C. D’Ambrosio

SUMMER SCHOOL ON
ASPECTS OF OPTIMIZATION

Discrete Optimization
Research Talk

Claudia D’Ambrosio
dambrosio@lix.polytechnique.fr

Discrete Optimization



Research Talk

“Comparing perspective reformulations
for piecewise-convex optimization”

R.S. Trindade, C. D’Ambrosio, A. Frangioni, C. Gentile

C. D’Ambrosio Discrete Optimization 2/33



0 The class of MINLP problems
e General Framework

@ Lower Bounding problem

@ Previous theoretical results and hypothesis
e Computational Results

@ Non linear knapsack problem

@ Uncapacitated Facility Location problem
@ Theoretical Results

e Conclusions and Future Directions

C. D’Ambrosio Discrete Optimization



0 The class of MINLP problems

C. D’Ambrosio Discrete Optimization



The class of MINLP problems

min Y icn CiX; (1)
fi(X) + Ljen() 95(x;) <0 ieM )
h=x<uy jeN (3)
X €L jel. (4)

where:
@ f,: R" — R are convex functions Vi € M,
@ g; : R — R are non convex univariate function Vi ¢ M,Vj € H(i),
@ H(I)CN VieM,
@ /CN,and
@ /;and u; are finite Vi € M,j € H(J)
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e General Framework
@ Lower Bounding problem
@ Previous theoretical results and hypothesis
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General Framework

Global optimization algorithm proposed in
D’A., Lee, and Wéchter (2009, 2012).
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e General Framework
@ Lower Bounding problem
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The Lower Bounding problem: step 1

For simplicity, let us consider, for a given pair i, j, the univariate
nonconvex function g(x;)(:= g;(x;)):
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C. D’Ambrosio Discrete Optimization 11/33



The Lower Bounding problem: step 1

For simplicity, let us consider, for a given pair i, j, the univariate
nonconvex function g(x;)(:= g;(x;)):

Automatically detect the concavity/convexity intervals or piecewise
definition ([} = and /¥ = u):
[Iijs.,lijs.“] := the s-th subinterval of the domain of g (s€ {1...s(ij) —1});

S(ij) := the set of indices of subintervals on which g is convex;

C. D’Ambrosio Discrete Optimization 11/33



The Lower Bounding problem: step 1

For simplicity, let us consider, for a given pair i, j, the univariate
nonconvex function g(x;)(:= g;(x;)):

Automatically detect the concavity/convexity intervals or piecewise
definition ([} = and /¥ = u):

[Iijs.,lijs.“] := the s-th subinterval of the domain of g (s € {1...s(jj) —1});
S(jf) := the set of indices of subintervals on which g is convex;

S(if) := the set of indices of subintervals on which g is concave.

C. D’Ambrosio Discrete Optimization 11/33



The Lower Bounding problem: step 2

Reformulate the lower bounding problems as a piecewise defined
problem, i.e., separating the convex and the concave intervals.
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The Lower Bounding problem: step 2

Reformulate the lower bounding problems as a piecewise defined
problem, i.e., separating the convex and the concave intervals.

Adapt the following piecewise linear formulations (see Croxton et al.,
2003):

@ Convex combination (CC)

@ Multiple choice (MC)

@ Incremental (Inc)
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The formulations

min Yjen GiXj

1,00+ Ljeri) Yoes( 2 <0 ieM
y;j €{0,1} se S(ij), je H(i), ie M
X €Z jel

Multiple Choice Formulation

zj > [g;(xj) — g;(0)] se 8(ij), je H(i), ie M
X; = Lses(ij) Xj jeH(),ieM
1By <xg <I7Hyg se S(if), je H(i), ie M
Toes Vs =1 ieM,jeH(i)
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The formulations

min Yjen 6]

1i(X) + Ljer() Lsesgjy 25 < 0 ieM
yj €{0.1} se S(ij), je H(i), ie M
X €L jel

Incremental Formulation

23 > [gj(1F +x3) — g5 (19)] se S(ij), je H(i), ie M
Xj = lj+ Lses(ij) X§ JjeH(),ieM
(B =Byt < < (T - )ys se S(ij), je H(i), ie M

C. D’Ambrosio Discrete Optimization



What is a perspective reformulation?

@ Given a convex function h(x), its perspective function yh(x/y)
describes its convex envelope when restricted to the
mixed-integer set { (x,y) : 0<x<uy,yec{0,1}}
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@ The continuous relaxation of (PR), the Perspective Relaxation
(PR) of (P), provides tighter lower bounds to the optimal value of
(P) than the continuous relaxation of the standard formulation
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What is a perspective reformulation?

@ Given a convex function h(x), its perspective function yh(x/y)
describes its convex envelope when restricted to the
mixed-integer set { (x,y) : 0<x<uy,yec{0,1}}

@ The continuous relaxation of (PR), the Perspective Relaxation
(PR) of (P), provides tighter lower bounds to the optimal value of
(P) than the continuous relaxation of the standard formulation

h
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The formulations

min ):jeN GjX;j

Bi() + Zjer) Locsgp 25 <0 ieM
yj €{0.1} se S(ij), je H(i), ieM
X EL jel

Multiple Choice Formulation Incremental Formulation

28 > (9503 /v —g;Oly]  s€8(ii), je H(i), ieM

S S (1S)]yS S(ip), j 0, i
% = Lses(i) X jeHiiem 221U rxp iy —gUply}  s<S(i).j< H(). ieM
., xS e H(i)ie M

1Bys <x§ <Istlys seS(), jeHG), iem 97T Eses X JeH

; , . L
Lses(i Vi =1 iemjenuy GRS ST -y se 8. je HG). ie M
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The Lower Bounding problem: step 3

Still non convex;
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The Lower Bounding problem: step 3

Still non convex;

Use piecewise linear approximation for the concave intervals:

Piecewise linear formulation for the approximation (see CC, MC, Inc)
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Previous theoretical results and hypothesis

Theorem (Croxton et al., 2003)

The continuous relaxation of CC, MC, and Inc are equivalent in the
piecewise linear case.
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Previous theoretical results and hypothesis

Theorem (Croxton et al., 2003)

The continuous relaxation of CC, MC, and Inc are equivalent in the
piecewise linear case.

What about the piecewise convex case?
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e Computational Results
@ Non linear knapsack problem
@ Uncapacitated Facility Location problem
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Computational Results

@ We focus in two different problems:
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Computational Results

@ We focus in two different problems:

e Non linear knapsack problem;

e Uncapacitated Facility Location problem.

@ We tested our approach, based on separation of Perspective Cuts
(PC) implemented using CPLEX .
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Non linear knapsack problem

@ The non linear knapsack problem is the same considered in D’A.

et al., 2009:
max Y.je N Pj

pj < gj(x;) jeN
Ljenwx < C
0<x <y jeN

For each value of |N| € {10,20,50,100,200,500,1000} we randomly

generated 10 instances where w; € [1,100].
C;

® 9i(X) = TR esr g ray): Whith & € [0.1,0.2], b € [0,100],
¢; €[0,100], and d; € [-100,0]

—10 —10
ggj(xj)—7,55in(7z:<xj40 )—15COS(7T(X180 ))+19.5
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et al., 2009:
max Y.je N Pj

pj < gj(x;) jeN
Ljenwx < C
0<x <y jeN

For each value of |N| € {10,20,50,100,200,500,1000} we randomly

generated 10 instances where w; € [1,100].
C;

® 9i(X) = TR esr g ray): Whith & € [0.1,0.2], b € [0,100],
¢; €[0,100], and d; € [-100,0]

—10 —10
ggj(xj)—7,55in(7z:<xj40 )—15COS(7T(X180 ))+19.5

We fixed u; =100 forall je Nand C=50Y jcn W,
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Non linear knapsack problem

Table: Computational results for Non-linear Continuous Knapsack problem

INST. INC MC INC RELAX. MC RELAX.

Int.  Size Sol. Time Cuts Sol. Time Cuts| Gap Time Cuts| Gap Time Cuts
2 10| 305.04 0.02 114.70| 305.04 0.03 105.60[0.48 0.01 50.30|0.48 0.01 50.30
2 20 594.57 0.03 187.40 594.57 0.03 179.80|0.18 0.01 92.20(0.18 0.02 92.20
2 50| 1659.96 0.05 448.20| 1659.96 0.05 448.20|0.02 0.02 246.10|0.02 0.02 246.10
2 100| 3398.18 0.09 759.00 | 3398.18 0.09 759.50|0.00 0.04 499.00 | 0.00 0.05 499.00
2 200| 6798.08 0.21 1614.50| 6798.08 0.22 1635.90|0.00 0.09  989.40|0.00 0.08 989.40
2 500|17211.06 0.45 3293.90|17211.06 0.45 3202.20 |0.00 0.22 2504.50|0.00 0.22 2504.50
2 1000 | 34562.94 1.12 5949.60 | 34562.94 1.00 5896.30 |0.00 0.45 5039.40|0.00 0.43 5039.40
4 10 278.36 0.06 348.40 278.36 0.04 239.70|1.31 0.01 108.100.17 0.01 78.80
4 20 555.64 0.09 533.90 555.64 0.04 325.90|1.00 0.02 225.40|0.08 0.02 155.10
4 50| 1417.20 0.41 1546.10| 1417.20 0.16 886.70|0.80 0.04 501.90 | 0.01 0.04 360.30
4 100| 2817.61 0.91 2332.30| 2817.61 0.26 1416.30|0.83 0.10 1058.90|0.00 0.07 733.50
4 200| 5618.12 3.10 4171.30| 5618.12 0.54 2369.80|0.85 0.22 2255.20|0.00 0.15 1481.00
4 500|14123.84 20.34 8931.70|14123.84 2.40 5141.40|0.80 0.69 5611.90|0.00 0.42 3613.30
4 1000 |28215.47 174.67 18249.10 | 28215.47 4.51 8480.70|0.83 1.92 11029.20|0.00 1.20 7363.50
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Uncapacitated Facility Location problem

@ The Uncapacitated Facility Location problem is the same
considered in D’A. et al., 2009, i.e.:

min Y xck CiYk +XiteT Lkek Skt

aye(sin(bigWie) + CkeWit)> — it <0 te T ke K

Ykek Wit =1 teT
0 < wyr < Yk teT,keK
yx€{0,1} keK

@ For each costumer of T € {6,12,24} and facility K € {12,24,48}
we randomly generated instances, where Cy € [1,100],
ay € {—12,-25}, by € [2,13], ¢k € [1,13]. We generated 3
different sizes of instances: (|K|.|T|) = (6,12),(12,24),(24,48).
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Uncapacitated Facility Location problem

Table: Computational results for Non-linear UFL problem

INC MC
Inst. Sol. Time  Gap Cuts #0 Sol. Time  Gap Cuts #O
6x12x1 5419.439 0.60 0.00 177240 10 [ 5419.439 0.46 0.00 1618.60 10
6x12x2 | 37807.512 0.45 0.00 1963.90 10 | 37807.512 0.32 0.00 1860.80 10
6x12x3 | 12403.535 7254.68 249  33355.70 4| 12401.188  4449.73  0.73 14565.40 7
12x24x1 5614.138 3.68 0.00 1074520 10| 5614.138 3.30 0.00 10316.50 10

12x24x2 | 52806.983 1148.31 0.16  23916.80 9 | 52806.983 196.46  0.00 15677.20 10
12x24x3 | 19096.744 10000.08 20.66 128509.20 0 | 18616.806 10000.03 12.52 45311.10 0
24x48x1 | 6029.599 123.30 0.00 65840.30 10| 6029.598 98.89 0.00 67110.90 10
24x48x2 | 69256.249 10000.04  4.71 104814.20 69082.252  10000.04  3.03 83943.70 0

o

Table: Computational results for the continuous relaxation of Non-linear UFL
problem

INC RELAX. MC RELAX.
Inst. Gap Time Cuts Gap Time Cuts
6x12x1 7.79 0.05 802.50 5.13 0.05 808.70
6x12x2 4.28 0.07 1082.20 0.44 0.07 954.20

6x12x3 92.76 0.23 2490.20 14.10 0.14 1301.70
12x24x1 8.96 0.25 3330.40 8.33 0.23 3358.50
12x24x2 8.34 0.32 3993.30 3.48 0.31 3782.00
12x24x3 99.80 1.26 5978.30 18.30 1.09 5062.30
24x48x1 15.04 1.91 15377.00 14.81 1.78 15401.00
24x48x2 12.29 1.95 15345.30 6.85 1.84 14753.70

Ambrosio Discrete Optimization PLYKK]



@ Theoretical Results
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Theoretical Results

gi(xF)+ck if xkKePkand x"=0Vhe K\ {k}
g(x)=<0 if x=0
+o0 otherwise

Theorem (Frangioni et al., 2020)
The convex envelope of g can be described as follows:

min{ )" 8Kgk(x*/8%) | Y 6K < 1.A*xK < bK5*, 8% >0 vk € K}
keK keK
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Theoretical Results
The MC formulation is stronger than the Inc one. \
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Theoretical Results
The MC formulation is stronger than the Inc one.

Proof
minp
. 0.7x+20 0.7x+20
p > —7.55m(27r(T>—15cos(27r<T))
x < C
0<x < 100
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Theoretical Results
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Theoretical Results

p > 77.55in(2n(w>715cos(2ﬂ<%>)
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Figure: Multiple Choice solution. Figure: Incremental solution.
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Theoretical Results

Proposition

Suppose that a function g = g; has a domain partitionable in two
subsets [I',1?] and [?, I*] and that g is concave in [I',?] and convex in
[?,P]. Then, MC and Inc applied to g are equivalent.
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Conclusions and Future Directions

@ Generalization of PWL formulations to the PWC case
@ Their continuous relaxations are NOT equivalent

@ Proved that the continuous relaxations are equivalent in a
specific case

@ Tighter continuous relaxation does not imply better
computational performance

@ Distribute the reformulation code (ROSE solver, COIN-OR)

Thanks for your attention!
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