#### Introduction to Mathematical Optimization

#### Claudia D'Ambrosio dambrosio@lix.polytechnique.fr



LIX, CNRS & École Polytechnique Institut Polytechnique de Paris France

CIEN E4011 - March 2024

# Outline

#### 1 Introduction to Decision Theory

- Mathematical Optimization
- 2 Linear Programming
- 3 Methods to Solve Linear Programming

#### 4 Linear Programming

- The Simplex Methods
- Remarks

#### 5 References

# Outline

#### 1 Introduction to Decision Theory

- Mathematical Optimization
- 2 Linear Programming
- 3 Methods to Solve Linear Programming

#### 4 Linear Programming

- The Simplex Methods
- Remarks

#### 5 References

#### **Decision Theory**

• Everybody makes several decisions every day

æ

### **Decision Theory**

• Everybody makes several decisions every day



æ

• Everybody makes several decisions every day

æ

- Everybody makes several decisions every day
- Goal-directed behavior when options available

▶ ∢ ∃ ▶

- Everybody makes several decisions every day
- Goal-directed behavior when options available
- Normative vs. Descriptive Decision Theory

- Everybody makes several decisions every day
- Goal-directed behavior when options available
- Normative vs. Descriptive Decision Theory
- Focus on determining the **optimal decisions** given constraints and assumptions

- Everybody makes several decisions every day
- Goal-directed behavior when options available
- Normative vs. Descriptive Decision Theory
- Focus on determining the **optimal decisions** given constraints and assumptions
- Interdisciplinary field : computer scientists, mathematicians, economists, engineers, statisticians, ...

- Everybody makes several decisions every day
- Goal-directed behavior when options available
- Normative vs. Descriptive Decision Theory
- Focus on determining the **optimal decisions** given constraints and assumptions
- Interdisciplinary field : computer scientists, mathematicians, economists, engineers, statisticians, ...
- Operations Research : analytical methods to help better decisions

#### The role of Decision-Making Tools



6/42

- E > - E >



Figure: Source: https://skliotsc.um.edu.mo/power-and-transportation-nexus/

Image: A matrix

3 1 4 3 1



Figure: Source: https://skliotsc.um.edu.mo/power-and-transportation-nexus/

#### Crucial problem involving the Transportation and Energy Systems



Figure: Source: https://skliotsc.um.edu.mo/power-and-transportation-nexus/

Crucial problem involving the Transportation and Energy Systems

• private and public transportation vehicles replaced with electric vehicles



Figure: Source: https://skliotsc.um.edu.mo/power-and-transportation-nexus/

Crucial problem involving the Transportation and Energy Systems

- private and public transportation vehicles replaced with electric vehicles
- hugely affect transportation and energy systems

C. D'Ambrosio (CNRS & X)

Introduction to MP

• provide a widespread network of efficient charging stations (strategic problem)

- provide a widespread network of efficient charging stations (strategic problem)
- providing charging stations with the requested electricity (operational problem)

- provide a widespread network of efficient charging stations (strategic problem)
- providing charging stations with the **requested electricity** (operational problem)
- adapt electricity **transportation and distribution networks** (strategic and operational problem)

- provide a widespread network of efficient charging stations (strategic problem)
- providing charging stations with the **requested electricity** (operational problem)
- adapt electricity **transportation and distribution networks** (strategic and operational problem)

• new sources of production should be installed (strategic problem)

- provide a widespread network of efficient charging stations (strategic problem)
- providing charging stations with the **requested electricity** (operational problem)
- adapt electricity **transportation and distribution networks** (strategic and operational problem)
- new sources of production should be installed (strategic problem)
- adapt the **production management** (operational problem)

- provide a widespread network of efficient charging stations (strategic problem)
- providing charging stations with the **requested electricity** (operational problem)
- adapt electricity transportation and distribution networks (strategic and operational problem)
- new sources of production should be installed (strategic problem)
- adapt the **production management** (operational problem)

https://ec.europa.eu/newsroom/horizon2020/document.cfm?doc\_id=46368
https://www.uber.com/us/en/about/reports/spark-partnering-to-electrify-europe/

# Outline

# Introduction to Decision Theory Mathematical Optimization

#### 2 Linear Programming

3 Methods to Solve Linear Programming

#### 4 Linear Programming

- The Simplex Methods
- Remarks

#### 5 References

• Abstract and formal language

- Abstract and formal language
- Aim: modeling (formulate) optimization problems

- Abstract and formal language
- Aim: modeling (formulate) optimization problems
- Formulate-and-solve paradigm

- Abstract and formal language
- Aim: modeling (formulate) optimization problems
- Formulate-and-solve paradigm
- Available general-purpose solvers

$$egin{array}{lll} \min_{x} & f(x) \ & g_{i}(x) \leq & 0 & orall i=1,\ldots,m \ & \underline{x} & \leq x \leq & \overline{x} \ & x_{j} \in & \mathbb{Z} & orall j \in Z \end{array}$$

where

• x is an *n*-dimensional vector of the decision variables

$$egin{array}{lll} \min_{x} & f(x) \ & g_{i}(x) \leq & 0 & orall i=1,\ldots,m \ & \underline{x} & \leq x \leq & \overline{x} \ & x_{j} \in & \mathbb{Z} & orall j \in Z \end{array}$$

where

- x is an *n*-dimensional vector of the decision variables
- $\underline{x}$  and  $\overline{x}$  are the given vectors of **lower and upper bounds** on the variables

$$egin{array}{lll} \min_{x} & f(x) \ & g_{i}(x) \leq & 0 & orall i=1,\ldots,m \ & \underline{x} & \leq x \leq & \overline{x} \ & x_{j} \in & \mathbb{Z} & orall j \in Z \end{array}$$

where

- x is an *n*-dimensional vector of the decision variables
- $\underline{x}$  and  $\overline{x}$  are the given vectors of **lower and upper bounds** on the variables
- set  $Z \subseteq \{1, 2, ..., n\}$  is the set of the indexes of the **integer variables**

$$egin{array}{lll} \min_{x} & f(x) \ & g_{i}(x) \leq & 0 & orall i=1,\ldots,m \ & \underline{x} & \leq x \leq & \overline{x} \ & x_{j} \in & \mathbb{Z} & orall j \in Z \end{array}$$

#### where

• f(x) and g(x) can be written in closed form

------

$$egin{array}{lll} \min_{x} & f(x) \ & g_{i}(x) \leq & 0 & orall i=1,\ldots,m \ & \underline{x} & \leq x \leq & \overline{x} \ & x_{j} \in & \mathbb{Z} & orall j \in Z \end{array}$$

where

- f(x) and g(x) can be written in closed form
- f(x) and g<sub>i</sub>(x) are given twice continuously differentiable functions of the variables (∀i = 1,..., m)

### Mathematical Optimization: a Simple Example

Given a truck of max capacity 13k pounds and two kind of liquids to transport for selling: milk and juice.

Given a truck of max capacity 13k pounds and two kind of liquids to transport for selling: milk and juice. Each 1k gallon of milk (resp. juice) has a weight of 3k (resp. 2k) pounds.

Given a truck of max capacity 13k pounds and two kind of liquids to transport for selling: milk and juice. Each 1k gallon of milk (resp. juice) has a weight of 3k (resp. 2k) pounds. The maximum available quantity of milk (resp. juice) is 3k (resp. 5k) gallons.

Given a truck of **max capacity** 13k pounds and two kind of liquids to transport for selling: milk and juice. Each 1k gallon of milk (resp. juice) has a **weight of** 3k (resp. 2k) pounds. The **maximum available** quantity of milk (resp. juice) is 3k (resp. 5k) gallons. Maximize the total profit of the transported liquids, knowing they have the same unit profit.
Decision variables?

Decision variables?

 $x_1 = k$  gallons of milk transported,  $x_2 = k$  gallons of juice transported.

Decision variables?

 $x_1 = k$  gallons of milk transported,  $x_2 = k$  gallons of juice transported.

Simple bounds?

Decision variables?

 $x_1 = k$  gallons of milk transported,  $x_2 = k$  gallons of juice transported.

Simple bounds?  $0 \le x_1 \le 3$ ,  $0 \le x_2 \le 5$ 

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Decision variables?

 $x_1 = k$  gallons of milk transported,  $x_2 = k$  gallons of juice transported.

Simple bounds?  $0 \le x_1 \le 3$ ,  $0 \le x_2 \le 5$ 

Other constraints?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Decision variables?

 $x_1 = k$  gallons of milk transported,  $x_2 = k$  gallons of juice transported.

Simple bounds?  $0 \le x_1 \le 3$ ,  $0 \le x_2 \le 5$ 

Other constraints?  $3x_1 + 2x_2 \le 13$ 

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Decision variables?

 $x_1 = k$  gallons of milk transported,  $x_2 = k$  gallons of juice transported.

Simple bounds?  $0 \le x_1 \le 3$ ,  $0 \le x_2 \le 5$ 

Other constraints?  $3x_1 + 2x_2 \le 13$ 

Objective function?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Decision variables?

 $x_1 = k$  gallons of milk transported,  $x_2 = k$  gallons of juice transported.

Simple bounds?  $0 \le x_1 \le 3$ ,  $0 \le x_2 \le 5$ 

Other constraints?  $3x_1 + 2x_2 \le 13$ 

Objective function?  $\max x_1 + x_2$ 

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

## Mathematical Optimization: a Simple Example

 $max x_1 + x_2$  $3x_1 + 2x_2 \le 13$  $0 \le x_1 \le 3$  $0 \le x_2 \le 5$ 

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

### Formulation : a MO modeling an optimization problem

(日) (四) (日) (日) (日)

Formulation : a MO modeling an optimization problem

**Set** *L* of available liquids.

∃ ► < ∃ ►

Formulation : a MO modeling an optimization problem

- **Set** *L* of available liquids.
- Parameters :

Image: Image:

- E > - E >

Formulation : a MO modeling an optimization problem

- **Set** *L* of available liquids.
- **Parameters** :
- W = truck maximum capacity

∃ ► < ∃ ►

**Set** *L* of available liquids.

Parameters :

W = truck maximum capacity For each  $\ell \in L$ : unit profit  $p_{\ell}$ 

**Set** *L* of available liquids.

Parameters :

W = truck maximum capacity For each  $\ell \in L$ : unit profit  $p_{\ell}$ For each  $\ell \in L$ : unit weight  $w_{\ell}$ 

**Set** *L* of available liquids.

Parameters :

**Set** *L* of available liquids.

Parameters :

$$\max \sum_{\ell \in L} p_\ell x_\ell$$

**Set** *L* of available liquids.

Parameters :

$$\max \sum_{\ell \in L} p_{\ell} x_{\ell}$$
$$\sum_{\ell \in L} w_{\ell} x_{\ell} \leq W$$

**Set** *L* of available liquids.

Parameters :

$$\max \sum_{\ell \in L} p_{\ell} x_{\ell}$$
$$\sum_{\ell \in L} w_{\ell} x_{\ell} \leq W$$
$$0 \leq x_{\ell} \leq \overline{x}_{\ell} \quad \forall \ell \in L$$

• Formulation : a MO modeling an optimization problem

∃ ► < ∃ ►

- Formulation : a MO modeling an optimization problem
- $\bullet$  An optimization problem can be modeled in different ways  $\rightarrow$  several formulations

- Formulation : a MO modeling an optimization problem
- An optimization problem can be modeled in different ways  $\rightarrow$  several formulations
- Instance : when the expression of f(x), g(x) and the values of  $\underline{x}$ ,  $\overline{x}$ , and Z are known. The set of instances of a MO problems is potentially infinite.

Given the **formulation** :

 $\max \sum_{\ell \in L} p_{\ell} x_{\ell}$  $\sum_{\ell \in L} w_{\ell} x_{\ell} \leq W$  $0 \leq x_{\ell} \leq \overline{x}_{\ell} \quad \forall \ell \in L$ 

(where W is the truck maximum capacity, L is the set of liquids and, for each  $\ell \in L$ , we have unit profi  $p_{\ell}$ , unit weight  $w_{\ell}$ , maximum availability  $\overline{x}_{\ell}$ )

Given the **formulation** :

 $\max \sum_{\ell \in L} p_{\ell} x_{\ell}$  $\sum_{\ell \in L} w_{\ell} x_{\ell} \leq W$  $0 \leq x_{\ell} \leq \overline{x}_{\ell} \quad \forall \ell \in L$ 

(where W is the truck maximum capacity, L is the set of liquids and, for each  $\ell \in L$ , we have unit profi  $p_{\ell}$ , unit weight  $w_{\ell}$ , maximum availability  $\overline{x}_{\ell}$ )

W = 13,  $L = \{1, 2\}$ ,  $w^{\top} = (3, 2)$ ,  $p^{\top} = (1, 1)$ ,  $\overline{x}^{\top} = (3, 5)$  is an instance of the above formulation.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

#### A few definitions:

• Feasible solutions :  $X = \{x \mid g(x) \le 0, \underline{x} \le x \le \overline{x}, x_j \in \mathbb{Z} \mid \forall j \in Z\}$ 

3 K 4 3 K

#### A few definitions:

- Feasible solutions :  $X = \{x \mid g(x) \le 0, \underline{x} \le x \le \overline{x}, x_j \in \mathbb{Z} \mid \forall j \in Z\}$
- **Optimal solution** :  $\arg \min_{x \in X} f(x)$

### A few definitions:

- Feasible solutions :  $X = \{x \mid g(x) \le 0, \underline{x} \le x \le \overline{x}, x_j \in \mathbb{Z} \mid \forall j \in Z\}$
- **Optimal solution** :  $\arg \min_{x \in X} f(x)$

### Simple example :

#### Feasible solutions:

$$max x_1 + x_2 3x_1 + 2x_2 \le 13 0 \le x_1 \le 3 0 \le x_2 \le 5$$

### A few definitions:

- Feasible solutions :  $X = \{x \mid g(x) \le 0, \underline{x} \le x \le \overline{x}, x_j \in \mathbb{Z} \mid \forall j \in Z\}$
- **Optimal solution** :  $\arg \min_{x \in X} f(x)$

### Simple example :

#### Feasible solutions:

• 
$$x_1 = 0, x_2 = 0, \text{ profit} = 0$$

$$max x_1 + x_2 3x_1 + 2x_2 \le 13 0 \le x_1 \le 3 0 \le x_2 \le 5$$

### A few definitions:

- Feasible solutions :  $X = \{x \mid g(x) \le 0, \underline{x} \le x \le \overline{x}, x_j \in \mathbb{Z} \mid \forall j \in Z\}$
- **Optimal solution** :  $\arg \min_{x \in X} f(x)$

### Simple example :

$$max x_1 + x_2 3x_1 + 2x_2 \le 13 0 \le x_1 \le 3 0 \le x_2 \le 5$$

#### Feasible solutions:

•  $x_1 = 0, x_2 = 0, \text{ profit} = 0$ 

• 
$$x_1 = 1$$
,  $x_2 = 2$ , profit = 3

(日)

### A few definitions:

- Feasible solutions :  $X = \{x \mid g(x) \le 0, \underline{x} \le x \le \overline{x}, x_j \in \mathbb{Z} \mid \forall j \in Z\}$
- **Optimal solution** :  $\arg \min_{x \in X} f(x)$

### Simple example :

$$max x_1 + x_2 3x_1 + 2x_2 \le 13 0 \le x_1 \le 3 0 \le x_2 \le 5$$

#### Feasible solutions:

•  $x_1 = 0, x_2 = 0, \text{ profit} = 0$ 

• 
$$x_1 = 1$$
,  $x_2 = 2$ , profit = 3

• 
$$x_1 = 3$$
,  $x_2 = 2$ , profit = 5

(日)

### A few definitions:

- Feasible solutions :  $X = \{x \mid g(x) \le 0, \underline{x} \le x \le \overline{x}, x_j \in \mathbb{Z} \mid \forall j \in Z\}$
- **Optimal solution** :  $\arg \min_{x \in X} f(x)$

### Simple example :

$$max x_1 + x_2 3x_1 + 2x_2 \le 13 0 \le x_1 \le 3 0 \le x_2 \le 5$$

#### Feasible solutions:

- $x_1 = 0, x_2 = 0, \text{ profit} = 0$
- $x_1 = 1$ ,  $x_2 = 2$ , profit = 3
- $x_1 = 3$ ,  $x_2 = 2$ , profit = 5

(本間) (本語) (本語) (二)

• Others?

- Feasible solutions :  $X = \{x \mid g(x) \le 0, \underline{x} \le x \le \overline{x}, x_j \in \mathbb{Z} \mid \forall j \in Z\}$
- **Optimal solution** :  $\arg \min_{x \in X} f(x)$

### Simple example :

$$\begin{array}{l} \max x_1 + x_2 \\ 3x_1 + 2x_2 \leq 13 \\ 0 \leq x_1 \leq 3 \\ 0 \leq x_2 \leq 5 \end{array}$$

## **Optimal solution(s)** ?

#### Feasible solutions:

- $x_1 = 0, x_2 = 0, \text{ profit} = 0$
- $x_1 = 1$ ,  $x_2 = 2$ , profit = 3
- $x_1 = 3$ ,  $x_2 = 2$ , profit = 5

イロト イヨト イヨト ・

• Others?

- Feasible solutions :  $X = \{x \mid g(x) \le 0, \underline{x} \le x \le \overline{x}, x_j \in \mathbb{Z} \mid \forall j \in Z\}$
- **Optimal solution** :  $\arg \min_{x \in X} f(x)$

### Simple example :

$$max x_1 + x_2 3x_1 + 2x_2 \le 13 0 \le x_1 \le 3 0 \le x_2 \le 5$$

### Feasible solutions:

•  $x_1 = 0, x_2 = 0, \text{ profit} = 0$ 

• 
$$x_1 = 1$$
,  $x_2 = 2$ , profit = 3

• 
$$x_1 = 3$$
,  $x_2 = 2$ , profit = 5

イロト イヨト イヨト -

• Others?

Optimal solution(s) ? We will see later...

# Classes of MO problems

$$\begin{array}{ll} \min_{x} & f(x) \\ & g_{i}(x) \leq & 0 \quad \forall i = 1, \dots, m \\ \underline{x} & \leq x \leq & \overline{x} \\ & x_{j} \in & \mathbb{Z} \quad \forall j \in Z \end{array}$$

• Linear Programming (LP): f(x) and g(x) are linear,  $Z = \emptyset$ 

æ

イロト 不得 トイヨト イヨト

# Classes of MO problems

$$egin{array}{ccc} \min_{x} & f(x) \ & g_{i}(x) \leq & 0 & orall i=1,\ldots,m \ & \underline{x} & \leq x \leq & \overline{x} \ & x_{j} \in & \mathbb{Z} & orall j \in Z \end{array}$$

Linear Programming (LP): f(x) and g(x) are linear, Z = Ø
Integer Linear Programming (ILP): f(x) and g(x) are linear, Z = {1, 2, ..., n}

イロト イポト イヨト イヨト 二日

# Classes of MO problems

$$egin{array}{lll} \min_{x} & f(x) \ & g_{i}(x) \leq & 0 & orall i=1,\ldots,m \ & \underline{x} & \leq x \leq & \overline{x} \ & x_{j} \in & \mathbb{Z} & orall j \in Z \end{array}$$

- Linear Programming (LP): f(x) and g(x) are linear,  $Z = \emptyset$
- Integer Linear Programming (ILP): f(x) and g(x) are linear,  $Z = \{1, 2, ..., n\}$
- Mixed Integer Linear Programming (MILP): f(x) and g(x) are linear, Z ⊂ {1, 2, ..., n}

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <
## Classes of MO problems

$$egin{array}{lll} \min_{x} & f(x) \ & g_{i}(x) \leq & 0 & orall i=1,\ldots,m \ & \underline{x} & \leq x \leq & \overline{x} \ & x_{j} \in & \mathbb{Z} & orall j \in Z \end{array}$$

- Linear Programming (LP): f(x) and g(x) are linear,  $Z = \emptyset$
- Integer Linear Programming (ILP): f(x) and g(x) are linear,  $Z = \{1, 2, ..., n\}$
- Mixed Integer Linear Programming (MILP): f(x) and g(x) are linear, Z ⊂ {1,2,...,n}
- Mixed Integer Non Linear Programming (MINLP): f(x) and g(x) are twice continuously differentiable,  $Z \subset \{1, 2, ..., n\}$

<ロ> <四> <四> <四> <四> <四</p>

## Classes of MO problems

$$egin{array}{lll} \min_{x} & f(x) \ & g_{i}(x) \leq & 0 & orall i=1,\ldots,m \ & \underline{x} & \leq x \leq & \overline{x} \ & x_{j} \in & \mathbb{Z} & orall j \in Z \end{array}$$

- Linear Programming (LP): f(x) and g(x) are linear,  $Z = \emptyset$
- Integer Linear Programming (ILP): f(x) and g(x) are linear,  $Z = \{1, 2, ..., n\}$
- Mixed Integer Linear Programming (MILP): f(x) and g(x) are linear, Z ⊂ {1,2,...,n}
- Mixed Integer Non Linear Programming (MINLP): f(x) and g(x) are twice continuously differentiable, Z ⊂ {1,2,...,n}
   Black Box Optimization: f(x) or g(x) → no closed form

#### Mathematical Optimisation is a knowledge-based approach



Image: Image:

## Outline

## Introduction to Decision Theory

Mathematical Optimization

### 2 Linear Programming

3 Methods to Solve Linear Programming

#### 4 Linear Programming

- The Simplex Methods
- Remarks

#### 5 References

## Linear Programming problems

$$egin{array}{lll} \min_x & f(x) \ & g_i(x) \leq & 0 & orall i=1,\ldots,m \ & \underline{x} & \leq x \leq & \overline{x} \ & x_j \in & \mathbb{Z} & orall j \in Z \end{array}$$

æ

## Linear Programming problems

$$egin{array}{lll} \min_{x} & f(x) \ & g_{i}(x) \leq & 0 & orall i=1,\ldots,m \ & \underline{x} & \leq x \leq & \overline{x} \ & x_{j} \in & \mathbb{Z} & orall j \in Z \end{array}$$

#### Linear Programming (LP) problem:

$$\min_{x} f(x) \rightarrow \min_{x} c^{\top} x$$

æ

## Linear Programming problems

$$egin{array}{lll} \min_{x} & f(x) \ & g_{i}(x) \leq & 0 & orall i=1,\ldots,m \ & \underline{x} & \leq x \leq & \overline{x} \ & x_{j} \in & \mathbb{Z} & orall j \in Z \end{array}$$

Linear Programming (LP) problem:

$$\min_{x} f(x) \rightarrow \min_{x} c^{\top} x$$

$$g(x) \le 0 \rightarrow Ax \le b$$

æ

$$egin{array}{ccc} \min_x & f(x) & & & \\ & g_i(x) \leq & 0 & orall i = 1, \dots, m & & \\ \underline{x} & \leq x \leq & \overline{x} & & & \ & & x_j \in & \mathbb{Z} & orall j \in Z & & \end{array}$$

Linear Programming (LP) problem:

$$\begin{array}{rcl} \min_{x} f(x) & \to & \min_{x} c^{\top} x \\ g(x) \leq 0 & \to & Ax \leq b \\ \underline{x} \leq x \leq \overline{x} & \to & \underline{x} \leq x \leq \overline{x} \end{array}$$

æ

$$egin{array}{lll} \min_{x} & f(x) \ & g_{i}(x) \leq & 0 & orall i=1,\ldots,m \ & \underline{x} & \leq x \leq & \overline{x} \ & x_{i} \in & \mathbb{Z} & orall j \in Z \end{array}$$

Linear Programming (LP) problem:

$$\begin{array}{rcl} \min_{x} f(x) & \to & \min_{x} c^{\top} x \\ g(x) \leq 0 & \to & Ax \leq b \\ \underline{x} \leq x \leq \overline{x} & \to & \underline{x} \leq x \leq \overline{x} \\ x_{j} \in \mathbb{Z} \quad \forall j \in Z \quad \to & \text{removed} \end{array}$$

æ

 $\min_{x} c^{\top} x$   $Ax \leq b$   $\underline{x} \leq x \leq \overline{x}$ 

2



W.l.o.g. because  $\max \tilde{c}^\top x \rightarrow$ 

3

$$\min_{x} c^{\top} x$$

$$Ax \leq b$$

$$\underline{x} \leq x \leq \overline{x}$$

W.I.o.g. because  
$$\max \tilde{c}^{\top} x \rightarrow -\min -\tilde{c}^{\top} x$$

$$\min_{x} c^{\top} x$$

$$Ax \leq b$$

$$\underline{x} \leq x \leq \overline{x}$$

W.I.o.g. because  

$$\max \tilde{c}^{\top}x \rightarrow -\min -\tilde{c}^{\top}x$$
  
For some  $i$ ,  $\tilde{A}_i x \geq \tilde{b}_i \rightarrow$ 

$$\min_{x} c^{\top} x$$

$$Ax \leq b$$

$$\underline{x} \leq x \leq \overline{x}$$

W.I.o.g. because  

$$\max \tilde{c}^{\top}x \rightarrow -\min -\tilde{c}^{\top}x$$
For some  $i$ ,  $\tilde{A}_i x \ge \tilde{b}_i \rightarrow -\tilde{A}_i x \le -\tilde{b}_i$ 

$$\min_{x} c^{\top} x$$

$$Ax \leq b$$

$$\underline{x} \leq x \leq \overline{x}$$

W.I.o.g. because  

$$\max \tilde{c}^{\top}x \rightarrow -\min -\tilde{c}^{\top}x$$
For some  $i$ ,  $\tilde{A}_i x \ge \tilde{b}_i \rightarrow -\tilde{A}_i x \le -\tilde{b}_i$   
For some  $i$ ,  $\tilde{A}_i x = \tilde{b}_i \rightarrow$ 

$$\min_{x} c^{\top} x$$

$$Ax \leq b$$

$$\underline{x} \leq x \leq \overline{x}$$

W.I.o.g. because  

$$\max \tilde{c}^{\top}x \rightarrow -\min -\tilde{c}^{\top}x$$
For some  $i$ ,  $\tilde{A}_i x \ge \tilde{b}_i \rightarrow -\tilde{A}_i x \le -\tilde{b}_i$   
For some  $i$ ,  $\tilde{A}_i x = \tilde{b}_i \rightarrow -\tilde{A}_i x \le -\tilde{b}_i$  and  $\tilde{A}_i x \le \tilde{b}_i$ 

$$\min_{x} c^{\top} x$$

$$Ax \leq b$$

$$\underline{x} \leq x \leq \overline{x}$$

W.I.o.g. because  

$$\max \tilde{c}^{\top}x \rightarrow -\min -\tilde{c}^{\top}x$$
For some  $i$ ,  $\tilde{A}_{i}x \geq \tilde{b}_{i} \rightarrow -\tilde{A}_{i}x \leq -\tilde{b}_{i}$   
For some  $i$ ,  $\tilde{A}_{i}x = \tilde{b}_{i} \rightarrow -\tilde{A}_{i}x \leq -\tilde{b}_{i}$  and  $\tilde{A}_{i}x \leq \tilde{b}_{i}$   
Moreover,  $\underline{x} \in [-\infty, +\infty)$  and  $\overline{x} \in (-\infty, +\infty]$ .

æ

optimal: when X ≠ Ø, bounded. In this case, an optimal solution is found, i.e., a feasible point x\* s.t. c<sup>T</sup>x\* ≤ c<sup>T</sup>x for all feasible x ∈ X

- optimal: when X ≠ Ø, bounded. In this case, an optimal solution is found, i.e., a feasible point x\* s.t. c<sup>T</sup>x\* ≤ c<sup>T</sup>x for all feasible x ∈ X
- infeasible: when  $X = \emptyset$

- optimal: when X ≠ Ø, bounded. In this case, an optimal solution is found, i.e., a feasible point x\* s.t. c<sup>T</sup>x\* ≤ c<sup>T</sup>x for all feasible x ∈ X
- infeasible: when  $X = \emptyset$
- **unbounded**: when the min $\{c^{\top}x \mid x \in X\} = -\infty$

- optimal: when X ≠ Ø, bounded. In this case, an optimal solution is found, i.e., a feasible point x\* s.t. c<sup>T</sup>x\* ≤ c<sup>T</sup>x for all feasible x ∈ X
- infeasible: when  $X = \emptyset$
- **unbounded**: when the min $\{c^{\top}x \mid x \in X\} = -\infty$

Geometrical interpretation of LPs

- optimal: when X ≠ Ø, bounded. In this case, an optimal solution is found, i.e., a feasible point x\* s.t. c<sup>T</sup>x\* ≤ c<sup>T</sup>x for all feasible x ∈ X
- infeasible: when  $X = \emptyset$
- **unbounded**: when the min $\{c^{\top}x \mid x \in X\} = -\infty$

Geometrical interpretation of LPs

How to draw constraints and objective function

## Outline

## Introduction to Decision Theory Mathematical Optimization

#### 2 Linear Programming

#### 3 Methods to Solve Linear Programming

#### 4 Linear Programming

- The Simplex Methods
- Remarks

#### 5 References

## LP problems and methods

$$\min_{x} c^{\top} x Ax \leq b \underline{x} \leq x \leq \overline{x}$$

æ

$$\min_{x} c^{\top} x$$

$$Ax \leq b$$

$$\underline{x} \leq x \leq \overline{x}$$

#### Methods

- primal or dual simplex algorithm
- interior point method
- barrier method
- ...

∃ ► < ∃ ►

$$\min_{x} c^{\top} x$$

$$Ax \leq b$$

$$\underline{x} \leq x \leq \overline{x}$$

#### Methods

- primal or dual simplex algorithm
- interior point method
- barrier method
- ...

In this course: graphical solution of LPs and intuition on the primal simplex method

## Outline

# Introduction to Decision Theory Mathematical Optimization

- 2 Linear Programming
- 3 Methods to Solve Linear Programming

#### 4 Linear Programming

- The Simplex Methods
- Remarks

#### 5 References

Possible outcomes:

- optimal: when X = {x | Ax ≤ b, x ≤ x ≤ x} ≠ Ø, bounded. In this case, an optimal solution is found, i.e., a feasible point x\* s.t. c<sup>T</sup>x\* ≤ c<sup>T</sup>x for all feasible x ∈ X
- infeasible: when  $X = \{x \mid Ax \le b, \underline{x} \le x \le \overline{x}\} = \emptyset$
- **unbounded**: when the min $\{c^{\top}x \mid Ax \leq b, \underline{x} \leq x \leq \overline{x}\} = -\infty$

 $max x_1 + x_2$  $3x_1 + 2x_2 \le 13$  $0 \le x_1 \le 3$  $0 < x_2 < 5.$ 



 $max x_1 + x_2$  $3x_1 + 2x_2 \le 13$  $0 \le x_1 \le 3$  $0 \le x_2 \le 5.$ 



 $max x_1 + x_2$  $3x_1 + 2x_2 \le 13$  $0 \le x_1 \le 3$  $0 \le x_2 \le 5.$ 



 $max x_1 + x_2$  $3x_1 + 2x_2 \le 13$  $0 \le x_1 \le 3$  $0 \le x_2 \le 5.$ 












$max x_1 + x_2$  $3x_1 + 2x_2 \le 13$  $0 \le x_1 \le 3$  $0 \le x_2 \le 5.$ 



 $max x_1 + x_2$  $3x_1 + 2x_2 \le 13$  $0 \le x_1 \le 3$  $0 \le x_2 \le 5.$ 







 $max x_1 + x_2$  $3x_1 + 2x_2 \le 13$  $0 \le x_1 \le 3$  $0 \le x_2 \le 5.$ 





 $\max x_1 + x_2$  $3x_1 + 2x_2 \leq 13$  $x_1 + x_2 \ge 7$  $0 < x_1 < 3$  $0 < x_2 < 5$ . Impose to transport at least 7k gallons of liquid, in total.

 $\max x_1 + x_2$  $3x_1 + 2x_2 \leq 13$  $x_1 + x_2 \ge 7$  $0 < x_1 < 3$  $0 < x_2 < 5$ . Impose to transport at least 7k gallons of liquid, in total.



in total.

 $\max x_1 + x_2 \\ 3x_1 + 2x_2 \le 13 \\ x_1 + x_2 \ge 7 \\ 0 \le x_1 \le 3 \\ 0 \le x_2 \le 5.$ 

Impose to transport at least 7k gallons of liquid, in total.



 $\max x_1 + x_2 \\ 3x_1 + 2x_2 \le 13 \\ x_1 + x_2 \ge 7 \\ 0 \le x_1 \le 3 \\ 0 \le x_2 \le 5.$ 

Impose to transport at least 7k gallons of liquid, in total.



 $\max x_1 + x_2$  $3x_1 + 2x_2 \leq 13$  $x_1 + x_2 \ge 7$  $0 < x_1 < 3$  $0 < x_2 < 5$ . Impose to transport at least 7k gallons of liquid, in total. Solutions set:  $\emptyset$ 



æ

→ Ξ ► < Ξ ►</p>

- (日)



æ



2



æ

- E - - E -



æ

- E - - E -



æ

(日)



æ

イロト イヨト イヨト -



æ

イロト イヨト イヨト -



2



2

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …







æ

→ ∢ ∃ →



æ

4 B K 4 B K



4 B K 4 B K



2

- E - - E -



2



2



æ

- E - - E -



æ

- E > - E >



æ



2

- E - - E -



2

4 B K 4 B K



#### Theorem

Each convex combination of optimal vertices is optimal.

▶ ∢ ∃ ▶
#### Theorem

Each convex combination of optimal vertices is optimal.

#### Proof.

Let  $v^1, \ldots, v^p$  be the optimal vertices of the polyhedron corresponding to the feasible region of LP. Let  $x = \sum_{i=1}^{p} \alpha_i v^i$  with  $\sum_{i=1}^{p} \alpha_i = 1, \alpha \ge 0$ . Then, its cost is

$$c^{\top}x = c^{\top}\sum_{i=1}^{p}\alpha_{i}v^{i} = c^{\top}v^{1}\sum_{i=1}^{p}\alpha_{i} = c^{\top}v^{1}.$$

### Outline

# Introduction to Decision Theory Mathematical Optimization

- 2 Linear Programming
- 3 Methods to Solve Linear Programming
- Linear Programming
   The Simplex Methods
  - Remarks

#### 5 References

æ

• At least one of the optimal solutions is a vertex of the polytope

∃ ► < ∃ ►

- At least one of the optimal solutions is a vertex of the polytope
- unless problem infeasible or unbounded.

→ ∢ ∃ →

- At least one of the optimal solutions is a vertex of the polytope
- unless problem infeasible or unbounded.

Phase 1 : find a feasible solution

- At least one of the optimal solutions is a vertex of the polytope
- unless problem infeasible or unbounded.

Phase 1 : find a feasible solution

**Phase 2** : move from a vertex to an "improving" vertex

#### Intuition

#### **Simplex Methods**



From the Research Gate's page of by Laura Leal-Taixé 🛶 📑 🕨 🐳 🚍 🕨

Introduction to MP

2

Require: an LP problem

æ

Require: an LP problem

optimal = false; unbounded = false

æ

Require: an LP problem

optimal = false; unbounded = false if the origin (x = (0, 0, ..., 0)) is feasible then  $x^* = (0, 0, ..., 0)$ 

æ

#### Require: an LP problem

optimal = false; unbounded = false if the origin (x = (0, 0, ..., 0)) is feasible then  $x^* = (0, 0, ..., 0)$ 

#### else

Phase 1: find a first feasible solution  $x^*$ 

æ

イロト 不得下 イヨト イヨト

Require: an LP problem optimal = false; unbounded = false if the origin ( $x = (0, 0, \dots, 0)$ ) is feasible then  $x^* = (0, 0, \dots, 0)$ else Phase 1: find a first feasible solution  $x^*$ if impossible to find a feasible solution then return  $x^* = (+\infty, +\infty, \dots, +\infty)$ end if end if

æ

イロト 不得下 イヨト イヨト

Require: an LP problem optimal = false; unbounded = false if the origin (x = (0, 0, ..., 0)) is feasible then  $x^* = (0, 0, ..., 0)$ else Phase 1: find a first feasible solution  $x^*$ if impossible to find a feasible solution then return  $x^* = (+\infty, +\infty, ..., +\infty)$ end if {Phase 2} while optimal = false and unbounded = false do

æ

Require: an LP problem optimal = false; unbounded = false if the origin (x = (0, 0, ..., 0)) is feasible then  $x^* = (0, 0, ..., 0)$ else Phase 1: find a first feasible solution  $x^*$ if impossible to find a feasible solution then return  $x^* = (+\infty, +\infty, ..., +\infty)$ end if {Phase 2} while optimal = false and unbounded = false do if no vertex adjacent to  $x^*$  has a better objective function value then optimal = true

э

```
Require: an LP problem
optimal = false: unbounded = false
if the origin (x = (0, 0, \dots, 0)) is feasible then
    x^* = (0, 0, \dots, 0)
else
    Phase 1: find a first feasible solution x^*
    if impossible to find a feasible solution then
        return x^* = (+\infty, +\infty, \dots, +\infty)
    end if
end if
{Phase 2}
while optimal = false and unbounded = false do
    if no vertex adjacent to x^* has a better objective function value then
        optimal = true
    else
        if there is an improvement direction but it goes to infinity then
             unbounded = true
```

э

```
Require: an LP problem
optimal = false: unbounded = false
if the origin (x = (0, 0, \dots, 0)) is feasible then
    x^* = (0, 0, \dots, 0)
else
    Phase 1: find a first feasible solution x^*
    if impossible to find a feasible solution then
        return x^* = (+\infty, +\infty, \dots, +\infty)
    end if
end if
{Phase 2}
while optimal = false and unbounded = false do
    if no vertex adjacent to x^* has a better objective function value then
        optimal = true
    else
        if there is an improvement direction but it goes to infinity then
             unbounded = true
        else
             x^* = the vertex adjacent to the current x^* with the best objective function value
        end if
    end if
end while
```

э

```
Require: an LP problem
optimal = false; unbounded = false
if the origin (x = (0, 0, \dots, 0)) is feasible then
    x^* = (0, 0, \dots, 0)
else
    Phase 1: find a first feasible solution x^*
    if impossible to find a feasible solution then
        return x^* = (+\infty, +\infty, \dots, +\infty)
    end if
end if
{Phase 2}
while optimal = false and unbounded = false do
    if no vertex adjacent to x^* has a better objective function value then
        optimal = true
    else
        if there is an improvement direction but it goes to infinity then
             unbounded = true
        else
             x^* = the vertex adjacent to the current x^* with the best objective function value
        end if
    end if
end while
if optimal = true then
    return x*
end if
```

э

### Outline

# Introduction to Decision Theory Mathematical Optimization

- 2 Linear Programming
- 3 Methods to Solve Linear Programming

# Linear Programming The Simplex Methods

Remarks

#### 5 References

Constant, Logaritmic, Linear, Polynomial, Exponential, ... Time algorithms

Constant, Logaritmic, Linear, Polynomial, Exponential, ... Time algorithms

Worst-case time complexity vs average-case

Constant, Logaritmic, Linear, Polynomial, Exponential, ... Time algorithms

Worst-case time complexity vs average-case

Simplex method  $\rightarrow$  exponential worst-case running time

Constant, Logaritmic, Linear, Polynomial, Exponential, ... Time algorithms

Worst-case time complexity vs average-case

**Simplex** method  $\rightarrow$  **exponential** worst-case running time

**Ellipsoid** Method  $\rightarrow$  **polynomial** worst-case running time

イロト イヨト イヨト ・





**Optimization** : decisions are made.



**Optimization** : decisions are made.

Answer to the question "What is the best decision I can make among these options?"



**Optimization** : decisions are made.

Answer to the question "What is the best decision I can make among these options?"

**Simulation** : no decisions are made.



**Optimization** : decisions are made.

Answer to the question "What is the best decision I can make among these options?"

**Simulation** : no decisions are made.

Answer to the question "What would happen if I make this decision?"

### Outline

# Introduction to Decision Theory Mathematical Optimization

- 2 Linear Programming
- 3 Methods to Solve Linear Programming

#### 4 Linear Programming

- The Simplex Methods
- Remarks



- R. Faure, J.-P. Boss, A. Le Garff, "La recherche Opérationnelle". Series "Que sais-je ?" n. 941, Presses Universitaires de France (1974).
- M. Fischetti, "Introduction to Mathematical Optimization" (2019).
- S. Hansson, "Decision theory a brief introduction" (1994).
- S. Kassouf, "Normative decision making" (1970).
- A. Schrijver, "Combinatorial Optimization: Polyhedra and Efficiency" (2003).