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Part I. Introduction
The true justification of mathematics is aesthetic2, and it is my hope

that the essay which follows is to some degree justified. In Part II, I discuss
a function which is easily understood in one sense and then describe it
in several other ways. The beauty of that section lies in the relationship
it has to other branches of mathematics. For this reason I have added a
concluding section. The strength of Part II lies in the elementary argument
which finds the Riemann zeta function for even, positive integers. This
approach is contrasted to those found in most other books which use the
notion of double series expansion. The concluding theorem in Part III is
very intriguing because it joins two very different kinds of primes. This
theorem, however, appears to be very limited.

Part II. Functions Concerning the Powers of Two
The following discussion deals with functions which are related to a num-

ber’s representation in base two. For example, f(n) is defined so that it
is the number of ones in the base two form of n. Thus f(45) = 4 since
45 = 1011012. It is the goal of this part of my paper to give formulas for
f(n) and related functions. The ultimate goal is to express these functions
in terms of number-theoretic functions, such as µ(n) and d(n) to be defined
later.

We make the following definitions:
(1) an = 1 if n = 2k and an = 0 if n 6= 2k for some k.
(2) θ(n) = k if n = 2km where m ≡ 1(mod 2).
(3) f(2k + b) = 1 + f(b), if 0 ≤ b < 2k and f(0) = 0.

Of these functions an is the simplest because it assumes only the values
0 and 1. Also, by inspection we notice that

θ(n) =
∑
d|n

ad − 1.

1This paper contains a slightly modified version of a paper I sent to the 33rd Westing-
house Science Talent Search in 1974. The principal changes have been the correction of
some spelling and grammar errors, and the inclusion of a few extra steps in certain proofs
to make them easier to read. The principal reference book for this paper is Hardy and
Wright’s An Introduction to the Theory of Numbers.

2Oh, the simplicity of youth!
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In order to find a formula for f(n), its generating series is useful. Using only
the definition of f(n) it can be shown that

∞∑
k=1

f(k)xk =
1

1− x

∞∑
k=0

x2
k

1 + x2k
. (1)

Using the following identity for Lambert series

∞∑
k=1

bk
xk

1 + xk
=
∞∑
k=1

(−1)k−1bk
xk

1− xk
, (2)

we have
∞∑
k=0

x2
k

1 + x2k
=

1

1− x
−
∞∑
k=1

x2
k

1− x2k
. (3)

Now, if we expand and collect terms on the right, we get

∞∑
k=1

x2
k

1− x2k
=
∞∑
k=1

θ(k)xk. (4)

Thus using (1), (3), and (4) we can conclude that

f(n) = n−
n∑
k=1

θ(k).

Notice, that

θ(n!) =
n∑
k=1

θ(k) and θ(n!) =
⌊ n

21

⌋
+
⌊ n

22

⌋
+ · · · .

Hence, we can finally conclude that

f(n) = n−
⌊ n

21

⌋
−
⌊ n

22

⌋
− · · · . (6)

We now need the following number-theoretic functions:
(1) If n has a square factor then µ(n) = 0. Otherwise n = p1p2 · · · pr and
µ(n) = (−1)r, for distinct primes pi. Also, µ(1) = 1. µ(n) is called the
Möbius function.
(2) Let d(n) =

∑
d|n 1. d(n) is the number of divisors of n.

We shall also need the following Möbius Inversion Theorems:
(1) F (n) =

∑
d|nG(d) if and only if G(n) =

∑
d|n µ(nd )F (d).

(2) F (x) =
∑∞
k=1G(xk) if and only if G(x) =

∑∞
k=1 µ(k)F (xk).
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Using the first of these inversion theorems on the definition of d(n), we
get:

1 =
∑
d|n

µ
(n
k

)
d(k). (7)

Let L(x) be the simplest Lambert series, i.e.

L(x) =
∞∑
n=1

xn

1− xn
=
∞∑
n=1

d(n)xn.

Using the second Möbius Inversion theorem, we can determine that

x

1− x
=
∞∑
k=1

µ(k)l(xk)

and
∞∑
k=0

x2
k

1− x2k
=
∞∑
k=1

xk
∑
j|k

j≡1(mod 2)

µ(j)d
(k
j

)
.

But with (4) we have

θ(n) =
∑
j|n

j≡1(mod 2)

µ(j)d
(n
j

)
− 1 (8)

and by using (7)

θ(n) = −
∑
j|n

j≡0(mod 2)

µ(j)d
(n
j

)
− 1 (9)

If we let D(n) = d(1) + d(2) + · · ·+ d(n) then we can observe that

n∑
k=1

θ(k) = −
∑
j=2

j≡0(mod 2)

µ(j)D
(⌊n
j

⌋)

and finally

f(n) = n+
∑
j=2

j≡0(mod 2)

µ(j)D
(⌊n
j

⌋)
.
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Related Observations: The connection between the function f(n) and
the arithmetic functions µ(n) and d(n) is very intriguing. The generalization
for (9) is: If |µ(q)| = 1 and n = qkm, where m 6≡ 0(mod q), then

kh = µ(q)
∑
j|n

j≡0(mod q)

µ(j)d
(n
j

)

where h is the number of primes in q.
Equation (3) yields a rather striking identity:

∞∑
k=0

x2
k

1− x2k+1 =
x

1− x
.

If we define Un as the nth Fibonacci number, such that U0 = 0, U1 = 1 and
Un = Un−1 + Un−2 for n > 1, then the above identity yields

∞∑
k=0

1

U2k
=

7−
√

5

2
.

Equation (8) and (9) can be combined to give

n =
n∑
j=1

µ(j)D
(⌊n
j

⌋)
.

Employing a form of the Möbius inversion theorems, we have the well-known
identity theorem

d(1) + d(2) + . . .+ d(n) =
⌊n

1

⌋
+
⌊n

2

⌋
+ . . .+

⌊n
n

⌋
.

The function f(n) can answer some interesting questions concerning Pas-

cal’s triangle. It can be shown that the number of odd numbers in the nth

row of Pascal’s triangle is 2f(n). Equivalent to this is the fact that the num-

ber of odd entries in the nth row of an array of Stirling numbers of the first
kind is 2f(b

n
2
c).

Part III. Bernoulli Polynomials and Numbers
In this part of my paper I will deal with Bernoulli polynomials Bn(x)

and numbers Bn. My goals are to determine a formula for Riemann’s zeta
function, ζ(n), for even positive integers, to find a Fourier expansion for
Bn(x) without using Fourier Transformations, and to develop a connection
between regular primes and Fermat primes.
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Bernoulli polynomials are most conveniently defined by the generating
series

text

et − 1
=
∞∑
k=0

Bk(x)tk

k!
,

then we may set Bn = Bn(0). Books on infinite series prove that B2n+1 = 0,
for n > 0 and B′n(x) = nBn−1(x) or equivalently

∫
Bn(x)dx = 1

n+1Bn+1(x)+
C.

The answer to the first two goals I proposed lies in studying the series

tn(x) =
∞∑
k=1

(2k − 1)−ntrign(2k − 1)πx

for 0 ≤ x ≤ 1. Here, trign is sine if n is odd and cosine if n is even. In order
to work with tn(x), we need two more facts proven in books of analysis

π

4
=
∞∑
k=1

(2k − 1)−1 sin(2k − 1)πx

for 0 < x < 1 and that this series is integrable termwise. Thus we can derive
the recursive equations for tn(x)

t2n+1(x) = π

∫ x

0
t2n(x)dx

t2n(x) = β(2n)− π
∫ x

0
t2n−1(x)dx

where β(n) =
∑∞
k=1(2k − 1)−1.

The next step is to find another function which satisfies the above re-
cursive properties. To this end, define sn(x) as

sn(x) = (−1)b
x
2
c−1 π

n

2n!

(
Bn
(x

2

)
2n −Bn(x)

)
.

We can easily show that sn has similar recursive properties:

s2n+1(x) = π

∫ x

0
s2n(x)dx

s2n(x) = (−1)n−1
π2n(22n − 1)

2(2n)!
B2n − π

∫ x

0
s2n−1(x)dx

In order to show that sn and tn are the same functions we need to show that
they have the same value for an infinite number of n’s. It is easy to show
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that t2n(12) = 0. Thus since t1(x) = s1(x) = π
4 and if s2n(12) = 0, then we

would have tn(x) = sn(x) for all n and 0 ≤ x ≤ 1. It is an easy matter to
show that 22nB2n(14) = B2n(12) by examining the series

∞∑
k=0

B2k(x)t2k

(2n)!
=

t

et − 1

ext + e(1−x)t

2
.

Therefore by the definition of sn(x), s2n(12) = 0 and hence tn(x) = sn(x).
This conclusion is two-fold. First, the infinite trignometric series tn(x)

can be written as a polynomial sn(x) for 0 ≤ x ≤ 1. Secondly,

β(2n) = (−1)n−1
π2n(22n − 1)

2(2n)!
B2n.

However, since ζ(2n) =
∑∞
k=1 k

−n, we have

ζ(2n) = (−1)n−1
π2n22n−1

(2n)!
B2n.

Using a similar argument, it can be shown that

∞∑
k=1

k−ntrignkπx = (−1)b
n
2
c−1π

n

n!
2nBn

(x
2

)
. (10)

Thus using the fact that tn = sn and (10) we have the Fourier expansion for
Bn(x):

B2n+1 = 2(−1)n+1(2n+ 1)!
∞∑
k=1

(2πk)−2n−1 sin 2πkx

B2n = 2(−1)n+1(2n)!
∞∑
k=1

(2πk)−2n cos 2πkx

An interesting integer sequence connected with Bernoulli numbers is the
Euler sequence, defined by the series

2

ex + e−x
=
∞∑
k=o

Ekx
k

k!
.

Because
4t

e4t − 1
− 2t

e2t − 1
= −t 2

et + e−t
e−t

we can show that
2n(2n − 1)Bn = n(E + 1)n−1 (11)
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where it is understood that En is replaced by En.
At this point we need the famous Staudt-Clausen Theorem. In brief,

this theorem states that B2n = s2n
r2n

, where s2n is an integer and r2n is the
product of all primes p, such that p − 1|2n. Also a prime p is said to be
regular if p 6 |sk for k ≤ p− 3.

If we let n = 2k in (11) and let numbers of the form 22
n

+ 1 = Fn, then
r2n is the product of the Fermat primes less than or equal to log2 n, and

22
n
Fn−1Fn−2 · · ·F0

s2n

r2n
= 2n(E + 1)2

n−1.

This fact yields an interesting theorem: If p is a regular prime, p > 2n + 3
and p|(E + 1)2

n−1 then p|Fk for some k, log2 n < k ≤ n− 1.
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