Introduction to Mathematical Optimization

Claudia D'Ambrosio dambrosio@lix.polytechnique.fr

LIX, CNRS \& École Polytechnique Institut Polytechnique de Paris

France
CIEN E4011 - March 2024

Outline

(1) Introduction to Decision Theory

- Mathematical Optimization
(2) Linear Programming
(3) Methods to Solve Linear Programming

4 Linear Programming

- The Simplex Methods
- Remarks
(5) References

Outline

(1) Introduction to Decision Theory

- Mathematical Optimization
(2) Linear Programming
(3) Methods to Solve Linear Programming
(4) Linear Programming
- The Simplex Methods
- Remarks
(5) References

Decision Theory

- Everybody makes several decisions every day

Decision Theory

- Everybody makes several decisions every day

Decision Theory

- Everybody makes several decisions every day

Decision Theory

- Everybody makes several decisions every day
- Goal-directed behavior when options available

Decision Theory

- Everybody makes several decisions every day
- Goal-directed behavior when options available
- Normative vs. Descriptive Decision Theory

Decision Theory

- Everybody makes several decisions every day
- Goal-directed behavior when options available
- Normative vs. Descriptive Decision Theory
- Focus on determining the optimal decisions given constraints and assumptions

Decision Theory

- Everybody makes several decisions every day
- Goal-directed behavior when options available
- Normative vs. Descriptive Decision Theory
- Focus on determining the optimal decisions given constraints and assumptions
- Interdisciplinary field : computer scientists, mathematicians, economists, engineers, statisticians, ...

Decision Theory

- Everybody makes several decisions every day
- Goal-directed behavior when options available
- Normative vs. Descriptive Decision Theory
- Focus on determining the optimal decisions given constraints and assumptions
- Interdisciplinary field : computer scientists, mathematicians, economists, engineers, statisticians, ...
- Operations Research : analytical methods to help better decisions

The role of Decision-Making Tools

Electrification of the Transportation System

Figure: Source: https://skliotsc.um.edu.mo/power-and-transportation-nexus/

Electrification of the Transportation System

Figure: Source: https://skliotsc.um.edu.mo/power-and-transportation-nexus/

Crucial problem involving the Transportation and Energy Systems

Electrification of the Transportation System

Figure: Source: https://skliotsc.um.edu.mo/power-and-transportation-nexus/
Crucial problem involving the Transportation and Energy Systems

- private and public transportation vehicles replaced with electric vehicles

Electrification of the Transportation System

Figure: Source: https://skliotsc.um.edu.mo/power-and-transportation-nexus/
Crucial problem involving the Transportation and Energy Systems

- private and public transportation vehicles replaced with electric vehicles
- hugely affect transportation and energy systems

Electrification of the Transportation System

- provide a widespread network of efficient charging stations (strategic problem)

Electrification of the Transportation System

- provide a widespread network of efficient charging stations (strategic problem)
- providing charging stations with the requested electricity (operational problem)

Electrification of the Transportation System

- provide a widespread network of efficient charging stations (strategic problem)
- providing charging stations with the requested electricity (operational problem)
- adapt electricity transportation and distribution networks (strategic and operational problem)

Electrification of the Transportation System

- provide a widespread network of efficient charging stations (strategic problem)
- providing charging stations with the requested electricity (operational problem)
- adapt electricity transportation and distribution networks (strategic and operational problem)
- new sources of production should be installed (strategic problem)

Electrification of the Transportation System

- provide a widespread network of efficient charging stations (strategic problem)
- providing charging stations with the requested electricity (operational problem)
- adapt electricity transportation and distribution networks (strategic and operational problem)
- new sources of production should be installed (strategic problem)
- adapt the production management (operational problem)

Electrification of the Transportation System

- provide a widespread network of efficient charging stations (strategic problem)
- providing charging stations with the requested electricity (operational problem)
- adapt electricity transportation and distribution networks (strategic and operational problem)
- new sources of production should be installed (strategic problem)
- adapt the production management (operational problem)
https://ec.europa.eu/newsroom/horizon2020/document.cfm?doc_id=46368
https://www.uber.com/us/en/about/reports/spark-partnering-to-electrify-europe/

Outline

(1) Introduction to Decision Theory

- Mathematical Optimization
(2) Linear Programming
(3) Methods to Solve Linear Programming

4) Linear Programming

- The Simplex Methods
- Remarks
(5) References

Mathematical Optimization (MO) or Mathematical Programming (MP)

- Abstract and formal language

Mathematical Optimization (MO) or Mathematical Programming (MP)

- Abstract and formal language
- Aim: modeling (formulate) optimization problems

Mathematical Optimization (MO) or Mathematical Programming (MP)

- Abstract and formal language
- Aim: modeling (formulate) optimization problems
- Formulate-and-solve paradigm

Mathematical Optimization (MO) or Mathematical Programming (MP)

- Abstract and formal language
- Aim: modeling (formulate) optimization problems
- Formulate-and-solve paradigm
- Available general-purpose solvers

Mathematical Optimization (MO) or Mathematical Programming (MP)

$$
\begin{array}{cl}
\min _{x} & f(x) \\
& g_{i}(x) \leq 0 \quad \forall i=1, \ldots, m \\
\underline{x} \quad \leq x \leq \bar{x} & \\
& x_{j} \in \quad \mathbb{Z} \quad \forall j \in Z
\end{array}
$$

where

- x is an n-dimensional vector of the decision variables

Mathematical Optimization (MO) or Mathematical Programming (MP)

$$
\begin{gathered}
\min _{x} \\
\\
\\
g_{i}(x) \leq 0 \quad \forall i=1, \ldots, m \\
\underline{x} \quad \leq x \leq \bar{x} \\
\\
\\
x_{j} \in \quad \mathbb{Z} \quad \forall j \in Z
\end{gathered}
$$

where

- x is an n-dimensional vector of the decision variables
- \underline{x} and \bar{x} are the given vectors of lower and upper bounds on the variables

Mathematical Optimization (MO) or Mathematical Programming (MP)

$$
\begin{array}{cl}
\min _{x} & f(x) \\
& g_{i}(x) \leq 0 \quad \forall i=1, \ldots, m \\
\underline{x} \quad \leq x \leq \bar{x} \\
& x_{j} \in \mathbb{Z} \quad \forall j \in Z
\end{array}
$$

where

- x is an n-dimensional vector of the decision variables
- \underline{x} and \bar{x} are the given vectors of lower and upper bounds on the variables
- set $Z \subseteq\{1,2, \ldots, n\}$ is the set of the indexes of the integer variables

Mathematical Optimization (MO)

 or Mathematical Programming (MP)$$
\begin{array}{cc}
\min _{x} & f(x) \\
& g_{i}(x) \leq 0 \quad \forall i=1, \ldots, m \\
\underline{x} \quad \leq x \leq \quad \bar{x} \\
& x_{j} \in \mathbb{Z} \quad \forall j \in Z
\end{array}
$$

where

- $f(x)$ and $g(x)$ can be written in closed form

Mathematical Optimization (MO) or Mathematical Programming (MP)

$$
\begin{array}{cl}
\min _{x} & f(x) \\
& g_{i}(x) \leq 0 \quad \forall i=1, \ldots, m \\
\underline{x} \quad \leq x \leq \quad \bar{x} \\
& x_{j} \in \mathbb{Z} \quad \forall j \in Z
\end{array}
$$

where

- $f(x)$ and $g(x)$ can be written in closed form
- $f(x)$ and $g_{i}(x)$ are given twice continuously differentiable functions of the variables $(\forall i=1, \ldots, m)$

Mathematical Optimization: a Simple Example

Given a truck of max capacity $13 k$ pounds and two kind of liquids to transport for selling: milk and juice.

Mathematical Optimization: a Simple Example

Given a truck of max capacity $13 k$ pounds and two kind of liquids to transport for selling: milk and juice. Each $1 k$ gallon of milk (resp. juice) has a weight of $3 k$ (resp. $2 k$) pounds.

Mathematical Optimization: a Simple Example

Given a truck of max capacity $13 k$ pounds and two kind of liquids to transport for selling: milk and juice. Each $1 k$ gallon of milk (resp. juice) has a weight of $3 k$ (resp. $2 k$) pounds. The maximum available quantity of milk (resp. juice) is $3 k$ (resp. $5 k$) gallons.

Mathematical Optimization: a Simple Example

Given a truck of max capacity $13 k$ pounds and two kind of liquids to transport for selling: milk and juice. Each $1 k$ gallon of milk (resp. juice) has a weight of $3 k$ (resp. $2 k$) pounds. The maximum available quantity of milk (resp. juice) is $3 k$ (resp. $5 k$) gallons. Maximize the total profit of the transported liquids, knowing they have the same unit profit.

Mathematical Optimization: a Simple Example

Given a truck of max capacity $13 k$ pounds and two kind of liquids to transport for selling: milk and juice. Each $1 k$ gallon of milk (resp. juice) has a weight of $3 k$ (resp. $2 k$) pounds. The maximum available quantity of milk (resp. juice) is $3 k$ (resp. $5 k$) gallons. Maximize the total profit of the transported liquids, knowing they have the same unit profit.

Decision variables?

Mathematical Optimization: a Simple Example

Given a truck of max capacity $13 k$ pounds and two kind of liquids to transport for selling: milk and juice. Each $1 k$ gallon of milk (resp. juice) has a weight of $3 k$ (resp. $2 k$) pounds. The maximum available quantity of milk (resp. juice) is $3 k$ (resp. $5 k$) gallons. Maximize the total profit of the transported liquids, knowing they have the same unit profit.

Decision variables?
$x_{1}=k$ gallons of milk transported, $x_{2}=k$ gallons of juice transported.

Mathematical Optimization: a Simple Example

Given a truck of max capacity $13 k$ pounds and two kind of liquids to transport for selling: milk and juice. Each $1 k$ gallon of milk (resp. juice) has a weight of $3 k$ (resp. $2 k$) pounds. The maximum available quantity of milk (resp. juice) is $3 k$ (resp. $5 k$) gallons. Maximize the total profit of the transported liquids, knowing they have the same unit profit.

Decision variables?
$x_{1}=k$ gallons of milk transported, $x_{2}=k$ gallons of juice transported.
Simple bounds?

Mathematical Optimization: a Simple Example

Given a truck of max capacity $13 k$ pounds and two kind of liquids to transport for selling: milk and juice. Each $1 k$ gallon of milk (resp. juice) has a weight of $3 k$ (resp. $2 k$) pounds. The maximum available quantity of milk (resp. juice) is $3 k$ (resp. $5 k$) gallons. Maximize the total profit of the transported liquids, knowing they have the same unit profit.

Decision variables?
$x_{1}=k$ gallons of milk transported, $x_{2}=k$ gallons of juice transported.
Simple bounds? $0 \leq x_{1} \leq 3,0 \leq x_{2} \leq 5$

Mathematical Optimization: a Simple Example

Given a truck of max capacity $13 k$ pounds and two kind of liquids to transport for selling: milk and juice. Each $1 k$ gallon of milk (resp. juice) has a weight of $3 k$ (resp. $2 k$) pounds. The maximum available quantity of milk (resp. juice) is $3 k$ (resp. $5 k$) gallons. Maximize the total profit of the transported liquids, knowing they have the same unit profit.

Decision variables?
$x_{1}=k$ gallons of milk transported, $x_{2}=k$ gallons of juice transported.
Simple bounds? $0 \leq x_{1} \leq 3,0 \leq x_{2} \leq 5$
Other constraints?

Mathematical Optimization: a Simple Example

Given a truck of max capacity $13 k$ pounds and two kind of liquids to transport for selling: milk and juice. Each $1 k$ gallon of milk (resp. juice) has a weight of $3 k$ (resp. $2 k$) pounds. The maximum available quantity of milk (resp. juice) is $3 k$ (resp. $5 k$) gallons. Maximize the total profit of the transported liquids, knowing they have the same unit profit.

Decision variables?
$x_{1}=k$ gallons of milk transported, $x_{2}=k$ gallons of juice transported.
Simple bounds? $0 \leq x_{1} \leq 3,0 \leq x_{2} \leq 5$
Other constraints? $3 x_{1}+2 x_{2} \leq 13$

Mathematical Optimization: a Simple Example

Given a truck of max capacity $13 k$ pounds and two kind of liquids to transport for selling: milk and juice. Each $1 k$ gallon of milk (resp. juice) has a weight of $3 k$ (resp. $2 k$) pounds. The maximum available quantity of milk (resp. juice) is $3 k$ (resp. $5 k$) gallons. Maximize the total profit of the transported liquids, knowing they have the same unit profit.

Decision variables?
$x_{1}=k$ gallons of milk transported, $x_{2}=k$ gallons of juice transported.
Simple bounds? $0 \leq x_{1} \leq 3,0 \leq x_{2} \leq 5$
Other constraints? $3 x_{1}+2 x_{2} \leq 13$
Objective function?

Mathematical Optimization: a Simple Example

Given a truck of max capacity $13 k$ pounds and two kind of liquids to transport for selling: milk and juice. Each $1 k$ gallon of milk (resp. juice) has a weight of $3 k$ (resp. $2 k$) pounds. The maximum available quantity of milk (resp. juice) is $3 k$ (resp. $5 k$) gallons. Maximize the total profit of the transported liquids, knowing they have the same unit profit.

Decision variables?
$x_{1}=k$ gallons of milk transported, $x_{2}=k$ gallons of juice transported.
Simple bounds? $0 \leq x_{1} \leq 3,0 \leq x_{2} \leq 5$
Other constraints? $3 x_{1}+2 x_{2} \leq 13$
Objective function? $\max x_{1}+x_{2}$

Mathematical Optimization: a Simple Example

$$
\begin{array}{r}
\max x_{1}+x_{2} \\
3 x_{1}+2 x_{2} \leq 13 \\
0 \leq x_{1} \leq 3 \\
0 \leq x_{2} \leq 5
\end{array}
$$

Mathematical Optimization

Formulation : a MO modeling an optimization problem

Mathematical Optimization

Formulation : a MO modeling an optimization problem
Set L of available liquids.

Mathematical Optimization

Formulation : a MO modeling an optimization problem
Set L of available liquids.
Parameters:

Mathematical Optimization

Formulation : a MO modeling an optimization problem
Set L of available liquids.
Parameters:
$W=$ truck maximum capacity

Mathematical Optimization

Formulation : a MO modeling an optimization problem
Set L of available liquids.
Parameters:
$W=$ truck maximum capacity
For each $\ell \in L$: unit profit p_{ℓ}

Mathematical Optimization

Formulation : a MO modeling an optimization problem
Set L of available liquids.
Parameters:
$W=$ truck maximum capacity
For each $\ell \in L$: unit profit p_{ℓ}
For each $\ell \in L$: unit weight w_{ℓ}

Mathematical Optimization

Formulation : a MO modeling an optimization problem
Set L of available liquids.
Parameters:
$W=$ truck maximum capacity
For each $\ell \in L$: unit profit p_{ℓ}
For each $\ell \in L$: unit weight w_{ℓ}
For each $\ell \in L$: maximum availability \bar{x}_{ℓ}

Mathematical Optimization

Formulation : a MO modeling an optimization problem
Set L of available liquids.

Parameters:

$W=$ truck maximum capacity
For each $\ell \in L$: unit profit p_{ℓ}
For each $\ell \in L$: unit weight w_{ℓ}
For each $\ell \in L$: maximum availability \bar{x}_{ℓ}

$$
\max \sum_{\ell \in L} p_{\ell} x_{\ell}
$$

Mathematical Optimization

Formulation : a MO modeling an optimization problem
Set L of available liquids.

Parameters:

$W=$ truck maximum capacity
For each $\ell \in L$: unit profit p_{ℓ}
For each $\ell \in L$: unit weight w_{ℓ}
For each $\ell \in L$: maximum availability \bar{x}_{ℓ}

$$
\begin{aligned}
& \max \sum_{\ell \in L} p_{\ell} x_{\ell} \\
& \sum_{\ell \in L} w_{\ell} x_{\ell} \leq W
\end{aligned}
$$

Mathematical Optimization

Formulation : a MO modeling an optimization problem
Set L of available liquids.

Parameters:

$W=$ truck maximum capacity
For each $\ell \in L$: unit profit p_{ℓ}
For each $\ell \in L$: unit weight w_{ℓ}
For each $\ell \in L$: maximum availability \bar{x}_{ℓ}

$$
\begin{array}{r}
\max \sum_{\ell \in L} p_{\ell} x_{\ell} \\
\sum_{\ell \in L} w_{\ell} x_{\ell} \leq W \\
0 \leq x_{\ell} \leq \bar{x}_{\ell} \quad \forall \ell \in L
\end{array}
$$

Mathematical Optimization

A few definitions:

- Formulation : a MO modeling an optimization problem

Mathematical Optimization

A few definitions:

- Formulation : a MO modeling an optimization problem
- An optimization problem can be modeled in different ways \rightarrow several formulations

Mathematical Optimization

A few definitions:

- Formulation : a MO modeling an optimization problem
- An optimization problem can be modeled in different ways \rightarrow several formulations
- Instance : when the expression of $f(x), g(x)$ and the values of \underline{x}, \bar{x}, and Z are known. The set of instances of a MO problems is potentially infinite.

Mathematical Optimization

Given the formulation :

$$
\begin{array}{r}
\max \sum_{\ell \in L} p_{\ell} x_{\ell} \\
\sum_{\ell \in L} w_{\ell} x_{\ell} \leq W \\
0 \leq x_{\ell} \leq \bar{x}_{\ell} \quad \forall \ell \in L
\end{array}
$$

(where W is the truck maximum capacity, L is the set of liquids and, for each $\ell \in L$, we have unit profi p_{ℓ}, unit weight w_{ℓ}, maximum availability \bar{x}_{ℓ})

Mathematical Optimization

Given the formulation :

$$
\begin{array}{r}
\max \sum_{\ell \in L} p_{\ell} x_{\ell} \\
\sum_{\ell \in L} w_{\ell} x_{\ell} \leq W \\
0 \leq x_{\ell} \leq \bar{x}_{\ell} \quad \forall \ell \in L
\end{array}
$$

(where W is the truck maximum capacity, L is the set of liquids and, for each $\ell \in L$, we have unit profi p_{ℓ}, unit weight w_{ℓ}, maximum availability \bar{x}_{ℓ})
$W=13, L=\{1,2\}, w^{\top}=(3,2), p^{\top}=(1,1), \bar{x}^{\top}=(3,5)$ is an instance of the above formulation.

Mathematical Optimization

A few definitions:

- Feasible solutions : $X=\left\{x \mid g(x) \leq 0, \underline{x} \leq x \leq \bar{x}, x_{j} \in \mathbb{Z} \quad \forall j \in Z\right\}$

Mathematical Optimization

A few definitions:

- Feasible solutions : $X=\left\{x \mid g(x) \leq 0, \underline{x} \leq x \leq \bar{x}, x_{j} \in \mathbb{Z} \quad \forall j \in Z\right\}$
- Optimal solution : arg $\min _{x \in X} f(x)$

Mathematical Optimization

A few definitions:

- Feasible solutions : $X=\left\{x \mid g(x) \leq 0, \underline{x} \leq x \leq \bar{x}, x_{j} \in \mathbb{Z} \quad \forall j \in Z\right\}$
- Optimal solution : arg $\min _{x \in X} f(x)$

Simple example :

Feasible solutions:

$$
\begin{array}{r}
\max x_{1}+x_{2} \\
3 x_{1}+2 x_{2} \leq 13 \\
0 \leq x_{1} \leq 3 \\
0 \leq x_{2} \leq 5
\end{array}
$$

Mathematical Optimization

A few definitions:

- Feasible solutions : $X=\left\{x \mid g(x) \leq 0, \underline{x} \leq x \leq \bar{x}, x_{j} \in \mathbb{Z} \quad \forall j \in Z\right\}$
- Optimal solution : arg $\min _{x \in X} f(x)$

Simple example :

Feasible solutions:

$$
\begin{array}{r}
\max x_{1}+x_{2} \\
3 x_{1}+2 x_{2} \leq 13 \\
0 \leq x_{1} \leq 3 \\
0 \leq x_{2} \leq 5
\end{array}
$$

Mathematical Optimization

A few definitions:

- Feasible solutions : $X=\left\{x \mid g(x) \leq 0, \underline{x} \leq x \leq \bar{x}, x_{j} \in \mathbb{Z} \quad \forall j \in Z\right\}$
- Optimal solution : arg $\min _{x \in X} f(x)$

Simple example :

Feasible solutions:

$$
\begin{array}{r}
\max x_{1}+x_{2} \\
3 x_{1}+2 x_{2} \leq 13 \\
0 \leq x_{1} \leq 3 \\
0 \leq x_{2} \leq 5
\end{array}
$$

- $x_{1}=0, x_{2}=0$, profit $=0$
- $x_{1}=1, x_{2}=2$, profit $=3$

Mathematical Optimization

A few definitions:

- Feasible solutions : $X=\left\{x \mid g(x) \leq 0, \underline{x} \leq x \leq \bar{x}, x_{j} \in \mathbb{Z} \quad \forall j \in Z\right\}$
- Optimal solution : arg $\min _{x \in X} f(x)$

Simple example :

Feasible solutions:

$$
\begin{array}{r}
\max x_{1}+x_{2} \\
3 x_{1}+2 x_{2} \leq 13 \\
0 \leq x_{1} \leq 3 \\
0 \leq x_{2} \leq 5
\end{array}
$$

- $x_{1}=0, x_{2}=0$, profit $=0$
- $x_{1}=1, x_{2}=2$, profit $=3$
- $x_{1}=3, x_{2}=2$, profit $=5$

Mathematical Optimization

A few definitions:

- Feasible solutions : $X=\left\{x \mid g(x) \leq 0, \underline{x} \leq x \leq \bar{x}, x_{j} \in \mathbb{Z} \quad \forall j \in Z\right\}$
- Optimal solution : arg $\min _{x \in X} f(x)$

Simple example :

Feasible solutions:

$$
\begin{array}{r}
\max x_{1}+x_{2} \\
3 x_{1}+2 x_{2} \leq 13 \\
0 \leq x_{1} \leq 3 \\
0 \leq x_{2} \leq 5
\end{array}
$$

- $x_{1}=0, x_{2}=0$, profit $=0$
- $x_{1}=1, x_{2}=2$, profit $=3$
- $x_{1}=3, x_{2}=2$, profit $=5$
- Others?

Mathematical Optimization

A few definitions:

- Feasible solutions : $X=\left\{x \mid g(x) \leq 0, \underline{x} \leq x \leq \bar{x}, x_{j} \in \mathbb{Z} \quad \forall j \in Z\right\}$
- Optimal solution : arg $\min _{x \in X} f(x)$

Simple example :

$$
\begin{array}{r}
\max x_{1}+x_{2} \\
3 x_{1}+2 x_{2} \leq 13 \\
0 \leq x_{1} \leq 3 \\
0 \leq x_{2} \leq 5
\end{array}
$$

Feasible solutions:

- $x_{1}=0, x_{2}=0$, profit $=0$
- $x_{1}=1, x_{2}=2$, profit $=3$
- $x_{1}=3, x_{2}=2$, profit $=5$
- Others?

Optimal solution(s) ?

Mathematical Optimization

A few definitions:

- Feasible solutions : $X=\left\{x \mid g(x) \leq 0, \underline{x} \leq x \leq \bar{x}, x_{j} \in \mathbb{Z} \quad \forall j \in Z\right\}$
- Optimal solution : arg $\min _{x \in X} f(x)$

Simple example :

Feasible solutions:

$$
\begin{array}{r}
\max x_{1}+x_{2} \\
3 x_{1}+2 x_{2} \leq 13 \\
0 \leq x_{1} \leq 3 \\
0 \leq x_{2} \leq 5
\end{array}
$$

- $x_{1}=0, x_{2}=0$, profit $=0$
- $x_{1}=1, x_{2}=2$, profit $=3$
- $x_{1}=3, x_{2}=2$, profit $=5$
- Others?

Optimal solution(s) ? We will see later...

Classes of MO problems

$$
\begin{array}{cc}
\min _{x} & f(x) \\
& g_{i}(x) \leq 0 \quad \forall i=1, \ldots, m \\
\underline{x} \quad \leq x \leq \quad \bar{x} \\
& x_{j} \in \quad \mathbb{Z} \quad \forall j \in Z
\end{array}
$$

- Linear Programming (LP): $f(x)$ and $g(x)$ are linear, $Z=\emptyset$

Classes of MO problems

$$
\begin{array}{cl}
\min _{x} & f(x) \\
& g_{i}(x) \leq 0 \quad \forall i=1, \ldots, m \\
\underline{x} \quad \leq x \leq \bar{x} \\
& x_{j} \in \mathbb{Z} \quad \forall j \in Z
\end{array}
$$

- Linear Programming (LP): $f(x)$ and $g(x)$ are linear, $Z=\emptyset$
- Integer Linear Programming (ILP): $f(x)$ and $g(x)$ are linear, $Z=\{1,2, \ldots, n\}$

Classes of MO problems

$$
\begin{array}{cc}
\min _{x} & f(x) \\
& g_{i}(x) \leq 0 \quad \forall i=1, \ldots, m \\
\underline{x} \quad \leq x \leq \bar{x} \\
& x_{j} \in \quad \mathbb{Z} \quad \forall j \in Z
\end{array}
$$

- Linear Programming (LP): $f(x)$ and $g(x)$ are linear, $Z=\emptyset$
- Integer Linear Programming (ILP): $f(x)$ and $g(x)$ are linear, $Z=\{1,2, \ldots, n\}$
- Mixed Integer Linear Programming (MILP): $f(x)$ and $g(x)$ are linear, $Z \subset\{1,2, \ldots, n\}$

Classes of MO problems

$$
\begin{array}{cc}
\min _{x} & f(x) \\
& g_{i}(x) \leq 0 \quad \forall i=1, \ldots, m \\
\underline{x} \quad \leq x \leq \bar{x} \\
& x_{j} \in \quad \mathbb{Z} \quad \forall j \in Z
\end{array}
$$

- Linear Programming (LP): $f(x)$ and $g(x)$ are linear, $Z=\emptyset$
- Integer Linear Programming (ILP): $f(x)$ and $g(x)$ are linear, $Z=\{1,2, \ldots, n\}$
- Mixed Integer Linear Programming (MILP): $f(x)$ and $g(x)$ are linear, $Z \subset\{1,2, \ldots, n\}$
- Mixed Integer Non Linear Programming (MINLP): $f(x)$ and $g(x)$ are twice continuously differentiable, $Z \subset\{1,2, \ldots, n\}$

Classes of MO problems

$$
\begin{array}{cl}
\min _{x} & f(x) \\
& g_{i}(x) \leq 0 \quad \forall i=1, \ldots, m \\
\underline{x} \quad \leq x \leq \quad \bar{x} \\
& x_{j} \in \quad \mathbb{Z} \quad \forall j \in Z
\end{array}
$$

- Linear Programming (LP): $f(x)$ and $g(x)$ are linear, $Z=\emptyset$
- Integer Linear Programming (ILP): $f(x)$ and $g(x)$ are linear, $Z=\{1,2, \ldots, n\}$
- Mixed Integer Linear Programming (MILP): $f(x)$ and $g(x)$ are linear, $Z \subset\{1,2, \ldots, n\}$
- Mixed Integer Non Linear Programming (MINLP): $f(x)$ and $g(x)$ are twice continuously differentiable, $Z \subset\{1,2, \ldots, n\}$
Black Box Optimization: $f(x)$ or $g(x) \rightarrow$ no closed form

The Mathematical Optimizer's Job

Mathematical Optimisation is a knowledge-based approach

Outline

(1) Introduction to Decision Theory

- Mathematical Optimization
(2) Linear Programming
(3) Methods to Solve Linear Programming

4 Linear Programming

- The Simplex Methods
- Remarks
(5) References

Linear Programming problems

$$
\begin{array}{cc}
\min _{x} & f(x) \\
& g_{i}(x) \leq 0 \quad \forall i=1, \ldots, m \\
\underline{x} \quad \leq x \leq \quad \bar{x} \\
& x_{j} \in \mathbb{Z} \quad \forall j \in Z
\end{array}
$$

Linear Programming problems

$$
\begin{array}{cl}
\min _{x} & f(x) \\
& g_{i}(x) \leq 0 \quad \forall i=1, \ldots, m \\
\underline{x} \quad \leq x \leq \quad \bar{x} \\
& x_{j} \in \mathbb{Z} \quad \forall j \in Z
\end{array}
$$

Linear Programming (LP) problem:

$$
\min _{x} f(x) \rightarrow \min _{x} c^{\top} x
$$

Linear Programming problems

$$
\begin{array}{cl}
\min _{x} & f(x) \\
& g_{i}(x) \leq 0 \quad \forall i=1, \ldots, m \\
\underline{x} \quad \leq x \leq \quad \bar{x} \\
& x_{j} \in \mathbb{Z} \quad \forall j \in Z
\end{array}
$$

Linear Programming (LP) problem:

$$
\begin{aligned}
\min _{x} f(x) & \rightarrow \min _{x} c^{\top} x \\
g(x) \leq 0 & \rightarrow A x \leq b
\end{aligned}
$$

Linear Programming problems

$$
\begin{array}{cl}
\min _{x} & f(x) \\
& g_{i}(x) \leq 0 \quad \forall i=1, \ldots, m \\
\underline{x} \quad \leq x \leq \quad \bar{x} \\
& x_{j} \in \mathbb{Z} \quad \forall j \in Z
\end{array}
$$

Linear Programming (LP) problem:

$$
\begin{aligned}
\min _{x} f(x) & \rightarrow \min _{x} c^{\top} x \\
g(x) \leq 0 & \rightarrow A x \leq b \\
\underline{x} \leq x \leq \bar{x} & \rightarrow \underline{x} \leq x \leq \bar{x}
\end{aligned}
$$

Linear Programming problems

$$
\begin{array}{cc}
\min _{x} & f(x) \\
& g_{i}(x) \leq 0 \quad \forall i=1, \ldots, m \\
\underline{x} \quad \leq x \leq \bar{x} \\
& x_{j} \in \mathbb{Z} \quad \forall j \in Z
\end{array}
$$

Linear Programming (LP) problem:

$$
\begin{aligned}
\min _{x} f(x) & \rightarrow \min _{x} c^{\top} x \\
g(x) \leq 0 & \rightarrow A x \leq b \\
\underline{x} \leq x \leq \bar{x} & \rightarrow \underline{x} \leq x \leq \bar{x} \\
x_{j} \in \mathbb{Z} \quad \forall j \in Z & \rightarrow \text { removed }
\end{aligned}
$$

LP problems

$$
\begin{aligned}
\min _{x} c^{\top} x & \\
A x & \leq b \\
\underline{x} \leq x & \leq \bar{x}
\end{aligned}
$$

LP problems

$$
\begin{aligned}
\min _{x} c^{\top} x & \\
A x & \leq b \\
\underline{x} \leq x & \leq \bar{x}
\end{aligned}
$$

W.I.o.g. because $\max \tilde{c}^{\top} x \rightarrow$

LP problems

$$
\begin{array}{r}
\min _{x} c^{\top} x \\
A x \leq b \\
\underline{x} \leq x \leq \bar{x}
\end{array}
$$

W.I.o.g. because

$$
\max \tilde{c}^{\top} x \rightarrow-\min -\tilde{c}^{\top} x
$$

LP problems

$$
\begin{aligned}
\min _{x} c^{\top} x & \\
A x & \leq b \\
\underline{x} \leq x & \leq \bar{x}
\end{aligned}
$$

W.I.o.g. because

$$
\max \tilde{c}^{\top} x \rightarrow-\min -\tilde{c}^{\top} x
$$

For some $i, \quad \tilde{A}_{i} x \geq \tilde{b}_{i} \rightarrow$

LP problems

$$
\begin{array}{r}
\min _{x} c^{\top} x \\
A x \leq b \\
\underline{x} \leq x \leq \bar{x}
\end{array}
$$

W.I.o.g. because

$$
\max \tilde{c}^{\top} x \rightarrow-\min -\tilde{c}^{\top} x
$$

For some $i, \quad \tilde{A}_{i} x \geq \tilde{b}_{i} \rightarrow-\tilde{A}_{i} x \leq-\tilde{b}_{i}$

LP problems

$$
\begin{aligned}
\min _{x} c^{\top} x & \\
A x & \leq b \\
\underline{x} \leq x & \leq \bar{x}
\end{aligned}
$$

W.I.o.g. because

$$
\max \tilde{c}^{\top} x \rightarrow-\min -\tilde{c}^{\top} x
$$

For some $i, \quad \tilde{A}_{i} x \geq \tilde{b}_{i} \rightarrow-\tilde{A}_{i} x \leq-\tilde{b}_{i}$
For some $i, \quad \tilde{A}_{i} x=\tilde{b}_{i} \rightarrow$

LP problems

$$
\begin{array}{r}
\min _{x} c^{\top} x \\
A x \leq b \\
\underline{x} \leq x \leq \bar{x}
\end{array}
$$

W.I.o.g. because

$$
\max \tilde{c}^{\top} x \rightarrow-\min -\tilde{c}^{\top} x
$$

For some $i, \quad \tilde{A}_{i} x \geq \tilde{b}_{i} \rightarrow-\tilde{A}_{i} x \leq-\tilde{b}_{i}$
For some $i, \quad \tilde{A}_{i} x=\tilde{b}_{i} \rightarrow-\tilde{A}_{i} x \leq-\tilde{b}_{i}$ and $\tilde{A}_{i} x \leq \tilde{b}_{i}$

LP problems

$$
\begin{aligned}
\min _{x} c^{\top} x & \\
A x & \leq b \\
\underline{x} \leq x & \leq \bar{x}
\end{aligned}
$$

W.I.o.g. because

$$
\max \tilde{c}^{\top} x \rightarrow-\min -\tilde{c}^{\top} x
$$

For some $i, \quad \tilde{A}_{i} x \geq \tilde{b}_{i} \rightarrow-\tilde{A}_{i} x \leq-\tilde{b}_{i}$
For some $i, \quad \tilde{A}_{i} x=\tilde{b}_{i} \rightarrow-\tilde{A}_{i} x \leq-\tilde{b}_{i}$ and $\tilde{A}_{i} x \leq \tilde{b}_{i}$
Moreover, $\underline{x} \in[-\infty,+\infty)$ and $\bar{x} \in(-\infty,+\infty]$.

LPs characteristics

Feasible (solutions) set/region : $X=\{x \mid A x \leq b, \underline{x} \leq x \leq \bar{x}\}$

LPs characteristics

Feasible (solutions) set/region : $X=\{x \mid A x \leq b, \underline{x} \leq x \leq \bar{x}\}$

- optimal: when $X \neq \emptyset$, bounded. In this case, an optimal solution is found, i.e., a feasible point x^{*} s.t. $c^{\top} x^{*} \leq c^{\top} x$ for all feasible $x \in X$

LPs characteristics

Feasible (solutions) set/region : $X=\{x \mid A x \leq b, \underline{x} \leq x \leq \bar{x}\}$

- optimal: when $X \neq \emptyset$, bounded. In this case, an optimal solution is found, i.e., a feasible point x^{*} s.t. $c^{\top} x^{*} \leq c^{\top} x$ for all feasible $x \in X$
- infeasible: when $X=\emptyset$

LPs characteristics

Feasible (solutions) set/region : $X=\{x \mid A x \leq b, \underline{x} \leq x \leq \bar{x}\}$

- optimal: when $X \neq \emptyset$, bounded. In this case, an optimal solution is found, i.e., a feasible point x^{*} s.t. $c^{\top} x^{*} \leq c^{\top} x$ for all feasible $x \in X$
- infeasible: when $X=\emptyset$
- unbounded: when the $\min \left\{c^{\top} x \mid x \in X\right\}=-\infty$

LPs characteristics

Feasible (solutions) set/region : $X=\{x \mid A x \leq b, \underline{x} \leq x \leq \bar{x}\}$

- optimal: when $X \neq \emptyset$, bounded. In this case, an optimal solution is found, i.e., a feasible point x^{*} s.t. $c^{\top} x^{*} \leq c^{\top} x$ for all feasible $x \in X$
- infeasible: when $X=\emptyset$
- unbounded: when the $\min \left\{c^{\top} x \mid x \in X\right\}=-\infty$

Geometrical interpretation of LPs

LPs characteristics

Feasible (solutions) set/region : $X=\{x \mid A x \leq b, \underline{x} \leq x \leq \bar{x}\}$

- optimal: when $X \neq \emptyset$, bounded. In this case, an optimal solution is found, i.e., a feasible point x^{*} s.t. $c^{\top} x^{*} \leq c^{\top} x$ for all feasible $x \in X$
- infeasible: when $X=\emptyset$
- unbounded: when the $\min \left\{c^{\top} x \mid x \in X\right\}=-\infty$

Geometrical interpretation of LPs
How to draw constraints and objective function

Outline

(1) Introduction to Decision Theory

- Mathematical Optimization
(2) Linear Programming
(3) Methods to Solve Linear Programming

4 Linear Programming

- The Simplex Methods
- Remarks
(5) References

LP problems and methods

$$
\begin{aligned}
\min _{x} c^{\top} x & \\
A x & \leq b \\
\underline{x} \leq x & \leq \bar{x}
\end{aligned}
$$

LP problems and methods

$$
\begin{array}{r}
\min _{x} c^{\top} x \\
A x \leq b \\
\underline{x} \leq x \leq \bar{x}
\end{array}
$$

Methods

- primal or dual simplex algorithm
- interior point method
- barrier method
- ...

LP problems and methods

$$
\begin{array}{r}
\min _{x} c^{\top} x \\
A x \leq b \\
\underline{x} \leq x \leq \bar{x}
\end{array}
$$

Methods

- primal or dual simplex algorithm
- interior point method
- barrier method
- ...

In this course: graphical solution of LPs and intuition on the primal simplex method

Outline

(1) Introduction to Decision Theory

- Mathematical Optimization
(2) Linear Programming
(3) Methods to Solve Linear Programming

4 Linear Programming

- The Simplex Methods
- Remarks
(5) References

LP problems and methods

Possible outcomes:

- optimal: when $X=\{x \mid A x \leq b, \underline{x} \leq x \leq \bar{x}\} \neq \emptyset$, bounded. In this case, an optimal solution is found, i.e., a feasible point x^{*} s.t. $c^{\top} x^{*} \leq c^{\top} x$ for all feasible $x \in X$
- infeasible: when $X=\{x \mid A x \leq b, \underline{x} \leq x \leq \bar{x}\}=\emptyset$
- unbounded: when the $\min \left\{c^{\top} x \mid A x \leq b, \underline{x} \leq x \leq \bar{x}\right\}=-\infty$

Example 1: optimal solution

$\max x_{1}+x_{2}$
$3 x_{1}+2 x_{2} \leq 13$
$0 \leq x_{1} \leq 3$
$0 \leq x_{2} \leq 5$.

Example 1: optimal solution

$\max x_{1}+x_{2}$
$3 x_{1}+2 x_{2} \leq 13$
$0 \leq x_{1} \leq 3$
$0 \leq x_{2} \leq 5$.

Example 1: optimal solution

$\max x_{1}+x_{2}$
$3 x_{1}+2 x_{2} \leq 13$
$0 \leq x_{1} \leq 3$
$0 \leq x_{2} \leq 5$.

Example 1: optimal solution

$\max x_{1}+x_{2}$
$3 x_{1}+2 x_{2} \leq 13$
$0 \leq x_{1} \leq 3$
$0 \leq x_{2} \leq 5$.

Example 1: optimal solution

$\max x_{1}+x_{2}$
$3 x_{1}+2 x_{2} \leq 13$
$0 \leq x_{1} \leq 3$
$0 \leq x_{2} \leq 5$.

Example 1: optimal solution

$$
\begin{array}{r}
\max x_{1}+x_{2} \\
3 x_{1}+2 x_{2} \leq 13 \\
0 \leq x_{1} \leq 3 \\
0 \leq x_{2} \leq 5 .
\end{array}
$$

Example 1: optimal solution

$$
\begin{array}{r}
\max x_{1}+x_{2} \\
3 x_{1}+2 x_{2} \leq 13 \\
0 \leq x_{1} \leq 3 \\
0 \leq x_{2} \leq 5 .
\end{array}
$$

Example 1: optimal solution

$$
\begin{array}{r}
\max x_{1}+x_{2} \\
3 x_{1}+2 x_{2} \leq 13 \\
0 \leq x_{1} \leq 3 \\
0 \leq x_{2} \leq 5 .
\end{array}
$$

Example 1: optimal solution

$$
\begin{array}{r}
\max x_{1}+x_{2} \\
3 x_{1}+2 x_{2} \leq 13 \\
0 \leq x_{1} \leq 3 \\
0 \leq x_{2} \leq 5 .
\end{array}
$$

Example 1: optimal solution

$$
\begin{array}{r}
\max x_{1}+x_{2} \\
3 x_{1}+2 x_{2} \leq 13 \\
0 \leq x_{1} \leq 3 \\
0 \leq x_{2} \leq 5 .
\end{array}
$$

Example 1: optimal solution

$$
\begin{array}{r}
\max x_{1}+x_{2} \\
3 x_{1}+2 x_{2} \leq 13 \\
0 \leq x_{1} \leq 3 \\
0 \leq x_{2} \leq 5 .
\end{array}
$$

Example 1: optimal solution

$$
\begin{array}{r}
\max x_{1}+x_{2} \\
3 x_{1}+2 x_{2} \leq 13 \\
0 \leq x_{1} \leq 3 \\
0 \leq x_{2} \leq 5 .
\end{array}
$$

Optimal solution: $x_{1}=1 \rightarrow 1 \mathrm{k}$ gallons of milk $x_{2}=5 \rightarrow 5 \mathrm{k}$ gallons of juice
Profit $=6$

Example 2: infeasible problem

$$
\begin{array}{r}
\max x_{1}+x_{2} \\
3 x_{1}+2 x_{2} \leq 13 \\
x_{1}+x_{2} \geq 7 \\
0 \leq x_{1} \leq 3 \\
0 \leq x_{2} \leq 5 .
\end{array}
$$

Impose to transport at least 7k gallons of liquid, in total.

Example 2: infeasible problem

$$
\begin{array}{r}
\max x_{1}+x_{2} \\
3 x_{1}+2 x_{2} \leq 13 \\
x_{1}+x_{2} \geq 7 \\
0 \leq x_{1} \leq 3 \\
0 \leq x_{2} \leq 5 .
\end{array}
$$

Impose to transport at least $7 k$ gallons of liquid, in total.

Example 2: infeasible problem

$$
\begin{array}{r}
\max x_{1}+x_{2} \\
3 x_{1}+2 x_{2} \leq 13 \\
x_{1}+x_{2} \geq 7 \\
0 \leq x_{1} \leq 3 \\
0 \leq x_{2} \leq 5
\end{array}
$$

Impose to transport at least 7k gallons of liquid, in total.

Example 2: infeasible problem

$$
\begin{array}{r}
\max x_{1}+x_{2} \\
3 x_{1}+2 x_{2} \leq 13 \\
x_{1}+x_{2} \geq 7 \\
0 \leq x_{1} \leq 3 \\
0 \leq x_{2} \leq 5 .
\end{array}
$$

Impose to transport at least $7 k$ gallons of liquid, in total.

Example 2: infeasible problem

$$
\begin{array}{r}
\max x_{1}+x_{2} \\
3 x_{1}+2 x_{2} \leq 13 \\
x_{1}+x_{2} \geq 7 \\
0 \leq x_{1} \leq 3 \\
0 \leq x_{2} \leq 5 .
\end{array}
$$

Impose to transport at least $7 k$ gallons of liquid, in total.

Example 2: infeasible problem

$$
\begin{array}{r}
\max x_{1}+x_{2} \\
3 x_{1}+2 x_{2} \leq 13 \\
x_{1}+x_{2} \geq 7 \\
0 \leq x_{1} \leq 3 \\
0 \leq x_{2} \leq 5
\end{array}
$$

Impose to transport at least $7 k$ gallons of liquid, in total.

Solutions set: \emptyset

Example 3: unbounded problem

$$
\begin{aligned}
\max x_{1}+2 x_{2} & \\
x_{1}-x_{2} & \leq 1 \\
-x_{1}+x_{2} & \leq 3 \\
x_{1} & \geq 0 \\
x_{2} & \geq 0 .
\end{aligned}
$$

Example 3: unbounded problem

$$
\begin{aligned}
\max x_{1}+2 x_{2} & \\
x_{1}-x_{2} & \leq 1 \\
-x_{1}+x_{2} & \leq 3 \\
x_{1} & \geq 0 \\
x_{2} & \geq 0 .
\end{aligned}
$$

Example 3: unbounded problem

$$
\begin{aligned}
\max x_{1}+2 x_{2} & \\
x_{1}-x_{2} & \leq 1 \\
-x_{1}+x_{2} & \leq 3 \\
x_{1} & \geq 0 \\
x_{2} & \geq 0
\end{aligned}
$$

Example 3: unbounded problem

$$
\begin{aligned}
\max x_{1}+2 x_{2} & \\
x_{1}-x_{2} & \leq 1 \\
-x_{1}+x_{2} & \leq 3 \\
x_{1} & \geq 0 \\
x_{2} & \geq 0
\end{aligned}
$$

Example 3: unbounded problem

$$
\begin{aligned}
\max x_{1}+2 x_{2} & \\
x_{1}-x_{2} & \leq 1 \\
-x_{1}+x_{2} & \leq 3 \\
x_{1} & \geq 0 \\
x_{2} & \geq 0
\end{aligned}
$$

Example 4: degenerate case

$$
\begin{aligned}
\max 3 x_{1}+2 x_{2} & \\
3 x_{1}+2 x_{2} & \leq 13 \\
0 \leq x_{1} & \leq 3 \\
0 \leq x_{2} & \leq 5
\end{aligned}
$$

Example 4: degenerate case

$$
\begin{aligned}
\max 3 x_{1}+2 x_{2} & \\
3 x_{1}+2 x_{2} & \leq 13 \\
0 \leq x_{1} & \leq 3 \\
0 \leq x_{2} & \leq 5
\end{aligned}
$$

Example 4: degenerate case

$$
\begin{aligned}
\max 3 x_{1}+2 x_{2} & \\
3 x_{1}+2 x_{2} & \leq 13 \\
0 \leq x_{1} & \leq 3 \\
0 \leq x_{2} & \leq 5
\end{aligned}
$$

Example 4: degenerate case

$$
\begin{aligned}
\max 3 x_{1}+2 x_{2} & \\
3 x_{1}+2 x_{2} & \leq 13 \\
0 \leq x_{1} & \leq 3 \\
0 \leq x_{2} & \leq 5
\end{aligned}
$$

Example 4: degenerate case

$$
\begin{aligned}
\max 3 x_{1}+2 x_{2} & \\
3 x_{1}+2 x_{2} & \leq 13 \\
0 \leq x_{1} & \leq 3 \\
0 \leq x_{2} & \leq 5
\end{aligned}
$$

Example 4: degenerate case

$$
\begin{aligned}
\max 3 x_{1}+2 x_{2} & \\
3 x_{1}+2 x_{2} & \leq 13 \\
0 \leq x_{1} & \leq 3 \\
0 \leq x_{2} & \leq 5
\end{aligned}
$$

Example 4: degenerate case

$$
\begin{aligned}
\max 3 x_{1}+2 x_{2} & \\
3 x_{1}+2 x_{2} & \leq 13 \\
0 \leq x_{1} & \leq 3 \\
0 \leq x_{2} & \leq 5
\end{aligned}
$$

Example 4: degenerate case

$$
\begin{aligned}
\max 3 x_{1}+2 x_{2} & \\
3 x_{1}+2 x_{2} & \leq 13 \\
0 \leq x_{1} & \leq 3 \\
0 \leq x_{2} & \leq 5
\end{aligned}
$$

Example 4: degenerate case

Example 4: degenerate case

$$
\begin{aligned}
\max 3 x_{1}+2 x_{2} & \\
3 x_{1}+2 x_{2} & \leq 13 \\
0 \leq x_{1} & \leq 3 \\
0 \leq x_{2} & \leq 5
\end{aligned}
$$

Example 4: degenerate case

$$
\begin{aligned}
\max 3 x_{1}+2 x_{2} & \\
3 x_{1}+2 x_{2} & \leq 13 \\
0 \leq x_{1} & \leq 3 \\
0 \leq x_{2} & \leq 5
\end{aligned}
$$

Example 4: degenerate case

$$
\begin{aligned}
\max 3 x_{1}+2 x_{2} & \\
3 x_{1}+2 x_{2} & \leq 13 \\
0 \leq x_{1} & \leq 3 \\
0 \leq x_{2} & \leq 5
\end{aligned}
$$

Example 4: degenerate case

$$
\begin{aligned}
\max 3 x_{1}+2 x_{2} & \\
3 x_{1}+2 x_{2} & \leq 13 \\
0 \leq x_{1} & \leq 3 \\
0 \leq x_{2} & \leq 5
\end{aligned}
$$

Example 4: degenerate case

$$
\begin{aligned}
\max 3 x_{1}+2 x_{2} & \\
3 x_{1}+2 x_{2} & \leq 13 \\
0 \leq x_{1} & \leq 3 \\
0 \leq x_{2} & \leq 5
\end{aligned}
$$

Example 4: degenerate case

$$
\begin{aligned}
\max 3 x_{1}+2 x_{2} & \\
3 x_{1}+2 x_{2} & \leq 13 \\
0 \leq x_{1} & \leq 3 \\
0 \leq x_{2} & \leq 5
\end{aligned}
$$

Example 4: degenerate case

$$
\begin{aligned}
\max 3 x_{1}+2 x_{2} & \\
3 x_{1}+2 x_{2} & \leq 13 \\
0 \leq x_{1} & \leq 3 \\
0 \leq x_{2} & \leq 5
\end{aligned}
$$

Example 4: degenerate case

$$
\begin{aligned}
\max 3 x_{1}+2 x_{2} & \\
3 x_{1}+2 x_{2} & \leq 13 \\
0 \leq x_{1} & \leq 3 \\
0 \leq x_{2} & \leq 5
\end{aligned}
$$

Example 4: degenerate case

$$
\begin{aligned}
\max 3 x_{1}+2 x_{2} & \\
3 x_{1}+2 x_{2} & \leq 13 \\
0 \leq x_{1} & \leq 3 \\
0 \leq x_{2} & \leq 5
\end{aligned}
$$

Example 4: degenerate case

$$
\begin{aligned}
\max 3 x_{1}+2 x_{2} & \\
3 x_{1}+2 x_{2} & \leq 13 \\
0 \leq x_{1} & \leq 3 \\
0 \leq x_{2} & \leq 5
\end{aligned}
$$

Some theoretical results

Theorem

Each convex combination of optimal vertices is optimal.

Some theoretical results

Theorem

Each convex combination of optimal vertices is optimal.

Proof.

Let v^{1}, \ldots, v^{p} be the optimal vertices of the polyhedron corresponding to the feasible region of LP.
Let $x=\sum_{i=1}^{p} \alpha_{i} v^{i}$ with $\sum_{i=1}^{p} \alpha_{i}=1, \alpha \geq 0$.
Then, its cost is

$$
c^{\top} x=c^{\top} \sum_{i=1}^{p} \alpha_{i} v^{i}=c^{\top} v^{1} \sum_{i=1}^{p} \alpha_{i}=c^{\top} v^{1}
$$

Outline

(1) Introduction to Decision Theory

- Mathematical Optimization
(2) Linear Programming
(3) Methods to Solve Linear Programming

4 Linear Programming

- The Simplex Methods
- Remarks
(5) References

Intuition

Simplex Methods based on the property of LP that

Intuition

Simplex Methods based on the property of LP that

- At least one of the optimal solutions is a vertex of the polytope

Intuition

Simplex Methods based on the property of LP that

- At least one of the optimal solutions is a vertex of the polytope
- unless problem infeasible or unbounded.

Intuition

Simplex Methods based on the property of LP that

- At least one of the optimal solutions is a vertex of the polytope - unless problem infeasible or unbounded.

Phase 1: find a feasible solution

Intuition

Simplex Methods based on the property of LP that

- At least one of the optimal solutions is a vertex of the polytope - unless problem infeasible or unbounded.

Phase 1: find a feasible solution
Phase 2: move from a vertex to an "improving" vertex

Intuition

Simplex Methods

From the Research Gate's page of by Laura Leal-Taixé

The Simplex Method

Require: an LP problem

The Simplex Method

```
Require: an LP problem
    optimal = false; unbounded = false
```


The Simplex Method

```
Require: an LP problem
    optimal = false; unbounded = false
    if the origin (x= (0,0,\ldots,0)) is feasible then
        x*}=(0,0,\ldots,0
```


The Simplex Method

```
Require: an LP problem
    optimal = false; unbounded = false
    if the origin (x= (0,0,\ldots,0)) is feasible then
        x*}=(0,0,\ldots,0
    else
        Phase 1: find a first feasible solution }\mp@subsup{x}{}{*
```


The Simplex Method

```
Require: an LP problem
    optimal \(=\) false; unbounded \(=\) false
    if the origin \((x=(0,0, \ldots, 0))\) is feasible then
        \(x^{*}=(0,0, \ldots, 0)\)
    else
        Phase 1: find a first feasible solution \(x^{*}\)
        if impossible to find a feasible solution then
        return \(x^{*}=(+\infty,+\infty, \ldots,+\infty)\)
        end if
    end if
```


The Simplex Method

```
Require: an LP problem
    optimal = false; unbounded = false
    if the origin (x= (0,0,\ldots,0)) is feasible then
        x*}=(0,0,\ldots,0
    else
        Phase 1: find a first feasible solution }\mp@subsup{x}{}{*
        if impossible to find a feasible solution then
        return }\mp@subsup{x}{}{*}=(+\infty,+\infty,\ldots,+\infty
        end if
    end if
    {Phase 2}
    while optimal = false and unbounded = false do
```


The Simplex Method

```
Require: an LP problem
    optimal = false; unbounded = false
    if the origin (x= (0,0,\ldots,0)) is feasible then
        x*}=(0,0,\ldots,0
    else
    Phase 1: find a first feasible solution }\mp@subsup{x}{}{*
    if impossible to find a feasible solution then
        return }\mp@subsup{x}{}{*}=(+\infty,+\infty,\ldots,+\infty
        end if
    end if
    {Phase 2}
while optimal = false and unbounded = false do
    if no vertex adjacent to }\mp@subsup{x}{}{*}\mathrm{ has a better objective function value then
        optimal = true
```


The Simplex Method

```
Require: an LP problem
    optimal = false; unbounded = false
    if the origin (x= (0,0,\ldots,0)) is feasible then
        x*}=(0,0,\ldots,0
    else
    Phase 1: find a first feasible solution }\mp@subsup{x}{}{*
    if impossible to find a feasible solution then
        return }\mp@subsup{x}{}{*}=(+\infty,+\infty,\ldots,+\infty
    end if
end if
{Phase 2}
while optimal = false and unbounded = false do
    if no vertex adjacent to }\mp@subsup{x}{}{*}\mathrm{ has a better objective function value then
        optimal = true
    else
        if there is an improvement direction but it goes to infinity then
                unbounded = true
```


The Simplex Method

```
Require: an LP problem
optimal \(=\) false; unbounded \(=\mathbf{f a l s e}\)
if the origin \((x=(0,0, \ldots, 0))\) is feasible then
    \(x^{*}=(0,0, \ldots, 0)\)
else
    Phase 1: find a first feasible solution \(x^{*}\)
    if impossible to find a feasible solution then
        return \(x^{*}=(+\infty,+\infty, \ldots,+\infty)\)
    end if
end if
\{Phase 2\}
while optimal \(=\) false and unbounded \(=\) false do
    if no vertex adjacent to \(x^{*}\) has a better objective function value then
        optimal \(=\) true
    else
        if there is an improvement direction but it goes to infinity then
                unbounded \(=\) true
            else
                \(x^{*}=\) the vertex adjacent to the current \(x^{*}\) with the best objective function value
            end if
    end if
end while
```


The Simplex Method

```
Require: an LP problem
    optimal \(=\) false; unbounded \(=\mathbf{f a l s e}\)
    if the origin \((x=(0,0, \ldots, 0))\) is feasible then
        \(x^{*}=(0,0, \ldots, 0)\)
    else
        Phase 1: find a first feasible solution \(x^{*}\)
        if impossible to find a feasible solution then
        return \(x^{*}=(+\infty,+\infty, \ldots,+\infty)\)
        end if
    end if
    \{Phase 2\}
    while optimal \(=\) false and unbounded \(=\) false do
        if no vertex adjacent to \(x^{*}\) has a better objective function value then
        optimal \(=\) true
    else
        if there is an improvement direction but it goes to infinity then
                unbounded \(=\) true
            else
                \(x^{*}=\) the vertex adjacent to the current \(x^{*}\) with the best objective function value
            end if
        end if
    end while
    if optimal \(=\) true then
        return \(x^{*}\)
    end if
```


Outline

(1) Introduction to Decision Theory

- Mathematical Optimization
(2) Linear Programming
(3) Methods to Solve Linear Programming

4 Linear Programming

- The Simplex Methods
- Remarks
(5) References

Extremely Simplified Time Complexity

Algorithm complexity could be measured in terms of amount of time it takes to run an algorithm (function of the size of the input)

Extremely Simplified Time Complexity

Algorithm complexity could be measured in terms of amount of time it takes to run an algorithm (function of the size of the input)

Constant, Logaritmic, Linear, Polynomial, Exponential, ... Time algorithms

Extremely Simplified Time Complexity

Algorithm complexity could be measured in terms of amount of time it takes to run an algorithm (function of the size of the input)

Constant, Logaritmic, Linear, Polynomial, Exponential, ... Time algorithms
Worst-case time complexity vs average-case

Extremely Simplified Time Complexity

Algorithm complexity could be measured in terms of amount of time it takes to run an algorithm (function of the size of the input)

Constant, Logaritmic, Linear, Polynomial, Exponential, ... Time algorithms
Worst-case time complexity vs average-case
Simplex method \rightarrow exponential worst-case running time

Extremely Simplified Time Complexity

Algorithm complexity could be measured in terms of amount of time it takes to run an algorithm (function of the size of the input)

Constant, Logaritmic, Linear, Polynomial, Exponential, ... Time algorithms
Worst-case time complexity vs average-case
Simplex method \rightarrow exponential worst-case running time
Ellipsoid Method \rightarrow polynomial worst-case running time

Optimization vs. Simulation

Optimization vs. Simulation

Optimization : decisions are made.

Optimization vs. Simulation

Optimization : decisions are made.
Answer to the question "What is the best decision I can make among these options?"

Optimization vs. Simulation

Optimization : decisions are made.
Answer to the question "What is the best decision I can make among these options?"

Simulation : no decisions are made.

Optimization vs. Simulation

Optimization : decisions are made.
Answer to the question "What is the best decision I can make among these options?"

Simulation : no decisions are made.
Answer to the question "What would happen if I make this decision?"

Outline

(1) Introduction to Decision Theory

- Mathematical Optimization
(2) Linear Programming
(3) Methods to Solve Linear Programming

4 Linear Programming

- The Simplex Methods
- Remarks
(5) References

A few references

- R. Faure, J.-P. Boss, A. Le Garff, "La recherche Opérationnelle". Series "Que sais-je ?" n. 941, Presses Universitaires de France (1974).
- M. Fischetti, "Introduction to Mathematical Optimization" (2019).
- S. Hansson, "Decision theory - a brief introduction" (1994).
- S. Kassouf, "Normative decision making"(1970).
- A. Schrijver, "Combinatorial Optimization: Polyhedra and Efficiency" (2003).

