SUMMER SCHOOL ON ASPECTS OF OPTIMIZATION Discrete Optimization Research Talk

Claudia D'Ambrosio dambrosio@lix.polytechnique.fr

Research Talk

"Comparing perspective reformulations for piecewise-convex optimization"

R.S. Trindade, C. D'Ambrosio, A. Frangioni, C. Gentile

Outline

(1) The class of MINLP problems
(2) General Framework

- Lower Bounding problem
- Previous theoretical results and hypothesis
(3) Computational Results
- Non linear knapsack problem
- Uncapacitated Facility Location problem
(4) Theoretical Results
(5) Conclusions and Future Directions

Outline

(1) The class of MINLP problems
(2) General Framework

- Lower Bounding problem
- Previous theoretical results and hypothesis
(3) Computational Results
- Non linear knapsack problem
- Uncapacitated Facility Location problem

4 Theoretical Results
(5) Conclusions and Future Directions

The class of MINLP problems

$$
\begin{array}{cl}
\min & \sum_{j \in N} c_{j} x_{j} \\
f_{i}(x)+\sum_{j \in H(i)} g_{i j}\left(x_{j}\right) \leq 0 & i \in M \\
l_{j} \leq x_{j} \leq u_{j} & j \in N \\
x_{j} \in \mathbb{Z} & j \in I \tag{4}
\end{array}
$$

where:

- $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are convex functions $\forall i \in M$,
- $g_{i j}: \mathbb{R} \rightarrow \mathbb{R}$ are non convex univariate function $\forall i \in M, \forall j \in H(i)$,
- $H(i) \subseteq N \quad \forall i \in M$,
- $I \subseteq N$, and
- l_{j} and u_{j} are finite $\forall i \in M, j \in H(i)$

Outline

(1) The class of MINLP problems
(2) General Framework

- Lower Bounding problem
- Previous theoretical results and hypothesis
(3) Computational Results
- Non linear knapsack problem
- Uncapacitated Facility Location problem

4 Theoretical Results
(5) Conclusions and Future Directions

Outline

(1) The class of MINLP problems
(2) General Framework

- Lower Bounding problem
- Previous theoretical results and hypothesis
(3) Computational Results
- Non linear knapsack problem
- Uncapacitated Facility Location problem
(4) Theoretical Results
(5) Conclusions and Future Directions

General Framework

Global optimization algorithm proposed in D'A., Lee, and Wächter $(2009,2012)$.

General Framework

Outline

(1) The class of MINLP problems
(2) General Framework

- Lower Bounding problem
- Previous theoretical results and hypothesis
(3) Computational Results
- Non linear knapsack problem
- Uncapacitated Facility Location problem

4 Theoretical Results
(5) Conclusions and Future Directions

The Lower Bounding problem: step 1

For simplicity, let us consider, for a given pair i, j, the univariate nonconvex function $g\left(x_{j}\right)\left(:=g_{i j}\left(x_{j}\right)\right)$:

The Lower Bounding problem: step 1

For simplicity, let us consider, for a given pair i, j, the univariate nonconvex function $g\left(x_{j}\right)\left(:=g_{i j}\left(x_{j}\right)\right)$:

Automatically detect the concavity/convexity intervals or piecewise definition $\left(l_{i j}^{1}=l_{j}\right.$ and $\left.l_{i j}^{s(i j)}=u_{j}\right)$:
$\left[I_{i j}^{s}, l_{i j}^{s+1}\right]:=$ the s-th subinterval of the domain of $g(s \in\{1 \ldots s(i j)-1\})$;

The Lower Bounding problem: step 1

For simplicity, let us consider, for a given pair i, j, the univariate nonconvex function $g\left(x_{j}\right)\left(:=g_{i j}\left(x_{j}\right)\right)$:

Automatically detect the concavity/convexity intervals or piecewise definition $\left(l_{i j}^{1}=l_{j}\right.$ and $\left.l_{i j}^{s(i j)}=u_{j}\right)$:
$\left[I_{i j}^{S}, l_{i j}^{s+1}\right]:=$ the s-th subinterval of the domain of $g(s \in\{1 \ldots s(i j)-1\})$;
$\check{S}(i j):=$ the set of indices of subintervals on which g is convex;

The Lower Bounding problem: step 1

For simplicity, let us consider, for a given pair i, j, the univariate nonconvex function $g\left(x_{j}\right)\left(:=g_{i j}\left(x_{j}\right)\right)$:

Automatically detect the concavity/convexity intervals or piecewise definition $\left(l_{i j}^{1}=l_{j}\right.$ and $\left.l_{i j}^{s(i j)}=u_{j}\right)$:
$\left[I_{i j}^{S}, l_{i j}^{s+1}\right]:=$ the s-th subinterval of the domain of $g(s \in\{1 \ldots s(i j)-1\})$;
$\check{S}(i j):=$ the set of indices of subintervals on which g is convex; $\hat{S}(i j):=$ the set of indices of subintervals on which g is concave.

The Lower Bounding problem: step 2

Reformulate the lower bounding problems as a piecewise defined problem, i.e., separating the convex and the concave intervals.

The Lower Bounding problem: step 2

Reformulate the lower bounding problems as a piecewise defined problem, i.e., separating the convex and the concave intervals.

Adapt the following piecewise linear formulations (see Croxton et al., 2003):

- Convex combination (CC)
- Multiple choice (MC)
- Incremental (Inc)

The formulations

$$
\begin{aligned}
& \min \sum_{j \in N} c_{j} x_{j} \\
& \bar{f}_{i}(x)+\sum_{j \in H(i)} \Sigma_{s \in \check{S}(j)} z_{i j}^{s} \leq 0 \\
& y_{i j}^{s} \in\{0,1\} \\
& x_{j} \in \mathbb{Z} \\
& i \in M \\
& s \in S(i j), j \in H(i), i \in M \\
& j \in I \\
& z_{i j}^{S} \geq\left[g_{i j}\left(x_{i j}^{S}\right)-g_{i j}(0)\right] \\
& x_{j}=\sum_{s \in S(i j)} X_{i j}^{S} \\
& I_{i j}^{s} y_{i j}^{s} \leq x_{i j}^{s} \leq I_{i j}^{s+1} y_{i j}^{s} \\
& \sum_{s \in S(j)} y_{i j}^{s}=1 \\
& s \in S ̌(i j), j \in H(i), i \in M \\
& j \in H(i), i \in M \\
& s \in S(i j), j \in H(i), i \in M \\
& i \in M, j \in H(i)
\end{aligned}
$$

The formulations

$$
\begin{aligned}
& \min \sum_{j \in N} c_{j} x_{j} \\
& \bar{f}_{i}(x)+\sum_{j \in H(i)} \Sigma_{s \in \check{S}(j)} z_{i j}^{s} \leq 0 \\
& y_{i j}^{s} \in\{0,1\} \\
& x_{j} \in \mathbb{Z} \\
& \begin{array}{r}
i \in M \\
s \in S(i j), j \in H(i), \quad i \in M \\
j \in I
\end{array} \\
& z_{i j}^{S} \geq\left[g_{i j}\left(l_{i j}^{S}+x_{i j}^{S}\right)-g_{i j}\left(l_{i j}^{S}\right)\right] \\
& x_{j}=I_{j}+\sum_{s \in S(i j)} x_{i j}^{s} \\
& \left(l_{i j}^{s+1}-l_{i j}^{s}\right) y_{i j}^{s+1} \leq x_{i j}^{s} \leq\left(l_{i j}^{s+1}-l_{i j}^{S}\right) y_{i j}^{s} \\
& s \in S ̌(i j), j \in H(i), i \in M \\
& j \in H(i), i \in M \\
& s \in S(i j), j \in H(i), i \in M
\end{aligned}
$$

What is a perspective reformulation?

- Given a convex function $h(x)$, its perspective function $y h(x / y)$ describes its convex envelope when restricted to the mixed-integer set $\{(x, y): 0 \leq x \leq u y, y \in\{0,1\}\}$

What is a perspective reformulation?

- Given a convex function $h(x)$, its perspective function $y h(x / y)$ describes its convex envelope when restricted to the mixed-integer set $\{(x, y): 0 \leq x \leq u y, y \in\{0,1\}\}$
- The continuous relaxation of (PR), the Perspective Relaxation $(\underline{P R})$ of (\underline{P}), provides tighter lower bounds to the optimal value of (\underline{P}) than the continuous relaxation of the standard formulation

What is a perspective reformulation?

- Given a convex function $h(x)$, its perspective function $y h(x / y)$ describes its convex envelope when restricted to the mixed-integer set $\{(x, y): 0 \leq x \leq u y, y \in\{0,1\}\}$
- The continuous relaxation of (PR), the Perspective Relaxation $(\underline{\mathrm{PR}})$ of $(\underline{\mathrm{P}})$, provides tighter lower bounds to the optimal value of (\underline{P}) than the continuous relaxation of the standard formulation

The formulations

$$
\begin{aligned}
& \min \sum_{j \in N} c_{j} x_{j} \\
& \quad \bar{f}_{i}(x)+\sum_{j \in H(i)} \sum_{s \in \check{S}(i j)} z_{i j}^{s} \leq 0 \\
& \quad y_{i j}^{s} \in\{0,1\} \\
& \quad x_{j} \in \mathbb{Z}
\end{aligned}
$$

$$
\begin{array}{r}
s \in S(i j), j \in H(i), i \in M \\
j \in I
\end{array}
$$

Multiple Choice Formulation

$$
\begin{aligned}
& z_{i j}^{s} \geq\left[g_{i j}\left(x_{i j}^{s} / y_{i j}^{s}\right)-g_{i j}(0)\right] y_{i j}^{s} \\
& x_{j}=\sum_{s \in S(i j)} x_{i j}^{s} \\
& l_{i j}^{s} y_{i j}^{s} \leq x_{i j}^{s} \leq l_{i j}^{s+1} y_{i j}^{s} \\
& \sum_{s \in S(i j)} y_{i j}^{s}=1
\end{aligned}
$$

$$
j \in H(i), i \in M
$$

$$
s \in S(i j), j \in H(i), i \in M
$$

$$
i \in M, j \in H(i)
$$

Incremental Formulation

$$
s \in \check{S}(i j), j \in H(i), i \in M
$$

$$
\begin{aligned}
& z_{i j}^{S} \geq\left[g_{i j}\left(l_{i j}^{S}+x_{i j}^{S} / y_{i j}^{S}\right)-g_{i j}\left(l_{i j}^{S}\right)\right] y_{i j}^{s} \\
& x_{j}=l_{j}+\sum_{s \in S(i j)} x_{i j}^{S} \\
& \left(l_{i j}^{s+1}-l_{i j}^{S}\right) y_{i j}^{s+1} \leq x_{i j}^{S} \leq\left(l_{i j}^{S+1}-l_{i j}^{S}\right) y_{i j}^{s}
\end{aligned}
$$

$$
s \in \check{S}(i j), j \in H(i), i \in M
$$

$$
j \in H(i), i \in M
$$

The Lower Bounding problem: step 3

Still non convex;

The Lower Bounding problem: step 3

Still non convex;

Use piecewise linear approximation for the concave intervals:

The Lower Bounding problem: step 3

Still non convex;

Use piecewise linear approximation for the concave intervals:

The Lower Bounding problem: step 3

Still non convex;

Use piecewise linear approximation for the concave intervals:

The Lower Bounding problem: step 3

Still non convex;
Use piecewise linear approximation for the concave intervals:

Piecewise linear formulation for the approximation (see CC, MC, Inc)

Previous theoretical results and hypothesis

Theorem (Croxton et al., 2003)
The continuous relaxation of CC, MC, and Inc are equivalent in the piecewise linear case.

Previous theoretical results and hypothesis

Theorem (Croxton et al., 2003)
The continuous relaxation of CC, MC, and Inc are equivalent in the piecewise linear case.

What about the piecewise convex case?

Outline

(1) The class of MINLP problems
(2) General Framework

- Lower Bounding problem
- Previous theoretical results and hypothesis
(3) Computational Results
- Non linear knapsack problem
- Uncapacitated Facility Location problem
(4) Theoretical Results
(5) Conclusions and Future Directions

Computational Results

- We focus in two different problems:

Computational Results

- We focus in two different problems:
- Non linear knapsack problem;

Computational Results

- We focus in two different problems:
- Non linear knapsack problem;
- Uncapacitated Facility Location problem.

Computational Results

- We focus in two different problems:
- Non linear knapsack problem;
- Uncapacitated Facility Location problem.
- We tested our approach, based on separation of Perspective Cuts (PC) implemented using CPLEX.

Non linear knapsack problem

- The non linear knapsack problem is the same considered in D'A. et al., 2009:

$$
\begin{array}{cc}
\max \sum_{j \in N} p_{j} & \\
p_{j} \leq g_{j}\left(x_{j}\right) & j \in N \\
\sum_{j \in N} w_{j} x_{j} \leq C & \\
0 \leq x_{j} \leq u_{j} & j \in N
\end{array}
$$

For each value of $|N| \in\{10,20,50,100,200,500,1000\}$ we randomly generated 10 instances where $w_{j} \in[1,100]$.

- $g_{j}\left(x_{j}\right)=\frac{c_{j}}{1+b_{j} \exp \left(-a_{j}\left(x_{j}+d_{j}\right)\right)}$, whith $a_{j} \in[0.1,0.2], b_{j} \in[0,100]$, $c_{j} \in[0,100]$, and $d_{j} \in[-100,0]$
- $g_{j}\left(x_{j}\right)=7.5 \sin \left(\pi\left(\frac{x_{j}-10}{40}\right)-15 \cos \left(\pi\left(\frac{x_{j}-10}{80}\right)\right)+19.5\right.$

Non linear knapsack problem

- The non linear knapsack problem is the same considered in D'A. et al., 2009:

$$
\begin{array}{cc}
\max \sum_{j \in N} p_{j} & \\
p_{j} \leq g_{j}\left(x_{j}\right) & j \in N \\
\sum_{j \in N} w_{j} x_{j} \leq C & \\
0 \leq x_{j} \leq u_{j} & j \in N
\end{array}
$$

For each value of $|N| \in\{10,20,50,100,200,500,1000\}$ we randomly generated 10 instances where $w_{j} \in[1,100]$.

- $g_{j}\left(x_{j}\right)=\frac{c_{j}}{1+b_{j} \exp \left(-a_{j}\left(x_{j}+d_{j}\right)\right)}$, whith $a_{j} \in[0.1,0.2], b_{j} \in[0,100]$, $c_{j} \in[0,100]$, and $d_{j} \in[-100,0]$
- $g_{j}\left(x_{j}\right)=7.5 \sin \left(\pi\left(\frac{x_{j}-10}{40}\right)-15 \cos \left(\pi\left(\frac{x_{j}-10}{80}\right)\right)+19.5\right.$

We fixed $u_{j}=100$ for all $j \in N$ and $C=50 \sum_{j \in N} w_{j}$

Non linear knapsack problem

Table: Computational results for Non-linear Continuous Knapsack problem

INST.		INC			MC			INC RELAX.			MC RELAX.		
Int.	Size	Sol.	Time	Cuts	Sol.	Time	Cuts	Gap	Time	Cuts	Gap	Time	Cuts
2	10	305.04	0.02	114.70	305.04	0.03	105.60	0.48	0.01	50.30	0.48	0.01	50.30
2	20	594.57	0.03	187.40	594.57	0.03	179.80	0.18	0.01	92.20	0.18	0.02	92.20
2	50	1659.96	0.05	448.20	1659.96	0.05	448.20	0.02	0.02	246.10	0.02	0.02	246.10
2	100	3398.18	0.09	759.00	3398.18	0.09	759.50	0.00	0.04	499.00	0.00	0.05	499.00
2	200	6798.08	0.21	1614.50	6798.08	0.22	1635.90	0.00	0.09	989.40	0.00	0.08	989.40
2	500	17211.06	0.45	3293.90	17211.06	0.45	3202.20	0.00	0.22	2504.50	0.00	0.22	2504.50
2	1000	34562.94	1.12	5949.60	34562.94	1.00	5896.30	0.00	0.45	5039.40	0.00	0.43	5039.40
4	10	278.36	0.06	348.40	278.36	0.04	239.70	1.31	0.01	108.10	0.17	0.01	78.80
4	20	555.64	0.09	533.90	555.64	0.04	325.90	1.00	0.02	225.40	0.03	0.02	155.10
4	50	1417.20	0.41	1546.10	1417.20	0.16	886.70	0.80	0.04	501.90	0.01	0.04	360.30
4	100	2817.61	0.91	2332.30	2817.61	0.26	1416.30	0.83	0.10	1058.90	0.00	0.07	733.50
4	200	5618.12	3.10	4171.30	5618.12	0.54	2369.80	0.85	0.22	2255.20	0.00	0.15	1481.00
4	500	14123.84	20.34	8931.70	14123.84	2.40	5141.40	0.80	0.69	5611.90	0.00	0.42	3613.30
4	1000	28215.47	174.67	18249.10	28215.47	4.51	8480.70	0.83	1.92	11029.20	0.00	1.20	7363.50

Uncapacitated Facility Location problem

- The Uncapacitated Facility Location problem is the same considered in D'A. et al., 2009, i.e.:

$$
\begin{array}{lr}
\min \sum_{k \in K} C_{k} y_{k}+\sum_{t \in T} \sum_{k \in K} s_{k t} & \\
a_{k t}\left(\sin \left(b_{k t} w_{k t}\right)+c_{k t} w_{k t}\right)^{2}-s_{k t} \leq 0 & t \in T, k \in K \\
\sum_{k \in K} w_{k t}=1 & t \in T \\
0 \leq w_{k t} \leq y_{k} & t \in T, k \in K \\
y_{k} \in\{0,1\} & k \in K
\end{array}
$$

- For each costumer of $T \in\{6,12,24\}$ and facility $K \in\{12,24,48\}$ we randomly generated instances, where $C_{k} \in[1,100]$, $a_{k t} \in\{-12,-25\}, b_{k t} \in[2,13], c_{k t} \in[1,13]$. We generated 3 different sizes of instances: $(|K| .|T|)=(6,12),(12,24),(24,48)$.

Uncapacitated Facility Location problem

Table: Computational results for Non-linear UFL problem

	INC					MC				
Inst.	Sol.	Time	Gap	Cuts	\#O	Sol.	Time	Gap	Cuts	\#O
$6 \times 12 \times 1$	5419.439	0.60	0.00	1772.40	10	5419.439	0.46	0.00	1618.60	10
$6 \times 12 \times 2$	37807.512	0.45	0.00	1963.90	10	37807.512	0.32	0.00	1860.80	10
$6 \times 12 \times 3$	12403.535	7254.68	2.49	33355.70	4	12401.188	4449.73	0.73	14565.40	7
$12 \times 24 \times 1$	5614.138	3.68	0.00	10745.20	10	5614.138	3.30	0.00	10316.50	10
$12 \times 24 \times 2$	52806.983	1148.31	0.16	23916.80	9	52806.983	196.46	0.00	15677.20	10
$12 \times 24 \times 3$	19096.744	10000.08	20.66	128509.20	0	18616.806	10000.03	12.52	45311.10	0
$24 \times 48 \times 1$	6029.599	123.30	0.00	65840.30	10	6029.598	98.89	0.00	67110.90	10
24×48x2	69256.249	10000.04	4.71	104814.20	0	69082.252	10000.04	3.03	83943.70	0

Table: Computational results for the continuous relaxation of Non-linear UFL problem

Inst.	InC RELAX.			MC ReLAX.		
	Gap	Time	Cuts	Gap	Time	Cuts
6x12x1	7.79	0.05	802.50	5.13	0.05	808.70
$6 \times 12 \times 2$	4.28	0.07	1082.20	0.44	0.07	954.20
$6 \times 12 \times 3$	92.76	0.23	2490.20	14.10	0.14	1301.70
12x24x1	8.96	0.25	3330.40	8.33	0.23	3358.50
$12 \times 24 \times 2$	8.34	0.32	3993.30	3.48	0.31	3782.00
12x24x3	99.80	1.26	5978.30	18.30	1.09	5062.30
$24 \times 48 \times 1$	15.04	1.91	15377.00	14.81	1.78	15401.00
24×48×2	12.29	1.95	15345.30	6.85	1.84	14753.70

Outline

(1) The class of MINLP problems
(3) General Framework

- Lower Bounding problem
- Previous theoretical results and hypothesis
(3) Computational Results
- Non linear knapsack problem
- Uncapacitated Facility Location problem
(4) Theoretical Results
(5) Conclusions and Future Directions

Theoretical Results

$$
g(x)= \begin{cases}g^{k}\left(x^{k}\right)+c^{k} & \text { if } x^{k} \in \mathcal{P}^{k} \text { and } x^{h}=0 \forall h \in K \backslash\{k\} \\ 0 & \text { if } x=0 \\ +\infty & \text { otherwise }\end{cases}
$$

Theorem (Frangioni et al., 2020)

The convex envelope of g can be described as follows:

$$
\min \left\{\sum_{k \in K} \delta^{k} g^{k}\left(x^{k} / \delta^{k}\right) \mid \sum_{k \in K} \delta^{k} \leq 1 . A^{k} x^{k} \leq b^{k} \delta^{k}, \delta^{k} \geq 0 \forall k \in K\right\}
$$

Theoretical Results

$$
g(x)= \begin{cases}g^{k}\left(x^{k}\right)+c^{k} & \text { if } x^{k} \in \mathcal{P}^{k} \text { and } x^{h}=0 \forall h \in K \backslash\{k\} \\ 0 & \text { if } x=0 \\ +\infty & \text { otherwise }\end{cases}
$$

Theorem (Frangioni et al., 2020)

The convex envelope of g can be described as follows:

$$
\min \left\{\sum_{k \in K} \delta^{k} g^{k}\left(x^{k} / \delta^{k}\right) \mid \sum_{k \in K} \delta^{k} \leq 1 . A^{k} x^{k} \leq b^{k} \delta^{k}, \delta^{k} \geq 0 \forall k \in K\right\}
$$

Corollary

The MC formulation constraints describe the convex envelope of each function g_{j}

Theoretical Results

$$
g(x)= \begin{cases}g^{k}\left(x^{k}\right)+c^{k} & \text { if } x^{k} \in \mathcal{P}^{k} \text { and } x^{h}=0 \forall h \in K \backslash\{k\} \\ 0 & \text { if } x=0 \\ +\infty & \text { otherwise }\end{cases}
$$

Theorem (Frangioni et al., 2020)

The convex envelope of g can be described as follows:

$$
\min \left\{\sum_{k \in K} \delta^{k} g^{k}\left(x^{k} / \delta^{k}\right) \mid \sum_{k \in K} \delta^{k} \leq 1 . A^{k} x^{k} \leq b^{k} \delta^{k}, \delta^{k} \geq 0 \forall k \in K\right\}
$$

Corollary

The MC formulation constraints describe the convex envelope of each function g_{j}

Theoretical Results

Theorem

The MC formulation is stronger than the Inc one.

Theoretical Results

Theorem

The MC formulation is stronger than the Inc one.

Proof

Theoretical Results

Theorem

The MC formulation is stronger than the Inc one.

Proof

Example

$\min p$

$$
\begin{aligned}
p & \geq-7.5 \sin \left(2 \pi\left(\frac{0.7 x+20}{100}\right)-15 \cos \left(2 \pi\left(\frac{0.7 x+20}{100}\right)\right)\right. \\
x & \leq C \\
0 \leq x & \leq 100
\end{aligned}
$$

Theoretical Results

Example

$\min p$

$$
\begin{aligned}
p & \geq-7.5 \sin \left(2 \pi\left(\frac{0.7 x+20}{100}\right)-15 \cos \left(2 \pi\left(\frac{0.7 x+20}{100}\right)\right)\right. \\
x & \leq C \\
0 \leq x & \leq 100
\end{aligned}
$$

Figure: Integer optimal solution of the problem.

Theoretical Results

Example

$\min p$

$$
\begin{aligned}
p & \geq-7.5 \sin \left(2 \pi\left(\frac{0.7 x+20}{100}\right)-15 \cos \left(2 \pi\left(\frac{0.7 x+20}{100}\right)\right)\right. \\
x & \leq C \\
0 \leq x & \leq 100
\end{aligned}
$$

Figure: Multiple Choice solution.

Figure: Incremental solution.

Theoretical Results

Proposition

Suppose that a function $g=g_{i j}$ has a domain partitionable in two subsets $\left[I^{1}, I^{2}\right]$ and $\left[I^{2}, I^{3}\right]$ and that g is concave in $\left[I^{1}, I^{2}\right]$ and convex in $\left[I^{2}, \beta^{3}\right]$. Then, MC and Inc applied to g are equivalent.

Theoretical Results

Proposition

Suppose that a function $g=g_{i j}$ has a domain partitionable in two subsets $\left[I^{1}, I^{2}\right]$ and $\left[\left[^{2}, I^{3}\right]\right.$ and that g is concave in $\left[I^{1}, I^{2}\right]$ and convex in $\left[I^{2}, \beta^{3}\right]$. Then, MC and Inc applied to g are equivalent.

Sketch of proof

- Find a mapping from a solution of Inc to a solution of MC and viceversa

Theoretical Results

Proposition

Suppose that a function $g=g_{i j}$ has a domain partitionable in two subsets $\left[I^{1}, I^{2}\right]$ and $\left[\left[^{2}, I^{3}\right]\right.$ and that g is concave in $\left[I^{1}, I^{2}\right]$ and convex in $\left[I^{2}, \beta^{3}\right]$. Then, MC and Inc applied to g are equivalent.

Sketch of proof

- Find a mapping from a solution of Inc to a solution of MC and viceversa
- Given ($\phi, \boldsymbol{\psi}, \gamma$), optimal solution of Inc, and the corresponding solution of MC (x, y, z), show that (x, y, z) is feasible for MC

Theoretical Results

Proposition

Suppose that a function $g=g_{i j}$ has a domain partitionable in two subsets $\left[I^{1}, I^{2}\right]$ and $\left[I^{2}, I^{3}\right]$ and that g is concave in $\left[I^{1}, I^{2}\right]$ and convex in $\left[I^{2}, \beta^{3}\right]$. Then, MC and Inc applied to g are equivalent.

Sketch of proof

- Find a mapping from a solution of Inc to a solution of MC and viceversa
- Given (ϕ, ψ, γ), optimal solution of Inc, and the corresponding solution of $\mathrm{MC}(x, y, z)$, show that (x, y, z) is feasible for MC
- Show that the value of g for (x, y, z) is equal to the value of g for (ϕ, ψ, γ)

Theoretical Results

Proposition

Suppose that a function $g=g_{i j}$ has a domain partitionable in two subsets $\left[I^{1}, I^{2}\right]$ and $\left[\left[^{2}, I^{3}\right]\right.$ and that g is concave in $\left[I^{1}, I^{2}\right]$ and convex in $\left[I^{2}, \beta^{3}\right]$. Then, MC and Inc applied to g are equivalent.

Sketch of proof

- Find a mapping from a solution of Inc to a solution of MC and viceversa
- Given (ϕ, ψ, γ), optimal solution of Inc, and the corresponding solution of MC (x, y, z), show that (x, y, z) is feasible for MC
- Show that the value of g for (x, y, z) is equal to the value of g for ($\phi, \boldsymbol{\psi}, \gamma$)
- Thus, $g_{M c} \leq g_{\text {Inc }}$

Theoretical Results

Proposition

Suppose that a function $g=g_{i j}$ has a domain partitionable in two subsets $\left[I^{1}, I^{2}\right]$ and $\left[\left[^{2}, I^{3}\right]\right.$ and that g is concave in $\left[I^{1}, I^{2}\right]$ and convex in $\left[I^{2}, \beta^{3}\right]$. Then, MC and Inc applied to g are equivalent.

Sketch of proof

- Find a mapping from a solution of Inc to a solution of MC and viceversa
- Given (ϕ, ψ, γ), optimal solution of Inc, and the corresponding solution of MC (x, y, z), show that (x, y, z) is feasible for MC
- Show that the value of g for (x, y, z) is equal to the value of g for (ϕ, ψ, γ)
- Thus, $g_{M C} \leq g_{\text {Inc }}$

And viceversa

Theoretical Results

Proposition

Suppose that a function $g=g_{i j}$ has a domain partitionable in two subsets $\left[I^{1}, I^{2}\right]$ and $\left[\left[^{2}, I^{3}\right]\right.$ and that g is concave in $\left[I^{1}, I^{2}\right]$ and convex in $\left[I^{2}, \beta^{3}\right]$. Then, MC and Inc applied to g are equivalent.

Sketch of proof

- Find a mapping from a solution of Inc to a solution of MC and viceversa
- Given (ϕ, ψ, γ), optimal solution of Inc, and the corresponding solution of $\mathrm{MC}(x, y, z)$, show that (x, y, z) is feasible for MC
- Show that the value of g for (x, y, z) is equal to the value of g for (ϕ, ψ, γ)
- Thus, $g_{M C} \leq g_{\text {Inc }}$

And viceversa $\rightarrow g_{I n c} \leq g_{M C}$ (thanks to the corollary)

Theoretical Results

Proposition

Suppose that a function $g=g_{i j}$ has a domain partitionable in two subsets $\left[I^{1}, I^{2}\right]$ and $\left[I^{2}, I^{3}\right]$ and that g is concave in $\left[I^{1}, I^{2}\right]$ and convex in $\left[I^{2}, \beta^{3}\right]$. Then, MC and Inc applied to g are equivalent.

Sketch of proof

- Find a mapping from a solution of Inc to a solution of MC and viceversa
- Given (ϕ, ψ, γ), optimal solution of Inc, and the corresponding solution of $\mathrm{MC}(x, y, z)$, show that (x, y, z) is feasible for MC
- Show that the value of g for (x, y, z) is equal to the value of g for (ϕ, ψ, γ)
- Thus, $g_{M C} \leq g_{\text {Inc }}$

And viceversa $\rightarrow g_{I n c} \leq g_{M C}$ (thanks to the corollary) $\rightarrow g_{I n c}=g_{M C}$

Outline

(1) The class of MINLP problems
(2) General Framework

- Lower Bounding problem
- Previous theoretical results and hypothesis
(3) Computational Results
- Non linear knapsack problem
- Uncapacitated Facility Location problem
(4) Theoretical Results
(5) Conclusions and Future Directions

Conclusions and Future Directions

- Generalization of PWL formulations to the PWC case

Conclusions and Future Directions

- Generalization of PWL formulations to the PWC case
- Their continuous relaxations are NOT equivalent

Conclusions and Future Directions

- Generalization of PWL formulations to the PWC case
- Their continuous relaxations are NOT equivalent
- Proved that the continuous relaxations are equivalent in a specific case

Conclusions and Future Directions

- Generalization of PWL formulations to the PWC case
- Their continuous relaxations are NOT equivalent
- Proved that the continuous relaxations are equivalent in a specific case
- Tighter continuous relaxation does not imply better computational performance

Conclusions and Future Directions

- Generalization of PWL formulations to the PWC case
- Their continuous relaxations are NOT equivalent
- Proved that the continuous relaxations are equivalent in a specific case
- Tighter continuous relaxation does not imply better computational performance
- Distribute the reformulation code (ROSE solver, COIN-OR)

Conclusions and Future Directions

- Generalization of PWL formulations to the PWC case
- Their continuous relaxations are NOT equivalent
- Proved that the continuous relaxations are equivalent in a specific case
- Tighter continuous relaxation does not imply better computational performance
- Distribute the reformulation code (ROSE solver, COIN-OR)

Thanks for your attention!

References

- C. D'A., J. Lee, D. Skipper, D. Thomopulos. Handling Separable Non-Convexities with Disjunctive Cuts. ISCO 2020.
- C. D'A., A. Frangioni, C. Gentile. Strengthening the Sequential Convex MINLP Technique by Perspective Reformulations, Optimization Letters 13 (4), pp. 673-684. 2019.
- C. D'A., J. Lee, A. Wächter. An algorithmic framework for MINLP with separable non-convexity, J. Lee and S. Leyffer (Eds.): Mixed-Integer Nonlinear Optimization: Algorithmic Advances and Applications, The IncA Volumes in Mathematics and its Applications, Springer NY, 154, pp. 315-347, 2012.
- C. D'A.. Application-oriented Mixed Integer Non-Linear Programming. 40R: A Quarterly Journal of Operations Research, 8 (3), pp. 319-322, 2010.
- C. D'A., J. Lee, A. Wächter. A global-optimization algorithm for mixed-integer nonlinear programs having separable non-convexity, A. Fiat and P. Sanders (Eds.): ESA 2009 (17th Annual European Symposium. Copenhagen, Denmark, September 2009), Lecture Notes in Computer Science 5757, pp. 107-118, Springer-Verlag Berlin Heidelberg, 2009.
- K. L. Croxton, B. Gendron, and T. L. Magnanti. A Comparison of Mixed-Integer Programming Models for Nonconvex Piecewise Linear Cost Minimization Problems. Management Science, 49(9):1268-1273, 2003.

