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Decision Theory

@ Everybody makes several decisions every day
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Decision Theory

@ Everybody makes several decisions every day
o Goal-directed behavior when options available
@ Normative vs. Descriptive Decision Theory

@ Focus on determining the optimal decisions given constraints and
assumptions

o Interdisciplinary field : computer scientists, mathematicians,
economists, engineers, statisticians, ...
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Decision Theory

@ Everybody makes several decisions every day
o Goal-directed behavior when options available
@ Normative vs. Descriptive Decision Theory

@ Focus on determining the optimal decisions given constraints and
assumptions

o Interdisciplinary field : computer scientists, mathematicians,
economists, engineers, statisticians, ...

@ Operations Research : analytical methods to help better decisions
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The role of Decision-Making Tools

Real World

Estimation of Parameters,| Statistical
Choice of Distribution | Inference

(Using the prescribed distribution:
and estimated parameters)

Calculation of Probabilities, ,‘

Information for
Decision-Making
and Design
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Electrification of the Transportation System

Smart Grid
n-l Wmd
y’’4
o/.\L. /7
f Slorage L ad
Solar

V
Charging
infrastructure
/ X
4
=

Electric sedan

Electric truck
Electric bus

Intelligent transportation

Flgure: Source: https://skliotsc.um.edu.mo/power-and-transportation-nexus/

'Ambrosio (CNRS & X) Introduction to MP


https://skliotsc.um.edu.mo/power-and-transportation-nexus/

Electrification of the Transportation System

Smart Grid
n-l Wmd
Y //4
'/.\Lo b4
f S|orage 7 &
Solar

V
Charging
infrastructure
/ X
4
=

Electric sedan
Electric bus

Electric truck

Intelligent transportation
Figure: Source: https://skliotsc.um.edu.mo/power-and-transportation-nexus/

Crucial problem involving the Transportation and Energy Systems
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Crucial problem involving the Transportation and Energy Systems

@ private and public transportation vehicles replaced with electric
vehicles

C. D’Ambrosio (CNRS & X) Introduction to MP


https://skliotsc.um.edu.mo/power-and-transportation-nexus/

Electrification of the Transportation System

Smart Grid

n-l Wmd
y//4
QM. =
f Slorage 7 &

Solar
V
aﬁ Charging E_K
infrastructure
/ X
4
=

Electric sedan

Electric truck
Electric bus

Intelligent transportation
Figure: Source: https://skliotsc.um.edu.mo/power-and-transportation-nexus/

Crucial problem involving the Transportation and Energy Systems

@ private and public transportation vehicles replaced with electric
vehicles

@ hugely affect transportation and energy systems
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Electrification of the Transportation System

@ provide a widespread network of efficient charging stations
(strategic problem)
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Electrification of the Transportation System

@ provide a widespread network of efficient charging stations
(strategic problem)

@ providing charging stations with the requested electricity
(operational problem)
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Electrification of the Transportation System

@ provide a widespread network of efficient charging stations
(strategic problem)

@ providing charging stations with the requested electricity
(operational problem)

@ adapt electricity transportation and distribution networks
(strategic and operational problem)
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Electrification of the Transportation System

@ provide a widespread network of efficient charging stations
(strategic problem)

providing charging stations with the requested electricity
(operational problem)

adapt electricity transportation and distribution networks
(strategic and operational problem)

e new sources of production should be installed (strategic problem)
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Electrification of the Transportation System

@ provide a widespread network of efficient charging stations
(strategic problem)

@ providing charging stations with the requested electricity
(operational problem)

@ adapt electricity transportation and distribution networks
(strategic and operational problem)

e new sources of production should be installed (strategic problem)

@ adapt the production management (operational problem)
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Electrification of the Transportation System

@ provide a widespread network of efficient charging stations
(strategic problem)

providing charging stations with the requested electricity
(operational problem)

adapt electricity transportation and distribution networks
(strategic and operational problem)

e new sources of production should be installed (strategic problem)

adapt the production management (operational problem)

https://ec.europa.eu/newsroom/horizon2020/document . cfm?doc_id=46368
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@ Introduction to Decision Theory
@ Mathematical Optimization
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@ Abstract and formal language
e Aim: modeling (formulate) optimization problems

o Formulate-and-solve paradigm
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Mathematical Optimization (MO)

or Mathematical Programming (MP)

Abstract and formal language

Aim: modeling (formulate) optimization problems

o Formulate-and-solve paradigm

Available general-purpose solvers
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Mathematical Optimization (MO)

or Mathematical Programming (MP)

min  f(x)
gi(x)< 0 Vi=1,....m
x <x<

x|

N

Xj € VjeZ

where

@ x is an n-dimensional vector of the decision variables
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Mathematical Optimization (MO)

or Mathematical Programming (MP)

gi(x)< 0 Vi=1,....m
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where
@ x is an n-dimensional vector of the decision variables

@ x and X are the given vectors of lower and upper bounds on the
variables
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Mathematical Optimization (MO)

or Mathematical Programming (MP)

gi(x)< 0 Vi=1,....m

X
IA
x
IA
x

X
m
N

VjeZ

where
@ x is an n-dimensional vector of the decision variables

@ x and X are the given vectors of lower and upper bounds on the
variables

@ set Z C {1,2,...,n} is the set of the indexes of the integer variables
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Mathematical Optimization (MO)

or Mathematical Programming (MP)

mXin f(x)

gilx)< 0 Vi=1,....m
x <x< X
xi€ 4L VjeZ

where

e f(x) and g(x) can be written in closed form
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Mathematical Optimization (MO)

or Mathematical Programming (MP)

mXin f(x)

gilx)< 0 Vi=1,....m
x <x< X
xi€ 4L VjeZ

where

e f(x) and g(x) can be written in closed form

e f(x) and gi(x) are given twice continuously differentiable
functions of the variables (Vi =1,...,m)
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Mathematical Optimization: a Simple Example

Given a truck of max capacity 13k pounds and two kind of liquids to
transport for selling: milk and juice.
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transport for selling: milk and juice. Each 1k gallon of milk (resp. juice)
has a weight of 3k (resp. 2k) pounds.
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total profit of the transported liquids, knowing they have the same unit
profit.
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has a weight of 3k (resp. 2k) pounds. The maximum available
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Mathematical Optimization: a Simple Example

Given a truck of max capacity 13k pounds and two kind of liquids to
transport for selling: milk and juice. Each 1k gallon of milk (resp. juice)
has a weight of 3k (resp. 2k) pounds. The maximum available
quantity of milk (resp. juice) is 3k (resp. 5k) gallons . Maximize the
total profit of the transported liquids, knowing they have the same unit
profit.
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Simple bounds? 0 < x; <3,0<x <5
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Mathematical Optimization: a Simple Example

Given a truck of max capacity 13k pounds and two kind of liquids to
transport for selling: milk and juice. Each 1k gallon of milk (resp. juice)
has a weight of 3k (resp. 2k) pounds. The maximum available
quantity of milk (resp. juice) is 3k (resp. 5k) gallons . Maximize the
total profit of the transported liquids, knowing they have the same unit
profit.

Decision variables?
x1 = k gallons of milk transported, xo» = k gallons of juice transported.

Simple bounds? 0 < x; <3,0<x <5
Other constraints? 3x; + 2xp, < 13

Objective function? max x; + xo
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Mathematical Optimization: a Simple Example

max x1 + xo
3x1 +2x <13
0<x<3
0<x <5
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Mathematical Optimization

Formulation : a MO modeling an optimization problem
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Mathematical Optimization

Formulation : a MO modeling an optimization problem

Set L of available liquids.
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Mathematical Optimization

Formulation : a MO modeling an optimization problem

Set L of available liquids.
Parameters :
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Formulation : a MO modeling an optimization problem

Set L of available liquids.

Parameters :
W = truck maximum capacity
For each ¢ € L: unit profit p,
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Mathematical Optimization

Formulation : a MO modeling an optimization problem

Set L of available liquids.
Parameters :

W = truck maximum capacity
For each ¢ € L: unit profit p,
For each ¢ € L: unit weight wy
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Mathematical Optimization

Formulation : a MO modeling an optimization problem

Set L of available liquids.

Parameters :

W = truck maximum capacity

For each ¢ € L: unit profit p,

For each ¢ € L: unit weight wy

For each ¢ € L: maximum availability Xy
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Mathematical Optimization

Formulation : a MO modeling an optimization problem

Set L of available liquids.

Parameters :

W = truck maximum capacity

For each ¢ € L: unit profit p,

For each ¢ € L: unit weight wy

For each ¢ € L: maximum availability Xy

max Z Pe Xy

lel
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Mathematical Optimization

Formulation : a MO modeling an optimization problem

Set L of available liquids.

Parameters :

W = truck maximum capacity

For each ¢ € L: unit profit p,

For each ¢ € L: unit weight wy

For each ¢ € L: maximum availability Xy

max Z Pe Xy

lel
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Mathematical Optimization

Formulation : a MO modeling an optimization problem

Set L of available liquids.

Parameters :

W = truck maximum capacity

For each ¢ € L: unit profit p,

For each ¢ € L: unit weight wy

For each ¢ € L: maximum availability Xy

max Z Pe Xy

lel

0<x<xp Vel
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Mathematical Optimization

A few definitions:

e Formulation : a MO modeling an optimization problem
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Mathematical Optimization

A few definitions:
e Formulation : a MO modeling an optimization problem

@ An optimization problem can be modeled in different ways — several
formulations
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Mathematical Optimization

A few definitions:
e Formulation : a MO modeling an optimization problem
@ An optimization problem can be modeled in different ways — several
formulations

e Instance : when the expression of f(x), g(x) and the values of x, X,
and Z are known. The set of instances of a MO problems is
potentially infinite.
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Mathematical Optimization

Given the formulation :

(where W is the truck maximum capacity, L is the set of liquids and, for
each ¢ € L, we have unit profi py, unit weight wy, maximum availability X;)
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Mathematical Optimization

Given the formulation :

(where W is the truck maximum capacity, L is the set of liquids and, for
each ¢ € L, we have unit profi py, unit weight wy, maximum availability X;)

W =13, L=1{1,2}, w =(3,2), p' =(1,1), X" =(3,5) is an instance
of the above formulation.

C. D’Ambrosio (CNRS & X) Introduction to MP




Mathematical Optimization

A few definitions:
e Feasible solutions : X = {x | g(x) <0,x <x<X,x; € Z Vje Z}
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Mathematical Optimization
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e Feasible solutions : X = {x | g(x) <0,x <x<X,x; € Z Vje Z}
e Optimal solution : arg min,cx f(x)
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Mathematical Optimization

A few definitions:
e Feasible solutions : X = {x | g(x) <0,x <x<X,x; € Z Vje Z}
e Optimal solution : arg min,cx f(x)

Simple example :
Feasible solutions:
max xi + X2

3x1 +2x < 13
0<x <3
0<x <5
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Mathematical Optimization

A few definitions:

e Feasible solutions : X = {x | g(x) <0,x <x<X,x; € Z Vje Z}
e Optimal solution : arg min,cx f(x)

Simple example :

Feasible solutions:
max xi + X2

3x1 +2x < 13
0<x <3
0<x <5

o x1=0,x=0,profit =0
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Mathematical Optimization

A few definitions:

e Feasible solutions : X = {x | g(x) <0,x <x<X,x; € Z Vje Z}
e Optimal solution : arg min,cx f(x)

Simple example :

Feasible solutions:
max xi + X2

3x1 +2x < 13
0<x <3
0<x <5

o x1=0,x=0,profit =0
o x;=1,x =2, profit =3
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Mathematical Optimization

A few definitions:

e Feasible solutions : X = {x | g(x) <0,x <x<X,x; € Z Vje Z}
e Optimal solution : arg min,cx f(x)

Simple example :

Feasible solutions:
max xi + X2

3x1 +2x < 13
0<x <3
0<x <5

o x1=0,x=0,profit =0
o x;=1,x =2, profit =3

@ x; =3, xp =2, profit =5
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Mathematical Optimization

A few definitions:

e Feasible solutions : X = {x | g(x) <0,x <x<X,x; € Z Vje Z}
e Optimal solution : arg min,cx f(x)

Simple example :

Feasible solutions:
max xi + X2

3x1 +2x < 13
0<x <3

o x1=0,x=0,profit =0
o x;=1,x =2, profit =3

@ x; =3, xp =2, profit =5
0<x <5 o Others?
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Mathematical Optimization

A few definitions:

e Feasible solutions : X = {x | g(x) <0,x <x<X,x; € Z Vje Z}
e Optimal solution : arg min,cx f(x)

Simple example :

Feasible solutions:

max x; + xo o x1=0,x=0,profit =0

3x1 + 2x <13 @ x1 =1, xo =2, profit =3
0<x <3 @ x1 =3, xop =2, profit =5
0<x <5 o Others?

Optimal solution(s) ?
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Mathematical Optimization

A few definitions:

e Feasible solutions : X = {x | g(x) <0,x <x<X,x; € Z Vje Z}
e Optimal solution : arg min,cx f(x)

Simple example :

Feasible solutions:

max x; + xo o x1=0,x=0,profit =0

3x1 + 2x <13 @ x1 =1, xo =2, profit =3
0<x <3 @ x1 =3, xop =2, profit =5
0<x <5 o Others?

Optimal solution(s) ? We will see later...
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Classes of MO problems

min  f(x)
gilx)< 0 Vi=1,....m

x <x< X

N

Xj € VjeZ

e Linear Programming (LP): f(x) and g(x) are linear, Z =)
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Classes of MO problems

min  f(x)
gilx)< 0 Vi=1,....m

x <x< X

N

Xj € VjeZ

e Linear Programming (LP): f(x) and g(x) are linear, Z =)
o Integer Linear Programming (ILP): f(x) and g(x) are linear,
Z={12,...,n}
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Classes of MO problems

mXin f(x)

gilx)< 0 Vi=1,....m
x <x< X
xi€ L VjeZ

e Linear Programming (LP): f(x) and g(x) are linear, Z =)
o Integer Linear Programming (ILP): f(x) and g(x) are linear,
Z={12,...,n}

e Mixed Integer Linear Programming (MILP): f(x) and g(x) are
linear, Z C {1,2,...,n}
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x <x< X
xi€ L VjeZ

e Linear Programming (LP): f(x) and g(x) are linear, Z =)

o Integer Linear Programming (ILP): f(x) and g(x) are linear,
Z={12,...,n}

e Mixed Integer Linear Programming (MILP): f(x) and g(x) are
linear, Z C {1,2,...,n}

e Mixed Integer Non Linear Programming (MINLP): f(x) and
g(x) are twice continuously differentiable, Z C {1,2,...,n}
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Classes of MO problems

mXin f(x)

gilx)< 0 Vi=1,....m
x <x< X
xi€ L VjeZ

e Linear Programming (LP): f(x) and g(x) are linear, Z =)

o Integer Linear Programming (ILP): f(x) and g(x) are linear,
Z={12,...,n}

e Mixed Integer Linear Programming (MILP): f(x) and g(x) are
linear, Z C {1,2,...,n}

e Mixed Integer Non Linear Programming (MINLP): f(x) and
g(x) are twice continuously differentiable, Z C {1,2,...,n}

Black Box Optimization: f(x) or g(x) — no closed form
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The Mathematical Optimizer's Job

Mathematical Optimisation is a knowledge-based approach

Expert

Informal description
— —

Mathematical Optimizer
Instance Data

Formal description of

Optimal
of the problem the problem Solution

(mathematical model)
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Linear Programming problems

mXin f(x)

gilx)< 0 Vi=1,....m
x <x< X

xie 1L VjeZ
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Linear Programming problems

min  f(x)

X

gilx)< 0 Vi=1,....m
x <x< X

X e 7 VjeZ

Linear Programming (LP) problem:

min f(x) — minc'x
X X
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Linear Programming problems

min  f(x)

X

gilx)< 0 Vi=1,....m
x <x< X

xie 7L VjeZ
Linear Programming (LP) problem:
min f(x) — minc'x
X X

g(x) <0 — Ax<b
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Linear Programming problems

min  f(x)

X
gilx)< 0 Vi=1,....m
x <x< X

X e 7 VjeZ

Linear Programming (LP) problem:

min f(x) — minc'x
gx) <0 — Ax<b
<

X< x<X

X
1
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Linear Programming problems

min  f(x)

X

gilx)< 0 Vi=1,....m
x <x< X

x€ I VjeZ

Linear Programming (LP) problem:

min f(x) — minc'x
X X
gx) <0 — Ax<b
x<x<x — x<x<Xx
xi€Z VjeZ — removed

C. D’Ambrosio (CNRS & X) Introduction to MP




LP problems

x

Nox
X X
IA IA
x| o
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LP problems

x

Nox
X X
IA IA
x| o

W.l.o.g. because
max &' x —
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IA IA
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LP problems

x

Nox
X X
IA IA
x| o

W.l.o.g. because
max &' x — —min—¢&' x

For some i, A;x > b, —
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LP problems

x

Nox
X X
IA IA
x| o

W.l.o.g. because
max &' x — —min—¢&' x

For some i, A;x > B,- — —A,-x < —E,-
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LP problems

x

Nox
X X
IA IA
x| o

W.l.o.g. because

max &'

X — —min—¢&Tx

For some i, A;x > B,- — —A,-x < —E,-

For some i, Ajx =b; —

C. D'’Ambrosio (CNRS & X) Introduction to MP



LP problems

x

Nox
X X
IA IA
x| o

W.l.o.g. because
max &' x — —min—¢&' x

For some i, A > b, — —A,-x < —E,-

For some i, A;x E, — —/Z\,-x < —E,' and A,—x < E,—
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LP problems

minc ' x
X
Ax < b
x<x < X
W.l.o.g. because
max &'x — —min—¢&"x
For some i, A;x > B,- — —A,-x < —E,-

For some i, A,-x = E,- — —/Z\,-x < —E,’ and A,—x < E,—

Moreover, x € [—00,400) and X € (—o0, +o9].
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LPs characteristics

Feasible (solutions) set/region : X = {x | Ax < b,x < x <X}
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LPs characteristics

Feasible (solutions) set/region : X = {x | Ax < b,x < x <X}

e optimal: when X # (), bounded. In this case, an optimal solution is
found, i.e., a feasible point x* s.t. ¢ x* < ¢Tx for all feasible x € X
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LPs characteristics

Feasible (solutions) set/region : X = {x | Ax < b,x < x <X}

e optimal: when X # (), bounded. In this case, an optimal solution is
found, i.e., a feasible point x* s.t. ¢ x* < ¢Tx for all feasible x € X

e infeasible: when X = ()
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LPs characteristics

Feasible (solutions) set/region : X = {x | Ax < b,x < x <X}

e optimal: when X # (), bounded. In this case, an optimal solution is
found, i.e., a feasible point x* s.t. ¢ x* < ¢Tx for all feasible x € X

e infeasible: when X = ()

o unbounded: when the min{c'x | x € X} = —c0
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LPs characteristics

Feasible (solutions) set/region : X = {x | Ax < b,x < x <X}

e optimal: when X # (), bounded. In this case, an optimal solution is
found, i.e., a feasible point x* s.t. ¢ x* < ¢Tx for all feasible x € X

e infeasible: when X = ()

o unbounded: when the min{c'x | x € X} = —c0

Geometrical interpretation of LPs
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LPs characteristics

Feasible (solutions) set/region : X = {x | Ax < b,x < x <X}

e optimal: when X # (), bounded. In this case, an optimal solution is
found, i.e., a feasible point x* s.t. ¢ x* < ¢Tx for all feasible x € X

e infeasible: when X = ()

o unbounded: when the min{c'x | x € X} = —c0

Geometrical interpretation of LPs

How to draw constraints and objective function
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e Methods to Solve Linear Programming
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LP problems and methods

minc ' x
X

Ax < b
x<x < X
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LP problems and methods

minc ' x
X

Ax < b
x<x < X

Methods
@ primal or dual simplex algorithm
@ interior point method
@ barrier method
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LP problems and methods

minc ' x
X

Ax < b
x<x < X

Methods
@ primal or dual simplex algorithm
@ interior point method
@ barrier method

In this course: graphical solution of LPs and intuition on the primal
simplex method
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LP problems and methods

Possible outcomes:

e optimal: when X = {x | Ax < b,x < x <X} # (), bounded. In this
case, an optimal solution is found, i.e., a feasible point x* s.t.
c"x* < ¢"x for all feasible x € X

e infeasible: when X = {x | Ax < b,x < x <X}

=0
o unbounded: when the min{c"x | Ax < b,x < x <X} = —00
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Example 1: optimal solution

max xi + Xo
3x1 +2x < 13
0<x <3
0<x <5.
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Example 1: optimal solution

max xi + Xo
3x1 +2x < 13
0<x <3
0<x <5.
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Example 1: optimal solution

max xi + Xo "

3x1 +2x < 13 \
0<x <3 B '
0<x <5.

Optimal solution:
x; = 1 — 1k gallons of

milk

xp =5 — bk gallons of ] B .
juice X =60
Profit = 6
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Example 2: infeasible problem

max xi + X2
3x1+2x% < 13
x1+x > 7

0<x <3

0 <xp <5.

Impose to transport at
least 7k gallons of liquid,
in total.
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Example 2: infeasible problem

max xi + X2
3x1+2x% < 13
x1+x > 7

0<x <3

0 <xp <5.

Impose to transport at
least 7k gallons of liquid,
in total.
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Example 2: infeasible problem

max xi + X2
3x1+2x% < 13
x1+x > 7

0<x <3

0 <xp <5.

Impose to transport at
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in total.
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Example 2: infeasible problem

max xi + X2
3x1+2x% < 13
x1+x > 7

0<x <3

0 <xp <5.

Impose to transport at
least 7k gallons of liquid,
in total.
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Example 2: infeasible problem

max xi + X2
3x1+2x% < 13
x1+x > 7

0<x <3

0 <xp <5.

Impose to transport at
least 7k gallons of liquid,
in total.
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Example 2: infeasible problem

max xi + X2
3x1+2x% < 13
x1+x > 7

0<x <3

0 <xp <5.

Impose to transport at
least 7k gallons of liquid,
in total.

Solutions set: 0 \
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Example 3: unbounded problem

max xq + 2xo

xx1—x2 < 1
—x1+x < 3
xx > 0

x > 0.
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Example 3: unbounded problem

max xq + 2xo

xx1—x2 < 1
—x1+x < 3
xx > 0

x > 0.

C. D’Ambrosio (CNRS & X) Introduction to MP



Example 3: unbounded problem

max xq + 2xo

xx1—x2 < 1
—x1+x < 3
xx > 0

x > 0.
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Example 3: unbounded problem

max xq + 2xo

x1—x < 1
—x1+x < 3 au
xx > 0
x > 0. ]
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Example 3: unbounded problem

max xq + 2xo

x1—x < 1
—x1+x < 3 au .
Xy > 0
x > 0. ]
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Example 4: degenerate case

max 3x; + 2x»
3x1 + 2xp
0<x1

0<x

13

VARVANVAN
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max 3x; + 2x»
3x1 + 2xp
0<x1

0<x

13
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Example 4: degenerate case

max 3x; + 2x» ]
3x1 + 2xp 13

0<x1

0<x

VARVANVAN
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Example 4: degenerate case

max 3x; + 2x» ]

3x1 +2x% < 13
0<x <
0<x <

\

3x; +2x =0"
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Example 4: degenerate case

max 3x; + 2x» ]
3x1 + 2xp 13

0<x1

0<x

VARVANVAN

\

3x; +2xp =1"
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Example 4: degenerate case

max 3x; + 2x» ]
3x1 + 2xp 13

0<x1

0<x

VARVANVAN

3xp +2xp =2
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Example 4: degenerate case

max 3x1 + 2xo S —
3x1 + 2xp 13
0<x1

0<x

VARVANVAN

3x1 +2xp =3
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Example 4: degenerate case

max 3x; + 2x» #
3 +2x < 13 ‘
0<x <= ]
0<x <

3x1 +2xp =4
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Example 4: degenerate case

max 3x1 + 2x2 4*
3 + 2% < 13 ‘
0<x <= ]

0<x <

3x1 +2xp =5"
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Example 4: degenerate case

max 3x1 + 2x2 7
3x1 + 2% 13 ‘
0<x1

0< x

VARVANVAN

3x) +2xp =6
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Example 4: degenerate case

max 3x; + 2x» S
3x1 + 2xp 13
0<x1

0<x

VARVANVAN

31+ 2 =7"
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Example 4: degenerate case

max 3x; + 2x» ]
3x1 + 2xp 13

0<x1

0<x

VARVANVAN

3x; +2x; = 8"
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Example 4: degenerate case

max 3x; + 2x» ]
3x1 + 2xp 13

0<x1

0<x

VARVANVAN

3x; +2xp =9
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Example 4: degenerate case

max 3x; + 2x» ]
3x1 + 2xp 13

0<x1

0<x

VARVANVAN

\

3x; +2xp = 10"
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Example 4: degenerate case

max 3x; + 2x» ]
3x1 + 2xp 13

0<x1

0<x

VARVANVAN

3x) +2xp = 11"
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Example 4: degenerate case

max 3x; + 2x» ]
3x1 + 2xp 13

0<x1

0<x

VARVANVAN

3x; +2xp = 12
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Example 4: degenerate case
max 3x; + 2x» ]

3x1 + 2xp 13 opt
0 S X1 ’
0 S X2

VARVANVAN

N\

3x1 +2xp =13 ¢
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Some theoretical results
Each convex combination of optimal vertices is optimal. \
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Some theoretical results
Each convex combination of optimal vertices is optimal.

Let v!,..., vP be the optimal vertices of the polyhedron corresponding to

the feasible region of LP.
Let x =Y %, a;v/ with 3P a;=1,a>0.
Then, its cost is

P
ch:ch aivi =c VIE aj=c' vt
i=1
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@ Linear Programming
@ The Simplex Methods
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Simplex Methods based on the property of LP that
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Simplex Methods based on the property of LP that

@ At least one of the optimal solutions is a vertex of the polytope
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Simplex Methods based on the property of LP that
@ At least one of the optimal solutions is a vertex of the polytope

@ unless problem infeasible or unbounded.
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Simplex Methods based on the property of LP that
@ At least one of the optimal solutions is a vertex of the polytope

@ unless problem infeasible or unbounded.

Phase 1 : find a feasible solution
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Simplex Methods based on the property of LP that

@ At least one of the optimal solutions is a vertex of the polytope

@ unless problem infeasible or unbounded.

Phase 1 : find a feasible solution

Phase 2 : move from a vertex to an “improving” vertex
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Intuition

Simplex Methods

Optimal
solution
@,

Starting
vertex

From the Research Gate's page of by Laura Leal-Taixé
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The Simplex Method

Require: an LP problem
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e Simplex Method

Require: an LP problem

optimal = false; unbounded = false
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e Simplex Method

Require: an LP problem
optimal = false; unbounded = false
if the origin (x = (0,0, ..., 0)) is feasible then
x* =(0,0,...,0)
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Require: an LP problem

optimal = false; unbounded = false

if the origin (x = (0,0, ..., 0)) is feasible then
x* =(0,0,...,0)

else
Phase 1: find a first feasible solution x™
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Require: an LP problem

optimal = false; unbounded = false

if the origin (x = (0,0, ..., 0)) is feasible then
x* =(0,0,...,0)

else
Phase 1: find a first feasible solution x™
if impossible to find a feasible solution then

return x™ = (400, +00, ..., +00)

end if

end if
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Require: an LP problem

optimal = false; unbounded = false

if the origin (x = (0,0, ..., 0)) is feasible then
x* =(0,0,...,0)

else
Phase 1: find a first feasible solution x™
if impossible to find a feasible solution then

return x™ = (400, +00, ..., +00)

end if

end if

{Phase 2}

while optimal = false and unbounded = false do
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Require: an LP problem

optimal = false; unbounded = false
if the origin (x = (0,0, ..., 0)) is feasible then
x* =(0,0,...,0)
else
Phase 1: find a first feasible solution x™
if impossible to find a feasible solution then
return x™ = (400, +00, ..., +00)
end if
end if
{Phase 2}
while optimal = false and unbounded = false do
if no vertex adjacent to x* has a better objective function value then
optimal = true
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The Simplex Method

Require: an LP problem

optimal = false; unbounded = false
if the origin (x = (0,0, ..., 0)) is feasible then
x* =(0,0,...,0)
else
Phase 1: find a first feasible solution x™
if impossible to find a feasible solution then
return x™ = (400, +00, ..., +00)
end if
end if
{Phase 2}
while optimal = false and unbounded = false do
if no vertex adjacent to x* has a better objective function value then
optimal = true
else
if there is an improvement direction but it goes to infinity then
unbounded = true
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The Simplex Method

Require: an LP problem

optimal = false; unbounded = false
if the origin (x = (0,0, ..., 0)) is feasible then
x* =(0,0,...,0)
else
Phase 1: find a first feasible solution x™
if impossible to find a feasible solution then
return x™ = (400, +00, ..., +00)
end if
end if
{Phase 2}
while optimal = false and unbounded = false do
if no vertex adjacent to x* has a better objective function value then
optimal = true
else
if there is an improvement direction but it goes to infinity then
unbounded = true
else
x* = the vertex adjacent to the current x* with the best objective function value
end if
end if
end while
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The Simplex Method

Require: an LP problem

optimal = false; unbounded = false
if the origin (x = (0,0, ..., 0)) is feasible then
x* =(0,0,...,0)
else
Phase 1: find a first feasible solution x™
if impossible to find a feasible solution then
return x™ = (400, +00, ..., +00)
end if
end if
{Phase 2}
while optimal = false and unbounded = false do
if no vertex adjacent to x* has a better objective function value then
optimal = true

else
if there is an improvement direction but it goes to infinity then
unbounded = true
else
x* = the vertex adjacent to the current x* with the best objective function value
end if
end if
end while
if optimal = true then
return x*
end if
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@ Linear Programming

@ Remarks
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Extremely Simplified Time Complexity

Algorithm complexity could be measured in terms of amount of time it
takes to run an algorithm (function of the size of the input)
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takes to run an algorithm (function of the size of the input)

Constant, Logaritmic, Linear, Polynomial, Exponential, ... Time algorithms
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Extremely Simplified Time Complexity

Algorithm complexity could be measured in terms of amount of time it
takes to run an algorithm (function of the size of the input)

Constant, Logaritmic, Linear, Polynomial, Exponential, ... Time algorithms

Worst-case time complexity vs average-case
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Extremely Simplified Time Complexity

Algorithm complexity could be measured in terms of amount of time it
takes to run an algorithm (function of the size of the input)

Constant, Logaritmic, Linear, Polynomial, Exponential, ... Time algorithms
Worst-case time complexity vs average-case

Simplex method — exponential worst-case running time
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Extremely Simplified Time Complexity

Algorithm complexity could be measured in terms of amount of time it
takes to run an algorithm (function of the size of the input)

Constant, Logaritmic, Linear, Polynomial, Exponential, ... Time algorithms
Worst-case time complexity vs average-case
Simplex method — exponential worst-case running time

Ellipsoid Method — polynomial worst-case running time
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Optimization vs. Simulation

Introduction to MP



Optimization vs. Simulation

Optimization : decisions are made.

C. D'Ambrosio (CNRS & X) Introduction to MP



Optimization vs. Simulation

Optimization : decisions are made.

Answer to the question “What is the best decision | can make among
these options?”
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Optimization vs. Simulation

Optimization : decisions are made.

Answer to the question “What is the best decision | can make among
these options?”
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Optimization vs. Simulation

Optimization : decisions are made.

Answer to the question “What is the best decision | can make among
these options?”

Simulation : no decisions are made.

Answer to the question “What would happen if | make this decision?”
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