_{k}-\tilde{x}_{k-1}}$ for $k=1, \ldots, s$

An example of formulations comparison: Piecewise Linear Functions

Three Different Formulations of PWL functions:

- Convex Combination (CC) Formulation
- Multiple Choice (MC) Formulation
- Incremental (Inc) Formulation
-

An example of formulations comparison: Piecewise Linear Functions

Convex Combination Formulation

Figure: Source: Padberg, 2000 (modified)

An example of formulations comparison: Piecewise Linear Functions

Convex Combination Formulation

- Each piece is a convex combination of two consecutive breakpoints $\left(\tilde{x}_{k-1}, \tilde{z}_{k-1}\right)$ and $\left(\tilde{x}_{k}, \tilde{z}_{k}\right)$ for all $k=1, \ldots, s$

$$
\begin{aligned}
z & =\sum_{k=1}^{s}\left(\mu_{k} \tilde{z}_{k-1}+\lambda_{k} \tilde{z}_{k}\right) \\
x & =\sum_{k=1}^{s}\left(\mu_{k} \tilde{x}_{k-1}+\lambda_{k} \tilde{x}_{k}\right) \\
\mu_{k}+\lambda_{k} & =y_{k} \quad \forall k=1, \ldots, s \\
\sum_{k=1}^{s} y_{k} & =1 \\
\mu, \lambda & \geq 0 \\
y_{k} & \in\{0,1\} \quad \forall k=1, \ldots, s .
\end{aligned}
$$

An example of formulations comparison: Piecewise Linear Functions

Multiple Choice Formulation

Figure: Source: Croxton et al., 2003

An example of formulations comparison: Piecewise Linear Functions

Multiple Choice Formulation

- x (and, consequently \tilde{z}) can only lie on one of the s intervals of the piecewise linear approximation

$$
\begin{aligned}
z & =\sum_{k=1}^{s}\left(\tilde{z}_{k-1} y_{k}+\sigma_{k}\left(\beta_{k}-\tilde{x}_{k-1} y_{k}\right)\right) \\
x & =\sum_{k=1}^{s} \beta_{k} \\
\tilde{x}_{k-1} y_{k} \leq \beta_{k} & \leq \tilde{x}_{k} y_{k} \quad \forall k=1, \ldots, s \\
\sum_{k=1}^{s} y_{k} & =1 \\
y_{k} & \in\{0,1\} \quad \forall k=1, \ldots, s
\end{aligned}
$$

An example of formulations comparison: Piecewise Linear Functions

Incremental Formulation

Figure: Source: Padberg, 2000 (modified)

An example of formulations comparison: Piecewise Linear Functions

Incremental Formulation

- One more than one binary variable y could take the value one. In particular, they observe the following order

$$
1 \geq y_{1} \geq y_{2} \geq \cdots \geq y_{s} \geq 0
$$

$$
\begin{array}{rlr}
z & =\tilde{z}_{0}+\sum_{k=1}^{s} \sigma_{k} \delta_{k} & \\
x & =\tilde{x}_{0}+\sum_{k=1}^{s} \delta_{k} & \\
\delta_{k} & \leq\left(\tilde{x}_{k}-\tilde{x}_{k-1}\right) y_{k} & \forall k=1, \ldots, s \\
\delta_{k} \geq\left(\tilde{x}_{k}-\tilde{x}_{k-1}\right) y_{k+1} & \forall k=1, \ldots, s \\
y_{k} \in\{0,1\} & \forall k=1, \ldots, s
\end{array}
$$

where the additional variable y_{s+1} is set to 0 .

An example of formulations comparison: Piecewise Linear Functions

Croxton et al. (2003) analyzed the continuous relaxations of the 3 formulations.

Aim of the analysis: identifying the strongest formulation (continuous relaxation is the closest to the formulation itself).

Proposition 1 (Croxton et al. (2003)) The LP relaxations of the incremental, multiple choice, and convex combination formulations are equivalent, in the sense that any feasible solution of one LP relaxation corresponds to a feasible solution to the others with the same cost.

An example of formulations comparison: Piecewise Linear Functions

Exercises:
(1) Prove the equivalence of the Multiple Choice and Convex Combination formulations
(2) Prove the values of z are the same
(3) Prove the equivalence of the Incremental and Multiple Choice formulations (implies the equivalence of the Incremental and Convex Combination formulations)

An example of formulations comparison:
 Piecewise Linear Functions

Recall: a formulation is ideal if all vertices of its continuous relaxation are integer.

- Lee and Wilson (2001) and Padberg (2000) showed that a variant of CC is not locally ideal.
- Vielma et al. (2010) showed that the other formulation are locally ideal.
- Jeroslow and Lowe (1984): a formulation P of S sharp when its projection is exactly the convex hull of S.
- Vielma et al. (2010): Any locally ideal formulation is sharp.
- Vielma et al. (2010): All formulations presented are sharp.

Sharpness weaker property than being locally ideal.
Sharpness is sufficient to consider a formulation strong.

An example of formulations comparison: Piecewise Linear Functions

Formulations Size
Number of constraints, additional variables, binaries for the three formulations

Model	Constraints	Continuous	Binaries
CC	$2+\mathrm{s}$	2 s	s
MC	$2+2 \mathrm{~s}$	s	s
Inc	$2+2 \mathrm{~s}$	s	$\mathrm{~s}(+1)$

Outline

(1) Basic notions and definitions on MP and LP
(2) Introduction to Mixed Integer Linear Programming
(3) Motivation
4) Formulations

- Examples of Formulations Comparison
(5) When mixed integer linear programming is easy
(6) When mixed integer linear programming is NOT easy
(7) MILP Methods
- Cutting Plane
- Branch and Bound
- Branch and Cut

8 "Homeworks"

Outline

(1) Basic notions and definitions on MP and LP

2 Introduction to Mixed Integer Linear Programming
(3) Motivation
(4) Formulations

- Examples of Formulations Comparison
(5) When mixed integer linear programming is easy
(6) When mixed integer linear programming is NOT easy
(7) MILP Methods
- Cutting Plane
- Branch and Bound
- Branch and Cut
(8) "Homeworks"

When is it sufficient to solve the LP relaxation to get the IP solution?

- When the compact description of the convex hull $\operatorname{conv}(X)$ is known.

Definition

A convex set $P \subseteq \mathbb{R}^{n}$ is integral if $P=\operatorname{conv}\left(P \cap \mathbb{Z}^{n}\right)$.

Theorem (Hoffman and Kruskal)

Let A be an $m \times n$ matrix. The polyhedron $\left\{x \mid A x \leq b, x \in \mathbb{R}_{+}^{n}\right\}$ is integral for every vector $b \in \mathbb{Z}^{m}$ if and only if A is totally unimodular.

Definition

A matrix A is totally unimodular if every square submatrix of A has determinant $+1,0$, or -1 .

TU Matrix

Theorem (Sufficient condition)

A matrix A is $T U$ if
(1) $a_{i j} \in\{-1,0,+1\}$ for all i, j
(2) Each column contains at most two nonzero coefficients
$\left(\sum_{i=1}^{m}\left|a_{i j}\right| \leq 2\right)$
(3) There exists a partition $\left(M_{1}, M_{2}\right)$ of the rows set such that each column j containing two nonzero coefficients satisfies
$\sum_{i \in M_{1}} a_{i j}=\sum_{i \in M_{2}} a_{i j}$ (i.e., if the two non-zero entries have the same sign they are in different sets, if the two non-zero entries have a different sign they are in the same set).

TU Matrix

Proposition (Poincaré)

Let $A \in\{-1,0,+1\}^{m \times n}$. If every column of A has at most one 1 and at most one -1 , then A is TU.

Corollary

The AP matrix is TU, thus solving the LP relaxation of AP provides its optimal solution.

Outline

(1) Basic notions and definitions on MP and LP
(2) Introduction to Mixed Integer Linear Programming
(3) Motivation
4) Formulations

- Examples of Formulations Comparison
(5) When mixed integer linear programming is easy
(6) When mixed integer linear programming is NOT easy
(7) MILP Methods
- Cutting Plane
- Branch and Bound
- Branch and Cut

8 "Homeworks"

Outline

(1) Basic notions and definitions on MP and LP
(2) Introduction to Mixed Integer Linear Programming
(3) Motivation
(4) Formulations

- Examples of Formulations Comparison
(5) When mixed integer linear programming is easy
(6) When mixed integer linear programming is NOT easy
(7) MILP Methods
- Cutting Plane
- Branch and Bound
- Branch and Cut
(3)
"Homeworks"

Rounding the LP solution?

Example from "Integer Programming", Wolsey.
$\max 1.00 x_{1}+0.64 x_{2}$ $50 x_{1}+31 x_{2} \leq 250$ $3 x_{1}-2 x_{2} \geq-4$ $x_{1}, x_{2} \geq 0$ and integer.

LP solution: $\left(\frac{376}{193}, \frac{950}{193}\right)$

Rounding of the LP solution: $(2,5)$
IP solution: $(5,0)$

Restriction

- The feasible region of the restriction is a subset of the feasible region of the original problem (when mapped in the same space).
- The restrictions are useful to obtain an upper bound on the optimal value (feasible solutions) of the original problem.

Restriction: example

$$
\begin{array}{r}
\max x_{1}+2 x_{2}+10 x_{3} \\
x_{1}+x_{2} \leq 4 \\
-x_{1}+3 x_{3} \leq 0 \\
x_{1}, x_{2} \geq 0 \\
x_{3} \in\{0,1,2\}
\end{array}
$$

Complete enumeration?

Any purely binary program can be solved by considering all the 2^{n} potential solutions.

As n grows, the time needed to compute all the 2^{n} potential solutions grows exponentially in n.

n	2^{n}
10	1,024
100	$1.26765060022823 \mathrm{e}+30$
1,000	$1.07150860718627 \mathrm{e}+301$

Not an applicable approach in practice.
Which methods are used in practice?

Main ingredents

Ingredients for solving MILPs:

- Lower bound(s)
- Upper bound(s)

If $\mathrm{LB}=\mathrm{UB}$, then we found an optimal solution of the (M) ILP.
Otherwise: improve LB and UB.
We focus on how to improve the LB.

Outline

(1) Basic notions and definitions on MP and LP
(2) Introduction to Mixed Integer Linear Programming
(3) Motivation
4) Formulations

- Examples of Formulations Comparison
(5) When mixed integer linear programming is easy
(6) When mixed integer linear programming is NOT easy
(7) MILP Methods
- Cutting Plane
- Branch and Bound
- Branch and Cut

8 "Homeworks"

Outline

(1) Basic notions and definitions on MP and LP
(2) Introduction to Mixed Integer Linear Programming
(3) Motivation
(4) Formulations

- Examples of Formulations Comparison
(5) When mixed integer linear programming is easy
(6) When mixed integer linear programming is NOT easy
(7) MILP Methods
- Cutting Plane
- Branch and Bound
- Branch and Cut
(8) "Homeworks"

MILP Methods

Complete enumeration?

Any purely binary program can be solved by considering all the 2^{n} potential solutions.

As n grows, the time needed to compute all the 2^{n} potential solutions grows exponentially in n.

n	2^{n}
10	1,024
100	$1.26765060022823 \mathrm{e}+30$
1,000	$1.07150860718627 \mathrm{e}+301$

Not an applicable approach in practice.
Which methods are used in practice?

(M)ILP Methods

Convex hull : given a set $S \subseteq \mathbb{R}^{n}, \operatorname{conv}(S)$ is the smallest convex set containing S.

When S is the set of solutions of an IP, $\operatorname{Conv}(S)$ is a polyhedron whose vertices are integer points .

Ideal formulation of $S:\left\{x \in \mathbb{R}^{n} \mid \tilde{A} x \leq \tilde{b}, \underline{x} \leq x \leq \bar{x}\right\}=\operatorname{conv}(S)$.
The ideal formulation is usually very difficult to find or can include an exponential number of constraints.

Good approximation of $\operatorname{conv}(X)$?

A few definitions

- Supporting hyperplane : $\left\{x \mid d^{\top} x=\delta\right\}$ s.t. d a nonzero vector and $\delta=\min \left\{d^{\top} x \mid A x \leq b\right\}$
- Face : subset of polyhedron s.t. $F=P$ or $F=P \cap H$ where H is some supporting hyperplane

A few definitions

Source: https://en.wikipedia.org/wiki/Convex_polytope

- Facet of P : bounded face of dimension $n-1$ (where n is the dimension of P).
- Edge of P : bounded face of dimension 1 .
- Vertex of P : bounded face of dimension 0 .

MILP Methods

Definition

Given a polyhedron $P, d^{\top} x \leq \delta$ is called valid inequality for P if it holds for any $x \in P$.

Which are useful valid inequalities? How can we use them in trying to solve a particular instance?

Cutting plane (R. E. Gomory, 1958)
Based on continuous relaxation strengthening through valid and non trivial inequalities which cut iteration after iteration part of the feasible region of the relaxation (but no feasible point of the MILP problems).

Outline

(1) Basic notions and definitions on MP and LP
(2) Introduction to Mixed Integer Linear Programming
(3) Motivation
4) Formulations

- Examples of Formulations Comparison
(5) When mixed integer linear programming is easy
(6) When mixed integer linear programming is NOT easy
(7) MILP Methods
- Cutting Plane
- Branch and Bound
- Branch and Cut

8 "Homeworks"

Outline

(1) Basic notions and definitions on MP and LP
(2) Introduction to Mixed Integer Linear Programming
(3) Motivation
(4) Formulations

- Examples of Formulations Comparison
(5) When mixed integer linear programming is easy
(6) When mixed integer linear programming is NOT easy
(7) MILP Methods
- Cutting Plane
- Branch and Bound
- Branch and Cut
(8) "Homeworks"

Cutting Plane

- Iteratively adding to an initial formulation valid, non trivial inequalities
- Called cuts because they cut fractional solutions
- Ideally, CP would add the cuts characterizing the convex hull (continuous relaxation with integer vertices)
- Very challenging in general

Cutting Plane

MILP problem P :

$$
z^{*}=\min \left\{c^{\top} x \mid x \in X\right\}
$$

with $X=\left\{x \mid A x \leq b, \underline{x} \leq x \leq \bar{x}, x_{j} \in \mathbb{Z} \forall j \in Z\right\} \subseteq \mathbb{R}^{n}$.
LP relaxation R^{0} :

$$
z^{0}=\min \left\{c^{\top} x \mid x \in X^{0}\right\}
$$

with $X^{0}=\{x \mid A x \leq b, \underline{x} \leq x \leq \bar{x}\}$.
When the solution of $R^{0} x^{0} \in X$, then it is an optimal solution of P.
Otherwise, find α, β such that:

- $\alpha^{\top} x \leq \beta$ for $x \in X$
- $\alpha^{\top} x^{0}>\beta$

Relaxation $R^{1}: X^{1}=X^{0} \cup\left\{x \mid \alpha^{\top} x \leq \beta\right\}$

Cutting Plane

MILP problem P :

$$
z^{*}=\min \left\{c^{\top} x \mid x \in X\right\}
$$

with $X=\left\{x \mid A x \leq b, \underline{x} \leq x \leq \bar{x}, x_{j} \in \mathbb{Z} \forall j \in Z \subseteq \mathbb{R}^{n}\right\}$.
LP relaxation R^{0} :

$$
z^{0}=\min \left\{c^{\top} x \mid x \in X^{0}\right\}
$$

with $X^{0}=\{x \mid A x \leq b, \underline{x} \leq x \leq \bar{x}\}$.
Relaxation $R^{1}: X^{1}=X^{0} \cup\left\{x \mid \alpha^{\top} x \leq \beta\right\}$
Since $X \subseteq X^{1} \subseteq X^{0}, R^{1}$ stronger than R^{0}.
Aim of the CP :
Generate a sequence of stronger relaxations converging to P.

Cutting Plane

Require: a MILP problem P (let R^{0} be its continuous relaxation)
$i=0$
solve R^{i} and let x^{i} be its optimal solution while x^{i} is non-integer do
solve the separation problem of x^{i} from P and let $\alpha^{\top} x \leq \beta$ be the resulting cut
add $\alpha^{\top} x \leq \beta$ to R^{i} and obtain R^{i+1}
$i=i+1$
solve R^{i} and let x^{i} be its optimal solution end while return x^{i}

Cutting Plane

Separation problem :

identifying α and β such that

- $\alpha^{\top} x \leq \beta \quad \forall x \in X$
- $\alpha^{\top} x^{i}>\beta$

Tradeoff between time spent to find the cut vs. quality of the cut.
Cut $\alpha^{\top} x \leq \beta$ should be easily identified for any (M)ILP problem.

Cutting Plane

Separation problem :

identifying α and β such that

- $\alpha^{\top} x \leq \beta \quad \forall x \in X$
- $\alpha^{\top} x^{i}>\beta$

The CP method could be generic .
General-purpose solvers and the cuts added are of several types but all of them are generic.

Cutting Plane

If the problem has some mathematical properties or specific characteristics \rightarrow a tailored cutting plane method.

In this case, separation procedure and cut $\alpha^{\top} x \leq \beta$ specific (valid for that class of problems).

Last lecture.

Example of generic separation problem and cuts.

Cutting Plane

Valid inequalities for LP problems.

Proposition

$\pi^{\top} x \leq \pi_{0}$ is valid for $Y=\{x \mid A x \leq b, x \geq 0\} \neq \emptyset$ if and only if:

- there exists $u \geq 0, v \geq 0$ such that $u^{\top} A-v=\pi$ and $u^{\top} b \leq \pi_{0}$ or, alternatively,
- there exists $u \geq 0$ such that $u^{\top} A \geq \pi$ and $u^{\top} b \leq \pi_{0}$.

Cutting Plane

Valid inequalities for IP problems.

Proposition

Let $Y=\left\{x \in \mathbb{Z}^{1} \mid x \leq b\right\}$, then the inequality $x \leq\lfloor b\rfloor$ is valid for Y.

Cutting Plane

Numerical example for IP (from Wolsey):

$$
\begin{aligned}
7 x_{1}-2 x_{2} & \leq 14 \\
x_{2} & \leq 3 \\
2 x_{1}-2 x_{2} & \leq 3 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

(1) By combining the three constraints with the following nonnegative weight $\left(\frac{2}{7}, \frac{37}{63}, 0\right)$ we obtain the valid inequality:

$$
2 x_{1}+\frac{1}{63} x_{2} \leq \frac{121}{21}
$$

(2) Round down the coefficient of $x_{2}: 2 x_{1}+0 x_{2} \leq \frac{121}{21}$.
(3) Round down the RHS of $x_{2}: 2 x_{1} \leq\left\lfloor\frac{121}{21}\right\rfloor=5$.

Cutting Plane

Numerical example for IP (from Wolsey):

$$
\begin{aligned}
7 x_{1}-2 x_{2} & \leq 14 \\
x_{2} & \leq 3 \\
2 x_{1}-2 x_{2} & \leq 3 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Valid inequality:

$$
2 x_{1} \leq 5
$$

If we iterate with a weight of $\frac{1}{2}$, we get

$$
x_{1} \leq\left\lfloor\frac{5}{2}\right\rfloor=2
$$

stronger!

Cutting Plane

General procedure for IP:
(1) The inequality

$$
\sum_{j=1}^{n} u^{\top} a_{j} x_{j} \leq u^{\top} b
$$

is valid for X as $u \geq 0$ and $\sum_{j=1}^{n} a_{j} x_{j} \leq b$
(2) The inequality

$$
\left\lfloor\sum_{j=1}^{n} u^{\top} a_{j} \mid x_{j} \leq u^{\top} b\right.
$$

is valid for X as $x \geq 0$.
(3) The inequality

$$
\left\lfloor\sum_{j=1}^{n} u^{\top} a_{j}\right\rfloor x_{j} \leq\left\lfloor u^{\top} b\right\rfloor
$$

is valid for X as x is integer, thus $\left\lfloor\sum_{j=1}^{n} u^{\top} a_{j}\right\rfloor x_{j}$ is integer.

Chvátal Inequalities

- $P: \min \left\{c^{\top} x \mid A x \leq b, x\right.$ integer $\}$
- $R^{0}: \min \left\{c^{\top} x \mid A x \leq b\right\}$
- x^{0} be the optimal solution of the continuous relaxation of R^{0} (fractional solution)
- Chvátal inequality: $\alpha^{\top} x \leq \beta$ with $\alpha=\left\lfloor u^{\top} A\right\rfloor$ and $\beta=\left\lfloor u^{\top} b\right\rfloor$ for some $u \geq 0$

Separation problem : find $u \in \mathbb{R}_{+}^{m}$ such that $\left\lfloor u^{\top} A\right\rfloor x^{0}>\left\lfloor u^{\top} b\right\rfloor$.

Chvátal Inequalities

Theorem
Every valid inequality for X can be obtained by applying the Chvátal procedure a finite number of times.

Chvátal Inequalities

Properties:

$\left\lfloor u^{\top} A\right\rfloor x \leq\left\lfloor u^{\top} b\right\rfloor \quad \forall x \in X$
Given a fractional solution $x^{0} \in R^{0}$, it is always possible to

- Find a $u \in \mathbb{R}_{+}^{m}$ such that $\left\lfloor u^{\top} A\right\rfloor x^{0}>\left\lfloor u^{\top} b\right\rfloor$
- Separate x^{0}
- Find a cut to be added to R^{0} that strengthen it
$\rightarrow C P$ with Chvátal inequalities is an exact method for solving (M)ILPs.

Chvátal Inequalities: example

Let us consider the following IP:

$$
\begin{aligned}
\max x_{1}+x_{2} & \\
2 x_{1}+x_{2} & \leq 6 \\
-x_{1}+x_{2} & \leq 1 \\
x_{1}, x_{2} & \geq 0 \\
x_{1}, x_{2} & \text { integer }
\end{aligned}
$$

Chvátal Inequalities: example

Other valid inequalities for (M)ILP

- Split inequalities (generalization of Chvátal Inequalities)
- Gomory's Mixed Integer cuts
- Lift-and-project inequalities

For details, cf. Chapter 5 of Conforti, Cornuéjols, Zambelli

The cutting plane game

http://www.columbia.edu/~gm2543/cpgame.html

Outline

(1) Basic notions and definitions on MP and LP
(2) Introduction to Mixed Integer Linear Programming
(3) Motivation
4) Formulations

- Examples of Formulations Comparison
(5) When mixed integer linear programming is easy
(6) When mixed integer linear programming is NOT easy
(7) MILP Methods
- Cutting Plane
- Branch and Bound
- Branch and Cut

8 "Homeworks"

Outline

(1) Basic notions and definitions on MP and LP
(2) Introduction to Mixed Integer Linear Programming
(3) Motivation
(4) Formulations

- Examples of Formulations Comparison
(5) When mixed integer linear programming is easy
(6) When mixed integer linear programming is NOT easy
(7) MILP Methods
- Cutting Plane
- Branch and Bound
- Branch and Cut

8 "Homeworks"

MILP Methods

Branch and Bound (A. H. Land \& A. G. Doig, 1960)
Based on upper and lower bounds on the optimal solution value and on branching which divide iteration after iteration the feasible region in smaller subproblems.

In general exponential worst case performance.

Branch and Bound

Smaller subproblems easier to solve.

Proposition (Wolsey)

Let $X=X_{1} \cup \ldots X_{K}$ be a decomposition of X into smaller sets and let $z_{k}=\min \left\{c^{\top} x \mid x \in X_{k}\right\}$ for $k=1, \ldots, K$. Then, $z=\min _{k} z_{k}$.

Proposition (Wolsey)

Let $X=X_{1} \cup \ldots X_{K}$ be a decomposition of X into smaller sets and let $z_{k}=\min \left\{c^{\top} x \mid x \in X_{k}\right\}$ for $k=1, \ldots, K$. Let \underline{z}_{k} be a lower bound on z_{k} and \bar{z}_{k} be an upper bound on z_{k}. Then, $\underline{z}=\min _{k} \underline{z}_{k}$ is a lower bound on z and $\bar{z}=\min _{k} \bar{z}_{k}$ is an upper bound on z.

Branch and Bound

- Bounding and branching phases
- Solve the continuous relaxation of the problem (bounding)
- If it solution is fractional, branch to obtain two smaller subproblems and which do not contain the fractional solution
- explore implicitly all the subproblems and continue branching if necessary
- The subproblems could
- be infeasible
- have an optimal solution x^{*} which is integer feasible (no further branching). Upper bound is the best between x^{*} and the best integer feasible solution found so far x UB
- have an optimal solution x^{*} which is fractional
- If $c^{\top} x^{*}<c^{\top} x^{U B}$ then branch
- Otherwise continue

Branch and Bound

Example of pruning by optimality

Branch and Bound

Example of pruning by bound

Branch and Bound

Example of pruning by infeasibility

Branch and Bound: example

$$
\begin{aligned}
-\min -x_{1}-x_{2} & \\
2 x_{1}+x_{2} & \leq 6 \\
-x_{1}+x_{2} & \leq 1 \\
x_{1}, x_{2} & \geq 0 \\
x_{1}, x_{2} & \text { integer }
\end{aligned}
$$

$$
L^{0}=\left\lceil-\frac{13}{3}\right\rceil=-4
$$

$$
P_{0}
$$

Branch and Bound: example

$$
x^{*}=\left(\frac{5}{3}, \frac{8}{3}\right), c^{\top} x^{*}=-\frac{13}{3}
$$

Branch on x_{1} :

- Subproblem $P_{1}: P_{0} \cap\left\{x \left\lvert\, x_{1} \leq\left\lfloor\frac{5}{3}\right\rfloor=1\right.\right\}$
- Subproblem $P_{2}: P_{0} \cap\left\{x \left\lvert\, x_{1} \geq\left\lfloor\frac{5}{3}\right\rfloor+1=2\right.\right\}$

Branch and Bound: example

Explore P_{1} : optimal solution $(1,2)$ of value -3 . No further branching, upper bound of -3 , corresponding to the solution $x^{U B}=(1,2)$.

Branch and Bound: example

Explore P_{1} : optimal solution $(1,2)$ of value -3 . No further branching, upper bound of -3 , corresponding to the solution $x^{U B}=(1,2)$.
Explore P_{2} : optimal solution is $(2,2)$ of value -4 . No further branching, upper bound of -4 , corresponding to the solution $x^{U B}=(2,2)$.

Branch and Bound: example

Explore P_{1} : optimal solution $(1,2)$ of value -3 . No further branching, upper bound of -3 , corresponding to the solution $x^{U B}=(1,2)$.
Explore P_{2} : optimal solution is $(2,2)$ of value -4 . No further branching, upper bound of -4 , corresponding to the solution $x^{\mathrm{UB}}=(2,2)$.
No subproblems left to explore \rightarrow optimal solution $(2,2)$ of value -4 .

Branch and Bound: example

The selection of i. the branching variable and ii. the next subproblem to explore influence highly the exploration of the feasible region.
Example: branch on x_{2}

- $x_{2} \leq\left\lfloor\frac{8}{3}\right\rfloor=2$
- $x_{2} \geq\left\lfloor\frac{8}{3}\right\rfloor+1=3$

Branch and Bound

Require: a MILP problem P (P_{0} is its continuous relaxation)

```
\(i=1, f^{U B}=+\infty, \Pi=\left\{P_{0}\right\}\)
while \(\Pi \neq \emptyset\) do
    select a subproblem in \(\Pi\), say \(P_{k}\) and remove it from \(\Pi\)
    solve \(P_{k}\), let \(x^{*}\) be its optimal solution and \(f^{*}\) be its value
    if \(P_{k}\) is infeasible or \(f^{*}>f^{U B}\) then
        continue
    end if
    if \(x^{*}\) is non-integer then
        select a variable, say \(x_{j}\), with a fractional value \(x_{j}^{*}\)
        define \(P_{i}=P_{k} \cap\left\{x \mid x_{j} \leq\left\lfloor x_{j}^{*}\right\rfloor\right\}\) and \(P_{i+1}=P_{k} \cap\left\{x \mid x_{j} \geq\left\lfloor x_{j}^{*}\right\rfloor+1\right\}\)
        let \(L_{i}=f^{*}\) and \(L_{i+1}=f^{*}\)
        \(\Pi=\Pi \cup\left\{P_{i}, P_{i+1}\right\}\)
        \(i=i+2\)
    else
        \(f^{U B}=f^{*}, x^{U B}=x^{*}\)
        remove from \(\Pi\) any \(P_{\ell}\) with \(L_{\ell}>f^{U B}\)
    end if
end while
return \(x^{U B}\)
```


Branch and Bound

Key ingredients:

- Formulation (small gap at root node)
- Heuristics (improve upper bound)
- Branching
- Node selection.

Outline

(1) Basic notions and definitions on MP and LP
(2) Introduction to Mixed Integer Linear Programming
(3) Motivation
4) Formulations

- Examples of Formulations Comparison
(5) When mixed integer linear programming is easy
(6) When mixed integer linear programming is NOT easy
(7) MILP Methods
- Cutting Plane
- Branch and Bound
- Branch and Cut

8 "Homeworks"

Outline

(1) Basic notions and definitions on MP and LP

2 Introduction to Mixed Integer Linear Programming
(3) Motivation
(4) Formulations

- Examples of Formulations Comparison
(5) When mixed integer linear programming is easy
(6) When mixed integer linear programming is NOT easy
(7) MILP Methods
- Cutting Plane
- Branch and Bound
- Branch and Cut

8 "Homeworks"

Branch and Cut

Require: a MIILP problem P (P_{0} is its continuous relaxation $)$
$i=1, f^{U B}=+\infty, \Pi=\left\{P_{0}\right\}$
while $\Pi \neq \emptyset$ do
select a subproblem in Π, say P_{k} and remove it from Π
solve P_{k}, let x^{*} be its optimal solution and f^{*} be its value
if P_{k} is infeasible or $f^{*}>f^{U B}$ then
continue
end if
if x^{*} is non-integer then
if Branch? then
select a variable, say x_{j}, with a fractional value x_{j}^{*}
define $P_{i}=P_{k} \cap\left\{x \mid x_{j} \leq\left\lfloor x_{j}^{*}\right\rfloor\right\}$ and $P_{i+1}=P_{k} \cap\left\{x \mid x_{j} \geq\left\lfloor x_{j}^{*}\right\rfloor+1\right\}$
let $L_{i}=f^{*}$ and $L_{i+1}=f^{*}$
$\Pi=\Pi \cup\left\{P_{i}, P_{i+1}\right\}$
$i=i+2$
else
Strenthen P_{k} by adding cutting planes
$\Pi=\Pi \cup P_{k}$
end if
else
$f^{U B}=f^{*}, x^{U B}=x^{*}$
remove from Π any P_{ℓ} with $L_{\ell}>f^{U B}$
end if
end while
return $x^{U B}$

"Homeworks"

- Modeling exercises
- Proofs of equivalence of the continuous relaxation of the PWL formulations
- Install AMPL
https://www.lix.polytechnique.fr/~dambrosio/teaching/. For instructions see https://ampl.com/ampl-course-install/
- Bring your laptop with you tomorrow!

References Part I

- M. Conforti, G. Cornuéjols, G. Zambelli. "Integer Programming". Springer, New York, 2014.
- S. Martello and P. Toth. The Knapsack Problem, John Wiley Sons, 1990
- G.L. Nemhauser, L.A. Wolsey. "Integer and combinatorial optimization". Wiley-interscience, New York, 1999.
- C. Papadimitriou, K. Steiglitz. "Combinatorial Optimization: Algorithms and Complexity". Dover Publications, Mineola, 1998.
- A. Schrijver "Theory of linear and integer programming". John Wiley and Sons Ltd., New York, 1998.
- A. Schrijver "Combinatorial Optimization". Springer, New York, 2003.
- L.A. Wolsey "Integer Programming". Wiley-interscience, New York, 1998.

References Part II

- M. Conforti, G. Cornuéjols, and G. Zambelli. Integer Programming, Springer International Publishing, 2014
- K. Croxton, B. Gendron, T. Magnanti. A Comparison of Mixed-Integer Programming Models for Non-Convex Piecewise Linear Cost Minimization Problems. Management Science, 49, pp. 1268-1273, 2003.
- G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization, Wiley, 1999
- C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization, Algorithms and Complexity, Dover, 1998
- A. Schrijver. Theory of Linear and Integer Programming, John Wiley Sons, 1980
- J.P. Vielma, S. Ahmed, G. Nemhauser. Mixed-integer models for nonseparable piecewise linear optimization: unifying framework and extensions. Operations Research, 58:303-315, 2010.
- L. Wolsey. Integer Programming, Wiley, 1998

