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Decision Theory

Everybody makes several decisions every day

Goal-directed behavior when options available

Normative vs. Descriptive Decision Theory

Focus on determining the optimal decisions given constraints and
assumptions

Interdisciplinary field : computer scientists, mathematicians,
economists, engineers, statisticians, . . .

Operations Research : analytical methods to help better decisions
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The role of Decision-Making Tools
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Electrification of the Transportation System

Figure: Source: https://skliotsc.um.edu.mo/power-and-transportation-nexus/

Crucial problem involving the Transportation and Energy Systems

private and public transportation vehicles replaced with electric
vehicles

hugely affect transportation and energy systems
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Electrification of the Transportation System

provide a widespread network of efficient charging stations
(strategic problem)

providing charging stations with the requested electricity
(operational problem)

adapt electricity transportation and distribution networks
(strategic and operational problem)

new sources of production should be installed (strategic problem)

adapt the production management (operational problem)

https://ec.europa.eu/newsroom/horizon2020/document.cfm?doc_id=46368

https://www.uber.com/us/en/about/reports/spark-partnering-to-electrify-europe/
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Mathematical Optimization (MO)
or Mathematical Programming (MP)

Abstract and formal language

Aim: modeling (formulate) optimization problems

Formulate-and-solve paradigm

Available general-purpose solvers
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Mathematical Optimization (MO)
or Mathematical Programming (MP)

min
x

f (x)

gi (x) ≤ 0 ∀i = 1, . . . ,m

x ≤ x ≤ x

xj ∈ Z ∀j ∈ Z

where

x is an n-dimensional vector of the decision variables

x and x are the given vectors of lower and upper bounds on the
variables

set Z ⊆ {1, 2, . . . , n} is the set of the indexes of the integer variables
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Mathematical Optimization: a Simple Example

Given a truck of max capacity 13k pounds and two kind of liquids to
transport for selling: milk and juice.

Each 1k gallon of milk (resp. juice)
has a weight of 3k (resp. 2k) pounds. The maximum available
quantity of milk (resp. juice) is 3k (resp. 5k) gallons . Maximize the
total profit of the transported liquids, knowing they have the same unit
profit.

Decision variables?
x1 = k gallons of milk transported, x2 = k gallons of juice transported.

Simple bounds? 0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 5

Other constraints? 3x1 + 2x2 ≤ 13

Objective function? max x1 + x2
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Mathematical Optimization: a Simple Example

max x1 + x2

3x1 + 2x2 ≤ 13

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 5
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Mathematical Optimization

Formulation : a MO modeling an optimization problem

Set L of available liquids.

Parameters :
W = truck maximum capacity
For each ℓ ∈ L: unit profit pℓ
For each ℓ ∈ L: unit weight wℓ

For each ℓ ∈ L: maximum availability xℓ

max
∑
ℓ∈L

pℓxℓ∑
ℓ∈L

wℓxℓ ≤ W

0 ≤ xℓ ≤ xℓ ∀ℓ ∈ L
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Mathematical Optimization

A few definitions:

Formulation : a MO modeling an optimization problem

An optimization problem can be modeled in different ways → several
formulations

Instance : when the expression of f (x), g(x) and the values of x , x ,
and Z are known. The set of instances of a MO problems is
potentially infinite.
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Mathematical Optimization

Given the formulation :

max
∑
ℓ∈L

pℓxℓ∑
ℓ∈L

wℓxℓ ≤ W

0 ≤ xℓ ≤ xℓ ∀ℓ ∈ L

(where W is the truck maximum capacity, L is the set of liquids and, for
each ℓ ∈ L, we have unit profi pℓ, unit weight wℓ, maximum availability xℓ)

W = 13, L = {1, 2}, w⊤ = (3, 2), p⊤ = (1, 1), x⊤ = (3, 5) is an instance
of the above formulation.
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Mathematical Optimization

A few definitions:

Feasible solutions : X = {x | g(x) ≤ 0, x ≤ x ≤ x , xj ∈ Z ∀j ∈ Z}

Optimal solution : argminx∈X f (x)

Simple example :

max x1 + x2

3x1 + 2x2 ≤ 13

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 5

Feasible solutions:

x1 = 0, x2 = 0, profit = 0

x1 = 1, x2 = 2, profit = 3

x1 = 3, x2 = 2, profit = 5

Others?

Optimal solution(s) ? We will see later...
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Classes of MO problems

min
x

f (x)

gi (x) ≤ 0 ∀i = 1, . . . ,m

x ≤ x ≤ x

xj ∈ Z ∀j ∈ Z

Linear Programming (LP): f (x) and g(x) are linear, Z = ∅

Integer Linear Programming (ILP): f (x) and g(x) are linear,
Z = {1, 2, . . . , n}
Mixed Integer Linear Programming (MILP): f (x) and g(x) are
linear, Z ⊂ {1, 2, . . . , n}
Mixed Integer Non Linear Programming (MINLP): f (x) and
g(x) are twice continuously differentiable, Z ⊂ {1, 2, . . . , n}

Black Box Optimization: f (x) or g(x) → no closed form
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The Mathematical Optimizer’s Job
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Outline

1 Introduction to Decision Theory
Mathematical Optimization

2 Linear Programming

3 Methods to Solve Linear Programming

4 Linear Programming
The Simplex Methods
Remarks

5 References
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Linear Programming problems

min
x

f (x)

gi (x) ≤ 0 ∀i = 1, . . . ,m

x ≤ x ≤ x

xj ∈ Z ∀j ∈ Z

Linear Programming (LP) problem:

min
x

f (x) → min
x

c⊤x

g(x) ≤ 0 → Ax ≤ b

x ≤ x ≤ x → x ≤ x ≤ x

xj ∈ Z ∀j ∈ Z → removed
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LP problems

min
x

c⊤x

Ax ≤ b

x ≤ x ≤ x

W.l.o.g. because
max c̃⊤x → −min−c̃⊤x

For some i , Ãix ≥ b̃i → −Ãix ≤ −b̃i

For some i , Ãix = b̃i → −Ãix ≤ −b̃i and Ãix ≤ b̃i

Moreover, x ∈ [−∞,+∞) and x ∈ (−∞,+∞].
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LPs characteristics

Feasible (solutions) set/region : X = {x | Ax ≤ b, x ≤ x ≤ x}

optimal: when X ̸= ∅, bounded. In this case, an optimal solution is
found, i.e., a feasible point x∗ s.t. c⊤x∗ ≤ c⊤x for all feasible x ∈ X

infeasible: when X = ∅
unbounded: when the min{c⊤x | x ∈ X} = −∞

Geometrical interpretation of LPs

How to draw constraints and objective function
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LP problems and methods

min
x

c⊤x

Ax ≤ b

x ≤ x ≤ x

Methods

primal or dual simplex algorithm

interior point method

barrier method

...

In this course: graphical solution of LPs and intuition on the primal
simplex method
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LP problems and methods

Possible outcomes:

optimal: when X = {x | Ax ≤ b, x ≤ x ≤ x} ≠ ∅, bounded. In this
case, an optimal solution is found, i.e., a feasible point x∗ s.t.
c⊤x∗ ≤ c⊤x for all feasible x ∈ X

infeasible: when X = {x | Ax ≤ b, x ≤ x ≤ x} = ∅
unbounded: when the min{c⊤x | Ax ≤ b, x ≤ x ≤ x} = −∞
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Example 1: optimal solution

max x1 + x2

3x1 + 2x2 ≤ 13

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 5.

Optimal solution:
x1 = 1 → 1k gallons of
milk
x2 = 5 → 5k gallons of
juice
Profit = 6

x1 + x2 = 0x1 + x2 = 1x1 + x2 = 2x1 + x2 = 3x1 + x2 = 4x1 + x2 = 5

x1 + x2 = 6

opt.
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Example 2: infeasible problem

max x1 + x2

3x1 + 2x2 ≤ 13

x1 + x2 ≥ 7

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 5.

Impose to transport at
least 7k gallons of liquid,
in total.

Solutions set: ∅
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Example 3: unbounded problem

max x1 + 2x2

x1 − x2 ≤ 1

−x1 + x2 ≤ 3

x1 ≥ 0

x2 ≥ 0.
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Example 4: degenerate case

max 3x1 + 2x2

3x1 + 2x2 ≤ 13

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 5

3x1 + 2x2 = 03x1 + 2x2 = 13x1 + 2x2 = 23x1 + 2x2 = 33x1 + 2x2 = 43x1 + 2x2 = 53x1 + 2x2 = 63x1 + 2x2 = 73x1 + 2x2 = 83x1 + 2x2 = 93x1 + 2x2 = 103x1 + 2x2 = 113x1 + 2x2 = 123x1 + 2x2 = 13

opt
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Some theoretical results

Theorem

Each convex combination of optimal vertices is optimal.

Proof.

Let v1, . . . , vp be the optimal vertices of the polyhedron corresponding to
the feasible region of LP.
Let x =

∑p
i=1 αiv

i with
∑p

i=1 αi = 1, α ≥ 0.
Then, its cost is

c⊤x = c⊤
p∑

i=1

αiv
i = c⊤v1

p∑
i=1

αi = c⊤v1.
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Intuition

Simplex Methods based on the property of LP that

At least one of the optimal solutions is a vertex of the polytope

unless problem infeasible or unbounded.

Phase 1 : find a feasible solution

Phase 2 : move from a vertex to an “improving” vertex
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Intuition

Simplex Methods

From the Research Gate’s page of by Laura Leal-Taixé
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The Simplex Method

Require: an LP problem

optimal = false; unbounded = false
if the origin (x = (0, 0, . . . , 0)) is feasible then

x∗ = (0, 0, . . . , 0)
else

Phase 1: find a first feasible solution x∗

if impossible to find a feasible solution then
return x∗ = (+∞,+∞, . . . ,+∞)

end if
end if
{Phase 2}
while optimal = false and unbounded = false do

if no vertex adjacent to x∗ has a better objective function value then
optimal = true

else
if there is an improvement direction but it goes to infinity then

unbounded = true
else

x∗ = the vertex adjacent to the current x∗ with the best objective function value
end if

end if
end while
if optimal = true then

return x∗

end if
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if no vertex adjacent to x∗ has a better objective function value then
optimal = true

else
if there is an improvement direction but it goes to infinity then

unbounded = true
else

x∗ = the vertex adjacent to the current x∗ with the best objective function value
end if

end if
end while
if optimal = true then

return x∗

end if
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Extremely Simplified Time Complexity

Algorithm complexity could be measured in terms of amount of time it
takes to run an algorithm (function of the size of the input)

Constant, Logaritmic, Linear, Polynomial, Exponential, ... Time algorithms

Worst-case time complexity vs average-case

Simplex method → exponential worst-case running time

Ellipsoid Method → polynomial worst-case running time
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Optimization vs. Simulation

Optimization : decisions are made.

Answer to the question “What is the best decision I can make among
these options?”

Simulation : no decisions are made.

Answer to the question “What would happen if I make this decision?”
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