SUMMER SCHOOL ON ASPECTS OF OPTIMIZATION Discrete Optimization Research Talk

Claudia D'Ambrosio dambrosio@lix.polytechnique.fr

< < >>

"Comparing perspective reformulations for piecewise-convex optimization"

R.S. Trindade, C. D'Ambrosio, A. Frangioni, C. Gentile

Outline

The class of MINLP problems

General Framework

- Lower Bounding problem
- Previous theoretical results and hypothesis

Computational Results

- Non linear knapsack problem
- Uncapacitated Facility Location problem

Theoretical Results

5 Conclusions and Future Directions

Outline

The class of MINLP problems

2) General Framework

- Lower Bounding problem
- Previous theoretical results and hypothesis

Computational Results

- Non linear knapsack problem
- Uncapacitated Facility Location problem

4 Theoretical Results

5 Conclusions and Future Directions

$$\min \sum_{j \in N} c_j x_j \tag{1}$$

$$f_i(x) + \sum_{j \in H(i)} g_{ij}(x_j) \le 0 \qquad i \in M$$

$$l_j \leq x_j \leq u_j$$
 $j \in N$ (3)
 $x_j \in \mathbb{Z}$ $j \in I.$ (4)

where:

• $f_i : \mathbb{R}^n \to \mathbb{R}$ are convex functions $\forall i \in M$,

• $g_{ij} : \mathbb{R} \to \mathbb{R}$ are non convex univariate function $\forall i \in M, \forall j \in H(i)$,

- $H(i) \subseteq N \quad \forall i \in M$,
- $I \subseteq N$, and
- I_j and u_j are finite $\forall i \in M, j \in H(i)$

Outline

The class of MINLP problems

General Framework

- Lower Bounding problem
- Previous theoretical results and hypothesis

Computational Results

- Non linear knapsack problem
- Uncapacitated Facility Location problem
- 4 Theoretical Results
- 5 Conclusions and Future Directions

Outline

The class of MINLP problems

General Framework

- Lower Bounding problem
- Previous theoretical results and hypothesis

Computational Results

- Non linear knapsack problem
- Uncapacitated Facility Location problem

4 Theoretical Results

5 Conclusions and Future Directions

General Framework

Global optimization algorithm proposed in D'A., Lee, and Wächter (2009, 2012).

General Framework

C. D'Ambrosio

Outline

The class of MINLP problems

2 General Framework

- Lower Bounding problem
- Previous theoretical results and hypothesis

Computational Results

- Non linear knapsack problem
- Uncapacitated Facility Location problem

4 Theoretical Results

5 Conclusions and Future Directions

For simplicity, let us consider, for a given pair *i*,*j*, the univariate nonconvex function $g(x_j)(:=g_{ij}(x_j))$:

For simplicity, let us consider, for a given pair *i*, *j*, the univariate nonconvex function $g(x_j)(:=g_{ij}(x_j))$:

Automatically detect the **concavity/convexity intervals** or piecewise definition $(I_{ij}^1 = I_j \text{ and } I_{ij}^{s(ij)} = u_j)$: $[I_{ij}^s, I_{ij}^{s+1}] :=$ the *s*-th subinterval of the domain of g ($s \in \{1 \dots s(ij) - 1\}$);

For simplicity, let us consider, for a given pair *i*, *j*, the univariate nonconvex function $g(x_j)(:=g_{ij}(x_j))$:

Automatically detect the **concavity/convexity intervals** or piecewise definition $(I_{ij}^1 = I_j \text{ and } I_{ij}^{s(ij)} = u_j)$: $[I_{ij}^s, I_{ij}^{s+1}] := \text{the } s\text{-th subinterval of the domain of } g \ (s \in \{1 \dots s(ij) - 1\});$ $\check{S}(ij) := \text{the set of indices of subintervals} \text{ on which } g \text{ is convex};$

For simplicity, let us consider, for a given pair *i*, *j*, the univariate nonconvex function $g(x_j)(:=g_{ij}(x_j))$:

Automatically detect the **concavity/convexity intervals** or piecewise definition $(I_{ij}^1 = I_j \text{ and } I_{ij}^{s(ij)} = u_j)$: $[I_{ij}^s, I_{ij}^{s+1}] := \text{the } s\text{-th subinterval of the domain of } g \ (s \in \{1 \dots s(ij) - 1\});$ $\check{S}(ij) := \text{the set of indices of subintervals on which } g \text{ is convex};$ $\hat{S}(ij) := \text{the set of indices of subintervals on which } g \text{ is concave.}$ Reformulate the lower bounding problems as a piecewise defined problem, i.e., separating the convex and the concave intervals.

Reformulate the lower bounding problems as a piecewise defined problem, i.e., separating the convex and the concave intervals.

Adapt the following piecewise linear formulations (see Croxton et al., 2003):

- Convex combination (CC)
- Multiple choice (MC)
- Incremental (Inc)

The formulations

$$\begin{array}{ll} \min \sum_{j \in N} c_j x_j \\ \overline{f}_i(x) + \sum_{j \in \mathcal{H}(i)} \sum_{s \in \check{S}(ij)} z_{ij}^s \leq 0 & i \in M \\ y_{ij}^s \in \{0, 1\} & s \in S(ij), \, j \in H(i), \, i \in M \\ x_j \in \mathbb{Z} & j \in I \end{array}$$

Multiple Choice Formulation

$z_{ij}^s \geq [g_{ij}(x_{ij}^s) - g_{ij}(0)]$	$s \in \check{S}(ij), j \in H(i), i \in M$
$x_j = \sum_{s \in S(ij)} x_{ij}^s$	$j \in H(i), i \in M$
$l^s_{ij} \mathbf{y}^s_{ij} \leq x^s_{ij} \leq l^{s+1}_{ij} \mathbf{y}^s_{ij}$	$s \in S(ij), j \in H(i), i \in M$
$\sum_{s \in S(ij)} y_{ij}^s = 1$	$i \in M, j \in H(i)$

æ

イロト イヨト イヨト イヨト

$$\begin{split} \min & \sum_{j \in N} c_j x_j \\ & \overline{f}_i(x) + \sum_{j \in H(i)} \sum_{s \in \check{S}(ij)} z_{ij}^s \leq 0 \\ & y_{ij}^s \in \{0, 1\} \\ & x_j \in \mathbb{Z} \end{split} \qquad \begin{aligned} & i \in M \\ & s \in S(ij), \ j \in H(i), \ i \in M \\ & j \in I \end{split}$$

Incremental Formulation

$$\begin{aligned} z_{ij}^{s} &\geq [g_{ij}(l_{ij}^{s} + x_{ij}^{s}) - g_{ij}(l_{ij}^{s})] & s \in \check{S}(ij), \, j \in H(i), \, i \in M \\ x_{j} &= l_{j} + \sum_{s \in S(ij)} x_{ij}^{s} & j \in H(i), \, i \in M \\ (l_{ij}^{s+1} - l_{ij}^{s}) y_{ij}^{s+1} &\leq x_{ij}^{s} \leq (l_{ij}^{s+1} - l_{ij}^{s}) y_{ij}^{s} & s \in S(ij), \, j \in H(i), \, i \in M \end{aligned}$$

æ

イロン イ理 とく ヨン イヨン

What is a perspective reformulation?

Given a convex function h(x), its perspective function yh(x/y) describes its convex envelope when restricted to the mixed-integer set { (x,y) : 0 ≤ x ≤ uy , y ∈ {0,1} }

What is a perspective reformulation?

- Given a convex function h(x), its perspective function yh(x/y) describes its convex envelope when restricted to the mixed-integer set { (x,y) : 0 ≤ x ≤ uy , y ∈ {0,1} }
- The continuous relaxation of (PR), the Perspective Relaxation (<u>PR</u>) of (<u>P</u>), provides tighter lower bounds to the optimal value of (<u>P</u>) than the continuous relaxation of the standard formulation

What is a perspective reformulation?

- Given a convex function h(x), its perspective function yh(x/y) describes its convex envelope when restricted to the mixed-integer set { (x,y) : 0 ≤ x ≤ uy , y ∈ {0,1} }
- The continuous relaxation of (PR), the Perspective Relaxation (PR) of (P), provides tighter lower bounds to the optimal value of (P) than the continuous relaxation of the standard formulation

$$\begin{split} \min & \sum_{j \in N} c_j x_j \\ & \overline{l}_i(x) + \sum_{j \in \mathcal{H}(i)} \sum_{s \in \widetilde{S}(ij)} z_{ij}^s \leq 0 & i \in M \\ & y_{ij}^s \in \{0, 1\} & s \in S(ij), j \in \mathcal{H}(i), i \in M \\ & x_j \in \mathbb{Z} & j \in I \end{split}$$

Multiple Choice Formulation

Incremental Formulation

<ロ> <問> <問> < 回> < 回> 、

$z_{ij}^{s} \geq [g_{ij}(x_{ij}^{s}/y_{ij}^{s}) - g_{ij}(0)]y_{ij}^{s}$	$s \in \check{S}(ij), j \in H(i), i \in M$		
$x_j = \sum_{s \in S(ij)} x_{ij}^s$	$j \in H(i), i \in M$	$z_{ij}^{s} \ge [g_{ij}(l_{ij}^{s} + x_{ij}^{s}/y_{ij}^{s}) - g_{ij}(l_{ij}^{s})]y_{ij}^{s}$	$s \in \check{S}(ij), j \in H(i), i \in M$
$l_{ij}^{\mathbf{s}} \mathbf{y}_{ij}^{\mathbf{s}} \leq x_{ij}^{\mathbf{s}} \leq l_{ij}^{\mathbf{s}+1} \mathbf{y}_{ij}^{\mathbf{s}}$	$s \in S(ij), j \in H(i), i \in M$	$x_j = l_j + \sum_{s \in S(ij)} x_{ij}^s$	$j \in H(i), i \in M$
$\sum_{s \in S(ij)} y_{ij}^s = 1$	$i \in M, j \in H(i)$	$(l_{ij}^{s+1}-l_{ij}^{s})y_{ij}^{s+1} \le x_{ij}^{s} \le (l_{ij}^{s+1}-l_{ij}^{s})y_{ij}^{s}$	$s \in S(ij), j \in H(i), i \in M$

æ

Still non convex;

イロト イポト イヨト イヨ

Use piecewise linear approximation for the concave intervals:

Use piecewise linear approximation for the concave intervals:

Use piecewise linear approximation for the concave intervals:

Use piecewise linear approximation for the concave intervals:

Piecewise linear formulation for the approximation (see CC, MC, Inc)

Theorem (Croxton et al., 2003)

The continuous relaxation of CC, MC, and Inc are equivalent in the piecewise linear case.

Theorem (Croxton et al., 2003)

The continuous relaxation of CC, MC, and Inc are equivalent in the piecewise linear case.

What about the piecewise convex case?

Outline

1 The class of MINLP problems

2 General Framework

- Lower Bounding problem
- Previous theoretical results and hypothesis

Computational Results

- Non linear knapsack problem
- Uncapacitated Facility Location problem

Theoretical Results

5 Conclusions and Future Directions

• We focus in two different problems:

.

- We focus in two different problems:
 - Non linear knapsack problem;

< A

- We focus in two different problems:
 - Non linear knapsack problem;
 - Uncapacitated Facility Location problem.

- We focus in two different problems:
 - Non linear knapsack problem;
 - Uncapacitated Facility Location problem.
- We tested our approach, based on separation of Perspective Cuts (PC) implemented using CPLEX .

 The non linear knapsack problem is the same considered in D'A. et al., 2009: maxΣ_{i∈N}p_i

 $p_j \le g_j(x_j) \qquad j \in N$ $\sum_{j \in N} w_j x_j \le C$ $0 \le x_j \le u_j \qquad j \in N$

For each value of $|N| \in \{10, 20, 50, 100, 200, 500, 1000\}$ we randomly generated 10 instances where $w_i \in [1, 100]$.

•
$$g_j(x_j) = \frac{c_j}{1+b_j \exp(-a_j(x_j+d_j))}$$
, whith $a_j \in [0.1, 0.2]$, $b_j \in [0, 100]$.
 $c_j \in [0, 100]$, and $d_j \in [-100, 0]$
• $g_j(x_j) = 7.5 \sin(\pi \left(\frac{x_j - 10}{40}\right) - 15 \cos(\pi \left(\frac{x_j - 10}{80}\right)) + 19.5$

 The non linear knapsack problem is the same considered in D'A. et al., 2009: max∑_{i∈N}p_i

 $p_j \le g_j(x_j) \qquad j \in N$ $\sum_{j \in N} w_j x_j \le C$ $0 \le x_j \le u_j \qquad j \in N$

For each value of $|N| \in \{10, 20, 50, 100, 200, 500, 1000\}$ we randomly generated 10 instances where $w_i \in [1, 100]$.

•
$$g_j(x_j) = \frac{c_j}{1+b_j \exp(-a_j(x_j+d_j))}$$
, whith $a_j \in [0.1, 0.2]$, $b_j \in [0, 100]$, $c_j \in [0, 100]$, and $d_j \in [-100, 0]$
• $g_j(x_j) = 7.5 \sin(\pi \left(\frac{x_j - 10}{40}\right) - 15 \cos(\pi \left(\frac{x_j - 10}{80}\right)) + 19.5$

We fixed $u_j = 100$ for all $j \in N$ and $C = 50 \sum_{j \in N} w_j$

Table: Computational results for Non-linear Continuous Knapsack problem

II II	NST.	INC			MC			INC RELAX.			MC RELAX.		
Int.	Size	Sol.	Time	Cuts	Sol.	Time	Cuts	Gap	Time	Cuts	Gap	Time	Cuts
2	10	305.04	0.02	114.70	305.04	0.03	105.60	0.48	0.01	50.30	0.48	0.01	50.30
2	20	594.57	0.03	187.40	594.57	0.03	179.80	0.18	0.01	92.20	0.18	0.02	92.20
2	50	1659.96	0.05	448.20	1659.96	0.05	448.20	0.02	0.02	246.10	0.02	0.02	246.10
2	100	3398.18	0.09	759.00	3398.18	0.09	759.50	0.00	0.04	499.00	0.00	0.05	499.00
2	200	6798.08	0.21	1614.50	6798.08	0.22	1635.90	0.00	0.09	989.40	0.00	0.08	989.40
2	500	17211.06	0.45	3293.90	17211.06	0.45	3202.20	0.00	0.22	2504.50	0.00	0.22	2504.50
2	1000	34562.94	1.12	5949.60	34562.94	1.00	5896.30	0.00	0.45	5039.40	0.00	0.43	5039.40
4	10	278.36	0.06	348.40	278.36	0.04	239.70	1.31	0.01	108.10	0.17	0.01	78.80
4	20	555.64	0.09	533.90	555.64	0.04	325.90	1.00	0.02	225.40	0.03	0.02	155.10
4	50	1417.20	0.41	1546.10	1417.20	0.16	886.70	0.80	0.04	501.90	0.01	0.04	360.30
4	100	2817.61	0.91	2332.30	2817.61	0.26	1416.30	0.83	0.10	1058.90	0.00	0.07	733.50
4	200	5618.12	3.10	4171.30	5618.12	0.54	2369.80	0.85	0.22	2255.20	0.00	0.15	1481.00
4	500	14123.84	20.34	8931.70	14123.84	2.40	5141.40	0.80	0.69	5611.90	0.00	0.42	3613.30
4	1000	28215.47	174.67	18249.10	28215.47	4.51	8480.70	0.83	1.92	11029.20	0.00	1.20	7363.50

글 🕨 🖌 글

Uncapacitated Facility Location problem

• The Uncapacitated Facility Location problem is the same considered in D'A. et al., 2009, i.e.:

$$\begin{split} \min \sum_{k \in K} C_k y_k + \sum_{t \in T} \sum_{k \in K} s_{kt} \\ a_{kt} (\sin(b_{kt} w_{kt}) + c_{kt} w_{kt})^2 - s_{kt} \leq 0 \quad t \in T, k \in K \\ \sum_{k \in K} w_{kt} = 1 \quad t \in T \\ 0 \leq w_{kt} \leq y_k \quad t \in T, k \in K \\ y_k \in \{0, 1\} \quad k \in K \end{split}$$

• For each costumer of $T \in \{6, 12, 24\}$ and facility $K \in \{12, 24, 48\}$ we randomly generated instances, where $C_k \in [1, 100]$, $a_{kt} \in \{-12, -25\}$, $b_{kt} \in [2, 13]$, $c_{kt} \in [1, 13]$. We generated 3 different sizes of instances: (|K|.|T|) = (6, 12), (12, 24), (24, 48).

Uncapacitated Facility Location problem

Table: Computational results for Non-linear UFL problem

	INC					MC				
Inst.	Sol.	Time	Gap	Cuts	#O	Sol.	Time	Gap	Cuts	#O
6x12x1	5419.439	0.60	0.00	1772.40	10	5419.439	0.46	0.00	1618.60	10
6x12x2	37807.512	0.45	0.00	1963.90	10	37807.512	0.32	0.00	1860.80	10
6x12x3	12403.535	7254.68	2.49	33355.70	4	12401.188	4449.73	0.73	14565.40	7
12x24x1	5614.138	3.68	0.00	10745.20	10	5614.138	3.30	0.00	10316.50	10
12x24x2	52806.983	1148.31	0.16	23916.80	9	52806.983	196.46	0.00	15677.20	10
12x24x3	19096.744	10000.08	20.66	128509.20	0	18616.806	10000.03	12.52	45311.10	0
24x48x1	6029.599	123.30	0.00	65840.30	10	6029.598	98.89	0.00	67110.90	10
24x48x2	69256.249	10000.04	4.71	104814.20	0	69082.252	10000.04	3.03	83943.70	0

Table: Computational results for the continuous relaxation of Non-linear UFL problem

		INC REL	AX.		MC RELAX.			
Inst.	Gap	Time	Cuts	Gap	Time	Cuts		
6x12x1	7.79	0.05	802.50	5.13	0.05	808.70		
6x12x2	4.28	0.07	1082.20	0.44	0.07	954.20		
6x12x3	92.76	0.23	2490.20	14.10	0.14	1301.70		
12x24x1	8.96	0.25	3330.40	8.33	0.23	3358.50		
12x24x2	8.34	0.32	3993.30	3.48	0.31	3782.00		
12x24x3	99.80	1.26	5978.30	18.30	1.09	5062.30		
24x48x1	15.04	1.91	15377.00	14.81	1.78	15401.00		
24x48x2	12.29	1.95	15345.30	6.85	1.84	14753.70		

A D M A A A M M

.

Outline

1 The class of MINLP problems

2) General Framework

- Lower Bounding problem
- Previous theoretical results and hypothesis

Computational Results

- Non linear knapsack problem
- Uncapacitated Facility Location problem

Theoretical Results

5 Conclusions and Future Directions

$$g(x) = egin{cases} g^k(x^k) + c^k & ext{if } x^k \in \mathbb{P}^k ext{ and } x^h = 0 \ orall h \in K \setminus \{k\} \ 0 & ext{if } x = 0 \ +\infty & ext{otherwise} \end{cases}$$

Theorem (Frangioni et al., 2020)

The convex envelope of g can be described as follows:

$$\min\{\sum_{k\in K}\delta^k g^k(x^k/\delta^k) \mid \sum_{k\in K}\delta^k \leq 1.A^k x^k \leq b^k\delta^k, \delta^k \geq 0 \ \forall k \in K\}$$

< 47 ▶

$$g(x) = egin{cases} g^k(x^k) + c^k & ext{if } x^k \in \mathbb{P}^k ext{ and } x^h = 0 \ orall h \in K \setminus \{k\} \ 0 & ext{if } x = 0 \ +\infty & ext{otherwise} \end{cases}$$

Theorem (Frangioni et al., 2020)

The convex envelope of g can be described as follows:

$$\min\{\sum_{k\in K} \delta^k g^k(x^k/\delta^k) \mid \sum_{k\in K} \delta^k \le 1.A^k x^k \le b^k \delta^k, \delta^k \ge 0 \ \forall k \in K\}$$

Corollary

The MC formulation constraints describe the convex envelope of each function g_i

< □ > < □ > < □ > < □ >

$$g(x) = egin{cases} g^k(x^k) + c^k & ext{if } x^k \in \mathbb{P}^k ext{ and } x^h = 0 \ orall h \in K \setminus \{k\} \ 0 & ext{if } x = 0 \ +\infty & ext{otherwise} \end{cases}$$

Theorem (Frangioni et al., 2020)

The convex envelope of g can be described as follows:

$$\min\{\sum_{k\in K} \delta^k g^k(x^k/\delta^k) \mid \sum_{k\in K} \delta^k \le 1.A^k x^k \le b^k \delta^k, \delta^k \ge 0 \ \forall k \in K\}$$

Corollary

The MC formulation constraints describe the convex envelope of each function g_i

< □ > < □ > < □ > < □ >

Theorem

The MC formulation is stronger than the Inc one.

크

Theorem

The MC formulation is stronger than the Inc one.

Proof

크

Theorem

The MC formulation is stronger than the Inc one.

Proof

Example

min p

$$p \ge -7.5\sin(2\pi\left(\frac{0.7x+20}{100}\right) - 15\cos(2\pi\left(\frac{0.7x+20}{100}\right)))$$

$$x \le C$$

$$0 \le x \le 100$$

Example

$\begin{array}{rcl} \min \rho & \\ p & \geq & -7.5 \sin(2\pi \left(\frac{0.7x+20}{100}\right) - 15 \cos(2\pi \left(\frac{0.7x+20}{100}\right)) \\ x & \leq & C \\ 0 \leq x & \leq & 100 \end{array}$

Figure: Integer optimal solution of the problem. Example A Constraints of the problem.

C. D'Ambrosio

Discrete Optimization

Example

Figure: Multiple Choice solution.

Figure: Incremental solution.

イロト イヨト イヨト イヨト

C. D'Ambrosio

Proposition

Suppose that a function $g = g_{ij}$ has a domain partitionable in two subsets $[I^1, I^2]$ and $[I^2, I^3]$ and that g is concave in $[I^1, I^2]$ and convex in $[I^2, I^3]$. Then, MC and Inc applied to g are equivalent.

イロト イ押ト イヨト イヨト

Suppose that a function $g = g_{ij}$ has a domain partitionable in two subsets $[I^1, I^2]$ and $[I^2, I^3]$ and that g is concave in $[I^1, I^2]$ and convex in $[I^2, I^3]$. Then, MC and Inc applied to g are equivalent.

Sketch of proof

• Find a **mapping** from a solution of Inc to a solution of MC and viceversa

Suppose that a function $g = g_{ij}$ has a domain partitionable in two subsets $[I^1, I^2]$ and $[I^2, I^3]$ and that g is concave in $[I^1, I^2]$ and convex in $[I^2, I^3]$. Then, MC and Inc applied to g are equivalent.

Sketch of proof

- Find a **mapping** from a solution of Inc to a solution of MC and viceversa
- Given (φ, ψ, γ), optimal solution of Inc, and the corresponding solution of MC (x, y, z), show that (x, y, z) is feasible for MC

Suppose that a function $g = g_{ij}$ has a domain partitionable in two subsets $[I^1, I^2]$ and $[I^2, I^3]$ and that g is concave in $[I^1, I^2]$ and convex in $[I^2, I^3]$. Then, MC and Inc applied to g are equivalent.

Sketch of proof

- Find a **mapping** from a solution of Inc to a solution of MC and viceversa
- Given (φ, ψ, γ), optimal solution of Inc, and the corresponding solution of MC (x, y, z), show that (x, y, z) is feasible for MC
- Show that the value of g for (x, y, z) is **equal** to the value of g for (ϕ, ψ, γ)

(4) (5) (4) (5)

Suppose that a function $g = g_{ij}$ has a domain partitionable in two subsets $[I^1, I^2]$ and $[I^2, I^3]$ and that g is concave in $[I^1, I^2]$ and convex in $[I^2, I^3]$. Then, MC and Inc applied to g are equivalent.

Sketch of proof

- Find a **mapping** from a solution of Inc to a solution of MC and viceversa
- Given (φ, ψ, γ), optimal solution of Inc, and the corresponding solution of MC (x, y, z), show that (x, y, z) is feasible for MC
- Show that the value of g for (x, y, z) is equal to the value of g for (φ, ψ, γ)
- Thus, $g_{MC} \leq g_{Inc}$

< ∃ > < ∃

Suppose that a function $g = g_{ij}$ has a domain partitionable in two subsets $[I^1, I^2]$ and $[I^2, I^3]$ and that g is concave in $[I^1, I^2]$ and convex in $[I^2, I^3]$. Then, MC and Inc applied to g are equivalent.

Sketch of proof

- Find a **mapping** from a solution of Inc to a solution of MC and viceversa
- Given (φ, ψ, γ), optimal solution of Inc, and the corresponding solution of MC (x, y, z), show that (x, y, z) is feasible for MC
- Show that the value of g for (x, y, z) is equal to the value of g for (φ, ψ, γ)
- Thus, <u>g_{MC} ≤ g_{Inc}</u>

And viceversa

(4) (5) (4) (5)

Suppose that a function $g = g_{ij}$ has a domain partitionable in two subsets $[I^1, I^2]$ and $[I^2, I^3]$ and that g is concave in $[I^1, I^2]$ and convex in $[I^2, I^3]$. Then, MC and Inc applied to g are equivalent.

Sketch of proof

- Find a **mapping** from a solution of Inc to a solution of MC and viceversa
- Given (φ, ψ, γ), optimal solution of Inc, and the corresponding solution of MC (x, y, z), show that (x, y, z) is feasible for MC
- Show that the value of g for (x, y, z) is equal to the value of g for (φ, ψ, γ)
- Thus, $g_{MC} \leq g_{Inc}$

And viceversa $\rightarrow g_{Inc} \leq g_{MC}$ (thanks to the corollary)

Suppose that a function $g = g_{ij}$ has a domain partitionable in two subsets $[I^1, I^2]$ and $[I^2, I^3]$ and that g is concave in $[I^1, I^2]$ and convex in $[I^2, I^3]$. Then, MC and Inc applied to g are equivalent.

Sketch of proof

- Find a **mapping** from a solution of Inc to a solution of MC and viceversa
- Given (φ, ψ, γ), optimal solution of Inc, and the corresponding solution of MC (x, y, z), show that (x, y, z) is feasible for MC
- Show that the value of g for (x, y, z) is equal to the value of g for (φ, ψ, γ)
- Thus, $g_{MC} \leq g_{Inc}$

And viceversa $\rightarrow g_{Inc} \leq g_{MC}$ (thanks to the corollary) $\rightarrow g_{Inc} = g_{MC}$

Outline

1 The class of MINLP problems

2) General Framework

- Lower Bounding problem
- Previous theoretical results and hypothesis

Computational Results

- Non linear knapsack problem
- Uncapacitated Facility Location problem

4 Theoretical Results

5 Conclusions and Future Directions

Generalization of PWL formulations to the PWC case

- Generalization of PWL formulations to the PWC case
- Their continuous relaxations are NOT equivalent

A D M A A A M M

- Generalization of PWL formulations to the PWC case
- Their continuous relaxations are **NOT equivalent**
- Proved that the continuous relaxations are equivalent in a specific case

- Generalization of PWL formulations to the PWC case
- Their continuous relaxations are **NOT equivalent**
- **Proved** that the continuous relaxations are equivalent in a specific case
- Tighter continuous relaxation does not imply better computational performance

.

- Generalization of PWL formulations to the PWC case
- Their continuous relaxations are **NOT equivalent**
- **Proved** that the continuous relaxations are equivalent in a specific case
- Tighter continuous relaxation does not imply better computational performance
- Distribute the reformulation code (ROSE solver, COIN-OR)

- Generalization of PWL formulations to the PWC case
- Their continuous relaxations are **NOT equivalent**
- **Proved** that the continuous relaxations are equivalent in a specific case
- Tighter continuous relaxation does not imply better computational performance
- **Distribute** the reformulation code (ROSE solver, COIN-OR)

Thanks for your attention!

References

- C. D'A., J. Lee, D. Skipper, D. Thomopulos. Handling Separable Non-Convexities with Disjunctive Cuts. ISCO 2020.
- C. D'A., A. Frangioni, C. Gentile. Strengthening the Sequential Convex MINLP Technique by Perspective Reformulations, **Optimization Letters** 13 (4), pp. 673–684. 2019.
- C. D'A., J. Lee, A. Wächter. An algorithmic framework for MINLP with separable non-convexity, J. Lee and S. Leyffer (Eds.): Mixed-Integer Nonlinear
 Optimization: Algorithmic Advances and Applications, The IncA Volumes in Mathematics and its Applications, Springer NY, 154, pp. 315–347, 2012.
- C. D'A.. Application-oriented Mixed Integer Non-Linear Programming. 4OR: A Quarterly Journal of Operations Research, 8 (3), pp. 319–322, 2010.
- C. D'A., J. Lee, A. Wächter. A global-optimization algorithm for mixed-integer nonlinear programs having separable non-convexity, A. Fiat and P. Sanders (Eds.): ESA 2009 (17th Annual European Symposium. Copenhagen, Denmark, September 2009), Lecture Notes in Computer Science 5757, pp. 107-118, Springer-Verlag Berlin Heidelberg, 2009.
- K. L. Croxton, B. Gendron, and T. L. Magnanti. A Comparison of Mixed-Integer Programming Models for Nonconvex Piecewise Linear Cost Minimization Problems. Management Science, 49(9):1268–1273, 2003.