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Mathematical Programming (MP)

min
x

f (x)

gi (x) ≤ 0 ∀i = 1, . . . ,m

x ≤ x ≤ x

xj ∈ Z ∀j ∈ Z

where

x is an n-dimensional vector of the decision variables

x and x are the given vectors of lower and upper bounds on the
variables

set Z ⊆ {1, 2, . . . , n} is the set of the indexes of the integer variables
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Mathematical Programming (MP)

min
x

f (x)

gi (x) ≤ 0 ∀i = 1, . . . ,m

x ≤ x ≤ x

xj ∈ Z ∀j ∈ Z

where f (x) and gi (x) (∀i = 1, . . . ,m):

can be written in closed form

are twice continuously differentiable functions of the variables
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Mathematical Programming

A few definitions:

Formulation : a MP modeling an optimization problem

An optimization problem can be modeled in different ways → several
formulations

Instance : when the expression of f (x), g(x) and the values of x , x ,
and Z are known. The set of instances of a MP problems is
potentially infinite.
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Mathematical Programming

A few definitions:

Feasible solutions :
X = {x | g(x) ≤ 0, x ≤ x ≤ x , xj ∈ Z ∀j ∈ Z}

Optimal solution : arg minx∈X f (x)

Heuristc solution : a feasible solution (hopefully of good quality)
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Classes of MP problems

min
x

f (x)

gi (x) ≤ 0 ∀i = 1, . . . ,m

x ≤ x ≤ x

xj ∈ Z ∀j ∈ Z

Linear Programming (LP): f (x) and g(x) are linear, Z = ∅
Integer (Linear) Programming (ILP): f (x) and g(x) are linear,
Z = {1, 2, . . . , n}
Mixed Integer (Linear) Programming (MILP): f (x) and g(x) are
linear, Z ⊂ {1, 2, . . . , n}
Mixed Integer Non Linear Programming (MINLP): f (x) and
g(x) are twice continuously differentiable, Z ⊂ {1, 2, . . . , n}

Black Box Optimization: f (x) or g(x) → no closed form
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Linear Programming problems

min
x

f (x)

gi (x) ≤ 0 ∀i = 1, . . . ,m

x ≤ x ≤ x

xj ∈ Z ∀j ∈ Z

Linear Programming (LP) problem:

min
x

f (x) → min
x

c>x

g(x) ≤ 0 → Ax ≤ b

x ≤ x ≤ x → x ≤ x ≤ x

xj ∈ Z ∀j ∈ Z → removed
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LP problems

min
x

c>x

Ax ≤ b

x ≤ x ≤ x

W.l.o.g. because

max c̃>x → −min−c̃>x

For some i , Ãix ≥ b̃i → −Ãix ≤ −b̃i
For some i , Ãix = b̃i → −Ãix ≤ −b̃i and Ãix ≤ b̃i

Moreover, ∀j ∈ 1, . . . , n x j ∈ [−∞,+∞) and x j ∈ (−∞,+∞].
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LPs characteristics

Feasible (solutions) set/region : X = {x | Ax ≤ b, x ≤ x ≤ x}

optimal: when X 6= ∅, bounded. In this case, an optimal solution is
found, i.e., a feasible point x∗ s.t. c>x∗ ≤ c>x for all feasible x ∈ X

infeasible: when X = ∅

unbounded: when the min{c>x | x ∈ X} = −∞

Geometrical intuition of LPs
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Example 1

max x1 + x2

3x1 + 2x2 ≤ 13

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 5.

x1 + x2 = 0x1 + x2 = 1x1 + x2 = 2x1 + x2 = 3x1 + x2 = 4x1 + x2 = 5

x1 + x2 = 6

opt.
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A few definitions

Consider some i ∈ {1, . . . ,m}
Hyperplane : {x ∈ Rn | A>i x = bi}
Half-space : {x ∈ Rn | A>i x ≤ bi} or {x ∈ Rn | A>i x ≥ b}
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A few definitions

Polyhedron : {x ∈ Rn | Ax ≤ b}
Polytope : a bounded polyhedron

Remark

The feasible region of a LP problem is a polyhedron (by definition).
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Some properties and theorems

Definition

Given points v1, v2, . . . , vp ∈ Rn, their convex combination is
z =

∑p
i=1 αiv

i s.t.
∑p

i=1 αi = 1 and αi ≥ 0 for all i = 1, . . . , p.

Theorem

Every polyhedron P ⊆ Rd can be written as

P = conv{v1, . . . , vk}+ cone{r1, . . . , r `}

with points v1, . . . , vk ∈ Rd and rays r1, . . . , r ` ∈ Rd

where cone{r1, . . . , r `} = {x ∈ Rd | x = µ1r
1 + . . . µ`r

`, µ1, . . . , µ` ≥ 0}.
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Some properties and theorems

Theorem

Each point of a polytope is a convex combination of its vertices.

Theorem

Each convex combination of the vertices of a polytope is a point of the
polytope.

Theorem

A vertex is not a strict convex combination of two distinct points of the
polytope.

Thus, a polytope can be characterized/described by a finite number of
half-spaces (H-description) or its vertices (V-description).
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Mixed Integer Linear Programming

min
x

c>x

Ax ≤ b

x ≤ x ≤ x

xj ∈ Z ∀j ∈ Z

where

x is an n-dimensional vector of the decision variables,

x and x are the given vectors of lower and upper bounds on the
variables,

c is the cost vector, A the constraints matrix, and b the
right-hand-side vector,

the set Z includes the indexes of the integer variables.
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(Mixed) Integer Linear Programming

Figure: Lattice points (in blue), feasible region of the continuous relaxation (in
gray), and their intersection (in red).
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Examples: the Assignment Problem (AP)

n people available for n tasks.

Cost cij is invers. proportional to the suitedness of person i to task j .

Find the minimum cost assignment.

Variables: xij = 1 when person i is assigned to task j , 0 otherwise
(∀i = 1, . . . , n; j = 1, . . . , n)

min
n∑

i=1

n∑
j=1

cijxij

n∑
j=1

xij = 1 ∀i = 1, . . . , n

n∑
i=1

xij = 1 ∀j = 1, . . . , n

xij ∈ {0, 1} ∀i = 1, . . . , n; j = 1, . . . , n
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Examples: the 01-Knapsack Problem (KP)

Knapsack capacity c (maximum weight).

n available items

wj weight of item j , pj profit given by item j

Select the items so as to respect the capacity and maximize the profit.

Variables: xi = 1 when item j is selected, 0 otherwise (∀j = 1, . . . , n)

max
n∑

j=1

pjxj

n∑
j=1

wjxj ≤ c

xj ∈ {0, 1} j = 1, . . . , n
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Applications

Finance, e.g., robust portfolio selection

Power systems , e.g., unit commitment, optimal power flow

Air traffic management , e.g., aircraft conflicts detection and
resolution

Transportation , e.g., vehicle routing problem

etc.
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Examples of modeling with integer/binary variables:
Discrete domain of one (or more) variables

How to model the condition: x ∈ R and x ∈ {x̃1, x̃2, . . . , x̃k̃} where x̃k ∈ R
for k = 1, . . . , k̃ within a MILP?

0 5 10 15 20

+ + + + + + +
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Examples of modeling with integer/binary variables:
Discrete domain of one (or more) variables

How to model the condition: x ∈ R and x ∈ {x̃1, x̃2, . . . , x̃k̃} where x̃k ∈ R
for k = 1, . . . , k̃ within a MILP?

Additional binary variables: y ∈ {0, 1}k̃

x =
k̃∑

k=1

x̃kyk

k̃∑
k=1

yk = 1.
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Examples of modeling with integer/binary variables:
Discrete domain of one (or more) variables

How to model the condition: x ∈ R and x ∈ {x̃1, x̃2, . . . , x̃k̃} where x̃k ∈ R
for k = 1, . . . , k̃ within a MILP?

When x̃1 ∈ Z and x̃k − x̃k−1 = 1 for k = 2, . . . , k̃

2 3 4 5 6 7 8 9

+ + + + + + + +
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Examples of modeling with integer/binary variables:
Discrete domain of one (or more) variables

How to model the condition: x ∈ R and x ∈ {x̃1, x̃2, . . . , x̃k̃} where x̃k ∈ R
for k = 1, . . . , k̃ within a MILP?

When x̃1 ∈ Z and x̃k − x̃k−1 = 1 for k = 2, . . . , k̃

An integer variable x

x̃1 ≤ x ≤ x̃k̃
x ∈ integer.
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Examples of modeling with integer/binary variables:
Discrete domain of one (or more) variables

How to model the condition: x ∈ R and x ∈ {x̃1, x̃2, . . . , x̃k̃} where x̃k ∈ R
for k = 1, . . . , k̃ within a MILP?

When x̃k − x̃k−1 = 1 for k = 2, . . . , k̃ , another alternative

Additional binary variables: y ∈ {0, 1}(`+1) (` is the smallest integer
such that x̃k̃ − x̃1 < 2`+1)

x = x̃1 +
∑̀
i=0

2iyi

x̃1 ≤ x ≤ x̃k̃
yi ∈ {0, 1} ∀i = 0, . . . , `
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Examples of modeling with integer/binary variables:
Domain discontinuity

Discontinuous domain x ∈ {0} ∪ [x , x ]

0 2 4 6 8 10
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Examples of modeling with integer/binary variables:
Domain discontinuity

Discontinuous domain x ∈ {0} ∪ [x , x ]

MILP formulation:

xy ≤ x ≤ xy

y ∈ {0, 1}.

For y = 0, x = 0

For y = 1, x ∈ [x , x ].
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Examples of modeling with integer/binary variables:
Conditional constraints

Impose a constraint a>i x ≤ bi only under certain conditions .

For example: If x1 ≥ x̃1 then a>i x ≤ bi .

Additional binary variable, say yi ∈ {0, 1}, allows to activate or
deactivate both the condition and the conditional constraint

x̃1(1− yi ) ≤ x1 ≤ x̃1 + (1− yi )(x1 − x̃1)

a>i x ≤ bi + Myi

where M is the so-called big-M , i.e., a large enough parameter (hp.
x1 ≥ 0).

yi = 0→ x1 ≥ x̃1 → a>i x ≤ b

yi = 1 the constraint is deactivated and x1 ≥ 0, x1 ≤ x̃1.

How to set the value of the big-M?
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Examples of modeling with integer/binary variables:
Conditional constraints

Example

If x1 ≥ 5, then 10x2 + 5x3 ≤ 25

10x2 + 5x3 ≤ 25 + My1

y1 ∈ {0, 1}.

Hp: x2 ≤ 10 and x3 ≤ 10

Value of M:
Max LHS : 10 · 10 + 5 · 10 = 150
M ≥ 150− 25 = 125.

Tricky to set big-M value. Overestimate (valid model)
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Examples of modeling with integer/binary variables:
Fixed cost

A cost: composed of a fixed part and a variables part (discontinuous ):

f (x) =

{
cx + d if x > 0

0 if x = 0

0 2 4 6 8 10

x

f(x
)
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Examples of modeling with integer/binary variables:
Fixed cost

A cost: composed of a fixed part and a variables part (discontinuous ):

f (x) =

{
cx + d if x > 0

0 if x = 0

MILP modeling:

min f (x) = cx + dy

x ≤ xy

y ∈ {0, 1}

If x > 0, y = 1, thus f (x) = cx + d .
If x = 0, y = 0 (because of min of the obj function)

C. D’Ambrosio Discrete Optimization 44 / 144



Motivation

Discrete domain of one (or more) variables

Domain discontinuity

Conditional constraints

Fixed cost

Disjunctive constraints

Absolute value of a variable

C. D’Ambrosio Discrete Optimization 45 / 144



Motivation

Discrete domain of one (or more) variables

Domain discontinuity

Conditional constraints

Fixed cost

Disjunctive constraints

Absolute value of a variable

C. D’Ambrosio Discrete Optimization 46 / 144



Examples of modeling with integer/binary variables:
Disjunctive constraints

Disjunction : satisfy a>i x ≤ bi or a>k x ≤ bk .
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Examples of modeling with integer/binary variables:
Disjunctive constraints

Disjunction : satisfy a>i x ≤ bi or a>k x ≤ bk .

a>i x ≤ bi + Miyi

a>k x ≤ bk + Mkyk

yi + yk ≤ 1

yi ∈ {0, 1}
yk ∈ {0, 1}
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Examples of modeling with integer/binary variables:
Absolute value of a variable

MILP modeling of |x | ?

-10 -5 0 5 10

0
2

4
6

8
10

x

ab
s(
x)
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Examples of modeling with integer/binary variables:
Absolute value of a variable

MILP modeling of |x | ?

|x | = x+ + x−

x = x+ − x−

0 ≤ x+ ≤ xy

0 ≤ x− ≤ −x(1− y)

y ∈ {0, 1}.

If x ≤ 0, y = 0, x+ = 0, and x− ∈ [0,−x ].
If x ≥ 0, y = 1, x− = 0, and x+ ∈ [0, x ].

Where x ≤ x ≤ x , hp. x < 0 w.l.o.g.
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Mixed Integer Linear Programming

min
x

c>x

Ax ≤ b

x ≤ x ≤ x

xj ∈ Z ∀j ∈ Z

where

x is an n-dimensional vector of the decision variables,

x and x are the given vectors of lower and upper bounds on the
variables,

c is the cost vector, A the constraints matrix, and b the
right-hand-side vector,

the set Z includes the indexes of the integer variables.
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Mixed Integer Linear Programming

Figure: Lattice points (in blue), feasible region of the continuous relaxation (in
gray), and their intersection (in red).
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Exercises

Formulate the following as mixed integer linear programs:

1 u = min{x1, x2}, assuming that 0 ≤ xj ≤ C for j = 1, 2.

2 v = ‖x1 − x2‖∞ with 0 ≤ xj ≤ C for j = 1, 2.

3 the set X \ {x∗} where X = {x ∈ Zn | Ax ≤ b} and x∗ ∈ X .
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Formulations/Reformulations

An optimization problem could be modeled in several, different ways

Each of the possible MP models is a formulation of the same
problem

A MP formulation Q is a reformulation of another MP formulation
P if they are different formulations of the same optimization problem

Reformulating a problem is interesting when

The reformulation shows nicer mathematical properties

The reformulation is more tractable
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Reformulation Examples: equivalent forms of LPs

General form

Canonical form

Standard form

min c>x

a>i x = bi i ∈ M

a>i x ≥ bi i ∈ M

xj ≥ 0 j ∈ N

xj S 0 j ∈ N

min c>x

Ax ≥ b

x ≥ 0

min c>x

Ax = b

x ≥ 0
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Reformulation Examples: equivalent forms of LPs

max c>x → −min(−c>x)

a>i x ≥ bi →

{
a>i x − si = bi

si ≥ 0

a>i x ≤ bi →

{
a>i x + si = bi

si ≥ 0

a>i x = bi →

{
a>i x ≥ bi

a>i x ≤ bi

xj S 0 →


xj = x+

j − x−j
x+
j ≥ 0

x−j ≥ 0
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Relaxation

Definition

A problem R: zR = min{f (x) | x ∈ T ⊆ Rn} is a relaxation of problem P:
z = min{c>x | x ∈ X ⊆ Rn} if:

X ⊆ T and

f (x) ≤ c>x ∀x ∈ X .

Proposition

If R is a relaxation of P, then zR ≤ z .

Classical relaxation:

- continuous: integrality requirements are relaxed (also known as LP
relaxation in the (MI)LP context)
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Linear Programming Relaxation

Definition

For an integer program min{c>x | x ∈ P ∩ Zn} with formulation
P = {x ∈ Rn

+ | Ax ≤ b}, the linear programming relaxation is the linear
program zLP = min{c>x | x ∈ P}.
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Relationship between the solution of a relaxation and of
the original problem

Proposition

1 If a relaxation R is infeasible, the original problem P is infeasible.

2 Let x∗ be an optimal solution of R. If x∗ ∈ X and f (x∗) = c>x∗, then
x∗ is an optimal solution of P.

C. D’Ambrosio Discrete Optimization 63 / 144



Formulations of the same IP problem

Example inspired by Example 1.2, “Integer Programming”, Wolsey.
X = {(1, 1), (2, 1), (3, 1), (1, 2), (2, 2), (3, 2), (2, 3)}
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Ideal formulation

Example inspired by Example 1.2, “Integer Programming”, Wolsey.
X = {(1, 1), (2, 1), (3, 1), (1, 2), (2, 2), (3, 2), (2, 3)}
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Comparing formulations

Convex hull
conv(X ) = {x | x =

∑t
i=1 λix

i ,
∑t

i=1 λi = 1, λi ≥ 0 ∀i = 1, . . . , t for
every subset {x1, . . . , x t} of X}.

Proposition

conv(X ) is a polytope.

Proposition

The extreme points of conv(X ) all lie in X .

Thus, {min c>x | x ∈ X} is equivalent to {min c>x | x ∈ conv(X )}.

Usually no simple characterization of conv(X ) (exponential number of
inequalities).
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Comparing formulations

Given two formulations P1 and P2 for X , is one better than the other?

Definition

Given a set X ⊆ Rn and two formulations P1 and P2 for X , P1 is a better
formulation than P2 if P1 ⊂ P2.

Proposition

Suppose P1 and P2 are two formulations for the integer program
min{c>x | x ∈ X ⊆ Zn} with P1 a better formulation than P2 (P1 ⊂ P2).
If zLPi = min{c>x | x ∈ Pi} (i = 1, 2) are the values of the associated
linear programming relaxations, then zLP1 ≥ zLP2 .

z1 = min{c>x | x ∈ P1} ≥ z2 = min{c>x | x ∈ P2}
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Comparing formulations

P1 and P2 two formulations for X , where P1 ⊂ P2.

z1 = min{c>x | x ∈ P1} ≥ z2 = min{c>x | x ∈ P2}

z∗ = min{c>x | x ∈ conv(X )} ≥ min{c>x | x ∈ P1}

z∗, z1, z2 are Lower Bounds (LB) of min{c>x | x ∈ X}

Actually z∗ = min{c>x | x ∈ X}!

Ideal formulation : if we solve its LP relaxation, then we solve the IP as
well (each extreme point is integer).
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An example of formulations comparison: the 01-KP
problem

X = {(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1),

(0, 1, 0, 1), (0, 0, 1, 1)}

P1 = {x ∈ R4 : 0 ≤ x ≤ 1, 83x1 + 61x2 + 49x3 + 20x4 ≤ 100}
P2 = {x ∈ R4 : 0 ≤ x ≤ 1, 4x1 + 3x2 + 2x3 + 1x4 ≤ 4}

P3 = {x ∈ R4 :

4x1 + 3x2 + 2x3 + 1x4 ≤ 4

1x1 + 1x2 + 1x3 ≤ 1

1x1 + 1x4 ≤ 1

0 ≤ x ≤ 1}
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An example of formulations comparison:
Piecewise Linear Functions

Breakpoints (x̃k , z̃k) for k = 0, . . . , s

Slope of k-th segment σk =
z̃k−z̃k−1

x̃k−x̃k−1
for k = 1, . . . , s
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An example of formulations comparison:
Piecewise Linear Functions

Three Different Formulations of PWL functions:

Convex Combination (CC ) Formulation

Multiple Choice (MC ) Formulation

Incremental (Inc ) Formulation

....
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An example of formulations comparison:
Piecewise Linear Functions

Convex Combination Formulation

Figure: Source: Padberg, 2000 (modified)

C. D’Ambrosio Discrete Optimization 74 / 144



An example of formulations comparison:
Piecewise Linear Functions

Convex Combination Formulation

Each piece is a convex combination of two consecutive breakpoints
(x̃k−1, z̃k−1) and (x̃k , z̃k) for all k = 1, . . . , s

z =
s∑

k=1

(µk z̃k−1 + λk z̃k)

x =
s∑

k=1

(µk x̃k−1 + λk x̃k)

µk + λk = yk ∀k = 1, . . . , s
s∑

k=1

yk = 1

µ, λ ≥ 0

yk ∈ {0, 1} ∀k = 1, . . . , s.
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An example of formulations comparison:
Piecewise Linear Functions

Multiple Choice Formulation

Figure: Source: Croxton et al., 2003
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An example of formulations comparison:
Piecewise Linear Functions

Multiple Choice Formulation

x (and, consequently z̃) can only lie on one of the s intervals of the
piecewise linear approximation

z =
s∑

k=1

(z̃k−1yk + σk(βk − x̃k−1yk))

x =
s∑

k=1

βk

x̃k−1yk ≤ βk ≤ x̃kyk ∀k = 1, . . . , s
s∑

k=1

yk = 1

yk ∈ {0, 1} ∀k = 1, . . . , s
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An example of formulations comparison:
Piecewise Linear Functions

Incremental Formulation

Figure: Source: Padberg, 2000 (modified)
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An example of formulations comparison:
Piecewise Linear Functions

Incremental Formulation

One more than one binary variable y could take the value one. In
particular, they observe the following order
1 ≥ y1 ≥ y2 ≥ · · · ≥ ys ≥ 0

z = z̃0 +
s∑

k=1

σkδk

x = x̃0 +
s∑

k=1

δk

δk ≤ (x̃k − x̃k−1)yk ∀k = 1, . . . , s

δk ≥ (x̃k − x̃k−1)yk+1 ∀k = 1, . . . , s

yk ∈ {0, 1} ∀k = 1, . . . , s

where the additional variable ys+1 is set to 0.
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An example of formulations comparison:
Piecewise Linear Functions

Croxton et al. (2003) analyzed the continuous relaxations of the 3
formulations.

Aim of the analysis: identifying the strongest formulation (continuous
relaxation is the closest to the formulation itself).

Proposition 1 (Croxton et al. (2003)) The LP relaxations of the
incremental, multiple choice, and convex combination formulations are
equivalent, in the sense that any feasible solution of one LP relaxation
corresponds to a feasible solution to the others with the same cost.
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An example of formulations comparison:
Piecewise Linear Functions

Exercises:

1 Prove the equivalence of the Multiple Choice and Convex
Combination formulations

2 Prove the values of z are the same

3 Prove the equivalence of the Incremental and Multiple Choice
formulations (implies the equivalence of the Incremental and Convex
Combination formulations)
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An example of formulations comparison:
Piecewise Linear Functions

Recall: a formulation is ideal if all vertices of its continuous relaxation are
integer.

Lee and Wilson (2001) and Padberg (2000) showed that a variant of
CC is not locally ideal.

Vielma et al. (2010) showed that the other formulation are locally
ideal.

Jeroslow and Lowe (1984): a formulation P of S sharp when its
projection is exactly the convex hull of S .

Vielma et al. (2010): Any locally ideal formulation is sharp.

Vielma et al. (2010): All formulations presented are sharp.

Sharpness weaker property than being locally ideal.

Sharpness is sufficient to consider a formulation strong.
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An example of formulations comparison:
Piecewise Linear Functions

Formulations Size

Number of constraints, additional variables, binaries for the three
formulations

Model Constraints Continuous Binaries

CC 2+s 2s s
MC 2+2s s s
Inc 2+2s s s(+1)
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When is it sufficient to solve the LP relaxation to get the
IP solution?

When the compact description of the convex hull conv(X ) is known.

Definition

A convex set P ⊆ Rn is integral if P = conv(P ∩ Zn).

Theorem (Hoffman and Kruskal)

Let A be an m × n matrix. The polyhedron {x | Ax ≤ b, x ∈ Rn
+} is

integral for every vector b ∈ Zm if and only if A is totally unimodular.

Definition

A matrix A is totally unimodular if every square submatrix of A has
determinant +1, 0, or -1.
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TU Matrix

Theorem (Sufficient condition)

A matrix A is TU if

1 aij ∈ {−1, 0,+1} for all i , j

2 Each column contains at most two nonzero coefficients
(
∑m

i=1 |aij | ≤ 2)

3 There exists a partition (M1,M2) of the rows set such that each
column j containing two nonzero coefficients satisfies∑

i∈M1
aij =

∑
i∈M2

aij (i.e., if the two non-zero entries have the same
sign they are in different sets, if the two non-zero entries have a
different sign they are in the same set).
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TU Matrix

Proposition (Poincaré)

Let A ∈ {−1, 0,+1}m×n. If every column of A has at most one 1 and at
most one -1, then A is TU.

Corollary

The AP matrix is TU, thus solving the LP relaxation of AP provides its
optimal solution.
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Rounding the LP solution?

Example from “Integer Programming”, Wolsey.

max 1.00x1 + 0.64x2

50x1 + 31x2 ≤ 250

3x1 − 2x2 ≥ −4

x1, x2 ≥ 0 and integer.

LP solution: ( 376
193 ,

950
193 )

Rounding of the LP solution: (2, 5) IP solution: (5, 0)
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Restriction

The feasible region of the restriction is a subset of the feasible
region of the original problem (when mapped in the same space).

The restrictions are useful to obtain an upper bound on the optimal
value (feasible solutions) of the original problem.
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Restriction: example

max x1 + 2x2 + 10x3

x1 + x2 ≤ 4

−x1 + 3x3 ≤ 0

x1, x2 ≥ 0

x3 ∈ {0, 1, 2}

opt

opt
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Complete enumeration?

Any purely binary program can be solved by considering all the 2n

potential solutions.

As n grows, the time needed to compute all the 2n potential solutions
grows exponentially in n.

n 2n

10 1,024
100 1.26765060022823e+30

1,000 1.07150860718627e+301

Not an applicable approach in practice.

Which methods are used in practice?
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Main ingredents

Ingredients for solving MILPs:

Lower bound(s)

Upper bound(s)

If LB = UB, then we found an optimal solution of the (M)ILP.

Otherwise: improve LB and UB.

We focus on how to improve the LB.
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MILP Methods
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Complete enumeration?

Any purely binary program can be solved by considering all the 2n

potential solutions.

As n grows, the time needed to compute all the 2n potential solutions
grows exponentially in n.

n 2n

10 1,024
100 1.26765060022823e+30

1,000 1.07150860718627e+301

Not an applicable approach in practice.

Which methods are used in practice?
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(M)ILP Methods

Convex hull : given a set S ⊆ Rn, conv(S) is the smallest convex set
containing S .

When S is the set of solutions of an IP, Conv(S) is a polyhedron whose
vertices are integer points .

Ideal formulation of S : {x ∈ Rn | Ãx ≤ b̃, x ≤ x ≤ x} = conv(S).

The ideal formulation is usually very difficult to find or can include an
exponential number of constraints.

Good approximation of conv(X )?
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A few definitions

Supporting hyperplane : {x | d>x = δ} s.t. d a nonzero vector and
δ = min{d>x | Ax ≤ b}
Face : subset of polyhedron s.t. F = P or F = P ∩ H where H is
some supporting hyperplane
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A few definitions

Source: https://en.wikipedia.org/wiki/Convex_polytope

Facet of P: bounded face of dimension n − 1 (where n is the dimension of P).

Edge of P: bounded face of dimension 1.

Vertex of P: bounded face of dimension 0.
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MILP Methods

Definition

Given a polyhedron P, d>x ≤ δ is called valid inequality for P if it holds
for any x ∈ P.

Which are useful valid inequalities? How can we use them in trying to
solve a particular instance?

Cutting plane (R. E. Gomory, 1958)

Based on continuous relaxation strengthening through valid and non
trivial inequalities which cut iteration after iteration part of the feasible
region of the relaxation (but no feasible point of the MILP problems).

C. D’Ambrosio Discrete Optimization 103 / 144



Outline

1 Basic notions and definitions on MP and LP

2 Introduction to Mixed Integer Linear Programming

3 Motivation

4 Formulations
Examples of Formulations Comparison

5 When mixed integer linear programming is easy

6 When mixed integer linear programming is NOT easy

7 MILP Methods
Cutting Plane
Branch and Bound
Branch and Cut

8 “Homeworks”

C. D’Ambrosio Discrete Optimization 104 / 144



Outline

1 Basic notions and definitions on MP and LP

2 Introduction to Mixed Integer Linear Programming

3 Motivation

4 Formulations
Examples of Formulations Comparison

5 When mixed integer linear programming is easy

6 When mixed integer linear programming is NOT easy

7 MILP Methods
Cutting Plane
Branch and Bound
Branch and Cut

8 “Homeworks”

C. D’Ambrosio Discrete Optimization 105 / 144



Cutting Plane

Iteratively adding to an initial formulation valid, non trivial
inequalities

Called cuts because they cut fractional solutions

Ideally , CP would add the cuts characterizing the convex hull
(continuous relaxation with integer vertices)

Very challenging in general
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Cutting Plane

MILP problem P:
z∗ = min{c>x | x ∈ X}

with X = {x | Ax ≤ b, x ≤ x ≤ x , xj ∈ Z ∀j ∈ Z} ⊆ Rn.

LP relaxation R0:
z0 = min{c>x | x ∈ X 0}

with X 0 = {x | Ax ≤ b, x ≤ x ≤ x}.

When the solution of R0 x0 ∈ X , then it is an optimal solution of P.

Otherwise, find α, β such that:

α>x ≤ β for x ∈ X

α>x0 > β

Relaxation R1 : X 1 = X 0 ∪ {x | α>x ≤ β}
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Cutting Plane

MILP problem P:
z∗ = min{c>x | x ∈ X}

with X = {x | Ax ≤ b, x ≤ x ≤ x , xj ∈ Z ∀j ∈ Z ⊆ Rn}.

LP relaxation R0:
z0 = min{c>x | x ∈ X 0}

with X 0 = {x | Ax ≤ b, x ≤ x ≤ x}.

Relaxation R1 : X 1 = X 0 ∪ {x | α>x ≤ β}

Since X ⊆ X 1 ⊆ X 0, R1 stronger than R0.

Aim of the CP :
Generate a sequence of stronger relaxations converging to P.
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Cutting Plane

Require: a MILP problem P (let R0 be its continuous relaxation)
i = 0
solve R i and let x i be its optimal solution
while x i is non-integer do

solve the separation problem of x i from P and let α>x ≤ β be the
resulting cut
add α>x ≤ β to R i and obtain R i+1

i = i + 1
solve R i and let x i be its optimal solution

end while
return x i
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Cutting Plane

Separation problem :

identifying α and β such that

α>x ≤ β ∀x ∈ X

α>x i > β

Tradeoff between time spent to find the cut vs. quality of the cut.

Cut α>x ≤ β should be easily identified for any (M)ILP problem.
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Cutting Plane

Separation problem :

identifying α and β such that

α>x ≤ β ∀x ∈ X

α>x i > β

The CP method could be generic .

General-purpose solvers and the cuts added are of several types but all
of them are generic.
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Cutting Plane

If the problem has some mathematical properties or specific characteristics
→ a tailored cutting plane method.

In this case, separation procedure and cut α>x ≤ β specific (valid for
that class of problems).

Last lecture.

Example of generic separation problem and cuts.
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Cutting Plane

Valid inequalities for LP problems.

Proposition

π>x ≤ π0 is valid for Y = {x | Ax ≤ b, x ≥ 0} 6= ∅ if and only if:

there exists u ≥ 0, v ≥ 0 such that u>A− v = π and u>b ≤ π0 or,
alternatively,

there exists u ≥ 0 such that u>A ≥ π and u>b ≤ π0.
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Cutting Plane

Valid inequalities for IP problems.

Proposition

Let Y = {x ∈ Z1 | x ≤ b}, then the inequality x ≤ bbc is valid for Y .
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Cutting Plane

Numerical example for IP (from Wolsey):

7x1 − 2x2 ≤ 14

x2 ≤ 3

2x1 − 2x2 ≤ 3

x1, x2 ≥ 0

1 By combining the three constraints with the following nonnegative
weight ( 2

7 ,
37
63 , 0) we obtain the valid inequality:

2x1 +
1

63
x2 ≤

121

21
.

2 Round down the coefficient of x2: 2x1 + 0x2 ≤ 121
21 .

3 Round down the RHS of x2: 2x1 ≤ b121
21 c = 5.

C. D’Ambrosio Discrete Optimization 115 / 144



Cutting Plane

Numerical example for IP (from Wolsey):

7x1 − 2x2 ≤ 14

x2 ≤ 3

2x1 − 2x2 ≤ 3

x1, x2 ≥ 0

Valid inequality:

2x1 ≤ 5

If we iterate with a weight of 1
2 , we get

x1 ≤ b
5

2
c = 2,

stronger!
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Cutting Plane

General procedure for IP:

1 The inequality
n∑

j=1

u>ajxj ≤ u>b

is valid for X as u ≥ 0 and
∑n

j=1 ajxj ≤ b

2 The inequality

b
n∑

j=1

u>ajcxj ≤ u>b

is valid for X as x ≥ 0.

3 The inequality

b
n∑

j=1

u>ajcxj ≤ bu>bc

is valid for X as x is integer, thus b
∑n

j=1 u
>ajcxj is integer.
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Chvátal Inequalities

P : min{c>x | Ax ≤ b, x integer}

R0 : min{c>x | Ax ≤ b}

x0 be the optimal solution of the continuous relaxation of R0

(fractional solution)

Chvátal inequality:
α>x ≤ β with α = bu>Ac and β = bu>bc for some u ≥ 0

Separation problem : find u ∈ Rm
+ such that bu>Acx0 > bu>bc.
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Chvátal Inequalities

Theorem

Every valid inequality for X can be obtained by applying the Chvátal
procedure a finite number of times.
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Chvátal Inequalities

Properties:

bu>Acx ≤ bu>bc ∀x ∈ X

Given a fractional solution x0 ∈ R0, it is always possible to

Find a u ∈ Rm
+ such that bu>Acx0 > bu>bc

Separate x0

Find a cut to be added to R0 that strengthen it

→ CP with Chvátal inequalities is an exact method for solving (M)ILPs.
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Chvátal Inequalities: example

Let us consider the following IP:

max x1 + x2

2x1 + x2 ≤ 6

−x1 + x2 ≤ 1

x1, x2 ≥ 0

x1, x2 integer
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Chvátal Inequalities: example
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Other valid inequalities for (M)ILP

Split inequalities (generalization of Chvátal Inequalities)

Gomory’s Mixed Integer cuts

Lift-and-project inequalities

For details, cf. Chapter 5 of Conforti, Cornuéjols, Zambelli

C. D’Ambrosio Discrete Optimization 123 / 144



The cutting plane game

http://www.columbia.edu/~gm2543/cpgame.html
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MILP Methods

Branch and Bound (A. H. Land & A. G. Doig, 1960)

Based on upper and lower bounds on the optimal solution value and on
branching which divide iteration after iteration the feasible region in
smaller subproblems.

In general exponential worst case performance.

&
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Branch and Bound

Smaller subproblems easier to solve.

Proposition (Wolsey)

Let X = X1 ∪ . . .XK be a decomposition of X into smaller sets and let
zk = min{c>x | x ∈ Xk} for k = 1, . . . ,K . Then, z = mink zk .

Proposition (Wolsey)

Let X = X1 ∪ . . .XK be a decomposition of X into smaller sets and let
zk = min{c>x | x ∈ Xk} for k = 1, . . . ,K . Let zk be a lower bound on zk
and zk be an upper bound on zk . Then, z = mink zk is a lower bound on
z and z = mink zk is an upper bound on z .

C. D’Ambrosio Discrete Optimization 128 / 144



Branch and Bound

Bounding and branching phases

Solve the continuous relaxation of the problem (bounding)

If it solution is fractional, branch to obtain two smaller subproblems
and which do not contain the fractional solution

explore implicitly all the subproblems and continue branching if
necessary

The subproblems could
be infeasible

have an optimal solution x∗ which is integer feasible (no further
branching). Upper bound is the best between x∗ and the best integer

feasible solution found so far xUB

have an optimal solution x∗ which is fractional

If c>x∗ < c>xUB then branch

Otherwise continue
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Branch and Bound

Example of pruning by optimality

mP0

L0 = 15

HH
HHj

��
���

x1 = 0 x1 = 1mP1
mP2

(26, 26) (22, 29)

pruned by optimality
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Branch and Bound

Example of pruning by bound

mP0

L0 = 35

HH
HHj

��
���

x2 = 0 x2 = 1mP1
mP2

(40, 45) (36, 39)

pruned by bound
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Branch and Bound

Example of pruning by infeasibility

mP0

L0 = 10

HH
HHj

��
���

x2 = 0 x2 = 1mP1
mP2

∅ (10, 15)

pruned by infeasibility
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Branch and Bound: example

−min−x1 − x2

2x1 + x2 ≤ 6

−x1 + x2 ≤ 1

x1, x2 ≥ 0

x1, x2 integer

���P0

L0 = d− 13
3
e = −4
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Branch and Bound: example

x∗ = ( 5
3 ,

8
3 ), c>x∗ = −13

3

Branch on x1:

Subproblem P1: P0 ∩ {x | x1 ≤ b5
3c = 1}

Subproblem P2: P0 ∩ {x | x1 ≥ b5
3c+ 1 = 2}

P1 P2 ���P0

L0 = d− 13
3
e = -4

HHHHj

�����
x1 ≥ 2x1 ≤ 1

���P1 ���P2
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Branch and Bound: example

Explore P1: optimal solution (1, 2) of value −3. No further branching,

upper bound of -3, corresponding to the solution xUB = (1, 2).

Explore P2: optimal solution is (2, 2) of value −4. No further branching,

upper bound of -4, corresponding to the solution xUB = (2, 2).

No subproblems left to explore → optimal solution (2, 2) of value −4.

P1 P2 ���P0

L0 = b 13
3
c = −4

HHHHj

�����
x1 ≥ 2x1 ≤ 1

���P1f ∗ = -3 ���P2

f ∗ = -4
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Branch and Bound: example

The selection of i. the branching variable and ii. the next subproblem
to explore influence highly the exploration of the feasible region.

Example: branch on x2

x2 ≤ b8
3c = 2

x2 ≥ b8
3c+ 1 = 3

P2

P1

���P0

L0 = d− 13
3
e = −4

HH
HHj

��
���

x2 ≥ 3x2 ≤ 2

���P1f ∗ = -4 ���P2 ∅
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Branch and Bound

Require: a MILP problem P (P0 is its continuous relaxation )
i = 1, f UB = +∞, Π = {P0}
while Π 6= ∅ do

select a subproblem in Π, say Pk and remove it from Π
solve Pk , let x∗ be its optimal solution and f ∗ be its value
if Pk is infeasible or f ∗ > f UB then

continue
end if
if x∗ is non-integer then

select a variable, say xj , with a fractional value x∗j
define Pi = Pk ∩ {x | xj ≤ bx∗j c} and Pi+1 = Pk ∩ {x | xj ≥ bx∗j c+ 1}
let Li = f ∗ and Li+1 = f ∗

Π = Π ∪ {Pi ,Pi+1}
i = i + 2

else
f UB = f ∗, xUB = x∗

remove from Π any P` with L` > f UB

end if
end while
return xUB
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Branch and Bound

Key ingredients:

Formulation (small gap at root node)

Heuristics (improve upper bound)

Branching

Node selection.
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Branch and Cut
Require: a MILP problem P (P0 is its continuous relaxation )

i = 1, f UB = +∞, Π = {P0}
while Π 6= ∅ do

select a subproblem in Π, say Pk and remove it from Π
solve Pk , let x∗ be its optimal solution and f ∗ be its value
if Pk is infeasible or f ∗ > f UB then

continue
end if
if x∗ is non-integer then

if Branch? then
select a variable, say xj , with a fractional value x∗j
define Pi = Pk ∩ {x | xj ≤ bx∗j c} and Pi+1 = Pk ∩ {x | xj ≥ bx∗j c+ 1}
let Li = f ∗ and Li+1 = f ∗

Π = Π ∪ {Pi ,Pi+1}
i = i + 2

else
Strenthen Pk by adding cutting planes
Π = Π ∪ Pk

end if
else

f UB = f ∗, xUB = x∗

remove from Π any P` with L` > f UB

end if
end while
return xUB
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“Homeworks”

Modeling exercises

Proofs of equivalence of the continuous relaxation of the PWL
formulations

Install AMPL
https://www.lix.polytechnique.fr/~dambrosio/teaching/.
For instructions see https://ampl.com/ampl-course-install/

Bring your laptop with you tomorrow!
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M. Conforti, G. Cornuéjols, G. Zambelli. “Integer Programming”.
Springer, New York, 2014.

S. Martello and P. Toth. The Knapsack Problem, John Wiley Sons,
1990

G.L. Nemhauser, L.A. Wolsey. “Integer and combinatorial
optimization”. Wiley-interscience, New York, 1999.

C. Papadimitriou, K. Steiglitz. “Combinatorial Optimization:
Algorithms and Complexity”. Dover Publications, Mineola, 1998.

A. Schrijver “Theory of linear and integer programming”. John Wiley
and Sons Ltd., New York, 1998.

A. Schrijver “Combinatorial Optimization”. Springer, New York,
2003.

L.A. Wolsey “Integer Programming”. Wiley-interscience, New York,
1998.

C. D’Ambrosio Discrete Optimization 143 / 144



References Part II
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