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The class of MINLP problems

min ∑j∈N cjxj (1)

fi(x)+∑j∈H(i)gij(xj)≤ 0 i ∈ M (2)

lj ≤ xj ≤ uj j ∈ N (3)
xj ∈ Z j ∈ I. (4)

where:
fi : Rn → R are convex functions ∀i ∈ M,
gij : R→ R are non convex univariate function ∀i ∈ M,∀j ∈ H(i),
H(i)⊆ N ∀i ∈ M,
I ⊆ N, and
lj and uj are finite ∀i ∈ M, j ∈ H(i)
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General Framework

Global optimization algorithm proposed in
D’A., Lee, and Wächter (2009, 2012).

Init
Lower bounding

relaxation Q
Upper bounding

restriction R

Refinement

MATLAB MINLP solver NLP solver

AMPL
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General Framework
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The Lower Bounding problem: step 1

For simplicity, let us consider, for a given pair i , j , the univariate
nonconvex function g(xj)(:= gij(xj)):

Automatically detect the concavity/convexity intervals or piecewise
definition (l1ij = lj and ls(ij)ij = uj ):
[lsij , l

s+1
ij ] := the s-th subinterval of the domain of g (s ∈ {1 . . .s(ij)−1});

Š(ij) := the set of indices of subintervals on which g is convex;
Ŝ(ij) := the set of indices of subintervals on which g is concave.
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The Lower Bounding problem: step 2

Reformulate the lower bounding problems as a piecewise defined
problem, i.e., separating the convex and the concave intervals.

Adapt the following piecewise linear formulations (see Croxton et al.,
2003):

Convex combination (CC)
Multiple choice (MC)
Incremental (Inc)
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The formulations

min ∑j∈N cj xj

f̄i (x)+∑j∈H(i) ∑s∈Š(ij) zs
ij ≤ 0 i ∈ M

ys
ij ∈ {0,1} s ∈ S(ij), j ∈ H(i), i ∈ M

xj ∈ Z j ∈ I

Multiple Choice Formulation

zs
ij ≥ [gij (xs

ij )−gij (0)] s ∈ Š(ij), j ∈ H(i), i ∈ M

xj = ∑s∈S(ij) xs
ij j ∈ H(i), i ∈ M

lsijy
s
ij ≤ xs

ij ≤ ls+1
ij ys

ij s ∈ S(ij), j ∈ H(i), i ∈ M

∑s∈S(ij) ys
ij = 1 i ∈ M, j ∈ H(i)

C. D’Ambrosio Discrete Optimization 13 / 33



The formulations

min ∑j∈N cj xj

f̄i (x)+∑j∈H(i) ∑s∈Š(ij) zs
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Incremental Formulation

zs
ij ≥ [gij (lsij +xs

ij )−gij (lsij )] s ∈ Š(ij), j ∈ H(i), i ∈ M

xj = lj +∑s∈S(ij) xs
ij j ∈ H(i), i ∈ M

(ls+1
ij −lsij )y

s+1
ij ≤ xs

ij ≤ (ls+1
ij −lsij )y

s
ij s ∈ S(ij), j ∈ H(i), i ∈ M
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What is a perspective reformulation?

Given a convex function h(x), its perspective function yh(x/y)
describes its convex envelope when restricted to the
mixed-integer set {(x ,y) : 0 ≤ x ≤ uy , y ∈ {0,1}}

The continuous relaxation of (PR), the Perspective Relaxation
(PR) of (P), provides tighter lower bounds to the optimal value of
(P) than the continuous relaxation of the standard formulation
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The Lower Bounding problem: step 3

Still non convex;

Use piecewise linear approximation for the concave intervals:

Piecewise linear formulation for the approximation (see CC, MC, Inc)
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Previous theoretical results and hypothesis

Theorem (Croxton et al., 2003)
The continuous relaxation of CC, MC, and Inc are equivalent in the
piecewise linear case.

What about the piecewise convex case?
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Computational Results

We focus in two different problems:

Non linear knapsack problem;

Uncapacitated Facility Location problem.

We tested our approach, based on separation of Perspective Cuts
(PC) implemented using CPLEX .
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Non linear knapsack problem

The non linear knapsack problem is the same considered in D’A.
et al., 2009:

max∑j∈N pj

pj ≤ gj (xj ) j ∈ N

∑j∈N wjxj ≤ C

0 ≤ xj ≤ uj j ∈ N

For each value of |N| ∈ {10,20,50,100,200,500,1000} we randomly
generated 10 instances where wj ∈ [1,100].

gj(xj) =
cj

1+bj exp(−aj (xj+dj ))
, whith aj ∈ [0.1,0.2], bj ∈ [0,100],

cj ∈ [0,100], and dj ∈ [−100,0]

gj(xj) = 7.5sin(π
(

xj −10
40

)
−15cos(π

(
xj −10

80

)
)+19.5

We fixed uj = 100 for all j ∈ N and C = 50∑j∈N wj
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Non linear knapsack problem

Table: Computational results for Non-linear Continuous Knapsack problem

INST. INC MC INC RELAX. MC RELAX.

Int. Size Sol. Time Cuts Sol. Time Cuts Gap Time Cuts Gap Time Cuts
2 10 305.04 0.02 114.70 305.04 0.03 105.60 0.48 0.01 50.30 0.48 0.01 50.30
2 20 594.57 0.03 187.40 594.57 0.03 179.80 0.18 0.01 92.20 0.18 0.02 92.20
2 50 1659.96 0.05 448.20 1659.96 0.05 448.20 0.02 0.02 246.10 0.02 0.02 246.10
2 100 3398.18 0.09 759.00 3398.18 0.09 759.50 0.00 0.04 499.00 0.00 0.05 499.00
2 200 6798.08 0.21 1614.50 6798.08 0.22 1635.90 0.00 0.09 989.40 0.00 0.08 989.40
2 500 17211.06 0.45 3293.90 17211.06 0.45 3202.20 0.00 0.22 2504.50 0.00 0.22 2504.50
2 1000 34562.94 1.12 5949.60 34562.94 1.00 5896.30 0.00 0.45 5039.40 0.00 0.43 5039.40
4 10 278.36 0.06 348.40 278.36 0.04 239.70 1.31 0.01 108.10 0.17 0.01 78.80
4 20 555.64 0.09 533.90 555.64 0.04 325.90 1.00 0.02 225.40 0.03 0.02 155.10
4 50 1417.20 0.41 1546.10 1417.20 0.16 886.70 0.80 0.04 501.90 0.01 0.04 360.30
4 100 2817.61 0.91 2332.30 2817.61 0.26 1416.30 0.83 0.10 1058.90 0.00 0.07 733.50
4 200 5618.12 3.10 4171.30 5618.12 0.54 2369.80 0.85 0.22 2255.20 0.00 0.15 1481.00
4 500 14123.84 20.34 8931.70 14123.84 2.40 5141.40 0.80 0.69 5611.90 0.00 0.42 3613.30
4 1000 28215.47 174.67 18249.10 28215.47 4.51 8480.70 0.83 1.92 11029.20 0.00 1.20 7363.50
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Uncapacitated Facility Location problem

The Uncapacitated Facility Location problem is the same
considered in D’A. et al., 2009, i.e.:

min∑k∈K Ck yk +∑t∈T ∑k∈K skt

akt (sin(bkt wkt )+ckt wkt )
2 −skt ≤ 0 t ∈ T ,k ∈ K

∑k∈K wkt = 1 t ∈ T

0 ≤ wkt ≤ yk t ∈ T ,k ∈ K

yk ∈ {0,1} k ∈ K

For each costumer of T ∈ {6,12,24} and facility K ∈ {12,24,48}
we randomly generated instances, where Ck ∈ [1,100],
akt ∈ {−12,−25}, bkt ∈ [2,13], ckt ∈ [1,13]. We generated 3
different sizes of instances: (|K |.|T |) = (6,12),(12,24),(24,48).
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Uncapacitated Facility Location problem

Table: Computational results for Non-linear UFL problem

INC MC

Inst. Sol. Time Gap Cuts #O Sol. Time Gap Cuts #O
6x12x1 5419.439 0.60 0.00 1772.40 10 5419.439 0.46 0.00 1618.60 10
6x12x2 37807.512 0.45 0.00 1963.90 10 37807.512 0.32 0.00 1860.80 10
6x12x3 12403.535 7254.68 2.49 33355.70 4 12401.188 4449.73 0.73 14565.40 7

12x24x1 5614.138 3.68 0.00 10745.20 10 5614.138 3.30 0.00 10316.50 10
12x24x2 52806.983 1148.31 0.16 23916.80 9 52806.983 196.46 0.00 15677.20 10
12x24x3 19096.744 10000.08 20.66 128509.20 0 18616.806 10000.03 12.52 45311.10 0
24x48x1 6029.599 123.30 0.00 65840.30 10 6029.598 98.89 0.00 67110.90 10
24x48x2 69256.249 10000.04 4.71 104814.20 0 69082.252 10000.04 3.03 83943.70 0

Table: Computational results for the continuous relaxation of Non-linear UFL
problem

INC RELAX. MC RELAX.

Inst. Gap Time Cuts Gap Time Cuts
6x12x1 7.79 0.05 802.50 5.13 0.05 808.70
6x12x2 4.28 0.07 1082.20 0.44 0.07 954.20
6x12x3 92.76 0.23 2490.20 14.10 0.14 1301.70

12x24x1 8.96 0.25 3330.40 8.33 0.23 3358.50
12x24x2 8.34 0.32 3993.30 3.48 0.31 3782.00
12x24x3 99.80 1.26 5978.30 18.30 1.09 5062.30
24x48x1 15.04 1.91 15377.00 14.81 1.78 15401.00
24x48x2 12.29 1.95 15345.30 6.85 1.84 14753.70
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Theoretical Results

g(x) =


gk (xk )+ck if xk ∈ Pk and xh = 0 ∀h ∈ K \{k}
0 if x = 0
+∞ otherwise

Theorem (Frangioni et al., 2020)
The convex envelope of g can be described as follows:

min{ ∑
k∈K

δ
kgk (xk/δ

k ) | ∑
k∈K

δ
k ≤ 1.Akxk ≤ bk

δ
k ,δ k ≥ 0 ∀k ∈ K}

Corollary
The MC formulation constraints describe the convex envelope of each
function gj
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Theoretical Results

Theorem
The MC formulation is stronger than the Inc one.

Proof

Example

minp

p ≥ −7.5sin(2π

(
0.7x +20

100

)
−15cos(2π

(
0.7x +20

100

)
)

x ≤ C
0 ≤ x ≤ 100
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Figure: Integer optimal solution of the problem.
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Figure: Multiple Choice solution. Figure: Incremental solution.
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Theoretical Results

Proposition
Suppose that a function g = gij has a domain partitionable in two
subsets [l1, l2] and [l2, l3] and that g is concave in [l1, l2] and convex in
[l2, l3]. Then, MC and Inc applied to g are equivalent.

Sketch of proof
Find a mapping from a solution of Inc to a solution of MC and
viceversa
Given (φ ,ψ,γ), optimal solution of Inc, and the corresponding
solution of MC (x ,y ,z), show that (x ,y ,z) is feasible for MC
Show that the value of g for (x ,y ,z) is equal to the value of g for
(φ ,ψ,γ)

Thus, gMC ≤ gInc

And viceversa →gInc ≤ gMC (thanks to the corollary) →gInc = gMC
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Conclusions and Future Directions

Generalization of PWL formulations to the PWC case

Their continuous relaxations are NOT equivalent
Proved that the continuous relaxations are equivalent in a
specific case
Tighter continuous relaxation does not imply better
computational performance

Distribute the reformulation code (ROSE solver, COIN-OR)

Thanks for your attention!
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